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Abstract—In this paper, the performance of the Barzilai-

Borwein non-line search descent is investigated as an inversion 

strategy for solving the nonlinear inverse scattering problem of 

Ultra-Wide Band (UWB) microwave tomographic imaging. The 

appealing feature of reducing the computational time by 

avoiding extensive line search calculations is tested. The 

capability of this method in solving cases of high nonlinearity, 

due to dense and complicated tissue structures, is evaluated and 

compared to the classical steepest decent, and the conjugate 

gradient approaches. Cross-sectional slices of glandular human 

breast tissue structures derived from MRI numerical data 

phantoms are used and tested with the presence of cancerous 

tissue.  Reconstructed images are presented and discussed with 

particular attention to the image reconstruction time, and the 

accuracy of the outcome. Results indicate that the Barzilai-

Borwein fixed-step approach outperforms the others in terms of 

accuracy, overall convergence, and susceptibility to local 

minima traps, although requiring a greater number of 

iterations. 

Keywords—inverse scattering, microwave imaging, image 

reconstruction, gradient method, Barzilai-Borwein. 

 

I. INTRODUCTION  

UWB tomography has been investigated as an imaging 
tool for various medical imaging applications given its safety 
and low-cost advantages [1-3].  In principle, microwave 
tomography maps the dielectric characteristics of the media 
under investigation. Different biological tissues, such as fatty, 
glandular, normal, and cancerous exhibit different dielectric 
characteristics based on their structure. Earlier studies confirm 
this variance over the microwave frequency range [4 -6].  

Nevertheless, microwaves do not follow a straight path 
similar to that of X-Rays, and therefore, the relationship 
between the scatterer and its response is nonlinear. The 
challenging aspect of microwave tomographic reconstruction 
is to solve the inverse scattering problem that is well 
understood to be ill-posed, and non-linear in nature [7]. For 
most practical considerations, the presence of stronger 
scatterers increases the nonlinearity of the problem, thus 
violating the appealing simplistic linearization assumptions 
that are known for their low computational cost. Furthermore, 
attempting to detect smaller targets requires the use of smaller 
wavelengths, thus increasing the illumination frequency 
which, in turn, contributes positively towards increasing the 
nonlinearity of the problem [8]. This is also observed when 
the imaging domain has multiple scatterers. As the imaging 

domain becomes more complex, the shortcomings of the 
linearised solutions and assumptions are more evident.  

To resolve such issues, the inverse scattering problem is 
formed as an optimization problem aiming to obtain a solution 
that represents the best match between data sets obtained from 
both measurements and calculations. The inversion can be 
achieved by minimizing the least squares function defined as 
the difference between both datasets, where an iterative 
procedure updates the calculated data in the direction of the 
minima. Hence, the computational cost involved will depend 
on the number of iterations, and the computational cost per 
iteration. This can vary depending on the inversion strategy 
considered. Gradient methods rely on searching in a direction 
of the solution at each of its iterations while Newton methods, 
despite being more superior, have complications associated 
with computing the Hessian and performing matrix inversion. 
Other methods, such as the conjugate gradient method, have 
performance characteristics that are intermediate between the 
steepest descent and Newton methods.  Appealingly, gradients 
can be easily obtained using the adjoint method as the 
computational cost is equivalent to that of a single forward-
reverse problem runs, regardless of the number of variables. 

Nevertheless, a line search method is still required at each 
iteration. Regardless of the method used, this step is 
computationally extensive as each point of the line search 
requires the calculation of the forward problem.  To reduce 
this complexity, it is reasonable to avoid the line search 
procedure at all if possible, trading it with a fixed-step 
approach. One of the most appealing methods is the Barzilai-
Borwein (BB) fixed-step approach [9-11]. In this paper, we 
investigate the performance of the BB two-point step size 
gradient approach in solving the nonlinear inverse scattering 
problem for microwave tomographic imaging applications, 
particularly, breast tumor detection in realistic tissue 
structures. 

 

II. MATHEMATICAL FORMULATION 

An ultra wide-band microwave imaging system relies on 
solving two problems: The direct (forward problem) in which 
scattered waves are calculated with the spatial dielectric 
distribution fully known, and the inverse problem which 
reconstructs the spatial dielectric distribution of the imaging 
domain utilizing what is known from the scattered wave 
response. The Mathematical formulation follows the approach 
in [8] and is presented here for the sake of completeness. A 
two-dimensional imaging domain �  is considered with full 
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view scanning geometry. The imaging domain, bounded 
within the scanners, is completely described in terms of its 
spatial dielectric distribution �=(ε). 

To solve the inverse problem, an error cost function F is 
defined as the least squares between the calculated (Ecalc) and 
measured (Emeas) data sets for each transmitter-receiver pair 
composing the full view geometry. The objective of the 
optimization process is to minimize F and solve the unknown 
spatial dielectric distribution �=(ε). Assuming a total of M 
transmitters and N receivers, the residual error of the N 
receiving locations for the mth projection over the time T in 
TM mode can be expressed as :  
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where δ is the Dirac delta function. The cost function for the 
total M projections can be written as: 

 

!��� = 	 �����"
���            �2� 

where m=1,2,..,M, is the transmitter location. 

 

For the spatial dielectric distribution �, the negative of the 
gradient # = ∇!���  should point to the maximum rate of 
decrease of !  at � , which sets the direction towards the 
minimizer in our case. 

Meanwhile, the gradient can be calculated using the 
adjoint state method [12]. The adjoint problem is solved by 
backward time propagation of the residual errors, and is 
evaluated using the FDTD method in the same way used for 
the direct problem. Mathematically, the gradient of F with 
respect to the permittivity of the ith & jth unknowns in a two-
dimensional xy plane can be expressed as: 
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where t and �
 represent the time step and electric field 
along the z direction respectively. 

 

The iterative procedure is started by an initial guess x0 that 
is usually selected to match the homogeneous medium which 
comprises the majority of the imaging domain under 
investigation. 

As for the search direction, the classical steepest descent 
converges orthogonally in the maximum decent direction of F 
(direction of gk for the kth iteration). Conjugate directional 
methods, on the other hand, compute a conjugate direction for 
every iteration as the algorithm iterates. For k=1,2,3,.. 
iterations, the conjugate gradient update is expressed as: 

 �34� = �3 + �363      �4� 

where αk is the step size, and dk can be taken as: 

 

63 = 8 −#3 ,                   9 = 0;−#3 +  � 63/�  9 ≥ 1; (5) 

Here,  we consider =3 to be taken according to the Polak-
Rebiere’s formula given as: 

 

=3 = #�3��>#�3� − #�3/��?   ‖#�3�‖�        �6� 

 

On the other hand, the BB two-point gradient method 
derives the step size from a two-point approximation of the 
secant equation underlying quasi-Newton methods, here �3  
has a fixed size given as: 

 

�3 = B3/��   C3/�C3/�� C3/�   �7� 

and  

�3 = B3/��   B3/�B3/�� C3/�   �8� 

 

where B3/� =  �3 − �3/�, and C3/� =  #3 − #3/� . The 
fixed-step �3 given in equation 7 and equation 8 can be used 
interchangeably as followed elsewhere  [11]. 

 

III. METHODS AND SETUP 

Following a similar approach to [8], the forward problem 
setup uses a multistatic configuration with 8 an UWB-
transceiver arrangment. The transmitters take turns 
illuminating the imaging domain in sequence. For each 
transmitter, seven scattered wave measurements are recorded 
resulting in an overall of 56 transmitter-receiver pair 
measurements. The transceivers are arranged equidistantly 
contouring the imaging domain (Fig. 1). The domain is 
constructed using  110 x110 FDTD cells of 5mm spatial step 
size in both dimensions, and a time step of Δt = 8.33 pS. The 
computational domain is bounded by 10 PML cells in all 
directions. 

A numerical breast model derived from 3 dimensional 
anatomically realistic breast phantom is used to model breast 
tissue. This model originates from T1- magnetic resonance 
images (MRI) and has been transformed into electrical 
properties [13]. Fig. 2 shows an MRI sagittal slice of a human 
breast with less than 25% scattered fibro-glandular tissue 
structure together with their corresponding electrical 
characteristic transformation obtained at 5 GHz. Figure 3 
shows the cross-sectional slice selected from the model. 

 



2022 IEEE 8th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA2022)  

 

Fig. 1. FDTD computational domain showing the imaging plane,  
transceiver locations,  and perfectly matching layers boundary [8]. 

Tumors on the other hand are modeled based on studies 
reported in [14]. Table 1 summarizes these characteristics, 
while Fig. 4 shows the incorporation of an assumed 1.5 cm 
tumor in the cross-sectional model. The tumor is located 
slightly offset to avoid confusion with any possible artifacts.  

 

 

 

Fig. 2. T1-MRI (left) with less than 25% scattered fibro-glandular tissue 
structure, and its transformed dielectric properties at 5GHz (right).  

TABLE I.  DIELECTRIC PROPERTIES OF FEMALE BREAST TISSUE [14] 

Tissue type Permittivity 
(relative) 

Conductivity 
S/m 

Fat 4-4.5 0.11 - 0.14 

Normal Tissue 10-25 0.35 - 1.05 

Malignant Tumor 45-60 3.0 - 4.0 

 

 

Fig. 3. Cross-sectional slice of healthy breast tissue structure.  

 

Fig. 4. Incorporating a 1.5 cm malignant tumor in a cross-section healthy 
breast tissue structure. 

 

IV. RESULTS AND DISCUSSION 

The convergence sequence is greatly influenced by the 
choice of the initial guess used in the first step of the iterative 
procedure. The most suitable initial guess, in this case, is the 
homogeneous medium given little is known before the 
iterative process, which in this case, can only be assumed to 
be of fatty tissue composition at least. The iterative 
reconstruction procedure is repeated for the steepest descent, 
conjugate gradient, and fixed step BB approach attempting to 
accurately identify and localize the malignant tumor assumed 
in the numerical model (Fig. 4). A criterion of  < 0.01% of the 
cost functional error between any two successive iterations 
was set to terminate the procedures.  Figure 5 shows the 
reconstructed images using each of these approaches. 

Examining the results in Fig. 5, a close resemblance can 
be observed in the reconstructed results in all approaches 
where the 1.5cm target has been successfully detected and 
localized. Characteristics of the less distinctive tissue structure 
are absent, however, concluding that the solutions obtained 
are not global, but local. This can be further confirmed by 
examining the convergence trend in Fig. 6 where none of the 
approaches reach the zero minima.  

While the approaches successfully locate the target tumor, 
the result observed in Fig. 5 (a) appears to be bigger in size 
and more spread than the actual target. The result obtained by 
the BB fixed-step and conjugate gradient methods, on the 
other hand, more accurately depicts the target in the original 
setup (Fig. 5 (b) and (c)), None of the tested methods manage 
to capture the internal structure details. 
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Fig. 5. Reconstructed images featuring (a) Steepest Descent, (b) Conjugate 
gradient, and (c) Fixed step BB method. 

  

 

 

Fig. 6. Convergence trend for Steepest descent, Conjugate gradient, and BB 
fixed-step approaches. 

The accuracy of the BB fixed step method is further 
confirmed by the convergence trend observed in Fig. 6, where 
the cost function error resulting from the iterative process is 
lower in comparison with the other approaches. The approach 
is also observed to be more immune to local minima traps 

where iterations continue to reduce the cost function beyond 
the steepest descent and conjugate gradient approaches.  

In terms of computational time, each gradient calculation 
requires around 6 seconds to compute on an average laptop 
computer with an i5 CPU and 8 Gbytes RAM. The time 
required for each fixed-step iteration is around 6 seconds. In 
contrast, each line search iteration's average time is around 59 
seconds. This means that 10  gradients can be computed in the 
meantime of a single line search iteration. 

 

V. RESULTS AND DISCUSSION 

The Barzilai-Borwein non-line search descent has 
been investigated as an inversion strategy for solving the 
nonlinear inverse scattering problem, and for breast cancer 
detection in particular. The inversion was applied on 
anatomically realistic MRI-derived breast phantoms to more 
accurately resemble the internal structure, embedding an 
assumed 1.5 cm malignant tumor slightly off the center point. 
The performance of the mothed was compared to the classical 
steepest descent and conjugate gradient methods. Results 
indicate that Barzilai-Borwein fixed-step approach 
outperforms the others in terms of accuracy and overall 
convergence, and susceptibility to local minima traps, 
although requiring a greater number of iterations. 
Nevertheless, the computational time required for each 
iteration is significantly less, as the line search procedure is 
dropped in favor of a fixed step approach, but requires more 
time in total.  However, this might not be the case for higher 
resolution domains with a significantly higher number of 
unknowns. This is currently being investigated in our lab.  
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