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In this work, the nabla discrete new Riemann-Liouville and Caputo fractional proportional differences of order 0 < ¢ < 1 on the time scale

Z are formulated. The differences and summations of discrete fractional proportional are detected on Z, and the fractional proportional
sums associated to (RV#y) (z) with order 0 < &< 1 are defined. The relation between nabla Riemann-Liouville and Caputo fractional
proportional differences is derived. The monotonicity results for the nabla Caputo fractional proportional difference are proved; specifically,
if (R,V#y)(2)>0 then y(z) is ep —increasing, and if y(z) is strictly increasing on N, and y(c) >0, then (R ,V®y)(z)>0. As an
application of our findings, a new version of the fractional proportional difference of the mean value theorem (MVT) on Z is proved.

1. Introduction

Many problems in science, engineering, and media can be
formulated using continuous and discrete fractional calculus
[1-14]. The fractional sums and differences and their mono-
tonicity properties are deeply studied in [15-25]. In [26],
Atangana and Baleanu solved the fractional heat transfer model
using new fractional derivatives with exponential kernels, and
they presented many applications of the new notations of
fractional derivatives. Applications of discrete fractional cal-
culus are successfully discussed by many researchers in the last
decade, for example, in [27-29]. Recently, studying the
monotonicity for fractional difference operators with non-
singular discrete kernels is under focus [30, 31]. Monotonicity
results for fractional difference operators with discrete expo-
nential kernels were studied in [32] when the time step & = 1.
In [3], deep monotonicity analysis is done for nabla h—discrete
fractional differences with a discrete Mittag-Leffler kernel in
the time scale hZ with 0 < e <1 and 0 < ki < 1. The results of the
research generalized those obtained in [22] where 0 <e<0.5
and h =1. After that, monotonicity analysis of fractional
proportional differences is studied and then the results are
prettified by formulating a new version of mean value theorem
as an application. In [33], the nabla fractional sums and

differences of order 0 <e<1 on the time scale hZ where
0 <h<1 are formulated, and the monotonicity results for the
nabla h—Caputo fractional difference operator were concluded.
In this paper, the authors formulated the nabla discrete new
Riemann-Liouville (RL) and Caputo fractional proportional
differences of order 0 <e<1 on the time scale Z. They also
proved a new version of the fractional proportional difference
of the mean value theorem (MVT) on Z.

The article is organized as follows: Section 2 presents the
main definitions and needed preliminaries. In Section 3, the
monotonicity results for fractional proportional differences
are classified. In Section 4, we formulate a new version of the
mean value theorem as an application. Finally, we provide
the conclusions in Section 5.

2. Definitions and Preliminary Results
Definition 1. The discrete proportional difference of order
0<p<1 for the function y is defined by
VPx(2) = (1 - p)x(2) + pVx (2),
zeN, ={c+1,c+2,c+3,...},

(1)

and ¢>0 is an integer.


mailto:tabdeljawad@psu.edu.sa
https://orcid.org/0000-0002-8889-3768
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4867927

Definition 2. Let z e N, 0<p<1, and p =
e, (z,c) = p* <.

(p—1/p), then

Definition 3. For any real number a, the « rising function is
z%= (T(z+a)/T(z)), such that zeC\{..,-2,-1,0},
0% = 0, where I'(z) is the gamma function.

Definition 4 (nabla fractional proportional sums).
For a function y:N,— R, p>0, and e€C,

0 <Re(¢) < 1, the nabla left fractional proportional sum of y
starting at ¢ is defined by
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d
(V&E,ﬂx) (Z) = % J Ep (s-2z, 0) (S _ (Z))s— (S)AS
1 d-1 e
T Z 2,(1-2,0)(1-c(2)" 'y (), ze,N.
(3)

We notice that by setting p = 1, the given definitions of
the fractional sums are generalizations of the Riemann
fractional sums.

. z — L 1. Let N, — R b tion, p= (p-1/p),
(V¥0(=) = B J (z-50)(z=¢(s)" x(s)Vs Oin:f?, andeO <XPS1, then ¢ a function, p=(p=1/p)
_ (V™ VN(2)
r(s) ,;le Fou0E=c) a0, ze N oo (4)
(2) —(V V&P )( ) - T p( lC)X(C)
For the function y: ;N={d,d-1,d-2,...} — R, the
nabla right fractional proportional sum ending at d is de-
fined by Proof.
e 1 L p
(V0 (2) ==~ Y 8,(z-10)(z-c())" 'y (1)
F(é‘) 1=c+1
F(s) ,;1’)2 "z =) (x () - x (- 1)
F(s) ,;1/)2 "z =) X
TG )élp (z =) (-1
r(s) I;pz "(Z= )y ()
r(e) sz Tz - g+ 1) X0 (5)

I'(e)

1=c+1

L( Y Pz =) )((t)—ZpZ Yz - 1) =) 1)((l)>

%( Y P 2 ) () - Z R (CE VR0 lx(t)>
1=c+1 1=c+1
- r(ls)p” V(2 - 1) - () 'y (0)
F(s) Z P (z = (1) x(t)—m “(z-1-c+ 1)y (o)
1=c+1
P (z-0"
=(V.V 1) (2) - T »(z=10)x(c).
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Lemma 2. Let y: N. — R, p=(p-1/p), 0<e<1, and  Proof.
0<p<, then _ V' (2) = (1= py(2) + pVy (), ?)
(VFV) (=) = (VP .V x) (=) - m( -0 e, (z- Loy (o). hence,
(6)
(VY0 (2) = V(A - plx(2) + pVx (2))
=(1-p) (V1) (2) +p( .V Vx(2)) using Lemma 1
_a-p( @ (0@ -2 oo noxo
‘ ‘ G (8)
=((1=-p) (VN (2) +pV (VP (2)) - m(z ~ 08, (z - 1,y (c)
— (VP TP _ P o
=(V.V™0 (2) T )(Z o) e, (z - Loy (o).

Note that if p = 1, we get

1
=(V.V 1) (2 m(z—

(V) (z O x(@. (9

|

Definition 5 (Riemann-Liouville (RL) fractional propor-
tional differences)

For 0<p<1, e€C, 0<Re(¢g) <1, and y be a function
defined on N, or on ;,N, then the left Riemann-Liouville
fractional proportional difference starting at ¢ is defined by
—(1-¢)p

GV (z) =V vV x(2)

(4 z o
Z%J ,(z-5,0)(z~¢(s)) x(s)Vs
r(1_g) Ze (z=1,0)(z = (1)) O

1=c+1
P Z—1
p (z—-¢()) xU
“T-e Z (z=c() % (),

1=c+1

(10)
and the right Riemann-Liouville fractional proportional
difference ending at d is defined by

(V0 (@) = vy (2)

iy (1

d-1 .
09 ;p’_z(t —¢(2)) x (.

We notice that by setting p = 1, the given definitions of
the fractional differences are generalizations of the Riemann
fractional differences.

Definition 6 (Caputo fractional proportional differences)

For 0<p<1, eeC, 0<Re(e)<1, and y be a function
defined on N_ or on ,;N, then the left Caputo fractional
proportional difference starting at c is defined by

VIR (2) = VPV (2)

- ﬁ JZEP (z-50)(z—¢(s)) (V*x(s))Vs

sz ‘(2 - c(0) V),

1=c+1

F(l—s)
(12)

and the right Caputo fractional proportional difference
ending at d is defined by

(CVFx) (2) = V9P (~APx (2))

d-1 o
= ﬁ P -c(2) 7 (- ().

(13)

We notice that by setting p = 1, the given definitions of
the fractional differences are generalizations of the Caputo
fractional differences.

Proposition 1 (the relation between nabla RL and Caputo
fractional proportional differences)

For any e € C, 0<Re(e) <1, and 0<p<]1, the relation
between nabla RL and Caputo fractional proportional dif-
ferences is given as follows:
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(i) (CV0)(2) = (BVPp)(2) = (z =) “/T (1 —¢)e,(z,  Proof.
o)x (c). B

(i) (EVx)(2) = (V) (2) = (d = 2) /T (1 - e)e, (dh,
2)x(d).

2 1 < z—1 =
v ’px)(Z)=mI=;1p (z - ¢(1)*Vx (1)

= ﬁ Y Pz =) (1= px () + pVx ()
1=c+1

:ﬁ Y P =) (- ()
1=c+1
1

" I'(l-¢)

Y Pz (1) (pVx (1))

1=c+1

zﬁ DI CER ORISR0

1=c+1

1 Z zZ—1 —_£
iy 2P O () 3 1)

1=c+1

1

TT(1-¢) ,:;1’0271 (z = ¢ () (1= p)x (1)

1

Fraog 2 e )

1=c+1

1

z-1 -
Taog 2P Gt D ®

l-p v = s
:r(l—g),:czﬂp (z=¢() "z

Fag 2RO

z-1 o
_r(lp_ s) Z PZ—l—t(Z_l_C(l))—sX(l)

1=c+1
P z—1-c —py
‘F(I_S)P (z=1-5(c)) “x(o)
1—/) - z—1 s pV Z 1 =
= i FCZHP (2= YO+ 125 ,zcz+1p (z- (1)) *x (1)
P z—1-c¢
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p z —
s 2 &m0z 6) K0

1=c+1

(z-c)°¢
I'(l-¢)

(z-c) ¢

T T(l-¢) PR (e) = (V) (2) -

Ep (z,0)x (c).

(14)

. 1 Yo, =
(V0@ =g LA 0@ (A0

L d -
T l—s) 2P = () (1= plx () + pAx ()
o

“T(l-e Zpl_z(‘ ~5(2) “(1-px®)

d-1 o
e DA GUONC RO
d_ JR—

_ 1
s LA -0

1 _dl - — d-1 B _
Ty LA TS e D 2P ) )

1=z

1=,

_ d-1 o
“Ta 1_8) Y P T = c(2) (- p)x (1)

1 d 1-1-z s
9 l:;lP (1-1-(2) px (1)
d-1 . (15)

r(ll_ 9 Y P =c2) px ()

1=z

+

d-1 .
“riog 2F @) i)

I d - 1-¢(2) px(d)

_1"(1 —s)p
1

d-1 o
Ty 2P s ) )

1=z+1

1 d-1 .
T Y P =c(2) o ()

—(1-p) ! -z —¢ ALY =z E
e DY OISRt D WA BRI

d-z =
_T(l—s)P (d-1-z+1) x(d)

_AP Azl

Y P = c(2) Sy () -

d-z e
T(1-¢ & p(d-z) x(d)

I'(l-¢)

(d-2)°¢

_ (Ry®P _
= (V0@ Ty

2, (d,2)y(d).



Numerical calculations have been done in order to verify
the first equation in Proposition 1. The values used are
¢=2.5, p=0.7, and ¢ =0.3. The results are illustrated in

Figure 1.
In addition to that, the data are presented in Table 1.
O
Lemma 3. Let 0<e<l,_z,0€N, and 1<z, then
V(z-c() *=-e(z-c) "
Proof.

Viz=c¢()) “=(z-c() = (z-1-¢(1) "
=(z—1+1) " =(z-0) ¢
_F(z—t—£+1) I'(z—1t-¢)

T T(z-1+1) L(z-1)
T(z—t—s)(z—t—s )
= -1
T(z-1) zZ—1
_F(z—t+1—s—l)<—_€>
- I'(z-1) z—1
o Tlz—i+l-e-1)
I'(z—1+1)
=—e(z—1+1) " =—e(z-c() L
(16)
O

3. Monotonicity Results

The following two monotonicity definitions are given in [18].

Definition 7. Let y: N, — R be a function satisfying
y(a)>0, 0<a<]1. Then, y(t) is called an a—increasing
function on N, if y(t+1)>ay(t) VteN,.

Definition 8. Let y: N, — R be a function satistying
y(a)<0, 0<a<1. Then, y(t) is called an a—decreasing
function on N, if y(t + 1) <ay(t)Vt e N,.

In the following, we report the new proportional
monotonicity main results.

Theorem 1. Let y: N, — R be a function, and suppose
that (X [ V*Py) (2) >0 for 0<e<1 and 0<p<1,z e N_,.
Then, x(z)isep — increasing.

Proof.
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FIGURE 1: The relation between nabla Riemann and Caputo
fractional proportional differences.

TaBLE 1: The relation between nabla Riemann and Caputo frac-
tional proportional differences.

z Caputo Riemann Difference
3.5 2.181077 —0.415443 2.596520
4.5 5.786530 3.190010 2.596520
5.5 10.787558 8.649248 2.138310
6.5 17.274639 15.611509 1.663130
7.5 25.339691 24.081105 1.258585
8.5 35.058768 34.121524 0.937244
9.5 46.490945 45.800344 0.690601
10.5 59.680789 59.175722 0.505066
11.5 74.661373 74.294052 0.367321
12.5 91.456990 91.190999 0.265991
13.5 110.085354 109.893402 0.191952
14.5 130.559312 130.421178 0.138134
15.5 152.888147 152.788974 0.099173
16.5 177.078543 177.007482 0.071061
17.5 203.135301 203.084469 0.050832
R &p \ < = —e
(V0 (2) = ———— D 8,(z = 1,0)(z = c(1))"*x (1)
I(1-¢ &
\4 - z—1 s
== z— 1 l).
r(1—e);" (z-c() "y ()
(17)
Let
z —
$(2) =) p" (2= (1) x (). (18)
1=Cc
Then,
AV
R 3
V) (z2) = ———S(2). 19
VD@ = 555G (19)

Hence, from the assumption, we have VS (z) > 0. That is,
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VPS(z) = (1 -p)S(2) +pVS(z)
=(1-p)S(2) +p(S(2) - S(z-1))
=S(2) - pS(2) + pS(z) —pS(z - 1)

=S(z)-pS(z-1)

=Y P (2= () X )

z-1 _
—pY P TNz 1-c() K ()

1=c

. z-1 —
=(z-c(2) Y@+ Y p (=) k()

z-1 _
DN NG T O R 0)

1=c

_ z—1
=(z-z+1)x(2)+ Y p"'x(0)
. ((z - c(t))f_‘g -(z-1- C(l)):>

— z-1 —
=) k@) + Y P X (OV(z-c(1)°

_I(1-¢)
(1)

z—-1 .
X(@+ Y p 0 -ez =) )

z-1 [
=T(1-ax(@-¢e) p" 'y (z-c() "

>0.

(20)
Therefore,

R &p _ N
(caV7'X) (2) = Ta_9 S)S(Z)

1 < =
—F(I—_S)<F(1—£)x(2)—8;p x (1) (z - (1) 1)

z-1 J—
XD g 2P KO0

=0.
Hence, (21)

z-1 .
@2 p () (2 () . (22)

['(1-¢) <

Clearly, y (¢ — 1) = 0. So, we can start the induction from
the next step. When z =¢, we get y(c)>0; also, when
z =c+ 1, we have

C

P Ol B0

1=c

£
x(c+1) = -9

PN @ e+ 1—-g(e) !

:1"(1 )

:ﬁp}((c)(c+ l-c+1) !

(23)

e I'(l-¢)
“Ta-9'9 7T

= ¢gpy (c).
Now for z + 1, replace z by z + 1, then we get
V4

x(z+1) = ﬁ ;PZ+1_'X(1)(Z+ 1-c() "

> P 1-c@)

I'(1-e¢)

- ﬁpx(z)(z +1-z+1) !

&p
I'(l1-¢)

X(z)zx

= epy (2).
(24)
Hence, x (2) is ep—increasing which completes the proof.
Using Theorem 1 and Proposition 1 we can state the

following Caputo fractional proportional difference

monotonicity result.
O

Corollary 1. Let y: N._; — R be a function, and suppose
that for 0<e<1 and 0<p<1. Suppose that

—EP (z,c—1)

W(Z—C‘Fl) X(C—l), ZGNC—I’

(V0 (2) 2
(25)
then x(z) is ep — increasing.

Proof.
EP (z,c—1)

(V0 (2) = (B, V) (2) - I[(1-e¢)

(z-c+ I)Tgx(c— 1), VzeN_,,

(26)
now, from the assumption we have
(€ V) (2) 2m(z —c+ 1) y(c-1),
I'(l-¢) (27)
zeN_,zeN_,
hence,



(CCl st) (z) + M(z _

T(=9 c+1) *x(c-1)=0,

zeN._,zeN_,
(28)

which means that (? V¥*y)(z) 0.
Now, from Theorem 1, we conclude that y(z) is
&p — increasing.

O

Theorem 2. Let y: N._, — R be a function which satisfies
x(c) =0, and suppose that for0<e<1land 0<p<1.Ify(z) is
increasing on N, then we have

X V) (2)20, VzeN,_,. (29)

Proof. Since

(V0 (2) = x(2) - )Zp“(z (1) Ty (),

zeN._},
(30)
when 2z=¢, we have from the assumption
R.VEx) () = x(c) = 0.

Clearly, y (¢ — 1) = 0. So, we can start the induction from
the next step.
Assume that (®
R VePy) (2) 0.
Since, from assumption, y (z) is increasing, it follows that
x(2)=2x(z - 1)2X(c)>0 Vz e N

{V#y) (i) 2 0, Vi < z. We shall show that

&V (2) = x(2) - Z Pz () x ()

F(l €) &
€

s E)pz‘z+1 (z-¢(z-1) " y(z-1)

=x(2) -
£ < z—1 —e-1
) ;p (z=¢()" x(

=x(2) —epx(z - s)chz :

(z=¢() " x(t)

m_s)zp“ (z=c) Tz~ 1)

z-2 -
ﬁ Y P e k(2 - 1)
=x(2) —epx(z-1)

z=2 N
g 2 @ T e ) -5 0)
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z-2 .
R DGR ORPCE

z=2
>y(z) —epy(z-1) - F(ls— 9 ;pz_’

(z=¢()) T y(z-1)

€ z-1 o
=X(z)_r(1—s);’)

(z-c() Y (z-1)

=x(2)-x(z-1D+x(z-1)

“Tas 5)ZP (z-c() " y(z-1)

z-1

€ z—1
2XE-D-ray 2.

1=c

(z-¢() T y(z-1)

=x(z- 1)(

> 0.

sz “(z-c) ! )

(31)
O

Theorem 3. Let y: N._, — R be a function which satisfies
x(c) >0 and be strictly increasing on N_, where 0 <e<1 and
0<p<1. Then,

X V¥ >0, zeN (32)

c-1*

Proof. Since

B VP (2) = x(2) -

T(i-9 & Z g
(33)

- T, zeN_,
when z=c¢, we have (f_IVE’Px) (c)=x(c)>0. Clearly,
x(c — 1) = 0, and so we can start the induction from the next
step.

Assume that (® |

R VEPy) (2) > 0.

Since, from assumption, y (z) is increasing it follows that

x(2)>x(z-1)>x(c)>0,Vz € N_:

V& y) (i) > 0, Vi < z. We shall show that
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z-1

O O e DICELOREC

>x(2)—x(z-1)+x(z-1)

z-1 JE—
Ty 2P e e

€ z—-1
>X(Z_1)_—r(1—s) Z

Tz - () Tz - 1)

z-1 .
=x(z- 1)(1 —ﬁ szf‘(z— C(l))€1> > 0.

=c

(34)
O

Theorem 4. Let y: N._, — R be a function, and suppose
that (% ,V*y) (2)<0 for 0<e<1 and 0<p<l,z € N_,.
Then, x(z)isep — decreasing.

Proof. Let 6: N._;, — R be a function
0(z) = —x(2); hence,

(1976) (2) = (L, V7 (-1) (2) = (., V) (2) 2 0.
(35)

such that

Now by Theorem 1, we conclude that 0(z) is
ep — increasing.

Hence,
0(z +1) = pb(2), (36)
which is
—x(z+1)2ep(—x(2)), (37)
x(z+1)<epy(2),
that is to say, y(z) is ep — decreasing. 5

Theorem 5. Let a function y: N._; — R be decreasing on
N, such that y(c)<0. Then, for 0<e<1 and 0<p<1, we
have

R V) (2)<0, VzeN_,. (38)

Proof. The proof follows by applying Theorem 2 to

0(z) = —x (2).
Using Theorem 4.3 in [4] we can state the following.
O
Theorem 6 (see [4]). For any 0<e<l, 0<p<l,

p=(p-1/p), and x: N, — R, the following equality
holds:

_éP(Z,C) : =1
(e (z=c+1)" x(o).

(5v7 B v) (@) = x(2)
(39)

4. Application: Mean Value Theorem (MVT)

First, for the sake of simplification, depending on Theorem 6,
we shall write

(Bv B v¥%) (2) = x (2) - S (=, 0 (0), (40)
where
$(z¢) =epr((z;;)(z_c+1)f 1 (41)

Theorem 7 (the fractional proportional difference MVT)

Let © and 0 be functions defined on
N. N N={c,c+1,c+2,...,d-2,d—1,d}, where c=dmod]l.
Assume that 0 is strictly increasing, 8(c) >0, and 0 < e<1 and
0<p< 1. Then, there exist s;,s, € N.N 4N such that
R Vo0 (s) PEIOENCCION R VEPO) (s,)
RVer0) (s;) ~ 0(d)-S(d,0)0(c) ~ (B, VerO)(s,)
(42)

Proof. First we need to show that 6(d) — S(d,c)0(c)>0.
Since 6 is strictly increasing, then by Theorem 3 we have

X V) (2)>0, Vz,e N, n 4N (43)
Applying the fractional sum operator associated to

(st”’ 0) (z) on both sides of the inequality, by means of (40),
we get

SV VO () > (V) VaeN N, (44)

or we have
0(z) —S(z,c)0(c)>0. VzeN,n , N (45)
For z =d, we get
0(d) - S(d,c)8(c) >0. (46)

To prove the theorem, we use the proof by contradiction.
Assume (42) is not true, then either

O(d)-S(d,0)®(c) (R,vr0)(z)

0(d) - S(d,c)0(c) ~ (R, ,Verd)(z)’ Vz e N. NN,
(47)
or
O(d) - $(d,90(c) _ (£,90)(2)
H(d) - S(d, C)G(C) §_1Vs,p6) (Z)) Vz € NC n dN-
(48)

Again, since 0 is strictly increasing, then by Theorem 3
we conclude that

X Vv¥0)(2), VzeN, N ,N. (49)

Hence, (47) becomes
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O(d)-S(d,c)®(c)
0(d) —S(d,c)b(c)

& v¥0) (2) < (X, V0) (2),
(50)

Vz e N. N 4N

Applying the fractional sum operator on both sides of
the inequality at z = d and by making use of (43), we see that

0(d)-S(d,c)®(c)
0(d) - S(d,c)0(c)

(6(d) - $(d,)6(c))
(51)

<(0(d) - $(d,c)0 (),

and hence, ®(d) <©(d), which is a contradiction. In a

similar way, (48) leads to contradiction.
O

5. Conclusions

The conclusions of this article are summarized as follows:

(1) The summation and difference of a discrete frac-
tional proportional have been detected.

(2) The nabla discrete new Riemann-Liouville and
Caputo fractional proportional differences of order
0<e<1 on the time scale Z have been formulated.

(3) The fractional proportional sums associated to
(RV#Py) (z) with order 0 <e< 1 have been defined.

(4) The relation between nabla Riemann-Liouville and
Caputo fractional proportional differences has been
detected.

(5) The monotonicity results for the nabla Caputo
fractional proportional difference which are if

f_lvs’Px) (2) >0, then y (z) is ep —increasing; if y (z)
is strictly increasing on N_ and yx(c)>0, then
R V&y)(z) >0 has been proved as well.

(6) A new version of the fractional proportional dif-
ference of the mean value theorem on Z has been
proved as an application.
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