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A B S T R A C T

In the feature selection process, reaching the best subset of features is considered a difficult task. To deal with
the complexity associated with this problem, a sophisticated and robust optimization approach is needed.
This paper proposes an efficient feature selection approach based on a Boolean variant of Particle Swarm
Optimization (BPSO) boosted with Evolutionary Population Dynamics (EPD). The proposed improvement assists
the BPSO to avoid local optima obstacles via boosting its exploration ability. In the BPSO-EPD, the worst
half of the solutions are discarded by repositioning them around the optimal solutions selected from the
best half. Six natural selection mechanisms comprising Best-based, Tournament, Roulette wheel, Stochastic
universal sampling, Linear rank, and Random-based are employed to select guiding solutions. To assess the
performance of the proposed improvement, 22 well-regarded datasets collected from the UCI repository are
employed. The experimental results demonstrate the superiority of the proposed EPD-based feature selection
approaches, especially the BPSO-TEPD variant when compared with conventional BPSO and other five EPD-
based variants. Taking SpecEW dataset as an example, an increment of 6.7% accuracy can be achieved for
BSPO-TEPD. Consequently, BPSO-TEPD approach also outperformed other well-known optimizers, including
two binary variants of PSO using S-shaped transfer function (SBPSO) and V-shaped transfer function (VBPSO),
Binary Grasshopper Optimization Algorithm (BGOA), Binary Gravitational Search Algorithm (BGSA), Binary
Ant Lion Optimizer (BALO), Binary Bat algorithm (BBA), Binary Salp Swarm Algorithm (BSSA), Binary Whale
Optimization Algorithm (BWOA), and Binary Teaching-Learning Based Optimization (BTLBO). The result
emphasizes the excellent behavior of EPD strategies in evolving the ability of BPSO when dealing with feature
selection problems.
1. Introduction

In information systems, the data collected in real-world applications
related to various fields such as industry, modern technology, and
medicine have high dimensions, which consider a real challenge for
data mining. Usually, for tasks such as classification, the real-world
datasets often contain irrelevant and redundant patterns or features.
Such patterns are uninformative, worthless, and make the task of
automatic learning hard. Non-informative features have a direct neg-
ative impact on the performance of the machine learning classifiers in
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trams of both accuracy and cost of computation. Therefore, the process
of exploring and eliminating uninformative patterns is essential for
building effective machine learning classifiers (Hussain, Neggaz, Zhu,
& Houssein, 2021).

Feature selection (FS) is an essential preprocessing procedure that
is designed to find and eliminate uninformative features/patterns from
the dataset under processing (Mafarja, Aljarah, Heidari, Hammouri,
et al., 2018). In general, FS is classified into three board groups includ-
ing supervised (Neggaz, Houssein, & Hussain, 2020), semi-supervised
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Fig. 1. Binary solution representation.

(Bellal, Elghazel, & Aussem, 2012) and unsupervised approach (Shang,
Wang, Stolkin, & Jiao, 2017). The supervised FS approach relies on
class labels in selecting the most appropriate features for classification
tasks, while unsupervised FS approaches do not need labeled data.
Alternatively, semi-supervised FS is appropriate when both labeled and
unlabeled data are available in the dataset. In literature, many FS
approaches belong to the three mentioned groups have been presented.
For instance, the correlation-based feature selection (CFS) proposed
by Neggaz, Houssein, et al. (2020) and spectral graph theory-based
feature selection introduced by Zhao and Liu (2007) are samples of
supervised FS methods. While feature selection technique using spectral
analysis (Bellal et al., 2012) and forward feature selection (Ren, Qiu,
Fan, Cheng, & Philip, 2008) represent types of semi-supervised FS ap-
proaches. In the case of unsupervised FS, an efficient algorithm named
non-negative spectral learning and sparse regression-based dual-graph
regularized feature selection (NSSRD) was introduced by Shang et al. in
2017 (Shang et al., 2017). In addition, another two approaches called
subspace learning-based graph regularized FS and self-representation
based dual-graph regularized FS are also unsupervised FS approaches
proposed by Shang et al. in 2016 (Shang, Wang, Stolkin, & Jiao, 2016;
Shang, Zhang, Jiao, Liu, & Li, 2016).

Based on the selection mechanism, FS approaches are split into two
categories: filter and wrapper (Mafarja, Aljarah, Heidari, Hammouri,
et al., 2018). In filter mode, feature subset selection is made separately
from the learning classifier (Bolón-Canedo, Sánchez-Maroño, & Alonso-
Betanzos, 2015). The quality of a feature is measured by giving a
score to the feature using a statistical feature scoring method such
as chi-square (Liu & Setiono, 1995), Gain Ratio (Quinlan, 1993), and
Information gain (Quinlan, 1986). Features with scores less than a
specific threshold are considered uninformative and discarded from the
feature space. In wrapper mode, the quality of a subset of features
is estimated based on a machine learning classifier (e.g., K-Nearest
Neighbor) (Wang, An, Chen, Li, & Alterovitz, 2015). Las Vegas Wrapper
(LVW) algorithm (Liu & Setiono, 1996) and a three-layer feedfor-
ward neural network-based approach (Setiono & Liu, 1997) represent
examples of wrapper FS.

Generation of the subset of features is deemed as a search process
for selecting a subset from a set of elements where complete, random,
or a heuristic search is used (Dash & Liu, 1997; Siedlecki & Sklan-
sky, 1988). In a complete search, all potential subsets of features are
produced and examined. More precisely, if the given dataset has 𝑁 fea-
tures, then 2𝑁 subsets will be produced and tested to find the best one.
For big-size datasets, a complete search is infeasible due to its high cost
of computation. Another potential way to generate a subset of features
is to use a random search. In this way, searching for the subsequent sub-
set of features is performed at random (Lai, Reinders, & Wessels, 2006).
The worst scenario when using a random search is to produce all pos-
sible subsets of feature as in complete search strategy (Liu & Motoda,
1998; Talbi, 2009). Heuristic search is an alternative way to complete
and random search for generating feature subsets. As defined in Talbi
(2009), metaheuristic search is a top-level, general model that can
be applied as guiding strategies when designing underlying heuristics
to tackle particular optimization problems. In comparison with exact
approaches (Guyon & Elisseeff, 2003; Zorarpacı & Özel, 2016), several
metaheuristics including Particle Swarm Optimization (PSO) (Kennedy
& Eberhart, 1995), Ant Colony Optimization (ACO) (Dorigo, Birattari,
& Stutzle, 2006), Whale Optimization Algorithm (WOA) (Mirjalili &
2

Lewis, 2016), Ant Lion Optimization (ALO) (Mirjalili, 2015), Gray Wolf
Optimizer (GWO) (Mirjalili, Mirjalili, & Lewis, 2014; Saremi, Mirjalili,
& Mirjalili, 2015) and Firefly Algorithm (FA) (Yang, 2009) may ap-
proved notable capabilities in tackling FS problems. Moreover, FS has
been utilized to resolve many classification problems belong to diverse
fields like data mining (Piramuthu, 2004), path planning (Wu et al.,
2017), pattern recognition (Gunal & Edizkan, 2008), power dispatch (Li
et al., 2017) and others where FS can be utilized (Chandrashekar &
Sahin, 2014).

Metaheuristic-based algorithms can be split into three branches:
evolutionary-based algorithms (EAs), swarm-based algorithms (SAs),
and trajectory-based algorithms (TAs) (Boussaïd, Lepagnot, & Siarry,
2013). EAs basically begin with a randomly generated population
of individuals. In each generation, recombination and mutation are
performed on parent individuals to obtain new offsprings that are
higher quality than their parents. Genetic algorithm (GA) is an exam-
ple of EAs (Holland, 1975). On the other side, TAs begin with only
one potential solution, which is adapted repeatedly using neighboring
operators until an optimal solution is reached (Al-Betar, Awadallah,
Faris, Aljarah, & Hammouri, 2018). Examples of TAs are Simulated
Annealing (SA) (Kirkpatrick, Gelatt, & Vecchi, 1983) and Tabu Search
(TS) (Glover, 1986). SAs begin with a population of randomly gener-
ated solutions. These solutions are reformed at each generation depend-
ing on the previous generation. SAs are widely utilized to deal with FS
problems where traditional approaches are hard to apply (BrezoAinik,
Fister, & Podgorelec, 2018).

PSO is deemed as one of the most frequently applied swarm-based
algorithms. It was proposed by Kennedy and Eberhart in 1995. It
imitates the social behavior of a bevy of birds (Kennedy & Eberhart,
1995). PSO has gained popularity in solving a wide range of optimiza-
tion problems due to its simplicity, efficiency, and low computation
cost (Houssein, Ewees, & Abd ElAziz, 2018). Because of its charac-
teristics, PSO has been applied to deal with many fields such as grid
scheduling (Mathiyalagan, Dhepthie, & Sivanandam, 2010), medical
diagnosis (Chandra, Bhat, & Singh, 2009), wavelength detection (Liang,
Suganthan, Chan, & Huang, 2006), video abstraction (Fayk, El Nemr,
& Moussa, 2010), and robot path planning (Masehian & Sedighizadeh,
2010). Furthermore, PSO can be utilized to find solutions for prob-
lems in both continuous and discrete search spaces. In 1997, Kennedy
and Eberhart modified the original continuous version of the PSO
algorithm to work in binary space (Kennedy & Eberhart, 1997). Tow
main components distinguish between continuous and binary forms
of PSO: A transfer function and new position updating formula. The
transfer function is responsible for mapping continuous search space
into discrete, whereas the new updating formula is applied to change
the elements of the particle’s position vector between two values, 0
and 1. Afterward, Shi and Eberhart (1998) introduced a new parameter
named inertia weight that aims to improve the performance of PSO
when solving complex optimization problems by making a balance
between the local and global search of the PSO algorithm and avoids
the PSO from falling into local optimum.

Since the appearance of the first version of Binary PSO in 1997
(Kennedy & Eberhart, 1997), many researchers have tried to enhance its
ability in solving various discrete optimization problems by introducing
several ideas. For instance, in 2004, Shen, Jiang, Jiao, Shen, and Yu
(2004) proposed a modified BPSO for selecting variables in MLR and
PLS modeling. In addition, in 2008, Wang et al. proposed a novel
probability-based BPSO algorithm and evaluated its performance in
solving the multidimensional knapsack problem (Wang, Wang, Fu, &
Zhen, 2008). Chuang et al. introduced an enhanced BPSO via em-
ploying the catfish effect and applied it for feature selection (Chuang,
Chang, Tu, & Yang, 2008). In Liu and Gu (2007), Binary PSO was ap-
plied for network reconfiguration. In 2013, to improve the performance
of BPSO, Mirjalili and Lewis proposed a set of six transfer functions,
divided into two groups named S-shaped and V-shaped for mapping
the continuous search space into discrete search space. Experimental
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Fig. 2. Diagram of the proposed improvement.
results confirmed that V-shaped transfer functions could remarkably
enhance the performance of conventional BPSO (Mirjalili & Lewis,
2013). Furthermore, in 2017, Islam, Li, and Mei (2017) claimed that
existing BPSO versions are unable to provide the desired balance
between exploration and exploitation due to the use of inappropriate
transfer functions. They proposed a time-varying-based BPSO and ex-
perimentally demonstrated that TVT-BPSO is better than existing BPSO
variants for low and high-dimensional classical 0–1 knapsack problems.
In Marandi, Afshinmanesh, Shahabadi, and Bahrami (2006), a Boolean
PSO was proposed using the Boolean algebra and applied to an antenna
design problem. In addition, as stated in Deligkaris et al. (2009), a
Boolean PSO was also applied for thinned planar array design.

According to Crawford et al. (2017), binarization schemes for adapt-
ing meta-heuristic algorithms to work in binary search space are di-
vided into two board categories: two-step binarization and continuous-
binary operator transformation. In two-step binarization, continuous
operators are used to adapting continuous search space without mod-
ifying them. Two steps are performed to do the binarization. The first
step is to introduce operators for transforming real-valued search space
into integer one, whereas in the second step, integer space is converted
into binary space. The commonly applied technique of this type is the
transfer function and was originally proposed by Kennedy and Eberhart
(1997) for BPSO. The transfer functions in the research (Crawford
et al., 2017) is applied to provide probabilities for mapping solutions
from 𝑅𝑛 into [0, 1]𝑛. Then, a binarization rule such as standard, com-
plement, or Elitist is used to transform the particle 𝑃 into a binary
solution. Examples of using transfer functions are presented in Islam
et al. (2017), Kennedy and Eberhart (1997) and Mirjalili and Lewis
3

(2013). In Continuous-Binary Operator Transformation, the operators
of the meta-heuristic are redefined. This type of binarization is further
divided into two groups named modified algebraic operations and
promising regions (Crawford et al., 2017). Modified algebraic opera-
tions (e.g., Boolean approach) use Boolean operations to transform real
search space into binary. Examples of Boolean PSO are (Afshinmanesh,
Marandi, & Rahimi-Kian, 2005; Deligkaris et al., 2009; Marandi et al.,
2006). The proposed modified algebraic operations-based PSO by Af-
shinmanesh et al. (2005) yielded faster convergence speed and better
local optimum reduction in comparison with transfer function-based
Binary PSO. According to Afshinmanesh et al. (2005), using the transfer
function for adapting PSO to work in binary search space has some
drawbacks. For instance, the distance updating formula in Kennedy
and Eberhart (1997) does not have a standard form. Another drawback
of transfer function-based binary PSO is that the changing probability
function has no monotonic form. This problem decreases the changing
probability for some larger values of V𝑖𝑑 . In addition, as stated in Islam
et al. (2017), the transfer function in BPSO is considered as the main op-
erator for managing exploration and exploitation, and hence applying
an unsuitable transfer function can remarkably reduce the performance
of the BPSO.

Evolutionary algorithms (EAs) are formulated to stimulate the evo-
lution of individuals, starting from their basic states to some objectives
enjoined on them. These models use some evolutionary operators such
as mutation and recombination in the Genetic Algorithm (GA) or
pheromone updating rules of ACO to some picked individuals depend-
ing on some selection techniques such as roulette wheel, tournament,
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Fig. 3. The overall procedure of the proposed BPSO-EPD.
and random selection in the population to produce an offspring (Ma-
farja et al., 2017). Evolutionary Population Dynamics (EPD) is also
an evolutionary operator. It is mainly based on the Self-organized
criticality (SOC) theory (Bak, Tang, & Wiesenfeld, 1987). EPD manipu-
lates the entire population instead of manipulating individuals (Lewis,
Mostaghim, & Randall, 2008). Employing this operator with evolution-
ary algorithms will discard highly unfavorable individuals from the set
of candidate solutions instead of refining the optimal individuals in the
population (Boettcher & Percus, 1999). Extremal optimization (EO) is a
metaheuristic algorithm that is based on the concept of EPD. It has been
successfully applied in various research domains (Randall, Hendtlass, &
Lewis, 2009; Tamura, Kitakami, & Nakada, 2013). In addition, EPD was
used to enhance the performance of the GWO algorithm (Saremi et al.,
2015).

FS is recognized as a complex and multi-objective optimization
problem. Using search strategies such as exact and random for finding
the ideal subset of features, especially from a huge set of features,
is infeasible. However, for many classification tasks, metaheuristic-
based FS approaches have been found very effective search strategies
for finding optimal subsets of features. Furthermore, the PSO-based
algorithms are successfully explored in different FS domains. According
to the previous studies, the drawbacks of using transfer functions to
convert the PSO algorithm into a binary show that efforts are still
needed to propose new ideas for improving the performance of the
binary version of the PSO algorithm. In addition, better performance
of the Boolean variant of PSO in contrast with its transfer function-
based peers reveals that the performance of the current binary PSO
4

Table 1
Description of employed datasets.

Dataset No. of features No. of instances

Breastcancer 9 699
BreastEW 30 569
Exactly 13 1000
Exactly2 13 1000
HeartEW 13 270
Lymphography 18 148
M-of-n 13 1000
PenglungEW 325 73
SonarEW 60 208
SpectEW 22 267
CongressEW 16 435
IonosphereEW 34 351
KrvskpEW 36 3196
Tic-tac-toe 9 958
Vote 16 300
WaveformEW 40 5000
WineEW 166 476
Zoo 16 101
Clean1 13 178
Semeion 265 1593
Colon 2000 62
Leukemia 7129 72

can be further improved by integrating Boolean PSO with other robust
mechanisms such as evolutionary population dynamics and natural
selection mechanisms. These mechanisms have shown excellent results
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Table 2
The detailed settings of the system.
Name Setting

Hardware
CPU Intel Core(TM) i7-8550U
Frequency 2.2 GHz
RAM 8 GB
Hard drive 1 TB
Software
Operating system Windows 10 64 bit
Language MATLAB R2018a

in boosting the efficiency of several binary versions of meta-heuristic
algorithms such as whale optimization algorithm (WOA) (Hassouneh
et al., 2021) and gray wolf optimizer (GWO) (Al-Betar et al., 2018) in
the FS field. This is the foundation and motivation of this work as well,
in which we propose a novel algorithm based on the modified algebraic
operations instead of the transfer functions with various evolutionary
population dynamics for FS tasks. The efficiency of the proposed al-
gorithm developed in this research is evaluated on 22 well-regarded
datasets obtained from the UCI repository. These datasets are chosen
carefully with various properties (e.g., number of features, instances,
and classes) to approve the efficiency and robustness of the proposed
PSO-based FS approaches. The highest classification accuracy and least
number of selected features are the main measures for evaluating the
efficiency and robustness of the proposed approach. To sum up, the
main contributions of this research is fourfold:

1. We propose a new Boolean PSO (BPSO) algorithm based on
modified algebraic operations instead of the transfer functions
for FS problems.

2. Various EPD mechanisms have been integrated with the BPSO
to enhance its search power for the best subsets of features.

3. The convergence speed of BPSO are evaluated against the state-
of-the-art meta-heuristic algorithms.

4. We perform a series of experiments to investigate the impact
of the performance of the proposed algorithms over 22 well-
regarded datasets obtained from the UCI repository.

5. BPSO outperforms other competitive algorithms in most cases.

The rest of the paper is organized as follows: Section 2 provides a
brief overview of the related work. The proposed PSO methodology is
described in Section 4. Section 5 presents a comprehensive compara-
tive study on several benchmark functions to confirm and verify the
performances of the proposed algorithm. Finally, Section 6 concludes
the paper and suggests some directions for future studies.

2. Review of related works

Nowadays, wrapper FS has become a vital technique to seek out
the most informative group of features, which was exceedingly useful
in industry and medical applications (Sayed, Nabil, & Badr, 2016).
Generally speaking, the wrapper FS treats the FS problem as a black
box in which the meta-heuristic algorithm and classifier are used to
evaluate and assess the optimal feature subset (Aghdam, Ghasem-
Aghaee, & Basiri, 2009). In Kohavi and John (1998), the wrapper FS
was introduced to improve the performance of the learning model.
The study implied that the wrapper FS was excellent in eliminating
unwanted information and enhancing the prediction power.

In 2013, Nakamura et al. (2013) designed a binary bat algorithm
to identify the most informative features. They utilized the sigmoid
function to restrict the position of the new bat on binary feature space.
In the same year, another binary cuckoo search (BCS) algorithm was
developed to tackle the FS problems (Rodrigues et al., 2013). Two
years later, the authors in Rodrigues, Yang, De Souza, and Papa (2015)
integrated the S-shape transfer function into the Flower Pollination
5

Algorithm (FPA) for FS. Although the methods mentioned above have
successfully applied to FS tasks, they suffered from the limitation of
the S-shape function, which forces the solutions to take values of 1 or
0 (Mirjalili & Lewis, 2013).

Grasshopper Optimization Algorithm (GOA) was a recently estab-
lished meta-heuristic algorithm (Saremi, Mirjalili, & Lewis, 2017), and
it was first applied for FS in Aljarah, Ala’m et al. (2018). Mafarja,
Aljarah, Heidari, Hammouri, et al. (2018) proposed a novel GOA
approach for FS problems. The authors associated the binary GOA with
EPD to re-position and improve the worst half of the population (Ma-
farja, Aljarah, Heidari, Hammouri, et al., 2018). Moreover, a binary
GOA method was proposed to select the significant features from the
datasets. In the proposed approach, a novel dynamic mutation operator
was developed to boost the convergence rate (Mafarja et al., 2019).
Another two recent GOA-based FS approaches were proposed in Zakeri
and Hokmabadi (2019) and Hichem, Elkamel, Rafik, Mesaaoud, and
Ouahiba (2019).

Recently, Mafarja and Mirjalili (2018) proposed the WOA
approaches for wrapper FS. In their study, the crossover and mutation
are utilized to evolve the exploitation and exploration abilities of the
algorithm in searching the feature space (Mafarja & Mirjalili, 2018).
The authors in Dong, Li, Ding, and Sun (2018) hybridized the GA with
granular information to solve the feature optimization. They reported
that the granular-based mechanism was beneficial in measuring the
importance of the candidate features, which can significantly enhance
the classification accuracy (Dong et al., 2018). Furthermore, a Gaus-
sian mutational chaotic fruit fly optimization algorithm (MCFOA) was
proposed to tackle the FS problems (Zhang et al., 2020). In addition,
binary variants of the Butterfly Optimization Algorithm (BOA) were
developed for wrapper FS in Arora and Anand (2019).

PSO can be considered the most popular meta-heuristic algorithm
in the literature. It has the advantages of being simple, robust, and
efficient when faced with complicated optimization problems (Li, Chen,
Zhong, & Huang, 2019). Although PSO has proved its effectiveness in
FS, it also has some shortcomings like premature convergence and eases
to fall into local optimum (Xie et al., 2019). Therefore, Fong, Wong,
and Vasilakos (2015) proposed an accelerated PSO swarm search to
evaluate the promising features in the big data. They reported that
the proposed method could often achieve higher accuracy compared
to the other well-known FS algorithms. On the other hand, a potential
PSO was designed in Tran, Xue, and Zhang (2017) for wrapper FS. In
the proposed approach, a new representation was proposed to reduce
the feature space (Tran et al., 2017). On the one hand, the authors
in Gunasundari, Janakiraman, and Meenambal (2016) offered a veloc-
ity bounded Boolean PSO to tackle the FS problems in liver and kidney
disease diagnosis. Moreover, another variant of PSO called multi-swarm
heterogeneous binary PSO-based FS was developed in Gunasundari,
Janakiraman, and Meenambal (2018). Overall, the survey reveals that
the performance of Boolean PSO is still far from perfect. That is,
the particles cannot effectively avoid the local minimal completely.
Hence, it is necessary to enhance the performance of Boolean PSO by
overcoming the challenges of Boolean PSO.

From the literature, it is seen that Particle Swarm Optimization
(PSO) (Eberhart & Kennedy, 1995) has become an increasingly impor-
tant tool of SI that has been used in nearly all fields of optimization,
engineering practice and real world problems, so forth (Houssein, Gad,
Hussain, & Suganthan, 2021). The simplicity, efficiency, and low cost
of computation make this algorithm very famous and strong in tackling
a wide range of optimization problems. Lately, PSO has gained much
consideration in past years, with several efforts to obtain the variant
that achieves best on a wide range of optimization problems such as
FMPSO (Xia et al., 2019), CAPSO (Beheshti & Shamsuddin, 2014),
PSOG (Salajegheh & Salajegheh, 2019), PSOSCALF (Chegini, Bagheri,
& Najafi, 2018), MOVPSO (Meza, Espitia, Montenegro, Giménez, &
González-Crespo, 2017), MPSO (Tian & Shi, 2018), PSOTD (Chen et al.,

2017), FST-PSO (Nobile et al., 2018), SPSO (Pedersen & Chipperfield,
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Table 3
The average accuracy obtained by BPSO with different combinations of common parameters.
#iterations 70 100 150

population 10 20 30 10 20 30 10 20 30

Breastcancer 0.967 0.980 0.976 0.980 0.976 0.981 0.971 0.999 0.976
BreastEW 0.970 0.986 0.982 0.983 0.970 0.985 0.989 0.968 0.968
CongressEW 0.984 0.962 0.987 0.973 0.970 0.965 0.969 0.964 0.990
Exactly 0.925 0.990 1.000 0.938 1.000 0.989 0.955 0.969 0.996
Exactly2 0.742 0.746 0.769 0.745 0.792 0.729 0.770 0.740 0.741
HeartEW 0.807 0.860 0.841 0.878 0.870 0.853 0.877 0.909 0.885
IonosphereEW 0.996 0.977 0.990 0.959 0.980 0.958 0.958 0.976 0.981
KrvskpEW 0.972 0.985 0.985 0.972 0.986 0.988 0.968 0.986 0.985
Lymphography 0.875 0.949 0.790 0.888 0.883 0.981 0.916 0.944 0.973
M-of-n 0.988 1.000 1.000 0.988 1.000 1.000 0.976 1.000 1.000
penglungEW 0.996 1.000 0.998 0.863 1.000 0.942 0.947 0.913 0.984
SonarEW 0.953 0.987 0.994 0.997 0.994 0.988 0.989 1.000 0.978
SpectEW 0.864 0.846 0.857 0.799 0.902 0.840 0.857 0.938 0.861
Tic-tac-toe 0.797 0.832 0.810 0.833 0.841 0.810 0.826 0.801 0.823
Vote 0.966 1.000 0.974 0.986 0.971 0.987 0.982 0.923 0.977
WaveformEW 0.765 0.780 0.784 0.759 0.774 0.774 0.758 0.776 0.777
WineEW 0.999 0.997 0.997 0.999 1.000 1.000 1.000 1.000 1.000
Zoo 0.956 0.995 1.000 0.986 1.000 1.000 1.000 1.000 1.000
Clean1 0.977 0.991 0.990 0.947 0.961 0.986 0.967 0.980 0.974
Semeion 0.983 0.994 0.993 0.994 0.997 0.997 0.996 0.990 0.996
Colon 0.846 0.562 0.849 0.874 0.759 0.821 0.846 0.672 1.000
Leukemia 1.000 0.933 0.929 0.929 0.887 1.000 0.942 0.933 0.813
Rank (F-test) 3.57 5.23 5.45 4.32 5.68 5.5 4.68 5.07 5.5
Table 4
The average accuracy obtained by BPSO-TEPD with various tournament sizes (𝑘), and BPSO-LREPD with various values of (𝑛+) parameter.

Dataset BPSO-TEPD BPSO-LREPD

0.1 × N 0.3 × N 0.5 × N 0.7 × N 0.85 × N 𝑛 = 1.1 𝑛 = 1.4 𝑛 = 1.7 𝑛 = 1.9

Breastcancer 1.000 0.979 0.986 0.979 0.979 0.993 0.971 0.986 0.993
BreastEW 0.973 1.000 0.987 0.973 0.975 0.991 0.966 0.951 0.999
CongressEW 0.989 0.984 0.994 0.989 0.987 0.977 0.996 1.000 1.000
Exactly 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Exactly2 0.739 0.765 0.804 0.785 0.758 0.769 0.768 0.797 0.768
HeartEW 0.860 0.878 0.884 0.846 0.889 0.873 0.924 0.880 0.902
IonosphereEW 0.999 0.997 0.998 0.981 0.997 0.990 0.990 0.984 0.969
KrvskpEW 0.987 0.989 0.990 0.987 0.986 0.988 0.985 0.983 0.990
Lymphography 0.942 0.992 0.939 0.999 0.990 0.962 0.938 0.926 0.958
M-of-n 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
penglungEW 1.000 1.000 1.000 0.951 0.933 0.949 0.871 0.991 0.989
SonarEW 0.995 0.982 0.998 0.997 0.996 0.994 0.997 0.998 1.000
SpectEW 0.914 0.892 0.873 0.888 0.888 0.765 0.877 0.936 0.927
Tic-tac-toe 0.842 0.858 0.797 0.833 0.818 0.849 0.805 0.835 0.832
Vote 0.978 0.990 0.998 0.967 0.985 0.967 0.967 0.983 0.968
WaveformEW 0.790 0.784 0.776 0.789 0.789 0.787 0.777 0.780 0.790
WineEW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Zoo 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Clean1 0.985 0.999 0.990 0.981 0.978 0.969 0.984 0.993 0.977
Semeion 0.996 0.997 0.997 1.000 0.998 0.995 1.000 1.000 0.994
Colon 0.923 0.792 0.923 0.672 0.892 0.828 0.921 0.774 0.731
Leukemia 1.000 0.900 1.000 1.000 0.971 0.933 0.927 1.000 1.000
Rank (F-test) 3.14 3.05 3.45 2.75 2.61 2.39 2.18 2.7 2.73
2010), THSPSO (Liu, Cui, Lu, Liu, & Deng, 2019), TSLPSO (Xu et al.,
2019) and H-PSO-SCAC (Chen et al., 2018).

Definitely, several variants of PSO algorithm have been demon-
strated to be efficient in feature selection domain, like BPSO (Mirjalili &
Lewis, 2013), which is a binary variant of PSO that has been founded
for handling binary optimization problems using the s-shaped and v-
shaped transfer functions. A FS algorithm termed BPSO-SVM adapting
the memory of both local and global optimum (LGO), and also rising
the probability of particles’ mutation for feature selection to avoid
early convergence problem, and obtain high valuable features (Wei
et al., 2017). Also, a modified version of discrete particle swarm opti-
mization (PSO) algorithm for solving feature subset selection problem
is introduced (Unler & Murat, 2010). This technique incorporates an
adaptive feature selection strategy that dynamically accounts for the
relationship and dependence of the features contained in the feature
subset. In Moradi and Gholampour (2016), an innovative FS named
HPSO-LS is introduced which utilizes a local search (LS) approach
6

to select silent and less correlated features. In Chuang, Yang, and
Li (2011), Logistic and tent maps are integrated in Binary particle
swarm optimization (BPSO) to set the inertia weight of the BPSO. K-
nearest neighbor algorithm with leave-one-out cross-validation acts as
a classifier for assessing classification accuracies. The proposed BPSO
algorithm has been applied efficiently to feature selection problems.
In Jain, Jain, and Jain (2018), A hybrid approach for cancer classifica-
tion is introduced in Jain et al. (2018). It integrates correlation-based
feature selection (CFS) with enhanced Binary PSO using Naive Bayes
algorithm. In addition, a new feature selection approach based on
BPSO was proposed by Zhang, Gong, Hu, and Zhang (2015) in which
a reinforced memory mechanism for updating the local leaders of
particles to avoid the degradation of prominent genes in the particles,
and a uniform combination for balancing the local exploitation and the
global exploration were introduced. Also, one-nearest neighbor classi-
fier was used to evaluate the classification accuracy of feature subsets.
Further, a novel hybrid approach combining Binary Bat algorithm with
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Table 5
Average accuracy results of the proposed variants with KNN classifier.
Dataset Measure BPSO BPSO_TEPD BPSO_RWEPD BPSO_LREPD BPSO_REPD BPSO_SEPD BPSO_BEPD

Breastcancer AVG 0.9767 0.9857 0.9643 0.9929 0.9857 0.9929 0.9855
STD 0.0032 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013

BreastEW AVG 0.9649 0.9874 0.9778 0.9985 0.9784 0.9854 0.9915
STD 0.0065 0.0050 0.0075 0.0040 0.0045 0.0062 0.0059

CongressEW AVG 0.9762 0.9939 0.9881 0.9996 1.0000 0.9939 0.9866
STD 0.0060 0.0058 0.0111 0.0021 0.0000 0.0058 0.0044

Exactly AVG 0.9895 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0539 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Exactly2 AVG 0.7760 0.8043 0.7742 0.7677 0.7623 0.7390 0.7978
STD 0.0200 0.0037 0.0072 0.0052 0.0073 0.0087 0.0406

HeartEW AVG 0.8506 0.8840 0.8883 0.9025 0.9056 0.8691 0.9142
STD 0.0217 0.0083 0.0034 0.0145 0.0057 0.0047 0.0114

IonosphereEW AVG 0.9934 0.9977 0.9765 0.9690 0.9840 0.9873 0.9981
STD 0.0089 0.0053 0.0113 0.0101 0.0115 0.0093 0.0049

KrvskpEW AVG 0.9784 0.9899 0.9907 0.9902 0.9836 0.9951 0.9868
STD 0.0057 0.0022 0.0018 0.0031 0.0014 0.0044 0.0012

Lymphography AVG 0.9478 0.9385 0.9978 0.9578 0.8944 0.9400 0.9611
STD 0.0226 0.0180 0.0085 0.0150 0.0126 0.0203 0.0126

M-of-n AVG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

penglungEW AVG 0.9840 1.0000 0.9311 0.9889 1.0000 0.9400 0.9822
STD 0.0296 0.0000 0.0276 0.0253 0.0000 0.0320 0.0300

SonarEW AVG 0.9913 0.9984 0.9937 1.0000 0.9810 0.9889 0.9968
STD 0.0117 0.0087 0.0107 0.0000 0.0131 0.0121 0.0082

SpectEW AVG 0.8056 0.8728 0.8488 0.9272 0.8833 0.9309 0.8852
STD 0.0144 0.0064 0.0085 0.0068 0.0086 0.0128 0.0075

Tic-tac-toe AVG 0.8349 0.7965 0.8403 0.8325 0.8059 0.8229 0.8281
STD 0.0140 0.0019 0.0055 0.0039 0.0036 0.0000 0.0000

Vote AVG 0.9922 0.9983 1.0000 0.9683 0.9700 0.9944 0.9833
STD 0.0137 0.0051 0.0000 0.0051 0.0068 0.0080 0.0000

WaveformEW AVG 0.7686 0.7760 0.7934 0.7897 0.7840 0.7865 0.7730
STD 0.0092 0.0070 0.0085 0.0057 0.0061 0.0066 0.0121

WineEW AVG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Zoo AVG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Clean1 AVG 0.9701 0.9903 0.9785 0.9767 0.9583 0.9861 0.9767
STD 0.0122 0.0090 0.0086 0.0071 0.0095 0.0057 0.0127

Semeion AVG 0.9955 0.9974 0.9995 0.9944 0.9984 0.9915 0.9936
STD 0.0024 0.0017 0.0012 0.0021 0.0016 0.0017 0.0015

Colon AVG 0.7128 0.9231 0.8487 0.7308 0.7256 0.7359 0.9231
STD 0.0449 0.0000 0.0428 0.0525 0.0437 0.0388 0.0000

Leukemia AVG 1.0000 1.0000 1.0000 1.0000 0.9333 0.9333 0.9333
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean rank F-test 5.068 3.364 3.636 3.455 4.568 4.114 3.795

Overall rank 7 1 3 2 6 5 4
Particle Swarm Optimization Algorithm (HBBEPSO) for solving feature
selection problem is introduced by Tawhid and Dsouza (2018). The
proposed algorithm proved its ability to search the feature space for
optimal features subset.

In the same context, a new optimization approach named catfish
binary particle swarm optimization (CatfishBPSO) is utilized to enhance
the performance of binary particle swarm optimization (BPSO) for
feature selection (Chuang, Tsai, and Yang, 2011). K-nearest neighbor
classifier with leave-one-out cross-validation (LOOCV) procedure was
applied to assess the goodness of subsets of features generated by the
proposed BPSO-based FS approach. In Lu, Liang, Ye, and Cao (2015),
a feature selection method based on two improved PSO models using
both inertia weight and functional constriction factor is proposed. In
addition, Binary particle swarm optimization (BPSO) was hybridized
with opposition-based learning to solve feature selection problem in
text clustering (Bharti & Singh, 2016). In Xue, Zhang, and Browne
7

(2014), three feature selection approaches were introduced based on
new initializing and updating mechanisms in PSO with the goals of
increasing the classification performance and minimizing each of num-
ber of selected features and the computational time. Two Boolean PSO
approaches called Velocity Bounded BoPSO (VbBoPSO) and Improved
Velocity Bounded BoPSO (IVbBoPSO) are proposed by Gunasundari
et al. (2016) to solve feature selection problem in liver and kidney
disease diagnosis. Also in Subasi (2013), a novel PSO-SVM approach
has been proposed. It hybridizes the particle swarm optimization (PSO)
and SVM to improve EMG signal classification accuracy. An automatic
image annotation schema based on improved quantum PSO (IQPSO) is
introduced in Jin and Jin (2015) for visual feature selection.

As discussed above, the literature survey on PSO shows that the
local minima obstacle is not addressed sufficiently. It requires an ef-
ficient algorithm to evolve the performance of the PSO algorithm and
its variants by handling the difficulties of the basic PSO and overcoming
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Table 6
𝑝-values of the Wilcoxon test for the accuracy results of BPSO-TEPD and other variants in Table 5 (𝑝 ≤ 0.05 are significant and bolded).
Dataset BPSO BPSO_RWEPD BPSO_LREPD BPSO_REPD BPSO_SEPD BPSO_BEPD

Breastcancer 2.43E−13 1.69E−14 1.69E−14 NaN 1.69E−14 3.34E−01
BreastEW 1.85E−11 2.87E−06 2.42E−10 7.60E−08 2.10E−01 3.41E−03
CongressEW 3.86E−11 4.43E−02 2.12E−05 3.80E−06 1.00E+00 6.37E−06
Exactly 1.61E−01 NaN NaN NaN NaN NaN
Exactly2 1.42E−04 1.66E−12 3.76E−13 1.14E−12 8.36E−13 6.39E−01
HeartEW 6.45E−10 1.25E−02 3.99E−09 1.57E−11 5.86E−09 3.30E−11
IonosphereEW 3.92E−02 8.42E−10 7.31E−12 1.48E−06 8.26E−06 7.29E−01
KrvskpEW 6.27E−11 2.08E−01 3.79E−01 1.28E−10 7.45E−07 3.94E−08
Lymphography 5.84E−05 8.55E−13 5.23E−09 1.88E−11 2.16E−03 2.43E−10
M-of-n NaN NaN NaN NaN NaN NaN
penglungEW 5.55E−03 1.92E−12 2.14E−02 NaN 1.42E−10 2.70E−03
SonarEW 2.17E−03 1.64E−02 3.34E−01 1.33E−07 2.28E−04 1.90E−01
SpectEW 2.44E−12 2.68E−12 3.77E−13 1.05E−05 2.31E−12 3.00E−07
Tic-tac-toe 4.61E−13 4.53E−13 6.50E−14 2.51E−11 2.71E−14 2.71E−14
Vote 4.28E−02 8.14E−02 3.37E−13 1.26E−12 3.04E−02 3.94E−12
WaveformEW 2.06E−03 8.61E−10 3.52E−09 8.39E−05 7.09E−07 2.70E−01
WineEW NaN NaN NaN NaN NaN NaN
Zoo NaN NaN NaN NaN NaN NaN
Clean1 4.34E−08 2.02E−05 4.82E−07 4.27E−11 3.52E−02 5.36E−05
Semeion 1.24E−03 3.59E−06 5.85E−07 2.04E−02 1.13E−11 5.85E−10
Colon 3.07E−13 2.05E−10 5.95E−13 4.42E−13 4.46E−13 NaN
Leukemia NaN NaN NaN 1.69E−14 1.69E−14 1.69E−14
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its drawbacks. In addition, it is clear that most of the binary variants
of PSO are based on transfer functions. Modified algebraic operations-
based PSO that use simple Boolean operations such as ‘AND’ (∧), ‘XOR’
⊕), and ‘OR’ (∨) to transform real search space into binary has shown
etter performance in terms of convergence speed and local optimum
voidance in comparison with transfer function-based Binary PSO. In
his regard, this paper proposes a novel Boolean PSO optimization
lgorithms with evolutionary population dynamics for solving the FS
roblem.

. Preliminaries

This section introduces the classification algorithms used in this
ork. It also explains the particle swarm optimization algorithm (PSO)
nd its pseudo code.

.1. Classification algorithms

.1.1. K-nearest neighbor (K-NN) classifier
In literature (Oh, Lee, & Moon, 2004), K-NN is a non-parametric

echnique and is also regarded as one of the most widely applied
n pattern recognition for classification and regression purposes. In
ddition, K-NN classifier is considered one of the simplest machine
earning algorithms. For the test sample, K-NN uses the Euclidean
istance for continuous variables to find the training nearest neighbors;
hus, the majority class and its nearest neighbors are classified. The
ajor property of K-NN is the need to define only one positive user-
efined constant is called (𝐾), and is used to classify new samples of
ata. Therefore, the overall classification accuracy will effect based on
he 𝑘 parameter value. If 𝑘 = 1, then the object is simply assigned to the
lass of that identical nearest neighbor. Hence, to reduces the noise on
he classification, a larger value of 𝑘 is defined depends upon various
etaheuristic algorithms.

Often, K-NN uses Euclidean distance for continuous variables as
ollows using Eq. (1):

𝐷(𝑋1, 𝑋2) = (
𝑛
∑

𝑖=1
(𝑥1,𝑖 − 𝑥2,𝑖)2)

1
2 (1)
8

here 𝑋1 and 𝑋2 denote two points with 𝑛 dimensions.
.1.2. Decision tree classifier (DT)
Decision Tree (DT) classifier is one of the most methods that is

mployed successfully in data mining, statistics, and machine learn-
ng (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). The main core of DT
s to use the methods of knowledge acquisition and entropy. In general,
T employed the graph-based rules to classify data, where the final DT
odel is derived from the input dataset features (i.e., input features)
ith respect to the target value (Sahoo, Subudhi, Dash, & Sabut, 2020).

n simple, the learning process of DT begins from the top point of the
ata and moves down leaf based on a set of discrete values, where each
eaf node value refers to the predicted output. The DT classification
lgorithm begins from the root node. The decision is obtained at each
ranch of the tree to find the best model that fits the input features
ith output class based on the highest information gain from the set of

he training dataset. Eq. (2) demonstrates the gained information from
ach node based on the reduction in entropy.

𝑎𝑖𝑛(𝐼, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐸) −
∑

𝑣∈𝑉 𝑎𝑙𝑢𝑒𝑠(𝐴)
(
|𝐼𝑞|
|𝐼|

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑞)) (2)

where 𝐼 refers to data instances, 𝐴 presents attribute with a value
equals 𝑞, and 𝑆𝑞 is the subset of 𝐼 . Eq. (3) presents the calculations
or Entropy, where 𝑃𝑖 presents the proportion of orders in 𝐼 that have
he 𝑖th class value as output attribute.

𝑛𝑡𝑟𝑜𝑝𝑦(𝐸) = −
𝐶
∑

𝑖=1
(𝑃 log2 𝑃𝑖) (3)

DT can solve two types of problems: classification when data is
discrete in nature, and regression when data is continuous in nature.
Many algorithms are used in DT, such as Classification And Regression
Tree (CART), ID3, and C4.5 algorithms.

3.2. Particle swarm optimization (PSO)

Kennedy and Eberhart proposed one of the most successful swarm
optimization algorithm called PSO (Eberhart & Kennedy, 1995). The
main idea is to simulate the performance of bird flocking based on
a set of randomly initialized particles that explore and exploit the
search space in order to find the optimal solution. In general, PSO is
an iterative algorithm that each particle moves towards the best point
(i.e., location). Each particle performs two processes: exploration and
exploitation with respect to its best location and the best location for
all particles. Each particle updates its position in the search space to
achieve these two processes based on two factors: velocity and position
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Table 7
The Average number of features results of the proposed variants with KNN classifier.
Dataset Measure BPSO BPSO_TEPD BPSO_RWEPD BPSO_LREPD BPSO_REPD BPSO_SEPD BPSO_BEPD

Breastcancer AVG 4.333 5.300 3.067 4.000 5.000 3.500 5.933
STD 0.547 0.466 0.254 0.000 0.000 1.137 0.365

BreastEW AVG 10.433 8.767 8.133 9.000 10.233 8.267 9.767
STD 2.329 1.612 2.488 1.930 1.654 1.856 1.794

CongressEW AVG 5.333 4.900 5.867 6.600 3.267 2.867 6.167
STD 1.213 1.348 1.756 0.770 0.450 2.030 1.147

Exactly AVG 6.367 6.000 6.000 6.000 6.000 6.000 6.000
STD 0.556 0.000 0.000 0.000 0.000 0.000 0.000

Exactly2 AVG 4.767 9.900 3.733 9.367 5.833 3.833 6.200
STD 4.207 0.548 1.874 0.718 3.174 1.206 3.347

HeartEW AVG 5.167 4.867 7.067 5.900 6.567 6.000 5.133
STD 1.177 1.279 0.365 0.403 0.858 0.455 3.224

IonosphereEW AVG 9.967 9.033 8.767 9.633 10.600 8.000 8.767
STD 1.691 2.076 2.012 1.608 2.253 1.554 1.591

KrvskpEW AVG 18.867 17.633 18.467 19.700 16.067 20.733 14.800
STD 3.371 2.619 1.408 1.579 2.690 1.741 4.003

Lymphography AVG 7.333 5.333 4.767 7.200 7.000 7.833 4.567
STD 1.900 1.348 0.568 0.484 1.509 1.984 1.331

M-of-n AVG 6.167 6.000 6.000 6.000 6.000 6.000 6.000
STD 0.379 0.000 0.000 0.000 0.000 0.000 0.000

penglungEW AVG 96.700 70.033 76.200 83.133 71.767 77.933 80.567
STD 6.535 3.891 7.568 7.262 5.036 7.772 10.156

SonarEW AVG 19.200 19.067 19.867 19.500 19.633 17.433 16.367
STD 2.809 2.288 2.886 3.371 2.399 2.373 2.748

SpectEW AVG 7.400 5.200 7.333 6.467 5.667 9.100 8.333
STD 1.499 1.584 1.729 1.042 0.758 1.470 1.124

Tic-tac-toe AVG 6.933 6.033 5.767 6.967 6.733 6.000 6.000
STD 0.254 0.183 0.430 0.183 0.691 0.000 0.000

Vote AVG 5.833 3.967 3.067 3.900 4.400 4.333 4.400
STD 1.147 1.938 0.254 1.605 1.653 2.023 0.675

WaveformEW AVG 20.933 22.867 19.233 21.633 20.800 21.367 20.333
STD 2.924 1.961 3.501 2.810 2.384 2.371 2.591

WineEW AVG 5.400 3.333 4.033 4.033 4.200 3.433 6.167
STD 1.192 0.922 0.183 0.183 0.610 0.898 0.379

Zoo AVG 5.133 3.200 4.367 4.000 2.200 4.033 4.000
STD 0.819 0.407 0.490 0.000 0.407 0.183 0.000

Clean1 AVG 61.900 55.167 54.767 59.400 58.633 62.633 57.333
STD 5.281 5.742 6.484 4.724 4.803 6.840 5.585

Semeion AVG 100.300 99.733 93.867 106.233 101.833 103.700 102.000
STD 4.808 7.772 6.474 9.035 7.120 7.901 8.056

Colon AVG 777.833 749.033 766.267 782.000 755.700 755.567 745.800
STD 17.730 16.016 23.601 21.007 18.374 18.834 15.537

Leukemia AVG 3045.800 3063.300 3082.800 3081.133 3074.533 3072.633 3073.333
STD 36.936 29.744 36.309 31.638 28.472 28.420 26.935

Mean rank F-test 5.182 3.045 3.227 4.909 4.068 3.841 3.727

Overall rank 7 1 2 6 5 4 3
updating rules. Eqs. (4) and (5) present the updating rules inside the
PSO algorithm.

𝑣𝑗𝑖 (𝑡 + 1) = 𝜔1𝑣
𝑗
𝑖 (𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡

𝑗
𝑖 − 𝑥𝑗𝑖 (𝑡)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡

𝑗
𝑖 − 𝑥𝑗𝑖 (𝑡)) (4)

𝑥𝑗𝑖 (𝑡 + 1) = 𝑥𝑗𝑖 (𝑡) + 𝑣𝑗𝑖 (𝑡 + 1) (5)

where 𝑡 refers to iteration number, the initial weight 𝜔1 is used to
control the searching tendencies either for global and local solutions.
𝑣𝑗𝑖 (𝑡) presents the current velocity at iteration 𝑡 for 𝑗th dimension in
𝑖th agent, 𝑥𝑗𝑖 (𝑡) is 𝑗th dimension in 𝑖th particle. Two random numbers
between (0, 1) are expressed in terms 𝑟1 and 𝑟2, and 𝑐1 and 𝑐2 present
the individual and social factors, respectively. The 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 refer
to the personal and global best solutions (i.e., agent), respectively.
Since each solution will follow 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 solutions, PSO shows
a fast convergence behavior while performing the exploration and
9

exploitation processes. However, PSO, in some cases, may be trapped
in local optima problems when handling complex and multi-modal op-
timization problems (Sahu, Panigrahi, & Pattnaik, 2012). Algorithm 1
explores the standard pseudo-code of the PSO algorithm.

4. The proposed BPSO algorithm

Most currently available meta-heuristic algorithms have been ini-
tially proposed to optimize continuous optimization problems. How-
ever, to solve binary optimization problems such as FS, these algorithms
need modifications and even adding new operators. The literature
shows that there are three major categories of binarization techniques
that are used to transform continuous algorithms into binary form.
The first category is known as the two-steps binarization techniques,

in which the operators of the algorithm stay unaltered. Thus, two
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Table 8
𝑝-values of the Wilcoxon test for the number of features obtained by BPSO-TEPD versus other variants in Table 7 (𝑝 ≤ 0.05 are significant and
bolded).
Dataset BPSO BPSO_RWEPD BPSO_LREPD BPSO_REPD BPSO_SEPD BPSO_BEPD

Breastcancer 4.13E−08 6.09E−13 2.90E−13 1.31E−03 3.45E−07 3.49E−07
BreastEW 4.49E−03 1.28E−01 6.52E−01 1.95E−04 3.76E−01 2.57E−02
CongressEW 8.52E−01 1.40E−02 5.06E−07 7.79E−06 2.44E−05 8.73E−04
Exactly 6.30E−04 NaN NaN NaN NaN NaN
Exactly2 1.09E−07 4.77E−13 4.57E−05 6.81E−11 6.36E−13 5.57E−12
HeartEW 2.41E−01 8.79E−10 1.27E−03 1.16E−05 6.89E−04 1.00E+00
IonosphereEW 6.31E−02 6.43E−01 1.19E−01 1.24E−02 2.97E−02 6.05E−01
KrvskpEW 6.18E−02 4.85E−01 3.37E−04 1.48E−02 1.41E−06 9.37E−03
Lymphography 4.17E−05 2.96E−01 4.42E−07 1.08E−04 1.90E−06 4.58E−03
M-of-n 2.14E−02 NaN NaN NaN NaN NaN
penglungEW 2.86E−11 5.60E−04 2.42E−09 1.39E−01 1.05E−05 1.71E−06
SonarEW 8.93E−01 4.29E−01 5.72E−01 4.47E−01 1.07E−02 1.15E−04
SpectEW 6.07E−06 7.90E−06 9.65E−05 1.41E−02 2.39E−09 2.14E−08
Tic-tac-toe 4.90E−12 3.62E−03 8.04E−13 1.56E−07 3.34E−01 3.34E−01
Vote 7.34E−04 8.23E−02 3.52E−01 1.73E−01 6.55E−01 2.11E−03
WaveformEW 1.21E−02 3.19E−05 1.07E−01 1.04E−03 5.70E−03 2.74E−05
WineEW 4.39E−08 1.03E−08 1.03E−08 1.34E−08 5.69E−01 1.58E−11
Zoo 4.36E−11 3.71E−10 3.78E−10 5.63E−10 4.38E−10 3.78E−10
Clean1 5.98E−05 9.47E−01 3.79E−03 1.68E−02 7.71E−05 9.27E−02
Semeion 6.78E−01 1.64E−03 1.39E−02 3.58E−01 7.55E−02 2.22E−01
Colon 4.25E−07 4.21E−03 4.42E−07 2.43E−01 1.10E−01 3.95E−01
Leukemia 2.28E−02 2.37E−02 4.92E−02 2.97E−01 3.04E−01 2.28E−01
b
b
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Algorithm 1 Pseudo-code of PSO algorithm
1: Initialize random population of particles 𝑃𝑟𝑖(𝑖 = 1, 2,… , 𝑁) inside

𝑈𝐵 and 𝐿𝐵
2: while Termination condition is not satisfied do
3: for Each particle 𝑖 do
4: Calculate the fitness of all particles
5: Update the velocity of all particles in the population using

Eq. (4)
6: Update the position of all particles in the population using

Eq. (5)
7: Evaluate the fitness 𝑓 (𝑃𝑟𝑗𝑖 )
8: if 𝑓 (𝑃𝑟𝑗𝑖 ) < 𝑓 (𝑝𝐵𝑒𝑠𝑡𝑗𝑖 ) then
9: 𝑝𝐵𝑒𝑠𝑡𝑗𝑖 ← 𝑃𝑟𝑗𝑖

10: if 𝑓 (𝑃 𝑗
𝑖 ) < 𝑓 (𝑔𝐵𝑒𝑠𝑡𝑗𝑖 ) then

11: 𝑔𝐵𝑒𝑠𝑡𝑗𝑖 ← 𝑃𝑟𝑗𝑖
12: Return 𝑔𝐵𝑒𝑠𝑡

steps are applied in order to transform continuous solutions into binary
ones following the original continuous iteration. The second category is
named continuous-binary operator transformation, where the operators
of the algorithm are reformed. In this category, modifications are made
to algebraic operations of the search space (Crawford et al., 2017).
Additionally, there is a third binarization category that depends on
a clustering approach named K-means Transition Algorithm (KMTA),
which was lately proposed by García, Crawford, Soto, and Astorga
(2019) as a general binarization method.

Modified Algebraic Operations (MAO) can be categorized into two
major approaches; Boolean Approach (BA) that is used to transform
the real operators into binary, and Set-Based Approach (SBA) that is
utilized for discrete problems. BA has been introduced as an efficient
binarization method of PSO for handling various binary optimization
problems (Afshinmanesh et al., 2005; Deligkaris et al., 2009; Marandi
et al., 2006). Besides, it was applied with bitwise operations to adapt
the Artificial Bee Colony (ABC) in a binary search space.

In this paper, we utilized the BA technique that belongs to the MAO
method to convert the real operators of PSO into Boolean for tackling
the FS problem. As we mentioned earlier, the BA technique applies
Boolean operations to convert real search space into binary one (Afshin-
manesh et al., 2005; Deligkaris et al., 2009; Marandi et al., 2006). The
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proposed MAO-based PSO by Afshinmanesh et al. (2005) performed a
better in terms of convergence speed and local optimum avoidance
comparing with Binary PSO using transfer functions (i.e., two-steps
binarization technique). However, according to Afshinmanesh et al.
(2005), utilizing a transfer function for adapting PSO to deal with
binary search space has some drawbacks. For example, the distance
updating formula in PSO has no standard form (Kennedy & Eberhart,
1997). Another limitation of transfer function-based Binary PSO is
that the changing probability function has no monotonic form. This
problem reduces the changing probability for some larger values of
V𝑖𝑑 . In addition, as stated in Islam et al. (2017), the transfer function
in the binary PSO algorithm is considered as the primary operator for
controlling exploration and exploitation, and therefore using an inap-
propriate transfer function may significantly reduce the performance of
the Binary PSO.

4.1. Boolean PSO (BPSO) with modified algebraic operations for feature
selection

The Boolean PSO (BPSO) is a binary variant of PSO. It was initially
proposed by Afshinmanesh et al. (2005). In the BPSO, the position
(𝑥𝑖) and the velocity (𝑣𝑖) of the 𝑖th particle are decoded as N-bits
inary vector. In this variant, the velocity and position are updated
y using three Boolean operators: ‘AND’ (∧), ‘XOR’ (⊕), and ‘OR’ (∨).
he Boolean rules for updating velocity and position are presented in
qs. (6) and (7), respectively.
𝑗
𝑖 (𝑡 + 1) = 𝜔 ∧ 𝑣𝑗𝑖 (𝑡) ∨ [𝑐1 ∧ (𝑝𝑏𝑒𝑠𝑡𝑗𝑖 ⊕ 𝑥𝑗𝑖 (𝑡))] ∨ [𝑐2 ∧ (𝑔𝑏𝑒𝑠𝑡𝑗𝑖 ⊕ 𝑥𝑗𝑖 (𝑡))] (6)

𝑗
𝑖 (𝑡 + 1) = 𝑥𝑗𝑖 (𝑡)⊕ 𝑣𝑗𝑖 (𝑡 + 1) (7)

here 𝜔, 𝑐1, and 𝑐2 are uniformly distributed random numbers gener-
ted to be either 1 or 0. They are arbitrary binary numbers, selected
ith equal probability to be 0 or 1.

.2. Formulation of feature selection problem

Adapting optimization algorithms to resolve any problem requires
dentifying two fundamental parts, including solution representation
nd fitness (evaluation) function. The central purpose of the FS process
s to find the smallest features subset that leads to achieving the
aximal classification accuracy. Consequently, FS can be defined as

complex multi-objective optimization problem. Decision-making in a
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Table 9
Average fitness results of the proposed variants with KNN classifier.
Dataset Measure BPSO BPSO_TEPD BPSO_RWEPD BPSO_LREPD BPSO_REPD BPSO_SEPD BPSO_BEPD

Breastcancer AVG 0.0285 0.0208 0.0392 0.0121 0.0204 0.0114 0.0218
STD 0.0035 0.0006 0.0003 0.0000 0.0000 0.0014 0.0008

BreastEW AVG 0.0383 0.0155 0.0248 0.0046 0.0250 0.0173 0.0118
STD 0.0061 0.0046 0.0077 0.0039 0.0043 0.0061 0.0058

CongressEW AVG 0.0271 0.0093 0.0157 0.0048 0.0022 0.0080 0.0174
STD 0.0062 0.0051 0.0100 0.0019 0.0003 0.0044 0.0040

Exactly AVG 0.0157 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050
STD 0.0533 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Exactly2 AVG 0.2257 0.2020 0.2267 0.2378 0.2402 0.2616 0.2053
STD 0.0175 0.0032 0.0059 0.0048 0.0072 0.0079 0.0376

HeartEW AVG 0.1522 0.1189 0.1165 0.1015 0.0990 0.1346 0.0892
STD 0.0217 0.0084 0.0037 0.0143 0.0058 0.0044 0.0103

IonosphereEW AVG 0.0095 0.0051 0.0259 0.0336 0.0190 0.0150 0.0045
STD 0.0087 0.0055 0.0109 0.0099 0.0116 0.0093 0.0048

KrvskpEW AVG 0.0267 0.0150 0.0145 0.0153 0.0208 0.0108 0.0173
STD 0.0053 0.0017 0.0015 0.0028 0.0013 0.0041 0.0017

Lymphography AVG 0.0560 0.0640 0.0050 0.0460 0.1086 0.0640 0.0412
STD 0.0217 0.0181 0.0086 0.0150 0.0123 0.0195 0.0132

M-of-n AVG 0.0051 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050
STD 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

penglungEW AVG 0.0189 0.0022 0.0706 0.0136 0.0022 0.0618 0.0201
STD 0.0292 0.0001 0.0272 0.0249 0.0002 0.0317 0.0295

SonarEW AVG 0.0119 0.0048 0.0097 0.0033 0.0222 0.0140 0.0059
STD 0.0114 0.0087 0.0107 0.0006 0.0129 0.0119 0.0082

SpectEW AVG 0.1960 0.1284 0.1532 0.0752 0.1182 0.0728 0.1176
STD 0.0139 0.0058 0.0082 0.0065 0.0083 0.0128 0.0071

Tic-tac-toe AVG 0.1721 0.2090 0.1653 0.1746 0.2006 0.1828 0.1777
STD 0.0138 0.0021 0.0051 0.0038 0.0027 0.0000 0.0000

Vote AVG 0.0116 0.0043 0.0020 0.0340 0.0326 0.0084 0.0194
STD 0.0132 0.0047 0.0002 0.0041 0.0069 0.0068 0.0004

WaveformEW AVG 0.2345 0.2277 0.2095 0.2137 0.2191 0.2168 0.2300
STD 0.0093 0.0070 0.0090 0.0057 0.0063 0.0065 0.0122

WineEW AVG 0.0045 0.0028 0.0034 0.0034 0.0035 0.0029 0.0051
STD 0.0010 0.0008 0.0002 0.0002 0.0005 0.0007 0.0003

Zoo AVG 0.0034 0.0021 0.0029 0.0027 0.0015 0.0027 0.0027
STD 0.0005 0.0003 0.0003 0.0000 0.0003 0.0001 0.0000

Clean1 AVG 0.0333 0.0130 0.0246 0.0266 0.0448 0.0175 0.0265
STD 0.0120 0.0089 0.0084 0.0070 0.0094 0.0056 0.0126

Semeion AVG 0.0082 0.0064 0.0041 0.0096 0.0054 0.0123 0.0102
STD 0.0024 0.0016 0.0012 0.0022 0.0016 0.0016 0.0015

Colon AVG 0.2882 0.0799 0.1536 0.2705 0.2754 0.2652 0.0799
STD 0.0444 0.0001 0.0423 0.0519 0.0432 0.0383 0.0001

Leukemia AVG 0.0043 0.0043 0.0043 0.0043 0.0703 0.0703 0.0703
STD 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

Mean rank F-test 5.432 3.091 3.636 3.500 4.477 3.977 3.886

Overall rank 7 1 3 2 6 5 4
Multi-objective optimization procedure can be accomplished after (pos-
terior), during (interactive), or before (prior) the optimization process.
Aggregation is known as one of the most common prior methods where
multiple objectives are united into a single objective. Each objective is
assigned a weight to decide its significance (Mirjalili & Dong, 2020).
Based on that, the two substantial objectives of the FS problem can be
combined as presented in Eq. (8) to assess the appropriateness of the
selected subset of features.

↓ 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑆) = 𝛼 × (1 − 𝛾(𝑆)) + 𝛽 × 𝑅
𝑇

(8)

where 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑆) denotes the fitness value of the subset 𝑆, 𝛾(𝑆) repre-
sents the classification accuracy obtained from the 𝑆 subset of features,
𝑅 and 𝑇 denote the number of selected features and the total number
of features in the dataset respectively, 𝛼 represents the weights of
the classification accuracy, and 𝛽 indicates the proportion of feature
11

reduction. 𝛼 ∈ [0, 1] whereas 𝛽 = (1 − 𝛼) are adopted from Emary
and Zawbaa (2016), Faris et al. (2018) and Mafarja et al. (2017). We
are interested in developing an accurate classification model. For this
reason, higher importance is given to classification in contrast with the
number of selected features. Hence, the value of the parameter 𝛼 was
set 0.99. It was decided based on previous studies conducted by Neggaz,
Ewees, Abd Elaziz, and Mafarja (2020) where several experiments were
done to determine the optimal value of 𝛼.

Representation of the solution for the problem being resolved is
another essential aspect that must be taken into consideration. FS
is deemed as a binary optimization problem in which the potential
solution (i.e., features subset) is formed as a binary vector. Each cell
in the vector can hold one of two values (1 or 0). Zero value means
that the corresponding feature is discarded, while one means that the
corresponding feature is preserved (selected). Fig. 1 presents a pattern
of binary solution for a dataset contains a total set of 𝑛 features. The
original real value PSO was adapted into a binary form to enable it to
deal with FS problems.
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Table 10
𝑝-values of the Wilcoxon test for the fitness results of BPSO-TEPD and other variants in Table 9 (𝑝 ≤ 0.05 are significant and bolded).
Dataset BPSO BPSO_RWEPD BPSO_LREPD BPSO_REPD BPSO_SEPD BPSO_BEPD

Breastcancer 5.57E−12 6.09E−13 2.90E−13 1.31E−03 1.44E−12 1.87E−08
BreastEW 3.14E−11 5.86E−05 6.62E−10 1.66E−10 4.90E−01 1.65E−02
CongressEW 4.31E−11 3.88E−04 4.63E−02 6.05E−12 6.39E−04 9.57E−11
Exactly 2.98E−04 NaN NaN NaN NaN NaN
Exactly2 1.52E−04 1.66E−12 1.19E−12 1.49E−12 8.36E−13 6.39E−01
HeartEW 4.44E−09 2.91E−02 1.11E−08 2.11E−09 2.07E−10 8.34E−10
IonosphereEW 4.40E−03 2.95E−09 6.15E−11 6.40E−07 1.27E−03 6.43E−01
KrvskpEW 3.51E−11 2.16E−01 7.72E−01 7.71E−11 1.69E−06 6.46E−05
Lymphography 2.41E−04 9.98E−12 2.15E−06 3.62E−10 2.18E−01 1.27E−08
M-of-n 2.14E−02 NaN NaN NaN NaN NaN
penglungEW 2.88E−11 2.87E−11 4.95E−11 1.39E−01 6.16E−10 6.14E−10
SonarEW 6.90E−03 5.41E−02 6.45E−01 2.13E−07 4.67E−02 7.40E−03
SpectEW 1.88E−11 1.74E−11 7.16E−12 3.50E−05 1.96E−11 1.10E−03
Tic-tac-toe 4.61E−13 4.53E−13 6.50E−14 1.32E−13 2.71E−14 2.71E−14
Vote 2.51E−04 2.77E−03 7.33E−12 1.28E−11 2.29E−04 1.18E−11
WaveformEW 6.09E−03 6.69E−10 2.32E−09 3.25E−05 6.76E−07 3.83E−01
WineEW 4.39E−08 1.03E−08 1.03E−08 1.34E−08 5.69E−01 1.58E−11
Zoo 4.36E−11 3.71E−10 3.78E−10 5.63E−10 4.38E−10 3.78E−10
Clean1 5.19E−09 1.29E−05 5.27E−08 1.26E−10 9.49E−04 1.24E−05
Semeion 8.93E−04 8.85E−08 1.45E−07 7.58E−02 4.00E−11 1.01E−09
Colon 2.99E−11 3.62E−10 2.99E−11 3.00E−11 3.00E−11 3.95E−01
Leukemia 2.28E−02 2.37E−02 4.92E−02 3.01E−11 3.01E−11 3.00E−11
R
t
v
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o
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4.3. Evolutionary population dynamics (EPD)

Evolutionary Algorithms (EAs) are considered as stochastic search
approaches in which a group of potential solutions called population is
generated with random initial values and then progressively enhanced
to become better adapted to the objectives demanded from them. Sev-
eral EAs employ mutation techniques to modify the elected solutions,
whereas others utilize crossover operators. These operators are applied
to evolve the leading selected solutions that are most likely the optimal
solutions. EPD can be defined as the process of discarding the worst
solutions in the population via displacing them around the optimal so-
lutions in the population. The EPD is essentially based on self-organized
criticality (SOC) theory (Bak et al., 1987) where a local modification
in the population could influence any individual in the population
and gives delicate balances without the involvement of any external
organizing force (Lewis et al., 2008). In GA, the evolutionary operators
crossover and mutation are used to combine the best solutions found by
the GA algorithm. On the other hand, in the EPD, the worst solutions
are removed from the current generation. EPD is known as a simple
and robust mechanism that can be integrated with population-based
meta-heuristic algorithms. It begins by eliminating poor solutions from
the population and then relocating them close to the optimal search
agents.

In the this research, the removing worst solutions from the swarm
are re-positioning around the best search agents (guide solutions). The
guide solution is selected based on different natural selection criteria.

4.4. Natural selection mechanisms for EPD

The selection mechanism is considered a crucial part for any search-
ing algorithm that brings a sufficient balance between intensification
and diversification. The literature reveals that different techniques
have been proposed for implementing selection mechanisms. The most
popular approaches that were hired in this work comprising: Tourna-
ment (T), Linear rank (LR), Roulette wheel (RW), Random-based (R),
Stochastic universal sampling (SUS), and best-based (B).

Selection approaches are basically based on the ‘‘survival of the
best’’ principle (Talbi, 2009), where the most suited or fittest solution
has a more prominent possibility of being picked and hence provides
preferable exploitation of the optimal solution (intensification). Never-
theless, worst or unfavorable solutions are not omitted and have less
opportunity to be picked, which leads to the exploration of the space
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(diversification). The critical factor that influences the capability of t
the selection process is named ‘selective pressure’. It can be defined
as the trend to pick the most suited (fittest) members of the present
population (Back, 1994). Therefore, the balance between intensifica-
tion and diversification can be affected by the quantity of selective
pressure. This means that excessive pressure will lead to a bias in the
direction of fittest solutions, and therefore, causes a loss of diversity
and premature convergence. In contrast, a small amount of selective
pressure can preserve diversity and lowers the speed of convergence.

4.4.1. Best-based selection method
The best-based method, also called Elitist-based, considers the fittest

solution only by setting its selection probability equal to 1, while other
solutions are neglected, and their selection probabilities are equal to
0. The best-based mechanism generates a population with properties
derived from the optimal solution, and that will accelerate the conver-
gence behavior of the algorithm (Mafarja et al., 2020; Razali, Geraghty,
et al., 2011). Yet, large exploitation in this mechanism could cause a
premature convergence issue (Mafarja et al., 2020).

4.4.2. Roulette wheel selection method
RW mechanism was firstly proposed by Holland (1975) GA. The

prime concept of this mechanism is that every solution in the popu-
lation has a non-zero chance to be picked. RW estimates the selection
probability of the 𝑖th individual (𝑝𝑖) in the population pool in propor-
tion to its absolute fitness value (𝑓 (𝑥𝑖)) divided by the total of fitness
value for all individuals as in Eq. (9).

𝑝𝑖 =
𝑓 (𝑥𝑖)

∑𝑁
𝑗=1 𝑓 (𝑥𝑗 )

(9)

where 𝑁 represents the population size, and 𝑓 (𝑥𝑖) is estimated using
Eq. (10) for any minimization optimization problem (Al-Betar et al.,
2017).

𝑓 (𝑥𝑖) =
1

1 + 𝑓 (𝑥𝑖)
(10)

W process can be viewed as a spinning roulette wheel that is parti-
ioned into segments or portions with non-identical sizes. Each indi-
idual holds a portion that is proportional to its fitness value. Thus,
he fittest individuals that occupy large portions have a higher chance
f being picked than poor ones (i.e., individuals that occupy small
egments).

The major characteristic of the RW selection mechanism compared
o the best-based selection mechanism is that each individual in the
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Table 11
Average running time results of the proposed variants with KNN classifier.
Dataset Measure BPSO BPSO_TEPD BPSO_RWEPD BPSO_LREPD BPSO_REPD BPSO_SEPD BPSO_BEPD

Breastcancer AVG 13.850 16.610 13.544 13.975 14.186 13.874 14.635
STD 0.637 1.727 0.310 0.371 0.460 0.636 0.446

BreastEW AVG 14.298 14.697 14.496 14.535 14.490 14.560 14.424
STD 0.629 0.331 0.349 0.441 0.367 0.545 0.685

CongressEW AVG 12.245 12.566 12.657 12.934 12.028 12.021 12.578
STD 0.540 0.502 0.400 0.405 0.400 0.463 0.432

Exactly AVG 16.783 17.789 17.359 17.532 18.604 17.046 18.818
STD 0.738 0.422 0.551 0.351 0.395 0.406 0.525

Exactly2 AVG 18.104 23.018 16.472 22.227 18.722 16.868 19.017
STD 4.791 0.873 1.466 1.210 2.400 0.692 3.189

HeartEW AVG 10.879 11.072 11.244 11.139 11.337 11.575 11.326
STD 0.271 0.218 0.326 0.225 0.336 0.309 0.373

IonosphereEW AVG 11.775 11.868 11.964 11.779 11.617 12.126 11.871
STD 0.527 0.478 0.319 0.303 0.442 0.299 0.334

KrvskpEW AVG 172.472 173.554 178.107 179.187 168.602 182.418 167.354
STD 21.461 11.519 11.589 8.390 11.940 11.412 14.933

Lymphography AVG 10.712 10.465 10.570 11.015 10.563 10.793 10.860
STD 0.401 0.289 0.271 0.271 0.261 0.382 0.343

M-of-n AVG 16.928 17.483 17.219 16.219 16.328 17.271 17.464
STD 0.539 0.540 0.343 0.559 0.333 0.457 0.551

penglungEW AVG 11.376 11.939 11.813 11.922 11.843 11.823 12.099
STD 0.289 0.215 0.282 0.309 0.278 0.375 0.512

SonarEW AVG 10.390 10.922 10.915 10.895 10.823 11.000 10.605
STD 0.278 0.452 0.288 0.290 0.289 0.372 0.253

SpectEW AVG 11.287 11.263 11.474 11.390 11.314 11.508 11.478
STD 0.420 0.344 0.312 0.381 0.363 0.387 0.377

Tic-tac-toe AVG 19.153 17.310 16.263 18.469 17.686 16.756 16.987
STD 0.728 0.580 0.589 0.593 0.965 0.506 0.374

Vote AVG 11.169 11.368 11.498 11.549 11.591 11.514 11.744
STD 0.386 0.312 0.241 0.378 0.353 0.345 0.337

WaveformEW AVG 431.968 454.388 428.325 447.341 436.910 440.714 432.290
STD 41.200 24.772 32.251 29.730 24.418 28.975 28.555

WineEW AVG 10.650 10.683 10.760 11.007 10.716 10.850 10.977
STD 0.340 0.340 0.425 0.332 0.433 0.329 0.475

Zoo AVG 10.896 10.961 11.110 11.212 10.566 11.022 11.151
STD 0.370 0.234 0.365 0.361 0.282 0.354 0.313

Clean1 AVG 20.525 21.165 21.773 21.843 21.613 22.477 21.578
STD 0.729 0.869 0.865 0.847 0.709 0.724 0.582

Semeion AVG 181.144 192.061 189.798 195.035 192.577 194.607 192.824
STD 9.020 7.352 7.011 7.814 7.811 7.404 7.414

Colon AVG 14.900 15.751 16.014 16.337 15.937 15.985 15.430
STD 0.445 0.529 0.499 0.541 0.466 0.303 0.605

Leukemia AVG 42.765 46.287 46.675 47.680 47.168 46.807 44.669
STD 3.682 4.332 4.124 4.422 4.491 4.247 3.689

Mean rank F-test 2.000 4.091 3.636 5.318 3.636 4.773 4.545

Overall rank 1 3 2 6 2 5 4
Table 12
Overall rank by the F-test for the proposed variants based on accuracy, number of features, fitness, and running time.
Measure BPSO BPSO_TEPD BPSO_RWEPD BPSO_LREPD BPSO_REPD BPSO_SEPD BPSO_BEPD

Accuracy 5.068 3.364 3.636 3.455 4.568 4.114 3.795
Features 5.182 3.045 3.227 4.909 4.068 3.841 3.727
Fitness 5.432 3.091 3.636 3.500 4.477 3.977 3.886
Time 2.000 4.091 3.636 5.318 3.636 4.773 4.545
Average rank 4.420 3.398 3.534 4.296 4.187 4.176 3.989
Final rank 7 1 2 6 5 4 3
population has a chance to be picked. Hence, this will help in pre-
serving the diversity of the population. Although, prominent solutions
have high selection pressure, which may cause a bias in the direction
of the optimal solutions, particularly in the initial phases of the search
process, and consequently results in the problem of sliding into local op-
tima. In addition, during the convergence of the population, when there
13
are individuals with the same fitness values, it is hard to differentiate
a higher quality individual (solution) (Eiben & Smith, 2003).

4.4.3. Linear rank-based selection method
Linear rank-based selection mechanism (LR) was introduced to

overtake the drawbacks of RW selection mechanism (Baker, 1985). The
primary idea of LR selection is that the selection probability of each
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Table 13
The performance of BPSO-TEPD with KNN and DT classifiers in terms of accuracy, number of features, fitness, and running time.

Dataset Measure Accuracy Features Fitness Time

KNN DT KNN DT KNN DT KNN DT

Breastcancer AVG 0.986 0.971 5.300 2.000 0.021 0.031 16.610 42.878
STD 0.000 0.000 0.466 0.000 0.001 0.000 1.727 0.617

BreastEW AVG 0.987 0.969 8.767 5.967 0.015 0.032 14.697 45.880
STD 0.005 0.005 1.612 1.629 0.005 0.005 0.331 0.716

CongressEW AVG 0.994 0.989 4.900 3.000 0.009 0.013 12.566 40.899
STD 0.006 0.000 1.348 0.000 0.005 0.000 0.502 0.401

Exactly AVG 1.000 0.992 6.000 6.000 0.005 0.013 17.789 46.304
STD 0.000 0.044 0.000 0.000 0.000 0.043 0.422 0.566

Exactly2 AVG 0.804 0.765 9.900 7.067 0.202 0.239 23.018 49.480
STD 0.004 0.007 0.548 1.143 0.003 0.006 0.873 1.595

HeartEW AVG 0.884 0.860 4.867 5.033 0.119 0.142 11.072 41.696
STD 0.008 0.009 1.279 0.964 0.008 0.009 0.218 0.671

IonosphereEW AVG 0.998 0.962 9.033 7.733 0.005 0.040 11.868 46.471
STD 0.005 0.009 2.076 1.143 0.005 0.008 0.478 0.976

KrvskpEW AVG 0.990 0.994 17.633 18.400 0.015 0.012 173.554 85.706
STD 0.002 0.001 2.619 0.814 0.002 0.001 11.519 2.167

Lymphography AVG 0.939 0.966 5.333 6.000 0.064 0.038 10.465 41.594
STD 0.018 0.006 1.348 0.000 0.018 0.006 0.289 0.613

M-of-n AVG 1.000 1.000 6.000 6.000 0.005 0.005 17.483 44.832
STD 0.000 0.000 0.000 0.000 0.000 0.000 0.540 0.608

penglungEW AVG 1.000 0.961 70.033 85.033 0.002 0.042 11.939 53.817
STD 0.000 0.041 3.891 7.577 0.000 0.040 0.215 1.105

SonarEW AVG 0.998 0.963 19.067 12.200 0.005 0.038 10.922 47.566
STD 0.009 0.018 2.288 1.827 0.009 0.018 0.452 1.205

SpectEW AVG 0.873 0.909 5.200 7.633 0.128 0.093 11.263 43.169
STD 0.006 0.006 1.584 1.217 0.006 0.005 0.344 1.524

Tic-tac-toe AVG 0.797 0.864 6.033 6.000 0.209 0.142 17.310 49.462
STD 0.002 0.002 0.183 0.000 0.002 0.002 0.580 1.255

Vote AVG 0.998 0.967 3.967 4.000 0.004 0.036 11.368 40.761
STD 0.005 0.000 1.938 0.000 0.005 0.000 0.312 0.470

WaveformEW AVG 0.776 0.792 22.867 19.667 0.228 0.211 454.388 304.205
STD 0.007 0.009 1.961 2.537 0.007 0.009 24.772 20.898

WineEW AVG 1.000 1.000 3.333 3.033 0.003 0.003 10.683 41.070
STD 0.000 0.000 0.922 0.183 0.001 0.000 0.340 1.132

Zoo AVG 1.000 1.000 3.200 3.033 0.002 0.002 10.961 40.561
STD 0.000 0.000 0.407 0.183 0.000 0.000 0.234 0.635

Clean1 AVG 0.990 0.969 55.167 50.433 0.013 0.034 21.165 184.742
STD 0.009 0.014 5.742 4.599 0.009 0.014 0.869 8.953

Semeion AVG 0.997 0.976 99.733 89.933 0.006 0.027 192.061 169.072
STD 0.002 0.004 7.772 6.108 0.002 0.004 7.352 7.958

Colon AVG 0.923 0.859 749.033 765.433 0.080 0.143 15.751 88.605
STD 0.000 0.029 16.016 18.926 0.000 0.029 0.529 3.165

Leukemia AVG 1.000 1.000 3063.300 3083.233 0.004 0.004 46.287 178.919
STD 0.000 0.000 29.744 31.698 0.000 0.000 4.332 14.485

Rank W|T|L 13|4|5 5|4|13 8|2|12 12|2|8 14|1|7 7|1|14 19|0|3 3|0|19
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particle is decided depending on the rank of the individual instead of
its absolute fitness value. Each particle obtains a selection probability
according to a linear mapping function, as given in Eq. (11).

𝑝𝑗 =
1
𝑁

× (𝜂+ − (𝜂+ − 𝜂− ×
𝑗 − 1
𝑁 − 1

)) (11)

here 𝑗 indicates the rank of the solution, 𝜂+ denotes the expected
alue of the optimal particle (solution) in the swarm, and it is equal
o (𝑁 × 𝑃1), whereas 𝜂− denotes the expected value the worst particle
solution), and it is equal to (𝑁×𝑃𝑁 ). 𝑃1 and 𝑃𝑁 denote the optimal and
orst solutions respectively. 𝜂+ and 𝜂− are used to determine the slope
f the linear function. The selective pressure of LR relies on the value
f 𝜂+ where a larger value implies a larger selective pressure (Baker,
985).

After calculating the selection probabilities, the selection procedure
s done by the roulette wheel mechanism. It is remarkable that rely-
ng on the rank rather than fitness values avoids the controlling of
14

𝑁

rominent solutions because all particles in the population have equal
election probabilities, hence preventing the appearance of a prema-
ure convergence problem. Although, this mechanism might decrease
he convergence speed. In addition, in terms of computation, the LR
election method is considered costly since the swarm requires sorting
n each generation (Razali et al., 2011).

.4.4. Stochastic universal sampling method
The stochastic Universal Sampling (SUS) selection mechanism is

n extended form of the proportional selection mechanism proposed
y Baker (1987) in 1987. the basic idea of SUS is to determine a selec-
ion probability for each particle based on its fitness value belonged
o the total fitness values of all particles of the current generation.
imply, in the RW method, the wheel is rotated 𝑁 times to pick 𝑁
embers (particles), whereas SUS spins the wheel only one time to pick
members (Baker, 1987). The main drawback of this method is that
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once the swarm is converged, it becomes difficult for SUS to behave
properly (Al-Betar et al., 2018).

4.4.5. Tournament selection method
The tournament selection mechanism was introduced by Goldberg,

Korb, and Deb (1990) in 1989. It is known as simple, powerful, and
the most common selection approach in EAs (Goldberg & Deb, 1991).
It is deemed as a two-step selection approach. The first step begins
with a random selection of a group of 𝑘 individuals (particles) from
the current population, where 𝑘 represents the size of the tournament.
Then, the fittest solution (particle) among the dominant ones in the
tournament is picked. For each individual in the selected group, a
selection probability is calculated based on Eq. (12).

𝑝𝑗 =
1
𝑁 𝑡 × [(𝑁 − 𝑗 + 1)𝑡 − (𝑁 − 𝑗)𝑡] (12)

The main advantage of the tournament selection method is that
it maintains the diversity of the population via assigning for each
individual (particle) an equal probability of being chosen for guiding
the poor solutions, even though this might lower the speed of con-
vergence. Also, the tournament size (𝑘) is a crucial operator that is
responsible for controlling the selection pressure and hence, compro-
mising between the exploitative and exploitative capabilities (Back,
1994; Mafarja et al., 2017). Larger values of 𝑘 lead to higher selection
pressure and, therefore, will produce a bias in the direction of the best
solutions (intensification). On the other hand, lower values of 𝑘 provide
less selection pressure, and that will switch the search process towards
a random manner (diversification). However, deciding the favorable
value of 𝑘 parameter is a complicated task, and heavily relies on the
ype of the problem being dealt with (Al-Betar et al., 2017; Hassouneh
t al., 2021).

.4.6. Random-based selection method
The random-based selection approach picks a solution (particle)

rom the current population in a random way. All solutions have an
qual chance to be selected despite their fitness values. Accordingly,
he selection pressure is equalized. Generally, this method causes slow
onvergence (Hassouneh et al., 2021).

.5. BPSO with EPD strategy

As mentioned above, the EPD eliminates the worst solutions from
he swarm and replaces them by generating neighbor solutions around
he good ones. It is an efficient operator for population-based al-
orithms. Therefore, it is easily applied to the BPSO, which is a
opulation-based algorithm. In simple, the process starts by sorting the
warm based on the fitness value and then divided into two halves.
he worst half of the swarm is eliminated and re-positioned using
ix different selection operators based on the good half of the swarm.
lgorithm 2 presents the proposed evolutionary population dynamics
ased Boolean PSO. Moreover, Algorithm 3 illustrates the tournament
election based Boolean PSO approach.

Each solution in the worst half is re-positioned around the guide
olution, which is selected using six different selection strategies. So,
ix variants of BPSO-EPD were presented:

• BPSO_BEPD: The best solution obtained so far is considered as a
guide solution.

• BPSO_RWEPD: Roulette wheel selection method is used to identify
the guide solution.

• BPSO_LREPD: The guide solution is selected using the Linear rank
selection mechanism.

• BPSO_SEPD: The guide solution is selected using SUS method.
15
Algorithm 2 Pseudo-code of BPSO-EPD algorithm
1: Initialize random population of particles 𝑃𝑟𝑖(𝑖 = 1, 2,… , 𝑁) inside

𝑈𝐵 and 𝐿𝐵
2: while Termination condition is not satisfied do
3: for Each particle 𝑖 do
4: Calculate the fitness of all particles
5: Update the velocity of all particles in the population using

Eq. (6)
6: Update the position of all particles in the population using

Eq. (7)
7: Evaluate the fitness 𝑓 (𝑃𝑟𝑗𝑖 )
8: if 𝑓 (𝑃𝑟𝑗𝑖 ) < 𝑓 (𝑝𝐵𝑒𝑠𝑡𝑗𝑖 ) then
9: 𝑝𝐵𝑒𝑠𝑡𝑗𝑖 ← 𝑃𝑟𝑗𝑖

10: if 𝑓 (𝑃 𝑗
𝑖 ) < 𝑓 (𝑔𝐵𝑒𝑠𝑡𝑗𝑖 ) then

11: 𝑔𝐵𝑒𝑠𝑡𝑗𝑖 ← 𝑃𝑟𝑗𝑖
12: Sort the population based on the fitness value
13: Select guide solution 𝑔𝑆𝑜𝑙 from the best half of the population

using EPD strategy
14: for 𝑖 = (𝑁2 ) + 1 to 𝑁 do
15: Apply single point crossover to re-position 𝑖th particle

around 𝑔𝑆𝑜𝑙.
16: Return 𝑔𝐵𝑒𝑠𝑡

Algorithm 3 Pseudo-code of BPSO_TEPD algorithm
1: Initialize random population of particles 𝑃𝑟𝑖(𝑖 = 1, 2,… , 𝑁) inside

𝑈𝐵 and 𝐿𝐵
2: while Termination condition is not satisfied do
3: for Each particle 𝑖 do
4: Calculate the fitness of all particles
5: Update the velocity of all particles in the population using

Eq. (6)
6: Update the position of all particles in the population using

Eq. (7)
7: Evaluate the fitness 𝑓 (𝑃𝑟𝑗𝑖 )
8: if 𝑓 (𝑃𝑟𝑗𝑖 ) < 𝑓 (𝑝𝐵𝑒𝑠𝑡𝑗𝑖 ) then
9: 𝑝𝐵𝑒𝑠𝑡𝑗𝑖 ← 𝑃𝑟𝑗𝑖

10: if 𝑓 (𝑃 𝑗
𝑖 ) < 𝑓 (𝑔𝐵𝑒𝑠𝑡𝑗𝑖 ) then

11: 𝑔𝐵𝑒𝑠𝑡𝑗𝑖 ← 𝑃𝑟𝑗𝑖
12: Sort the population based on the fitness value
13: // Selection of gSol (guide solution) using tournament selection
14: Identify the tournament size 𝑘
15: m = generate random index within [0, N]
16: set optimal = m
17: set j = 2
18: while (𝑗 ≤ 𝑘) do
19: m = generate random index within [0, N]
20: if (fitness(𝑋𝑚) < fitness(𝑋𝑜𝑝𝑡𝑖𝑚𝑎𝑙)) then
21: optimal = m
22: j = j + 1
23: gSol = optimal
24: for 𝑖 = (𝑁2 ) + 1 to 𝑁 do
25: Apply single point crossover to re-position 𝑖th particle

around 𝑔𝑆𝑜𝑙.
26: Return 𝑔𝐵𝑒𝑠𝑡

• BPSO_TEPD: Tournament selection method is involved to select

the guide solution.
• BPSO_REPD: Random solution from the best half is selected as a

guide.
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Fig. 4. Box-Plots of classification accuracy for BPSO-TEPD versus BPSO in dealing with the first 12 datasets.
After identifying the guide solution for each poor one, two evolu-
tionary operators (mutation and crossover) are utilized to generate a
new solution. Firstly, a simple mutation operator with adaptive proba-
bility (that is linearly decreases over the curse of iterations) is applied
to the guide solution to find a better solution near the selected solution
and escape the premature convergence. Afterward, the poor solution
is re-positioned around the resulting solution via employing a single-
point crossover operator. Fig. 2 illustrates the proposed improvement
of BPSO algorithm. It shows how the EPD strategy removes the worst
solutions (particles) from the population based on their fitness values,
and replaces them with neighbor solutions around guide ones generated
by a selection mechanism (e.g., roulette wheel selection). In addition,
Fig. 3 shows the flowchart of the proposed BPSO-EPD approach.

5. Experimental results and simulations

5.1. Experimental setup

To study the effectiveness of the proposed binary BPSO variants, 22
well-regarded datasets obtained from UCI repository (Lichman, 2013)
are utilized here. These problems are chosen carefully with various
16
details and properties (e.g., number of features, instances, and classes)
to cover varied types of real-life tasks. Table 1 provides a concise
description for each employed dataset.

In this work, we followed the hold-out method to estimate the per-
formance of used FS approaches. Each dataset is split into two portions,
where 80% of the data was preserved for training the machine learning
model while the rest of 20% of the data was employed to evaluate
how well that model performs on unseen data. This method was chosen
according to many previous studies related to FS problems (Faris et al.,
2018; Mafarja et al., 2020; Mafarja & Mirjalili, 2017; Thaher et al.,
2021) to make the results comparable. Due to the stochastic nature of
meta-heuristic algorithms, each experiment was repeated for 30 trials
with a randomly set seed. Accordingly, all the statistics are presented
in terms of the average value (AVG) and the standard deviation (STD).
Besides, Two non-parametric statistical tests, namely Wilcoxon rank-
sum and Friedman, were performed with 5% degree of significance
to show the significance of the results. The interest in non-parametric
statistical analysis has grown recently in the field of computational
intelligence (Derrac, García, Molina, & Herrera, 2011).

To study the impact of the proposed EPD approaches, we pro-
vide a comprehensive comparison between the results of the basic
BPSO and six BPSO variants (BPSO-TEPD, BPSO-RWEPD, BPSO-LREPD,
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Fig. 5. Box-Plots of classification accuracy for BPSO-TEPD versus BPSO in dealing with the last 10 datasets.
BPSO-REPD, BPSO-SEPD, and BPSO-BEPD). Furthermore, the best FS
approach among tested BPSO variants was then compared to other well-
known FS approaches comprising two Binary variants of PSO using
S-shaped transfer function (SBPSO) and V-shaped transfer function
(VBPSO), Binary Grasshopper Optimization Algorithm (BGOA), Binary
Gravitational Search Algorithm (BGSA), Binary Ant Lion Optimizer
(BALO), Binary Bat algorithm (BBA), Binary Salp Swarm Algorithm
(BSSA), Whale Optimization Algorithm (BWOA), and Binary Teaching-
Learning Based Optimization (BTLBO). The maximum number of it-
erations is set to 100 and the population size is 20. These common
parameters were set based on the results of several trials. Four criteria
were used for comparison: classification accuracy, number of selected
features, fitness values, and the running time. For the fitness formula in
Eq. (8), 𝛼 is set to 0.99 and 𝛽 is set to 0.01 according to recommended
settings in related works (Chantar, Thaher, Turabieh, Mafarja, & Sheta,
2021; Faris et al., 2018; Thaher & Arman, 2020). Please note that in
all reported tables, the best-obtained results are highlighted using a
boldface format.
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5.2. System details

All experiments in this study are coded in MATLAB 2018 licensed
software under a same computing system. Table 2 shows the details of
the system and used environments.

5.3. Assessment of parameters settings

In the first part of the experiment, we investigate and analyze the
impact of the parameter settings on proposed approaches.

5.3.1. Impact of common parameters on BPSO
Firstly, we study the effect of common parameters (population size

and maximum iterations) on classification accuracy. Table 3 depicts
the average accuracy obtained by BPSO with different combinations
of the common parameters. It can be seen that the optimal ranking
of 5.68 was achieved when population = 20 and maximum iterations
= 100. The results imply that neither a lower nor higher population size
and maximum iterations can benefit the algorithm. Hence, a sensitivity
analysis on these common parameters is critically important.
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Fig. 6. Convergence curves of the top three variants versus the original BPSO for the first 12 datasets.
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5.3.2. Impact of tournament size on BPSO-TEPD

Secondly, we study the effect of the tournament size. Table 4
outlines the average accuracy obtained by BPSO-TEPD with various
tournament sizes (10%, 30%, 50%, 70%, and 85%). From Table 4,
BPSO-TEPD with 50% tournament size perceived the optimal accu-
racy in 12 datasets, which showed better classification results. Hence,
BPSO-TEPD with 50% tournament size was used in the rest of this work.
18

p

5.3.3. Impact of parameter (𝑛+) on BPSO-LREPD

Thirdly, we analyze the impact of the parameter (𝑛+) on BPSO-

REPD. Based on the results obtained in Table 4, the best accuracy was

erceived by 𝑛 = 1.7 and 𝑛 = 1.9 in most datasets. However, BPSO-

REPD (𝑛 = 1.9) scored a higher ranking of 2.73 in which a promising

erformance can be ensured.
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Fig. 7. Convergence curves of the top three variants versus the original BPSO for the last 10 datasets.
5.4. Results of different variants with KNN classifier

In the previous section, the sensitivity analysis of the proposed
approaches have been studied. This section aims to investigate the effi-
ciency of the six proposed BPSO variants (BPSO-TEPD, BPSO-RWEPD,
BPSO-LREPD, BPSO-REPD, BPSO-SEPD, and BPSO-BEPD) in solving the
FS tasks. The accuracy results of the six proposed variants are shown
in Table 5. In Table 5, the AVG denotes the average result while the
19
STD presents the consistency and robustness of the algorithm in fea-
ture selection. Correspondingly, small standard deviation suggests that
the algorithm is highly consistent. Among the proposed approaches,
the best approach was found to be BPSO-TEPD. As compared to the
conventional BPSO, the BPSO-TEPD can often yield a higher accuracy,
which enables an accurate classification process.

Inspecting the boxplot results in Figs. 4 and 5, the proposed BPSO-
TEPD achieved the highest median value in most cases. The results
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Table 14
Comparison between BPSO-TEPD and other optimizers based on average accuracy results.

Dataset Measure BPSO_TEPD SBPSO VBPSO BGOA BGSA bALO BBA BSSA BWOA BTLBO

Breastcancer AVG 0.9857 0.9929 0.9807 0.9929 0.9721 0.9836 0.9395 0.9857 0.9641 1.0000
STD 0.0000 0.0000 0.0065 0.0000 0.0051 0.0033 0.0209 0.0000 0.0040 0.0000

BreastEW AVG 0.9874 0.9959 0.9924 0.9751 0.9617 0.9754 0.9357 0.9658 0.9629 0.9836
STD 0.0050 0.0045 0.0045 0.0052 0.0081 0.0043 0.0227 0.0048 0.0107 0.0045

CongressEW AVG 0.9939 0.9981 0.9931 0.9885 0.9605 0.9824 0.8977 0.9839 0.9594 0.9678
STD 0.0058 0.0044 0.0057 0.0000 0.0089 0.0066 0.0635 0.0057 0.0094 0.0047

Exactly AVG 1.0000 1.0000 1.0000 1.0000 0.7582 0.9980 0.6217 1.0000 0.8082 0.9995
STD 0.0000 0.0000 0.0000 0.0000 0.0952 0.0048 0.0861 0.0000 0.1307 0.0015

Exactly2 AVG 0.8043 0.7648 0.7497 0.7822 0.7450 0.7690 0.6807 0.7397 0.7488 0.7700
STD 0.0037 0.0119 0.0074 0.0130 0.0120 0.0067 0.0384 0.0089 0.0096 0.0000

HeartEW AVG 0.8840 0.9235 0.8920 0.9043 0.8321 0.9377 0.6833 0.8858 0.8333 0.9080
STD 0.0083 0.0064 0.0195 0.0070 0.0275 0.0157 0.0732 0.0098 0.0344 0.0133

IonosphereEW AVG 0.9977 0.9808 0.9751 0.9803 0.9601 0.9826 0.8831 0.9418 0.9812 0.9808
STD 0.0053 0.0069 0.0109 0.0088 0.0129 0.0061 0.0282 0.0071 0.0093 0.0094

KrvskpEW AVG 0.9899 0.9852 0.9846 0.9911 0.9141 0.9798 0.7916 0.9741 0.9505 0.9686
STD 0.0022 0.0022 0.0044 0.0021 0.0270 0.0020 0.1094 0.0035 0.0314 0.0048

Lymphography AVG 0.9385 0.9844 0.9766 0.9199 0.7833 0.8889 0.7692 0.8911 0.9142 0.9065
STD 0.0180 0.0169 0.0305 0.0157 0.0227 0.0182 0.0809 0.0174 0.0208 0.0133

M-of-n AVG 1.0000 1.0000 1.0000 1.0000 0.8797 0.9993 0.7458 1.0000 0.9447 0.9997
STD 0.0000 0.0000 0.0000 0.0000 0.0710 0.0037 0.0850 0.0000 0.0654 0.0013

penglungEW AVG 1.0000 0.9356 0.9444 0.9133 1.0000 0.8667 0.8511 0.9356 0.9844 0.9533
STD 0.0000 0.0122 0.0253 0.0286 0.0000 0.0000 0.0693 0.0122 0.0287 0.0311

SonarEW AVG 0.9984 0.9817 0.9794 0.9786 0.9690 0.9873 0.8817 0.9825 0.9230 0.9881
STD 0.0087 0.0120 0.0174 0.0170 0.0155 0.0121 0.0431 0.0107 0.0231 0.0121

SpectEW AVG 0.8728 0.8901 0.8593 0.8556 0.8648 0.9451 0.8500 0.8648 0.8543 0.9136
STD 0.0064 0.0083 0.0143 0.0090 0.0147 0.0124 0.0673 0.0099 0.0135 0.0101

Tic-tac-toe AVG 0.7965 0.8021 0.8453 0.8125 0.7674 0.8385 0.6908 0.8125 0.7872 0.8490
STD 0.0019 0.0000 0.0161 0.0000 0.0245 0.0000 0.0567 0.0000 0.0271 0.0000

Vote AVG 0.9983 0.9656 0.9806 0.9756 0.9444 0.9739 0.8800 0.9806 0.9644 0.9561
STD 0.0051 0.0042 0.0063 0.0085 0.0091 0.0084 0.0901 0.0063 0.0095 0.0082

WaveformEW AVG 0.7760 0.7717 0.7694 0.7604 0.7082 0.7510 0.6731 0.7426 0.7345 0.7406
STD 0.0070 0.0066 0.0084 0.0058 0.0120 0.0066 0.0379 0.0077 0.0142 0.0068

WineEW AVG 1.0000 1.0000 0.9954 1.0000 0.9852 1.0000 0.8944 1.0000 0.9593 1.0000
STD 0.0000 0.0000 0.0105 0.0000 0.0159 0.0000 0.0932 0.0000 0.0298 0.0000

Zoo AVG 1.0000 1.0000 1.0000 1.0000 0.9968 1.0000 0.7968 1.0000 0.9651 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0121 0.0000 0.0684 0.0000 0.0214 0.0000

Clean1 AVG 0.9903 0.9674 0.9781 0.9726 0.9337 0.9104 0.8479 0.9375 0.9431 0.9417
STD 0.0090 0.0060 0.0107 0.0070 0.0130 0.0111 0.0243 0.0072 0.0164 0.0059

Semeion AVG 0.9974 0.9935 0.9939 0.9871 0.9797 0.9913 0.9720 0.9996 0.9813 0.9876
STD 0.0017 0.0011 0.0027 0.0019 0.0026 0.0013 0.0092 0.0011 0.0045 0.0025

Colon AVG 0.9231 0.7667 0.8128 0.8359 0.9231 0.8385 0.7103 0.8462 0.9487 0.6333
STD 0.0000 0.0140 0.0388 0.0524 0.0000 0.0235 0.0331 0.0000 0.0369 0.0331

Leukemia AVG 1.0000 0.9956 0.9333 0.9556 0.9333 0.9333 1.0000 0.9333 1.0000 0.9422
STD 0.0000 0.0169 0.0000 0.0320 0.0175 0.0000 0.0000 0.0000 0.0000 0.0231

Mean rank F-test 2.773 3.750 4.568 4.523 7.818 5.114 9.591 5.341 6.909 4.614

Overall rank 1 2 4 3 9 6 10 7 8 5
evidently prove the superiority of BPSO-TEPD against BPSO. The ex-
cellence performance of BPSO-TEPD to solve the FS problem mainly
benefits from the tournament based EPD strategy that empowers the
search by re-positioning the worst solutions in the population.

Among the BPSO variants, the result shows that the performance
of the BPSO-TEPD was dominant. The findings of F-test in Table 5
supported this argument. In addition, the results of Wilcoxon test in
Table 6 confirm that the classification performance of BPSO-TEPD was
significantly better than other variants for most of the datasets. The
observed improvement in BPSO-TEPD are attributed to the efficacy of
the tournament selection mechanism in selecting the guide solution in
the EPD strategy. This selection method allows potential solution to be
chosen as the guide solution through a competition. In other words,
BPSO-TEPD is able to select advisable guide solution that can help the
particles to visit the promising regions. Moreover, the proper selection
of tournament size offers a better trade-off between exploration and
20
exploitation. Therefore, BPSO-TEPD can usually select the most rele-
vant features from the search space when compared to other variants.
On the one hand, the worst variant was found to be BPSO-REPD. This
is expected because the BPSO-REPD selects the guide solution using a
random manner. Some of the guide solutions might be built up by a
weak solution, which may lead to unsatisfactory results.

Figs. 6 and 7 exhibit the convergence curves of the top three
BPSO variants and BPSO approaches. Intuitively, the convergence curve
highlights how the fitness value changes over the course of iterations.
From these Figures, it is seen that the convergence rate of the EPD
based BPSO variants were much faster than the conventional BPSO.
These results affirm the excellent behavior of the EPD strategies in
improving the convergence speed. Among the BPSO variants, BPSO-
TEPD can often accelerate to find the global solution. Taking a high
dimensional dataset (Leukemia) as an example, the BPSO-TEPD has
converged faster to reach the global minimum.
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Table 15
Comparison between BPSO-TEPD and other optimizers based on average number of features.

Dataset Measure BPSO_TEPD SBPSO VBPSO BGOA BGSA bALO BBA BSSA BWOA BTLBO

Breastcancer AVG 5.300 4.000 4.300 5.167 5.633 4.200 4.233 8.000 3.500 4.000
STD 0.466 0.000 0.702 0.379 1.402 0.407 1.382 0.000 0.731 0.000

BreastEW AVG 8.767 10.800 10.867 11.133 14.100 19.767 12.033 15.533 6.300 12.300
STD 1.612 2.355 2.177 2.623 2.940 2.029 3.102 1.852 1.368 2.548

CongressEW AVG 4.900 5.000 4.600 4.633 7.833 10.000 6.667 6.733 4.333 5.400
STD 1.348 0.000 1.404 0.850 1.599 0.871 2.496 1.701 1.516 2.268

Exactly AVG 6.000 6.000 6.000 6.000 7.733 6.833 6.267 6.667 5.467 6.833
STD 0.000 0.000 0.000 0.000 2.164 0.699 1.741 0.547 1.479 0.592

Exactly2 AVG 9.900 10.733 6.833 5.000 3.867 10.467 5.800 9.300 1.933 1.000
STD 0.548 0.640 1.577 2.877 2.315 0.900 2.203 0.952 1.856 0.000

HeartEW AVG 4.867 8.267 3.933 6.167 6.933 7.800 5.567 8.100 5.667 7.067
STD 1.279 1.048 1.780 0.379 1.596 0.805 1.942 1.125 1.422 0.944

IonosphereEW AVG 9.033 12.333 11.967 12.500 16.133 21.867 12.100 17.167 5.600 14.333
STD 2.076 2.233 2.697 2.488 2.515 3.391 2.808 2.534 1.453 2.857

KrvskpEW AVG 17.633 20.567 18.400 21.800 20.067 27.767 14.967 23.067 7.167 19.800
STD 2.619 2.388 3.286 1.730 2.703 1.073 2.895 2.449 2.561 2.369

Lymphography AVG 5.333 6.600 5.400 7.100 9.400 11.100 7.633 9.533 4.167 9.100
STD 1.348 1.773 2.111 1.322 2.078 1.269 1.712 1.852 1.206 1.373

M-of-n AVG 6.000 6.000 6.000 6.000 8.200 6.833 6.200 6.633 5.967 6.867
STD 0.000 0.000 0.000 0.000 1.769 0.791 1.400 0.556 1.033 0.681

penglungEW AVG 70.033 116.867 110.867 61.400 146.500 149.167 130.600 152.067 8.533 133.400
STD 3.891 4.066 7.333 22.412 4.833 5.434 12.604 5.813 2.240 12.571

SonarEW AVG 19.067 25.633 25.567 30.300 29.933 42.767 23.800 34.433 10.633 26.767
STD 2.288 3.023 3.626 6.148 3.973 3.910 4.514 3.739 3.306 4.477

SpectEW AVG 5.200 8.700 8.267 8.600 10.233 14.900 9.600 11.900 5.933 8.133
STD 1.584 1.466 2.016 1.589 2.046 1.029 2.594 2.171 1.507 2.030

Tic-tac-toe AVG 6.033 6.000 6.800 6.000 5.933 7.000 4.733 7.000 4.467 6.000
STD 0.183 0.000 0.484 0.000 0.785 0.000 1.507 0.000 1.332 0.000

Vote AVG 3.967 5.200 4.567 2.667 7.200 9.267 5.900 7.767 4.533 6.800
STD 1.938 0.551 0.971 1.539 2.325 1.015 2.454 2.402 1.548 1.955

WaveformEW AVG 22.867 20.600 21.833 24.767 21.400 33.433 17.200 24.967 9.900 21.067
STD 1.961 3.024 2.937 2.402 3.092 1.406 3.699 2.883 2.928 3.403

WineEW AVG 3.333 3.300 5.900 4.167 6.400 6.867 5.133 4.933 4.000 3.733
STD 0.922 0.466 0.712 0.461 1.192 0.730 1.871 0.583 1.114 0.785

Zoo AVG 3.200 4.367 2.433 3.033 6.600 6.067 7.533 5.100 4.867 2.733
STD 0.407 0.615 0.817 0.183 1.714 0.907 1.852 0.845 0.776 0.640

Clean1 AVG 55.167 76.633 72.467 82.333 81.267 129.467 67.267 100.167 12.533 72.633
STD 5.742 5.786 5.900 16.898 5.971 11.860 8.292 7.634 4.321 7.194

Semeion AVG 99.733 125.633 120.933 137.533 129.800 207.667 102.400 165.933 71.633 124.200
STD 7.772 8.853 5.394 27.413 8.596 9.196 14.229 10.840 20.995 9.174

Colon AVG 749.033 915.067 857.233 217.433 949.200 1400.700 801.600 1075.767 3.600 868.067
STD 16.016 12.825 26.882 128.487 13.540 245.317 47.099 104.900 1.632 48.188

Leukemia AVG 3063.300 3404.200 3298.000 567.533 3527.500 3488.333 2891.500 3506.500 4.800 3096.833
STD 29.744 37.756 36.021 374.679 42.163 20.866 271.777 25.084 2.107 133.862

Mean rank F-test 3.500 5.205 4.273 4.864 7.545 9.182 4.818 8.568 1.682 5.364

Overall rank 2 6 3 5 8 10 4 9 1 7
Table 7 outlines the average number of selected features. As can
e seen, BPSO-TEPD yielded competitive results as compared to the
ther BPSO variants. In Table 7, the F-test revealed that the BPSO-TEPD
as the best approach in feature reduction, followed by BPSO-RWEPD.
rom Table 8, the capability of BPSO-TEPD in selecting the minimal
eatures was significantly better than other methods in most cases.
hat is, BPSO-TEPD can always remove the irrelevant and redundant
eatures that are not contributed to the classification process.

From the empirical analysis in Tables 5 and 7, the BPSO-TEPD
evoted the optimal results in both average accuracy and feature
ize. In comparison with other BPSO variants, the proposed EPD and
ournament selection operator in BPSO-TEPD no only enhances its
earching ability but also accomplishes excellent solution across all 22
atasets. Thus, BSPO-TEPD can always achieve higher accuracy while
aintaining minimal number of selected features.

Furthermore, the average fitness results are presented in Table 9.
ased on the results obtained, BPSO-TEPD scored the first rank while
21
the BPSO-LREPD and BPSO-RWEPD achieved the second and third
ranks. The experimental results (refer Tables 9 and 10) expose the
supremacy of BPSO-TEPD in finding the exact minimum value.

Table 11 shows the average running time results. In comparison
with conventional BPSO, the BPSO variants were more time consuming
in most datasets. This is because an additional computational cost is
required to re-position half of the worst solutions in the population.

The overall performance of the proposed approaches is summarized
in Table 12. From Table 12, one can see that the performance of
BPSO variants were better than conventional BPSO algorithm. The
result affirms the excellent behavior of EPD strategies in evolving the
manifestation of BPSO when dealing with FS tasks. The reason is that
EPD strategies help the particle to retain high diversity in exploring and
exploiting the feature space. Besides, EPD strategies take advantages
of top solutions to lead the poor solutions to move towards a better
position. This, in turn, will improve the potential of particles in finding
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Table 16
Comparison between BPSO-TEPD and other optimizers based on average fitness.

Dataset Measure BPSO_TEPD SBPSO VBPSO BGOA BGSA bALO BBA BSSA BWOA BTLBO

Breastcancer AVG 0.021 0.012 0.024 0.014 0.035 0.022 0.039 0.024 0.040 0.005
STD 0.001 0.000 0.007 0.000 0.004 0.003 0.007 0.000 0.004 0.000

BreastEW AVG 0.015 0.008 0.011 0.028 0.043 0.031 0.043 0.039 0.039 0.020
STD 0.005 0.004 0.004 0.005 0.008 0.004 0.009 0.004 0.011 0.004

CongressEW AVG 0.009 0.005 0.010 0.014 0.044 0.024 0.054 0.020 0.043 0.035
STD 0.005 0.004 0.006 0.001 0.009 0.006 0.011 0.005 0.009 0.004

Exactly AVG 0.005 0.005 0.005 0.005 0.246 0.008 0.263 0.006 0.194 0.006
STD 0.000 0.000 0.000 0.000 0.094 0.005 0.110 0.000 0.129 0.002

Exactly2 AVG 0.202 0.242 0.254 0.220 0.256 0.237 0.285 0.265 0.250 0.229
STD 0.003 0.011 0.007 0.010 0.013 0.007 0.014 0.009 0.008 0.000

HeartEW AVG 0.119 0.083 0.110 0.100 0.172 0.068 0.237 0.120 0.170 0.097
STD 0.008 0.007 0.020 0.007 0.027 0.015 0.027 0.010 0.034 0.013

IonosphereEW AVG 0.005 0.023 0.028 0.023 0.044 0.024 0.075 0.063 0.020 0.023
STD 0.005 0.007 0.011 0.009 0.013 0.006 0.018 0.007 0.009 0.009

KrvskpEW AVG 0.015 0.021 0.020 0.015 0.091 0.028 0.077 0.032 0.051 0.037
STD 0.002 0.002 0.004 0.002 0.027 0.002 0.021 0.003 0.031 0.005

Lymphography AVG 0.064 0.019 0.026 0.083 0.220 0.117 0.131 0.113 0.087 0.098
STD 0.018 0.016 0.030 0.016 0.022 0.018 0.040 0.017 0.020 0.013

M-of-n AVG 0.005 0.005 0.005 0.005 0.126 0.006 0.127 0.006 0.060 0.006
STD 0.000 0.000 0.000 0.000 0.070 0.004 0.069 0.000 0.065 0.002

penglungEW AVG 0.002 0.067 0.058 0.088 0.005 0.137 0.041 0.068 0.016 0.050
STD 0.000 0.012 0.025 0.028 0.000 0.000 0.033 0.012 0.028 0.030

SonarEW AVG 0.005 0.022 0.025 0.026 0.036 0.020 0.057 0.023 0.078 0.016
STD 0.009 0.012 0.017 0.016 0.015 0.012 0.018 0.011 0.023 0.012

SpectEW AVG 0.128 0.113 0.143 0.147 0.139 0.061 0.086 0.140 0.147 0.089
STD 0.006 0.008 0.014 0.008 0.014 0.012 0.021 0.009 0.013 0.010

Tic-tac-toe AVG 0.209 0.203 0.162 0.193 0.238 0.169 0.238 0.194 0.216 0.157
STD 0.002 0.000 0.016 0.000 0.024 0.000 0.021 0.000 0.026 0.000

Vote AVG 0.004 0.038 0.022 0.026 0.060 0.032 0.048 0.024 0.038 0.048
STD 0.005 0.004 0.006 0.007 0.009 0.009 0.014 0.006 0.009 0.007

WaveformEW AVG 0.228 0.231 0.234 0.244 0.294 0.255 0.288 0.261 0.265 0.262
STD 0.007 0.007 0.008 0.006 0.012 0.007 0.012 0.008 0.014 0.007

WineEW AVG 0.003 0.003 0.010 0.003 0.020 0.006 0.022 0.004 0.044 0.003
STD 0.001 0.000 0.010 0.000 0.015 0.001 0.013 0.000 0.029 0.001

Zoo AVG 0.002 0.003 0.002 0.002 0.008 0.004 0.104 0.003 0.038 0.002
STD 0.000 0.000 0.001 0.000 0.012 0.001 0.014 0.001 0.021 0.000

Clean1 AVG 0.013 0.037 0.026 0.032 0.071 0.097 0.116 0.068 0.057 0.062
STD 0.009 0.006 0.011 0.007 0.013 0.011 0.013 0.007 0.016 0.006

Semeion AVG 0.006 0.011 0.011 0.018 0.025 0.016 0.020 0.007 0.021 0.017
STD 0.002 0.001 0.003 0.002 0.002 0.001 0.004 0.001 0.004 0.002

Colon AVG 0.080 0.236 0.190 0.164 0.081 0.167 0.245 0.158 0.051 0.367
STD 0.000 0.014 0.038 0.052 0.000 0.023 0.029 0.001 0.037 0.033

Leukemia AVG 0.004 0.009 0.071 0.045 0.071 0.071 0.003 0.071 0.000 0.062
STD 0.000 0.017 0.000 0.032 0.017 0.000 0.000 0.000 0.000 0.023

Mean rank F-test 2.523 3.591 4.318 4.432 8.250 5.591 8.523 6.091 6.818 4.864

Overall rank 1 2 3 4 9 6 10 7 8 5
the global optimum. Inspecting the result, BPSO-TEPD perceived the
optimal F-test score in terms of accuracy, feature size, and fitness.
Hence, it can be inferred that the BPSO-TEPD was the best BPSO variant
in current work.

5.5. Comparing of top variant with KNN and DT classifiers

After testing all BPSO variants with KNN classifier, we found that
BPSO-TEPD (top BSPO variant) revealed the best results among other
approaches, thus, we are interested to test this approach with the DT
classifier. In this experiment, the DT is utilized to assess the efficiency of
proposed approach. Table 13 presents the performance of BPSO-TEPD
with KNN and DT. In terms of accuracy and fitness, the KNN model can
often retain the optimal performance in most cases. Moreover, the KNN
model yielded the lowest computational cost due to its simplicity and
22

ease of implementation. Even though DT model can guarantee a lower
number of selected features, it cannot ensure higher classification accu-
racy. From the analysis, the KNN model was found to more appropriate
for FS problems.

5.6. Comparison of BPSO-TEPD with other well-known optimizers

In this sub-section, the performance of BPSO-TEPD is compared to
other well known optimizers. For comparison purposes, the optimizers
SBPSO, VBPSO, BGOA, BGSA, bALO, BBA, BSSA, BWOA, and BTLBO
were used. Table 14 presents the average accuracy results. In Table 14,
the BPSO-TEPD scored the highest accuracy in 12 datasets, followed by
SBPSO approach (7 datasets). Our results reveal that the BPSO-TEPD
outperformed the other well known optimizer in FS tasks. The reason
for the superior performance of BPSO-TEPD is that the tournament

based EPD strategy is integrated to strengthen the exploration patterns
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Table 17
Comparison between BPSO-TEPD and other optimizers based on average running time.

Dataset Measure BPSO_TEPD SBPSO VBPSO BGOA BGSA bALO BBA BSSA BWOA BTLBO

Breastcancer AVG 16.610 15.285 13.801 15.625 13.915 14.980 13.847 15.376 10.813 13.926
STD 1.727 1.456 0.495 1.666 0.392 0.311 0.517 1.904 0.730 0.344

BreastEW AVG 14.697 14.382 14.067 15.032 14.662 15.948 14.378 16.103 12.551 14.669
STD 0.331 0.269 0.391 0.426 0.546 0.411 0.524 0.435 0.621 0.381

CongressEW AVG 12.566 11.983 12.065 12.507 13.044 12.134 12.664 12.831 10.077 13.005
STD 0.502 0.265 0.469 0.613 0.401 0.383 0.521 0.255 0.916 0.314

Exactly AVG 17.789 17.082 17.564 16.648 17.945 21.050 17.043 21.004 14.086 17.652
STD 0.422 0.328 0.607 1.027 0.717 0.761 0.887 0.503 1.667 0.650

Exactly2 AVG 23.018 20.762 18.977 16.946 18.577 21.820 18.442 21.335 8.678 18.519
STD 0.873 0.911 1.485 1.575 0.844 0.728 0.939 0.724 3.099 0.554

HeartEW AVG 11.072 11.008 11.061 11.419 11.209 11.391 10.788 10.979 10.216 11.614
STD 0.218 0.345 0.272 0.298 0.320 0.346 0.237 0.319 0.571 0.403

IonosphereEW AVG 11.868 11.357 11.506 11.819 12.049 12.384 11.813 12.510 10.491 12.212
STD 0.478 0.277 0.264 0.536 0.388 0.378 0.524 0.444 0.821 0.282

KrvskpEW AVG 173.554 172.352 174.449 192.403 170.902 245.451 167.992 255.238 63.077 169.458
STD 11.519 6.087 10.997 8.846 7.055 8.923 9.158 8.271 9.005 5.849

Lymphography AVG 10.465 9.746 10.271 10.753 10.696 10.414 10.303 10.636 9.201 10.896
STD 0.289 0.332 0.228 0.307 0.329 0.434 0.377 0.334 0.645 0.290

M-of-n AVG 17.483 18.001 17.912 17.569 17.421 20.765 16.675 20.541 14.313 17.327
STD 0.540 0.490 0.638 0.477 0.584 0.639 0.605 0.853 0.769 0.559

penglungEW AVG 11.939 11.299 11.073 11.414 13.360 11.968 12.081 11.984 11.027 12.873
STD 0.215 0.281 0.186 0.486 0.495 0.401 0.444 0.401 0.445 0.568

SonarEW AVG 10.922 10.424 10.856 10.997 10.979 11.380 10.822 11.253 10.250 11.346
STD 0.452 0.225 0.477 0.362 0.359 0.331 0.501 0.330 0.272 0.441

SpectEW AVG 11.263 10.946 11.049 11.114 11.236 10.818 10.881 11.125 10.661 11.138
STD 0.344 0.362 0.261 0.430 0.331 0.482 0.442 0.447 0.591 0.358

Tic-tac-toe AVG 17.310 16.296 16.720 16.557 15.814 21.229 15.751 22.370 12.901 15.846
STD 0.580 0.524 0.656 0.583 0.630 0.678 0.768 0.624 1.128 0.409

Vote AVG 11.368 11.155 11.502 11.520 11.370 10.823 11.420 11.048 9.804 11.543
STD 0.312 0.416 0.328 0.273 0.349 0.333 0.421 0.468 0.701 0.442

WaveformEW AVG 454.388 420.869 438.185 493.620 432.885 649.208 416.085 631.707 119.791 423.303
STD 24.772 12.895 24.353 24.265 14.901 22.656 22.848 19.179 30.201 13.831

WineEW AVG 10.683 10.314 10.597 10.476 10.494 10.693 10.543 10.473 9.307 10.799
STD 0.340 0.279 0.489 0.362 0.336 0.291 0.435 0.288 0.580 0.335

Zoo AVG 10.961 10.635 10.922 11.102 11.030 10.964 10.968 10.972 10.333 10.898
STD 0.234 0.490 0.363 0.258 0.449 0.365 0.342 0.501 0.369 0.369

Clean1 AVG 21.165 22.569 22.471 24.427 24.249 31.794 22.565 30.705 12.640 23.938
STD 0.869 0.712 0.847 1.213 0.672 1.060 1.018 0.901 0.629 0.594

Semeion AVG 192.061 205.191 205.215 237.349 212.803 362.222 201.375 348.390 86.944 206.132
STD 7.352 5.489 4.628 17.998 4.506 11.687 5.993 5.671 15.850 3.513

Colon AVG 15.751 15.459 15.566 15.434 27.439 17.788 15.595 18.017 11.081 19.720
STD 0.529 0.340 0.481 0.491 0.944 0.650 0.547 0.697 1.254 0.704

Leukemia AVG 46.287 46.407 46.998 43.597 74.605 58.932 37.287 49.444 52.535 45.792
STD 4.332 4.641 4.819 3.209 2.759 5.725 1.952 2.520 2.802 1.792

Mean rank F-test 6.182 3.955 4.727 6.227 6.773 7.682 3.818 7.727 1.318 6.591

Overall rank 5 3 4 6 8 9 2 10 1 7
Table 18
Overall rank by the F-test for all optimizers based on accuracy, number of features, fitness, and running time.
Measure BPSO_TEPD SBPSO VBPSO BGOA BGSA bALO BBA BSSA BWOA BTLBO

Accuracy 2.773 3.750 4.568 4.523 7.818 5.114 9.591 5.341 6.909 4.614
Features 3.500 5.205 4.273 4.864 7.545 9.182 4.818 8.568 1.682 5.364
Fitness 2.523 3.591 4.318 4.432 8.250 5.591 8.523 6.091 6.818 4.864
Time 6.182 3.955 4.727 6.227 6.773 7.682 3.818 7.727 1.318 6.591
Average rank 3.744 4.125 4.472 5.011 7.597 6.892 6.688 6.932 4.182 5.358
Final rank 1 2 4 5 10 8 7 9 3 6
and re-position the worst solutions during the FS process. The classifi-
cation performance of the proposed BPSO algorithm is summarized in
Fig. 8.

Table 15 outlines the results of the average number of features.
Based on the results obtained, the best algorithm that contributed to
the minimal number of features was BWOA. As compared to other
algorithm, BWOA can usually select fewer features. The second best
23
algorithm was found to be BPSO-TEPD. Although BSPO-TEPD cannot
guarantee the lowest number of features, it is good at choosing the most
relevant features that yield to high classification accuracy.

Figs. 9 and 10 illustrate the convergence curves of proposed BPSO
algorithm and other algorithms. Meanwhile, the results of average fit-
ness is shown in Table 16. As can be observed, BPSO-TEPD gave better
convergence behavior in most cases. The results of F-test in Table 16
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Fig. 8. Classification accuracy results of BPSO-TEPD compared to other optimizers.
Table 19
𝑝-values of the Wilcoxon test for the classification accuracy of BPSO-TEPD versus the other optimizers in Table 14 (𝑝 ≤ 0.05 are significant and bolded).
Dataset SBPSO VBPSO BGOA BGSA bALO BBA BSSA BWOA BTLBO

Breastcancer 1.69E−14 1.38E−04 1.69E−14 4.96E−13 1.31E−03 1.09E−12 NaN 3.15E−13 1.69E−14
BreastEW 1.36E−07 2.81E−04 1.62E−09 1.41E−11 7.31E−10 1.46E−11 6.29E−12 5.32E−11 2.49E−03
CongressEW 3.25E−03 6.11E−01 2.36E−05 9.28E−12 1.01E−07 1.40E−11 4.25E−07 9.43E−12 2.73E−12
Exactly NaN NaN NaN 4.52E−12 2.15E−02 4.50E−12 NaN 4.72E−08 8.14E−02
Exactly2 1.81E−13 9.62E−13 3.34E−12 7.74E−13 3.60E−13 1.69E−12 4.70E−13 3.48E−13 2.71E−14
HeartEW 9.50E−13 3.67E−02 1.71E−10 5.08E−11 1.23E−11 8.47E−12 1.44E−01 4.69E−08 3.33E−09
IonosphereEW 1.39E−10 5.18E−11 1.60E−09 6.32E−12 1.75E−10 4.43E−12 1.28E−12 7.37E−09 2.37E−09
KrvskpEW 1.98E−09 1.21E−07 5.25E−02 2.38E−11 2.22E−11 2.39E−11 2.25E−11 2.32E−11 2.33E−11
Lymphography 6.05E−12 1.75E−08 4.66E−03 7.43E−12 2.60E−10 1.05E−10 2.57E−10 8.78E−03 5.42E−07
M-of-n NaN NaN NaN 5.74E−11 3.34E−01 1.20E−12 NaN 6.58E−05 1.61E−01
penglungEW 1.17E−13 8.99E−11 2.59E−13 NaN 1.69E−14 8.53E−13 1.17E−13 5.47E−03 1.83E−08
SonarEW 1.25E−07 1.15E−06 4.27E−07 4.77E−10 4.35E−05 1.73E−12 1.15E−07 1.50E−12 1.01E−04
SpectEW 1.15E−09 2.04E−05 2.16E−09 8.11E−03 2.04E−12 2.78E−01 6.55E−04 3.41E−08 2.03E−12
Tic-tac-toe 2.71E−14 6.36E−12 2.71E−14 3.96E−06 2.71E−14 7.29E−12 2.71E−14 5.05E−03 2.71E−14
Vote 1.40E−13 1.19E−11 1.33E−11 8.64E−13 8.74E−12 3.52E−12 1.19E−11 1.72E−12 1.08E−12
WaveformEW 2.25E−02 3.06E−03 1.43E−09 2.97E−11 5.32E−11 2.97E−11 2.93E−11 3.28E−11 2.92E−11
WineEW NaN 2.14E−02 NaN 1.02E−05 NaN 1.53E−11 NaN 4.69E−09 NaN
Zoo NaN NaN NaN 1.61E−01 NaN 9.77E−13 NaN 5.36E−09 NaN
Clean1 8.03E−11 5.23E−05 7.66E−09 1.84E−11 1.55E−11 2.06E−11 1.31E−11 2.29E−11 9.21E−12
Semeion 4.11E−11 9.02E−07 4.50E−12 7.01E−12 4.81E−12 9.96E−12 1.02E−06 9.19E−12 7.77E−12
Colon 2.71E−14 4.46E−13 1.76E−10 NaN 6.12E−14 1.97E−13 1.69E−14 6.18E−04 1.97E−13
Leukemia 1.61E−01 1.69E−14 5.88E−08 1.77E−13 1.69E−14 NaN 1.69E−14 NaN 1.97E−11
support this clarification. In the datasets like Exactly2, IonosphereEW,
Vote, and Clean1, the BPSO-TEPD was able to converge faster to find
the global minimum.

The results of computational time is presented in Table 17. Judging
from Table 17, BWOA was the fastest algorithm in this work. On the
one hand, the BPSO-TEPD also provided a competitive result, and it
ranked fifth in the computational analysis. The overall performance of
BPSO-TEPD is concluded in Table 18. Also, the 𝑝-values of Wilcoxon
test is displayed in Table 19. The experiment results imply that the
proposed BPSO-TEPD was the most effective FS approach when dealing
with FS problems. Evidently, BPSO-TEPD is known to be the best FS
algorithm in this work. Owing to EPD strategy, the proposed algorithm
randomly re-position the worst solutions, which can effectively improve
the diversity during the FS process. Moreover, the tournament selection
operator allows the particles to learn from the potential guider in which
a better exploration and exploitation can be ensured. All in all, these
mechanisms have made the BPSO-TEPD superior.
24
5.7. Comparison of BPSO-TEPD with other approaches from the literature

In the final part of the experiments, we compare the performance
of proposed BPSO algorithm with other FS methods in the literature.
Table 20 shows the classification accuracy results. It is seen that
the BPSO-TEPD perceived the highest accuracy in most datasets (16
datasets). Evidently, BPSO-TEPD demonstrated supremacy accuracy as
compared to other FS methods. On the whole, it can be inferred that the
BPSO-TEPD is a valuable FS tool when applied to solve the FS problems
in classification tasks.

6. Conclusion and future works

In this paper, an efficient feature selection technique based on a
Boolean variant of Particle Swarm Optimization (BPSO) integrated with
Evolutionary Population Dynamics (EPD) was proposed as wrapper
approaches to handle the feature selection problems. Various natural
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Fig. 9. Convergence curves of the proposed BPSO algorithm and other algorithms for the first 12 datasets.
selection schemes comprising (random selection, linear rank-based se-
lection, tournament selection, roulette wheel selection, and stochastic
universal sampling selection) were utilized and integrated into the
BPSO algorithm. The essential idea is to improve the quality of the
guide solution along with the worst solutions in the swarm, which
25
boosted the particles (solutions) to avoid the local optima obstacle
while exploring the search space. The proposed approaches were evalu-
ated on 22 public datasets from UCI repository. Among the introduced
BPSO versions, tournament selection based Boolean PSO (BPSO-TEPD)
approach has gained the best performance when compared to the
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Fig. 10. Convergence curves of the proposed BPSO algorithm and other algorithms for the last 10 datasets.
ther EPD based approaches in terms of classification accuracy and
east number of selected features. It also outperformed several state-
f-the-art approaches including SBPSO, VBPSO, BGOA, BGSA, bALO,
26

BA, BSSA, BWOA, and BTLBO. The result emphasized the excellent
behavior of EPD strategies in enhancing the ability of Boolean PSO in
resolving FS problems. Our future studies will concentrate on exploiting
the efficiency of the proposed EPD based Boolean PSO in solving other

challenging data mining problems.



Expert Systems With Applications 195 (2022) 116550T. Thaher et al.

S
i

Table 20
Classification accuracy results of the proposed BPSO algorithm versus other approaches from the literature.
Dataset BPSO-TEPD BSSA-S3-CP WOA-CM BGOA-EPD-T GA PSO bGWO2 BDA-TVv4 BGOA-M TCSSA3

Breastcancer 0.986 0.977 0.968 0.980 0.968 0.967 0.975 0.977 0.9743 -
BreastEW 0.987 0.948 0.971 0.947 0.939 0.933 0.935 0.974 0.9697 -
CongressEW 0.994 0.963 0.792 0.964 0.932 0.928 0.938 0.995 0.9764 0.9704
Exactly 1.000 0.980 0.956 0.999 0.674 0.688 0.776 0.929 1 0.99693
Exactly2 0.804 0.758 1.000 0.780 0.746 0.730 0.750 0.726 0.7352 0.7672
HeartEW 0.884 0.861 0.742 0.833 0.780 0.787 0.776 0.886 0.8358 0.83309
IonosphereEW 0.998 0.918 0.919 0.899 0.814 0.819 0.834 0.925 0.9458 0.9376
KrvskpEW 0.990 0.964 0.866 0.968 0.920 0.941 0.956 0.971 0.9736 0.9692
Lymphography 0.939 0.890 0.807 0.868 0.696 0.744 0.700 0.895 0.9118 0.84437
M-of-n 1.000 0.992 0.926 1.000 0.861 0.921 0.963 0.973 1 0.9992
penglungEW 1.000 0.878 0.972 0.927 0.584 0.584 0.584 0.807 0.9342 0.90721
SonarEW 0.998 0.937 0.852 0.912 0.754 0.737 0.729 0.995 0.9147 0.94808
SpectEW 0.873 0.836 0.991 0.826 0.793 0.822 0.822 0.876 0.8261 0.83333
Tic-tac-toe 0.797 0.821 0.785 0.808 0.719 0.735 0.727 0.822 0.7912 0.7974
Vote 0.998 0.951 0.939 0.966 0.904 0.904 0.920 0.962 0.9633 0.95489
WaveformEW 0.776 0.734 0.753 0.737 0.733 0.762 0.789 0.749 0.7511 0.73643
WineEW 1.000 0.993 0.959 0.989 0.937 0.933 0.920 0.999 0.9888 0.99775
Zoo 1.000 1.000 0.980 0.993 0.855 0.861 0.879 0.983 0.9575 0.99281
Clean1 0.990 0.880 – 0.863 – – – – – 0.91359
Semeion 0.997 0.980 – 0.976 – – – – – 0.97996
Colon 0.923 0.686 0.909 0.870 – – – – – 0.65699
Leukemia 1.000 0.989 0.982 0.931 – – – – – 0.95092

BSSA-S3-CP (Faris et al., 2018), WOA-CM (Mafarja & Mirjalili, 2018), BGOA-EPD-T (Mafarja et al., 2017), GA (Emary, Zawbaa, & Hassanien, 2016), PSO (Emary
et al., 2016), bGWO2 (Emary et al., 2016), BDA-TVv4 (Mafarja, Aljarah, Heidari, Faris, et al., 2018), BGOA-M (Mafarja, Aljarah, Faris, et al., 2018),
TCSSA3 (Aljarah, Mafarja et al., 2018).
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