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Abstract  

In this paper, periodic systems of N point particles with Lennard-Jones potential are simulated in three dimensional 

space using Monte Carlo technique. The maximum allowed displacement used in Monte Carlo simulation of any N-

particle system controls the convergence of the calculated potential energy to its physical situation. The optimum 

maximum allowed displacement associated with 50% acceptance rate is found. Since Lennard-Jones potential is a 

short range one, it is considered to be zero beyond some cut-off radius. The optimum dimensionless cut-off radius in 

the Lennard-Jones case is 2.5, which is used in simulations. An explicit mathematical formula for the optimum 

maximum allowed displacement as a function of both temperature and density is obtained. This formula is predicted 

by fitting the Monte Carlo results using the fitting tools in Matlab.  
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Introduction  

The Lennard-Jones (LJ) potential is one of the most important mathematical models that 

describes the energy of interaction between two particles, usually, neutral atoms or non-polar 

molecules (Born and Oppenheimer, 1927). This potential is used to study the nature and stability 

of small clusters of interacting particles in crystal growth and random geometry of liquids (Hoare 

and Pal 1971). 

It also appears in molecular dynamics to simulate many particle systems ranging from solids, 

liquids and gases. In addition, this potential appears in the study of the motion of stars and galaxies 

in the universe among other applications (Subirana and Chavela 2004).  

The common used form of the LJ potential between neighboring particles is given by (Mie, 1903) 

                                            𝑈𝐿𝐽(𝑟) = 4𝜀[(
𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

]                                                                 (1.1) 

where 𝜀 is the strength of the attraction between particles, 𝜎 is the intermolecular separation at 

which the potential energy vanishes, and 𝑟 is the distance between the centers of the two particles. 

The first term of Equation (1.1) describes the repulsive potential between particles, which arises 

from Pauli's Exclusion Principle (Condon and Shortly, 1951). The second term describes the 

attractive potential, and depends on van der Waal's forces (Evans, 2009; Yip and La Rubia 2009). 

The minimum value of the LJ potential occurs at the distance 𝑟0 = 2
1

6𝜎 . If the distance between 

any two particles is greater than 𝑟0 , attraction happens between them; otherwise, a repulsion 

happens. By reducing the units, Equation (1.1) becomes  

                                          𝑈𝐿𝐽
∗ (𝑟∗) = 4[(

1

𝑟∗)
12

− (
1

𝑟∗)
6

]                                                                 (1.2) 

where  𝑈𝐿𝐽
∗ =

𝑈𝐿𝐽

𝜀
, 𝑟∗ =

𝑟

𝜎
.    

One of the advantages of the LJ potential is that it falls off quickly, and only those particles within 

a near environment have much effect. As a result, it is possible to limit (or cut off) the maximum 

range of the interaction. The common choice of the reduced cut off distance (𝑟𝑐𝑢𝑡
∗ ) of LJ potential 

energy is in the range between 2 and 3 (Landau and Binder 2009). A typical value for this distance 

is 2.5 (Hurst 2008). Hence, Equation (1.2) can be written as 

                      𝑈𝐿𝐽
∗ (𝑟∗) = {

4 [(
1

𝑟∗
)
12

− (
1

𝑟∗
)
6

] , 𝑖𝑓 𝑟∗ ≤ 𝑟𝑐𝑢𝑡
∗

   0,                                 𝑖𝑓   𝑟∗ > 𝑟𝑐𝑢𝑡
∗   

}                                                         (1.3)  
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In the present work, a system of N point particles is studied, and it is assumed that the pairwise 

force between any two of them is unaffected by the positions of the other particles. This kind of 

approximation is, therefore, suitable for gases and liquids. The intermolecular forces are also 

assumed to be independent of the velocities. Hence, the total potential energy 𝑈𝐿𝐽
∗ (𝑟∗)  for the 

system of interest is given by 

                                 𝑈∗(𝑟∗) = ∑ ∑ 𝑈𝐿𝐽
∗ (𝑟𝑖𝑗

∗ )𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1                                                                       (1.4) 

where 𝑟𝑖𝑗
∗  is the reduced distance between the particles 𝑖 and 𝑗.  

In order to study such complex systems, a suitable computational techniques are needed. One of 

the most important simulation techniques that is usually used is the Monte Carlo (MC) method 

(Allen and Tildesley, 1987; Frinkel and Smit, 2002; Jana, 2011; Landau and Binder, 2009; 

Rosenbluth et al., 1953; Sadus and Richard, 2002). The idea of MC simulation is sampling 

microscopic states that are statistically significant for long-time averages of physical quantities 

(Frinkel and Smit, 2002; Newman and Barkema, 1999). These states will be picked up with a 

biased probability (Frinkel and Smit, 2002). This needs averaging the desired observable quantity 

over all the states of the system, and weighing each state by the Boltzmann probability (Ferguson 

et al., 1999). Markov process is the best procedure that is used for selecting states according to this 

probability (Frinkel and Smit, 2002; Gallager, 2013; Greenberg, 2008).  

The probability of the transition from state 𝑛 to state 𝑚 depends only on the difference in the total 

energy, 𝑈𝑚
∗ − 𝑈𝑛

∗. A simple and efficient method for calculating the transition probability is the 

Metropolis algorithm (Hermann and Binder, 2010; Rosenbluth et al., 1953). In this algorithm, the 

transition probability from the state 𝑛 to state 𝑚 is given by 

                             𝑊(𝑛 → 𝑚) = { 𝑒−
𝑈𝑚

∗ −𝑈𝑛
∗

𝑇∗ ,           𝑖𝑓  𝑈𝑚
∗ > 𝑈𝑛

∗

    1,                       𝑖𝑓 𝑈𝑚
∗ ≤ 𝑈𝑛

∗    
}                                                       (1.5) 

 

where 𝑇∗ is the reduced temperature of this system and it is given by 𝑇∗ =
𝑇𝐾𝐵

𝜀
 (𝑇 is the real 

temperature, and 𝐾𝐵 is the Boltzmann constant).  

Changing the state of the system can be done by randomly moving one particle. This move must 

be controlled by a maximum displacement allowed for this particle, 𝑑𝑚𝑎𝑥. Finding the optimum 

choice, 𝑂−𝑑𝑚𝑎𝑥, of the maximum allowed displacement is the main goal of this paper. The 
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advantage of using 𝑂−𝑑𝑚𝑎𝑥 in the simulation of such complex systems will give fast convergence 

to the equilibrium state. 

 

The Optimum Maximum Allowed Displacement  

The optimum behavior of the convergence in MC simulation and efficient sampling procedure that 

leads to fast equilibration can be achieved by using 𝑂−𝑑𝑚𝑎𝑥.  

The 𝑂−𝑑𝑚𝑎𝑥 leads to high statistical accuracy and saves lot of time needed to obtain the desired 

averages in the simulation convergence without affecting the equilibrium values (Ferguson, 1999). 

Two main conditions the displacement vector has to satisfy: First, it must be randomly chosen, 

which can be achieved by a random numbers generator in the computer, second, its magnitude has 

to be carefully chosen. The magnitude of the move may become out of the whole simulation box, 

or it may be very small. This depends on 𝑂−𝑑𝑚𝑎𝑥. 

The position of a particle 𝑖 in every metropolis MC step is defined by (Rosenbluth et al., 1953) 

                                            𝑟𝑖
∗(𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

= 𝑟𝑖
∗(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

+ 𝑑𝑚𝑎𝑥. (1⃗ − 2𝛾 ),                                                          (2.1) 

where 𝑟𝑖
∗(𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

 and 𝑟𝑖
∗(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 are the new and the old locations of the particle 𝑖 , respectively, 1⃗   is the 

vector [1,1,1], and 𝛾 is randomly chosen from the box [0,1]×[0,1]×[0,1]. Using Equation (1.5), the 

probability of this move will be given by [19] 

                                        𝑤 (𝑟𝑖
∗(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

→ 𝑟𝑖
∗(𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

) = min [1,
𝑃(𝑟𝑖

∗(𝑁)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
|𝑅𝑖)

𝑃(𝑟𝑖
∗(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

|𝑅𝑖)

]                                                   (2.2)  

Here, 𝑃(𝑟𝑖∗⃗⃗  ⃗|𝑅𝑖) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 𝑒−
𝑈𝑚

∗ −𝑈𝑛
∗

𝑇∗  is the conditional probability that finds the particle at the 

position 𝑟𝑖∗⃗⃗  ⃗ when the location of all other 𝑁−1 particles, defined by the set 𝑅𝑖 =

{𝑟1
∗⃗⃗  ⃗, … . . 𝑟𝑖−1

∗⃗⃗ ⃗⃗ ⃗⃗  , 𝑟𝑖+1
∗⃗⃗ ⃗⃗ ⃗⃗  , …… 𝑟𝑁

∗)⃗⃗ ⃗⃗  ⃗, are fixed.  

The acceptance ratio of the simulation, 𝐹, which is the ratio between the accepted moves to the 

total number of moves, depends on 𝑑𝑚𝑎𝑥. As mentioned before, if, on one hand, the magnitude 

of 𝑑𝑚𝑎𝑥 is chosen to be big, a lot of particles movements are not be going to be accepted. On the 

other hand, if the magnitude of 𝑑𝑚𝑎𝑥 is chosen to be small, the neighboring configurations will 

be highly correlated since all the states in the Markov chain are the same, and any essential change 

of the configuration will need many particles displacements (Rosenbluth et al., 1953). Both cases 
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are not effective in the computational technique, since they lead to increasing the computational 

work (Frinkel and Smit, 2002; Richet, 2001). In their research, many authors mentioned the effect 

of 𝑑𝑚𝑎𝑥 on simulations they have done (Coutinho and Canuto, 2003; Coutinho et al., 2004; Flach 

and Wilke, 2010; Goldman, 1983; Montani, 1992;  Mountain and Thirumalai, 1994; Nauchitel and 

Pertsin, 1980; Okeeffe and Orkoulas, 2009; Panagiotopoulos et al., 1986; Tiana et al., 2007; 

Vorholz et al., 2002). Experience indicates that 𝑑𝑚𝑎𝑥 associated with acceptance rate 50% is often 

desirable for MC simulation. However, there is no theoretical basis or systematic verification for 

the optimality of 𝑑𝑚𝑎𝑥 associated with this traditional acceptance rate (Sados and Richard, 2002). 

In addition, this suggested optimal 𝑑𝑚𝑎𝑥 is affected by the properties of the system under 

consideration. 

In this paper, 𝑁-point identical particle systems in a constant volume 𝑉, at constant temperature 

𝑇,(𝑁𝑉𝑇−canonical ensemble), are systematically studied. This research is a reproducing of the 

results obtained in (Al-Shraydeh, 2015).  

 In our system, particles move under the action of LJ potential; the simulation is performed in order 

to get a mathematical formula of the 𝑂−𝑑𝑚𝑎𝑥 that is associated with 50% acceptance rate as a 

function of temperature and density. Each state space is defined by all outcomes. Given the present 

state 𝑛, a particle is picked up and randomly moved according to Equation (2.1) to get the new 

state 𝑚. The energy of each state is calculated and then the Metropolis algorithm acceptance 

criteria are used to get the accepted states. Also, since our simulations are applied to infinite 

systems, a suitable periodic boundary condition is considered in this work. The detailed discussion 

about periodic boundary conditions can be found in (Allen and Tildesely, 1987; Chandler, 1987; 

Newman and Barkema, 1999). 

 

Results and Discussion  

The MC technique is used to simulate a system of 128 particles in three dimensions. The number 

of particles and the number of MC sweeps are chosen to be sufficient to get the desired results. 

Also, the values of the temperature and the density have been carefully chosen to cover the physical 

conditions of the system. In addition, the value 2.5 of the dimensionless cut-off radius 𝑟𝑐𝑢𝑡
∗  is 

traditionally used in the simulation of systems with Lennard-Jones potential. This value is checked 

to be the best cut-off radius in the sense of accuracy and convergence speed. The simulation of the 
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system is done at a given temperature, density, and 𝑑𝑚𝑎𝑥 in order to obtain the acceptance rate 𝐹. 

Fig. 1 shows 𝑑𝑚𝑎𝑥 as a function of 𝐹 at 𝑇∗ = 4.2 and 𝜌∗ = 1.5 as an example, where 𝜌∗ =
𝑁𝜎3

𝑉
.  

The simulation results data show that the relation between 𝐹 and 𝑑𝑚𝑎𝑥 is exponential. By fitting 

the results shown in Fig.1, the best mathematical formula that represents the relation with 

minimum error is 

                                                          𝐹 = 𝑎𝑒𝑏(𝑑𝑚𝑎𝑥)                                                                 (3.1) 

which is equivalent to 

 

                                                       𝑑𝑚𝑎𝑥 =
1

𝑏
ln (

𝐹

𝑎
)                                                                 (3.2) 

                                                  

   

            Figure 1. Maximum allowed displacement versus acceptance rate at 𝑻∗ = 𝟒.𝟐  𝒂𝒏𝒅 𝝆∗ = 𝟏. 𝟓          

 

where 𝑎 and 𝑏 are constants. Substituting 𝐹=0.5 in Equation (3.2) will give the value of 𝑂−𝑑𝑚𝑎𝑥. 

In the case of  𝑇∗ = 4.2 and 𝜌∗ = 1.5, the values of 𝑎 and 𝑏 are 1.145 and -71.51, respectively, 

and the determination coefficient obtained from the fitting curve in Fig.1 is 𝑅−𝑠𝑞𝑢𝑎𝑟𝑒=0.999. The 

procedure was repeated for 𝑇∗ = 4.2  at different values of 𝜌∗∶ (0.3125, 0.375, 0.4375, 0.50, 0.625, 

0.75, 1.0, 1.25, 1.75, and 2.0). Samples of the simulation results for 𝐹 as a function of 𝑑𝑚𝑎𝑥 are 

shown in Fig.2, and the values of 𝑎, b, O−𝑑𝑚𝑎𝑥 and the determination coefficient 𝑅−𝑠𝑞𝑢𝑎𝑟𝑒 are 

shown in Table.1. It is clearly seen that there is a dependency between 𝑎, 𝑏, 𝑂 − 𝑑𝑚𝑎𝑥, and 𝜌∗ at 
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fixed temperature; the values of 𝑎 increase by increasing 𝜌∗, while the values of 𝑏 and 𝑂−𝑑𝑚𝑎𝑥 

decreases.  

 

                                    (a) 

 

 

                               (b)  

 

 

                                    (c)  

 

 

                               (d) 

 

 

                                  (e) 

 

 

                                (f) 

 

 

Figure 2. The best fitting curves of the maximum allowed displacement versus acceptance rate at 

𝑻∗ = 𝟒.𝟐, 𝒇𝒐𝒓 𝝆∗ = (𝒂)𝟎. 𝟑𝟏𝟐𝟓, (𝒃)𝟎. 𝟓, (𝒄)𝟎. 𝟕𝟓, (𝒅)𝟏. 𝟎, (𝒆)𝟏. 𝟕𝟓, (𝒇)𝟐. 𝟎 

 

The relation between 𝜌∗  and 𝑂−𝑑𝑚𝑎𝑥 for fixed temperature is shown in Fig. 3 and is supposed to 

be of the form 
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                                                 𝑂 − 𝑑𝑚𝑎𝑥 = 𝐾𝑒𝐿𝜌∗
                                                                       (3.3)  

 

where 𝐾 and 𝐿 are constants (in the case of 𝑇∗ = 4.2, 𝐾=0.1451,and 𝐿=−2.114).  

 

 

Figure 3. Density versus optimum maximum allowed displacement at 𝑻∗ = 𝟒. 𝟐 

 

The above procedure is repeated for different values of 𝑇∗∶(1.0,1.5,2.0,2.5,2.9,3.4,3.8,5.0 and 6.0 

). At each value of  𝑇∗ , the simulation is done for the all values of  𝜌∗ used in the case of 𝑇∗ = 4.2. 

Results show that 𝑂−𝑑𝑚𝑎𝑥 follows Equation (3.3). The data obtained from the simulation as well 

as the data obtained from (3.2) are plotted and shown in Fig.4.  

From the data presented in Fig.4, it is clearly notable that the values of 𝐾 and 𝐿 depend on 

temperature. Therefore, equation (3.3) can be written as 

 

                                              𝑂 − 𝑑𝑚𝑎𝑥(𝑇∗, 𝜌∗) = 𝐾(𝑇∗)𝑒𝐿(𝑇∗)𝜌∗
                                                   (3.4) 
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Table.1: The values of 𝑎, b, 𝑂−𝑑𝑚𝑎𝑥, and 𝑅−𝑠𝑞𝑢𝑎𝑟𝑒 for 𝑻∗ = 𝟒. 𝟐 at different values of 𝝆∗ 

  𝜌∗     a     b  𝑂−𝑑𝑚𝑎𝑥  𝑅−𝑠𝑞𝑢𝑎𝑟𝑒  

0.3125  0.8919  -7.753    0.0746    0.9988  

0.375  0.9557  -10.43    0.0621    0.9992  

0.4375  0.9612  -12.29    0.0531    0.9993  

0.50  1.004  -15.00    0.0464    0.9996  

0.625  1.027  -19.81    0.0363    0,9999  

0.75  1.039  -25.00    0.0292    0,9998  

1.00  1.078  -38.12    0.0201    0.9997  

1.25  1.122  -54.70    0.0147    0.9998  

1.50  1.145  -71.51    0.0115    0.9991  

1.75  1.207  -99.76    0.0088    0.9996  

2.00  1.135  -120.00    0.0068    0.9951  

 

 

Figure 4.  Density versus optimum maximum allowed displacement at different values of 

temperature 
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To obtain mathematical formulas for 𝐾 and 𝐿 as functions of 𝑇∗, their values, shown in Table 2, 

are fitted using Matlab. Fig.5 shows the best fitting curves for 𝐾 and 𝐿. Their mathematical 

formulas are given by  

                                                𝐾(𝑇∗) = −0.1417(𝑇∗)−0.4681 + 0.1937                                            (3.5)  

with 𝑅−𝑠𝑞𝑢𝑎𝑟𝑒=0.9975, and  

                                                𝐿(𝑇∗) = −0.4829(𝑇∗)−2.58 − 1.804                                               (3.6) 

with 𝑅−𝑠𝑞𝑢𝑎𝑟𝑒=0.9898. 

 

Table 2. The values of the constants 𝐾 and 𝐿, and the value of 𝑅−𝑠𝑞𝑢𝑎𝑟𝑒 at different values of 𝑻∗. 

 𝑇∗     K     L  𝑅−𝑠𝑞𝑢𝑎𝑟𝑒  

1  0.05166  -1.32      0.9923  

1.5  0.07838  -1.639      0.9969  

2  0.09252  -1.723      0.9920  

2.5  0.1004  -1.741      0.9897  

2.9  0.1067  -1.763      0.9869  

3.4  0.114  -1.795      0.9849  

3.8  0.1185  -1.805      0.9829  

5  0.1252  -1769      0.9810  

6  0.1341  -1.798      0.9771  

 

In addition to the determination coefficient, the residual plot and the ANOVA test have been done, 

as an example, for 𝑇∗ = 2.9. The results show the high accuracy of the approximation using 

Equation (3.4) in comparison with the simulation results. Fig.5 shows the residuals. The ANOVA  

test using SPSS gives P value equals to 0.000, F value equals to 879, R-Square=.99, and the 

correlation coefficient equals 0.99. This shows that there is no remarkable differences between the 

simulation results and those of Equation (3.4).  
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Figure 4. Differences between the simulation results of O-dmax and the calculated results by 

equation (3.4) 

 

 

Conclusions  

A system of 128-point particles with Lennard-Jones potential in an NVT-ensemble is simulated 

using Metropolis Monte Carlo method with a suitable periodic boundary conditions. The cut-off 

radius used in this study is 2.5. The maximum allowed displacement 𝑑𝑚𝑎𝑥 associated with 50% 

acceptance rate is found. This gives the best convergence of simulation to the equilibrium state of 

the system. The mathematical representation of the relation between 𝑂−𝑑𝑚𝑎𝑥 and both 

temperature and density is found and formulated by Equation (3.4).  
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 الحد الأقصى الأمثل للنزوح المسموح به في محاكاة مونت كارلو لجزيئات لينار جونز النقطية 

 

 إياد صوان 1 ، هايل شريدة 1 ، عبد الرحمن أبو لبدة 2

 1قسم الرياضيات والإحصاء ، كلية العلوم، الجامعة العربية الأمريكية – فلسطين 

 2 قسم الفيزياء ، كلية العلوم، الجامعة العربية الأمريكية – فلسطين

 

 

 الملخص

 تقنية باستخدام الأبعاد الثلاثي الفضاء فيجونز  لينارد طاقة  مع N عددها ةبنقط لجسيمات الدورية الأنظمة محاكاة تم ، البحثيه الورقة هذه في

 المحسوبة الكامنة الطاقة تقارب على يسيطر N عدده جزيئي نظام لأي كارلو مونت محاكاة في المستخدم به المسموح للنزوح الأقصى الحد. مونتي كارلو

 إلى صفرًا تعد فإنها المدى، قصيرة هي الإمكانيات لأن ونظرًا٪. 50 قبول بمعدل المرتبط للنزوح الأمثل الأقصى الحد على العثور تم. المادي وضعها مع

 صيغة على الحصول تمو .المحاكاة عمليات في يستخدم والذي ،2.5 جونز لينارد حالة في أبعاد بلا مثلالقطع الأ قطر نصف يبلغ. القطع قطر نصف بعد ما

 كارلو مونت نتائج ةءمملا خلال من الصيغة هذه توقع تمو .والكثافة الحرارة درجة من لكل كدالة به المسموح الأمثل الأقصى للحد صريحة رياضية

 .Matlab في التركيب أدوات باستخدام

 .للنزوح به الأقصى المسموح الحد ، كارلو مونت محاكاة ،جونز  لينارد طاقة  ، Nجسيمات نقطبة عددها   نظام: الدالةالكلمات 


