
Citation: Er-rajy, M.; El fadili, M.;

Imtara, H.; Saeed, A.; Ur Rehman, A.;

Zarougui, S.; Abdullah, S.A.;

Alahdab, A.; Parvez, M.K.; Elhallaoui,

M. 3D-QSAR Studies, Molecular

Docking, Molecular Dynamic

Simulation, and ADMET Proprieties

of Novel Pteridinone Derivatives as

PLK1 Inhibitors for the Treatment of

Prostate Cancer. Life 2023, 13, 127.

https://doi.org/10.3390/

life13010127

Academic Editor: Mateusz Banach

Received: 7 November 2022

Revised: 22 December 2022

Accepted: 26 December 2022

Published: 2 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

life

Article

3D-QSAR Studies, Molecular Docking, Molecular Dynamic
Simulation, and ADMET Proprieties of Novel Pteridinone
Derivatives as PLK1 Inhibitors for the Treatment of Prostate Cancer
Mohammed Er-rajy 1,* , Mohamed El fadili 1 , Hamada Imtara 2 , Aamir Saeed 3, Abid Ur Rehman 4,
Sara Zarougui 1, Shaef A. Abdullah 5, Ahmad Alahdab 6,*, Mohammad Khalid Parvez 7 and Menana Elhallaoui 1

1 LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University,
Fez 30050, Morocco

2 Faculty of Arts and Sciences, Arab American University Palestine, Jenin B.P. Box 240, Palestine
3 Department of Bioinformatics, Hazara University Mansehra, Dhodial 21120, Pakistan
4 Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Dhodial 21120, Pakistan
5 Department of Cardiology, Karlsburg Hospital, 17495 Greifswald, Germany
6 Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Street 17,

17489 Greifswald, Germany
7 Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
* Correspondence: mohammed.errajy@usmba.ac.ma (M.E.-r.); ahmad.alahdab@uni-greifswald.de (A.A.)

Abstract: Overexpression of polo-like kinase 1 (PLK1) has been found in many different types of cancers.
With its essential role in cell proliferation, PLK1 has been determined to be a broad-spectrum anti-cancer
target. In this study, 3D-QSAR, molecular docking, and molecular dynamics (MD) simulations were
applied on a series of novel pteridinone derivatives as PLK1 inhibitors to discover anti-cancer drug
candidates. In this work, three models—CoMFA (Q2 = 0.67, R2 = 0.992), CoMSIA/SHE (Q2 = 0.69,
R2 = 0.974), and CoMSIA/SEAH (Q2 = 0.66, R2 = 0.975)—of pteridinone derivatives were established.
The three models that were established gave R2

pred = 0.683, R2
pred = 0.758, and R2

pred = 0.767, respectively.
Thus, the predictive abilities of the three proposed models were successfully evaluated. The relations
between the different champs and activities were well-demonstrated by the contour chart of the CoMFA
and CoMSIA/SEAH models. The results of molecular docking indicated that residues R136, R57, Y133,
L69, L82, and Y139 were the active sites of the PLK1 protein (PDB code: 2RKU), in which the more active
ligands can inhibit the enzyme of PLK1. The results of the molecular dynamic MD simulation diagram
were obtained to reinforce the previous molecular docking results, which showed that both inhibitors
remained stable in the active sites of the PLK1 protein (PDB code: 2RKU) for 50 ns. Finally, a check of the
ADME-Tox properties of the two most active molecules showed that molecular N◦ 28 could represent a
good drug candidate for the therapy of prostate cancer diseases.

Keywords: 3D-QSAR; PLK1 inhibitors; molecular docking; dynamic simulation; anti-cancer

1. Introduction

Among the most infectious and dangerous diseases in recent years is cancer disease,
which is manifested by the abnormal regulation of different pathways; it remains the
second most prevalent disease and one of the major health problems in the world [1]. The
research into anti-cancer drugs targeting key factors is essential to regulate this major
problem [2]. Among the methods used to discover drug candidates are computational
methods to reduce the cost of drugs and increase their effectiveness [3]. Polo-like kinases
(PLKs), a serine–threonine kinase, have five family members (PLK1-5) that play a key role
in mitosis and have been proven to be necessary for centrosome maturation and bipolar
spindle formation [4]. PLK1 is the most investigated of all PLK family members. PLK1
overexpression has been found in many types of different cancers (lung cancer, prostate
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cancer, colon cancer, etc.) and it plays an essential role in cell proliferation. However, PLK1
has been determined to be a broad-spectrum anti-cancer target [5].

A series of novel pteridinone derivatives were synthesized and evaluated in their
biological activity by Zhiwei Li et al. [6]. To identify the best PLK1 enzyme candidate in-
hibitors for the treatment of prostate cancer, this series is undergoing a molecular modeling
study. Quantitative structure–activity relationship (QSAR), molecular docking, molecular
dynamic (MD), and chemical absorption, distribution, metabolism, excretion, and toxicity
(ADMET) molecular property studies have been very important modeling methods to gen-
erate predictive and robust models to predict and study new drug development candidates
with a reasonably low economic impact [7].

The comparative molecular field analysis (CoMFA) and comparative molecular similar-
ity indices analysis (CoMSIA) methodologies permit a correlation between the dependent
variations (pIC50) and the different molecular properties in order to establish a good mathe-
matical model [8]. To check the predictive capacity and robustness of the different proposed
models, such as CoMFA and CoMSIA, external and internal validations were discussed [9].

The molecular docking approach, used to model the interaction between a small
molecule and a protein at the atomic level, allowed us to characterize the behavior of small
molecules in the binding site of target proteins and to resolve fundamental biochemical
processes [10]. Once the docking results were obtained, it was necessary to determine
the structural behavior of the most active molecular characteristics, such as structural
orientation, any biological influence in the structure, the parameters that can force the
achievement of the biological activity of the molecule, and others [11]. Then, we performed
molecular dynamics simulations to analyze and deepen the details of the interaction and
stability of the two docked ligands in the target proteins [12].

Finally, we evaluated the ability of both compounds to successfully act as drug candi-
dates, tested by pharmacokinetic and pharmacodynamic parameters (ADMET and Lipinski
rule) [13]. Figure 1 presents a flow chart of the QSAR model development method and all
the different steps used in the present work.
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2. Materials and Methods
2.1. Database and Biological Activity

To build the different CoMFA and CoMSIA models, we based them on a set of experi-
mental data (28 derivatives, Table 1) synthesized by Zhiwei Li et al. [6]. To evaluate their
anti-cancer biological activity (IC50), we divided the experimental data set (80% training
set (22 derivatives) and 20% test set (6 derivatives)) [7] and the training set to construct a
model and used the test set to evaluate the performance of the built model.
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Table 1. Structures and IC50 values of novel pteridinone derivatives.

Comp R IC50 pIC50 Comp R IC50 pIC50 *
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2.2. Molecular Alignment and Generation of the Models

First of all, it was necessary to align all the molecules because molecular alignment is
one of the most important steps for the generation of the CoMFA and CoMSIA models [14].
In the database where we grouped all the molecules of the new pteridinone derivatives,
we performed a rigid distill alignment using SYBYL-X 2.1 software [15]. The database of
all molecules was minimized by using the standardized Tripos force field and employing
the Gasteiger–Huckel atomic partial charges. Furthermore, 0.005 kcal/mol Å was set as
the standard convergence parameter for the Powell gradient algorithm, and 1000 rounds
of iterations were performed to produce a more stable configuration of the molecule [16].
Secondly, field studies of the CoMFA and CoMSIA descriptors were computed for each
lattice, with a grid distance of 1 Å and extending to 4 Å points, in all three coordinates
within the defined region [17]. Steric (S), electrostatic (E), acceptor hydrogen bonding (A),
and hydrophobic (H) fields were calculated using the standard Tripos force field and a
Van Der Waals potential, as well as the Coulombic terms [18]. A sp3 hybridized carbon (C)
atom with a charge of +1e was utilized as the probe atom, and steric and electrostatic field
energy values were truncated at 30 kcal/mol [19]. The attenuation factor and filter factor
values for the column were 0.3 and 2 kcal/mol for the steric and electrostatic fields [20].

Finally, the partial least-squares (PLS) method allowed for the correlation between the
different CoMFA and CoMSIA fields, which included the value of the biological activity of
pteridinone derivatives [21]. This method is usually used in 3D-QSAR studies to determine
the various statistical values, such as the optimal number of components (NOC), the cross-
validated coefficients (Q2), the conventional coefficient (R2), F-statistic values (F), and the
standard error of estimation (SEE). An accurate model means higher R2 and Q2 statistical
parameters and the smallest possible SEE [22]. To estimate the predictive capabilities of the
3D-QSAR models, the biological activity of the external test set (5 molecules) was predicted
using the resulting PLS models, and the predictive correlation coefficient (R2

pred), based on
the molecules in the test set, must be greater than 0.6 [23]. The QSAR model is considered
good when the Q2 value is greater than 0.5 [24]. During this analysis, SAMPLES remained
disabled, and column filtering was set to 2.0 kcal mol−1 to speed up the analysis [25]. The
leave-one-out (LOO) method involved removing one of the individual compounds from
the training set and then predicting the activity of each removed compound to verify that
the results of the CoMFA and CoMSIA models were predictive for the compounds that
were not in the training set [26].
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2.3. Molecular Docking

The objective of molecular docking is to give a prediction of the structure of the
ligand-receptor complex using computational methods. Docking can be performed in two
interdependent steps: first, sampling the conformations of the ligand in the active site of
the protein; then, classifying these conformations via a scoring function. The software we
used to perform the molecular docking, such as that discovery in 2021 to delete molecules
of water and view the ligand/protein interaction [27], was Auto Dock Tools 1.5.6 [28],
and we used Vina to execute molecular docking [29]. We used the co-crystalline structure
BI-2536/PLK1 (PDB code: 2RKU, with a resolution of 1.95 Å) [13] as a docking model and
performed molecular simulation docking of the most active molecules with PLK1 [30,31].
Key amino acid residues that facilitated docked ligand binding to the PLK1 active site
were R136, R57, Y133, L69, L80, H138, Y67, Y82, and E132. After the preparation of the
ligand and the receptor, we effected molecular docking on the two most active molecules,
N◦ 17 and 28.

2.4. Molecular Dynamic (MD)

Based on the molecular docking results, the two best-docked ligands with the highest
activity were chosen for molecular dynamics (MD) simulations to identify the molecular
recognition between the ligand and the protein [32]. MDs were performed for 50 nanosec-
onds using GROMACS 5.0 software and the GROMOS9643a1 force field [33]. The SOC
water model was chosen to simulate the MD in explicit solvation [34]. The ligand loading
parameters were obtained from the Dundee prodrg 2.5 servers [35]. Other input parameters
were selected, such as the SOC water model, the type of triclinic box, and the type of salt
(Na+, Cl−), to be neutralized [36]. The system was equilibrated at a temperature of 300 K
and a pressure of 1 bar, with canonical NVT and isobaric NPT sets, respectively [37]. The
MD simulations were performed for a time of 50 ns, with the temperature and pressure
stable, a time step of 2 fs, and a long-range interaction threshold of 1 nm [38].

2.5. Synthetic Accessibility and ADMET Prediction

After the stability study of the two most active molecules (molecule N◦ 17 and 28), it
was necessary to study their pharmacokinetic and pharmacodynamics properties. First, it
was necessary to verify the synthetic accessibility of these compounds, and second, it was
necessary to study the pharmaceutical properties of each compound. The pkCSM [39] and
SwissADME servers [40] were used to evaluate the synthetic accessibility and pharmaceuti-
cal properties of the proposed compounds [41].

3. Results and Discussion
3.1. Distill Rigid Alignment

The structural alignment of molecules is critical to both the predictive accuracy of the
3D-QSAR model and the reliability of the contour models. The database of pteridinone-
derived molecules was aligned on the common core using the distill rigid alignment
technique in Sybyl X-2.1. Molecular N◦ 28 (most active) was considered a template. Based
on Figure 2, all 3D molecular structures were superimposed (Figure 2A) on the common
core (Figure 2B).
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Figure 2. Superposition of database molecules (A), on the core molecule (B).

3.2. Generation of the CoMFA and CoMSIA Models

The Table 2 shows the predicted and observed activity values of the different CoMFA
and CoMSIA models and their residuals.

Table 2. The observed/predicted activity and their residuals of different models.

pIC50 obs *
pIC50 Predict

N◦ CoMFA Residual CoMSIA/SEAH Residual CoMSIA/SEH Residual

1 * 4.316 4.329 −0.013 4.263 0.053 4.259 0.057
2 4.271 4.276 −0.005 4.327 −0.056 4.33 −0.059

3 * 5.074 4.471 0.603 4.492 0.582 4.486 0.588
4 * 5.068 4.606 0.462 4.678 0.39 4.678 0.39
5 4.575 4.545 0.03 4.599 −0.024 4.606 −0.031
6 4.07 4.116 −0.046 4.155 −0.085 4.158 −0.088

7 * 4.684 4.328 0.356 4.315 0.369 4.308 0.376
8 4.626 4.631 −0.005 4.605 0.021 4.603 0.023
9 4.751 4.745 0.006 4.755 −0.004 4.745 0.006

10 4.764 4.779 −0.015 4.129 0.635 4.784 −0.02
11 4.141 4.123 0.018 4.122 0.019 4.124 0.017
12 4.121 4.152 −0.031 4.178 −0.057 4.176 −0.055
13 4.857 4.883 −0.026 4.835 0.022 4.833 0.024
14 4.818 4.831 −0.013 4.835 −0.017 4.849 −0.031
15 4.409 4.343 0.066 4.44 −0.031 4.439 −0.03
16 4.581 4.58 0.001 4.556 0.025 4.559 0.022
17 5.086 5.091 −0.005 5.126 −0.04 5.12 −0.034
18 4.440 4.394 0.046 4.286 0.154 4.282 0.158
19 5.034 5.028 0.006 4.986 0.048 4.986 0.048
20 4.692 4.717 −0.025 4.692 0.000 4.69 0.002
21 4.559 4.549 0.01 4.509 0.050 4.511 0.048

22 * 4.936 4.534 0.402 4.529 0.407 4.52 0.416
23 5.033 4.996 0.037 5.054 −0.021 5.058 −0.025
24 4.757 4.795 −0.038 4.749 0.008 4.755 0.002
25 4.677 4.717 −0.04 4.68 −0.003 4.684 −0.007
26 4.880 4.864 0.016 4.868 0.012 4.866 0.014
27 4.787 4.797 −0.01 4.755 0.032 4.752 0.035
28 5.144 5.126 0.018 5.172 −0.028 5.168 −0.024

*: Test; obs: observed.

The 3D-QSAR models were suggested to quantitatively explicate and predict the
different effects of the molecules on the anti-proliferative activities of a series of twenty-
eight pteridinones. The variables in the training set were put into PLS cross-validation
analysis to identify the proper statistical metrics for every module. The Table 3 shows the
results for the different statistical modules and their own parameters. The following table
demonstrates the results for the different statistical modules and their own parameters.
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Table 3. The results of PLS cross-validation of three models.

Model Q2 R2 SEE F-Value NOC R2
pred

Fraction
S * E * H * D * A *

CoMFA 0.67 0.992 0.035 27.47 9 0.683 0.814 0.186 - - -
CoMSIA/SHE 0.69 0.974 0.059 15.52 7 0.758 0.069 0.135 0.797 - -
CoMSIA/SEAH 0.66 0.975 0.057 12.30 7 0.767 0.067 0.138 0.779 - 0.016

* S: steric; E: electrostatic; H: hydrophobic; A: H-bond acceptor; D: H-bond donor.

The percentage of CoMFA model contributions of the two fields (steric and electro-
static) explained 81.4% and 18.6% of the variance, respectively, the values of Q2

cv and R2

were 0.67 and 0.992, respectively, the optimal number of principal components (NOC) used
was 9, the F-value was 27.47, and the lower value of SEE was equal to 0.035.

In the CoMSIA study, the evaluation analysis of the three selected models had various
combinations of the fields, such as stereoscopic (S), hydrophobic (H), electrostatic (E), and
hydrogen bond acceptor (A). According to Table 3, among the different field combinations
chosen, the best models were CoMSIA/SEH and CoMSIA/SEAH, which obtained the
highest Q2

cv values of 0.69 and 0.66, respectively, with principal components 7 and 7,
respectively, F-values of 15.52 and 12.30, respectively, R2

cv values equal to 0.974 and 0.975,
respectively, and lower values of SEE equal to 0.059 and 0.057, respectively.

The results showed that steric, electrostatic, hydrogen bond acceptor, and hydrophobic
fields played an important role in these models. Among these four fields, the steric and
hydrophobic fields were the most important interactions between the ligand and the
receptor protein.

3.3. External Validation

From the results in Table 4, it can be seen that the four models, CoMFA, CoMSIA/SEH,
and CoMSIA/SEAH, had better external prediction coefficients than the three models
(R2

pred), which were operated to validate the external predictive abilities of the three models.

The R2
pred values of the three models were 0.683, 0.758, and 0.767, respectively. Therefore,

the three models had Q2 values greater than 0.5 [23]. Regressions of the predicted pIC50
versus the observed pIC50 or the predicted pIC50 versus the observed pIC50 through the
origin should be characterized by the fact that K or K’ (slopes of corresponding regression
lines) is close to 1 [42]. According to Table 4, the two models chosen for external validation
were CoMSIA/SEH and CoMSIA/SEAH, which obtained values of K and K’ of 0.923 and
1.012, respectively, so they were close to 1. Therefore, these two models (3D-QSAR) that we
chose are acceptable. Then, we used them to predict the activity of a test molecule.

Table 4. Recapitulation of some statistical parameters.

Statistical Parameters CoMFA CoMSIA/SEH CoMSIA/SEAH

Q2 0.67 0.69 0.66
R2 pred 0.683 0.758 0.767

K 0.923 0.922 0.923
K’ 1.082 1.083 1.082

3.4. Analyzation of the CoMFA and CoMSIA Contour Charts

To show the details contained in the two 3D-QSAR models, we selected the more active
molecule in the series (molecule N◦ 17) to visualize the different fields on the molecule. The
different fields of the CoMSIA and CoMFA contour charts are presented in Figures 3 and 4.
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3.4.1. CoMFA Contour Chart

In the CoMFA model of the two fields, stereoscopic and electrostatic are presented in
Figure 3.

The two figures represent the two electrostatic and stereoscopic contour plots from
the CoMFA study that can help provide information about the regions that can decrease
or increase the biological activity of pteridinone derivatives. At the steric field level, only
a few green outline parts are located near the meta-position of the benzene ring, which
means that the para-position increases the inhibitory activity of the more active compound.
On the other hand, a large yellow contour portion that decreases the inhibitory activity
of the more active compound originates from the pteridinone molecule substituents. In
the electrostatic field, the blue contours indicate that it is positively charged and favors
the inhibitory activity of this ligand, while the red contours indicate that this region is
negatively charged and disadvantages the inhibitory activity of this ligand. After studying
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the figure, we found that both fields were farther from the ligand because of the ligand that
has no charge.

3.4.2. CoMSIA/SEA Contour Chart

In the CoMSIA/SEA model, four different fields, stereoscopic, electrostatic, hydrogen
bond acceptor, and hydrophobic fields, were checked. The four contour charts are presented
in Figure 4.

The CoMSIA steric contour chart (Figure 4a) of the most active molecule presented
similar results to the CoMFA contour chart. However, at the electrostatic contour chart
levels (Figure 4b), we observed a large blue contour covering the R substitutions, indicating
that the selection of large substitution groups (CF3) is necessary for this region to increase
the inhibitory activity. We also observed a small red contour. At the acceptor hydrogen
bonding contour chart level (Figure 4c), we observed a large purple contour covering
the meta-position of R substitutions, indicating that the selection of bulky substitution
groups at the meta-position is necessary for this region to increase inhibitory activity. We
also observed a small orange contour away from the R substituent. At the hydrophobic
binding contour map level (Figure 4d), we observed a small cyan contour covering the
meta-position of R substitutions, indicating that the selection of bulky substitution groups
at the meta-position is necessary for this region to increase inhibitory activity. We observed
almost no magenta contour around the R substituent.

Therefore, it can be concluded that the meta-position of substituent R allows for an
increase in the inhibitory activity of the chosen molecule if this position has an attractive
and bulky group.

3.5. Molecular Docking

To explain and understand the interaction between the most active molecule and its
protein, we performed a molecular docking of the two most active molecules. The results
found by molecular docking for the two selected compounds (molecule N◦ 17 and 28) are
presented in Figure 5.

The first visual surveillance of the two results shows that there are three hydrogen
bonds with residues R136, R57, and Y133, with a distance match to 2.20, 4.94, and 2.01,
respectively. There is one halogen bond with residue L69, with a distance match to 3.70,
and three alkyl bonds, L80, H183, and Y67, with a distance match to 4.25, 4.95, and 4.29,
respectively, in molecule N◦ 17. In molecule N◦ 28, we also observed three hydrogen bonds
with residues R136, R57, and Y82, with an equal distance of 2.79, 2.82, and 2.87, respectively,
and two halogen bonds with residues L69 and Y139, with match distances 3.65 and 3.10,
respectively. There are two alkyl bonds with residues E132 and Y67 and a single Pi–Pi
bond with residue H183. Thus, these different interactions between the molecules and
their protein mean that the two molecules have a greater inhibitory effect. The overall
interactions are similar to the interactions observed between a co-crystallized ligand and
protein PLK1.The results suggest that the docking result is reasonable and can be used for
further simulations and analysis, such as the MD simulation.
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3.6. Molecular Dynamics Simulation

The two most active ligands (molecules N◦ 17 and 28) were chosen for dynamic
molecular simulation for 50 ns to examine their stability, with respect to enzyme PLK1. The
conformational changes of the two ligands are shown in the Figure 6.
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To study the dynamic of the protein–ligand interactions of two docked molecules, a
50 ns MD simulation was run using two complexes (PLK1-molecule N◦ 17 (violet) and
PLK1-molecule N◦ 28 (green)) designed for the protein to ensure the predicted binding
stability of the complex system. From Figure 6, it can be seen that the RMSD of the complex
PLK1-molecule N◦ 17 fluctuated between 0.22 and 0.30 nm during the MD simulations,
and the average RMSD was found to be 0.28 nm, from 0 to 30 ns. The curve of the complex
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increased slightly to the value of about 0.28 nm, and then an equilibrated system was
obtained in the complex for the remaining time.

The RMSD analysis indicated that for the complex PLK1-molecule N◦ 28, the protein
fluctuated between 0.22 and 0.36 nm during the MD simulations, and the average RMSD
was found to be 0.3 nm. The RMSD analysis indicated that the designed molecules N◦ 28
and N◦ 17 formed a stable complex with the protein throughout the simulations.

To study the impact of the binding of the two designed molecules on the internal
dynamics of the target protein for 50 ns, the RMSF values were also calculated. A maximum
fluctuation of 0.68 nm was noticed in the loop region of residue 330 for both molecules.

The radius of gyration (Rg) (Figure 7) represents the change in the compactness of the
protein structure over time. For the complex PLK1-molecule N◦ 28, during the first 8 ns, the
values of the Rg varied between 1.94 nm and 2.02 nm. After this time, until the end of the
simulation, the values remained reasonably stable in the range of 1.94 to 1.96. The complex
PLK1-molecule N◦ 17 Rg values fluctuated over time between 1.95 nm and 2.06 nm.
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Therefore, the Rg plot shows that there is no major change in the folding com-
pactness of the target protein after the binding of molecule N◦ 28, but there is a small
change in the levels of the target protein after the binding of molecule N◦ 17.

After studying the MD simulation diagram, the results obtained reinforced the
previous molecular docking results. Thus, the two chosen ligands formed dynamically
stable interactions with their proteins during the simulation time of 50 ns, as there was
no great variation in their characteristics.

3.7. Synthetic Accessibility and Lipinski Rules

The synthetic accessibility allowed for the evaluation of the ease of synthesis in
the best molecules chosen (molecules N◦ 17 and 28). Then, we evaluated the different
properties of the five Lipinski’s rules, which allowed us to determine whether a biolog-
ically active chemical was probable to have the chemical and physical characteristics
be orally bioavailable. Table 5 lists the different synthetic availability properties and
their Lipinski properties.

The results obtained in Table 5 indicate that molecule N◦ 28 checked all the rules
of Lipinski, Veber, and Egan. That means the selected molecule has good oral bioavail-
ability. We also evaluated the synthetic accessibility, and from the result obtained,
we concluded that this compound has easy-to-synthesize characteristics. Molecule
N◦ 17 has characteristics that are almost the same as molecule N◦ 28; it only has a small
difference at the molecular mass level that exceeds the norm of 500. In conclusion, we
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can say that molecule N◦ 28 has a small attrition rate when tested in clinical trials and
has a higher chance of success in reaching the commercial phase.

Table 5. Summary of the parameters of synthetic accessibility.

Numbers of
Compounds

Characteristic Violations
S.A

MW Nub-HA Nub-HD Nub-Rot TPSA LogP Lipinski Veber Egan

Criteria <500 <10 <5 ≤10 ≤140 ≤5 ≤1 ≤1 ≤1 0 < S.A < 10
17 500.40 11 1 6 94.17 4.088 Yes Yes Yes 3.52
28 448.40 9 1 6 104.4 2.949 Yes Yes Yes 3.35

3.8. The Various ADMET Properties

To avoid failing clinical tests due to toxicity or poor pharmacokinetics, after checking
the similarity of the drugs, the two most active molecules, N◦ 17 and 28, were subjected to
ADMET prediction (Table 6) to verify that the pharmacokinetic (absorption, distribution,
metabolism, and excretion) and pharmacodynamic (efficacy and toxicity of the drug)
properties of the molecules passed the study of similarity for drugs.

Table 6. The results of the ADMET test for two the most active molecules.

Absorption Distribution Metabolism Excretion Toxicity

Water
Solubil-

ity

Intestinal
Absorp-

tion

Caco2
Perme-
ability

VDss
CNS

Perme-
ability

Substrate Inhibitor Global
Clearance

AMES
Toxicity

Skin
Sensiti-
zation

CYP 450

2D6 3A4 1A2 2C19 2C9

Unit log
mol/Liter

Percent
%

log Pap
10−6

cm/s

Log
Liter/kg Log PS Yes or No Log

mL/min/kg
Yes or

No
Yes or

No

17 −4.971 91.00 1.207 −0.374 −2.309 No Yes No Yes Yes 0.473 No No
28 −4.119 85.348 1.378 −0.394 −3.079 No Yes No No No 0.293 No No

VDss: volume of distribution; CNS: central nervous system; CYP 450: cytochrome p450.

The water solubility of a compound reflects the solubility of the molecule in water at
25 ◦C [43]. The solubility in water is given in log (mol/L). If the solubility value is less than
zero [44], we can say that the compound is very soluble, which means that both compounds
are highly soluble in water. The intestinal absorbance values were very high, above 85%,
which means that both compounds had good absorbance. Caco-2 permeability is frequently
used to predict the absorption of orally administered medication; a molecule considered
highly permeable, Caco-2 should give predicted values at 0.9 [45], so according to the
Caco-2, the values of two selected compounds can be classified as highly permeable Caco-2.
The volume of distribution (VDss) is used to analyze the distribution of drugs in different
tissues in vivo. If the log (VDss) value is less than −0.15, the volume of distribution is
considered relatively poor, and when the log (VDss) value is superior to 0.45, the volume
of distribution is classified as relatively high [46]. Both compounds had a VDss value less
than −0.15, so both compounds had a low volume of distribution for drug distribution in
various tissues in vivo. In terms of the central nervous system (CNS) permeability index,
molecules with values (LogPS) greater than −2 are considered to be capable of penetrating
the CNS, and values of LogPS less than −3 are incapable of penetrating the CNS [47].
From the table, we can summarize that all compounds of N◦ 17 are capable of penetrating
the CNS (values less than −3), but compound N◦ 28 is not capable of penetrating the
CNS. CYP2D6, CYP3A4, CYP1A2, CYP2C19, and CYP2C9 are isoforms of cytochrome
P450, which is a crucial detoxification enzyme in the human body and is responsible for
altering drug pharmacokinetics [48]. Cytochrome P450 isoenzymes play an important role
in drug metabolism in the liver [49]. From the results obtained in Table 6, the two tested
molecules did not become substrates of CYP2D6 or substrates of CYP3A4. At the same
level, most of the compounds tested were not inhibitors of CYP1A2, CY2C9, and CYP2C19.
Excretion refers to the process by which the body gets rid of waste/toxic products. The
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drug excretion process can be achieved by either the kidney and/or the liver, where drugs
are eliminated in the forms of urine or bile, respectively [50]. The total clearance of the drug
gives a general view on the half-life of the drug; the lower its value, the higher the half-life
of the compound [51]. The two compounds had a low clearance value, which means that
the half-life of these two compounds is high. Predicting the toxicity of compounds is
an important part of the drug design development process. Computational estimates of
toxicity are not only faster than determining toxic doses in animals, it can also help reduce
the number of animal experiments [52]. To check the toxicity of two molecules, the Ames
toxicity test was performed, and skin sensitization was checked. From Table 6, it can be
concluded that both compounds were not toxic. Thus, based on the drug similarity studies
and ADMET, we chose molecule N◦ 28 as the PLK1 enzyme inhibitor because it checks
almost all of the similarity properties of a drug. However, it is necessary to make further
studies in the area where this compound is a drug.

4. Conclusions

This study focuses on a series of twenty-eight novel pteridinone derivatives as PLK1
inhibitors. In the first step, we constructed three models and examined them using external
and internal validation to identify the radical of the molecule drifts that had an influence
on the biological activity of a molecule.

The models CoMFA (Q2 = 0.67, R2 = 0.992), CoMSIA/SHE (Q2 = 0.69, R2 = 0.974) and
CoMSIA/SEAH (Q2 = 0.66, R2 = 0.975) models were used to study molecular modeling.
The three models were satisfactory according to the results of the statistical validation
(R2

pred value of CoMFA, CoMSIA/SHE and CoMSIA/SEAH models is 0.683, 0.758, and
0.767 respectively). We used these models to predict the activity of the molecules in the
test set, and then we can use these models to predict the activity of new molecules as PLK1
inhibitors for prostate cancer treatment.

A molecular docking study was performed to identify the type of binding between
the most active ligand and the PLK1 inhibitor. The key amino acids affecting the activity
of these inhibitors, such as R136, R57, and Y133, easily formed hydrogen bonds with the
selected small molecules and a halogen bond with the L69 residue, so these different bonds
could allow the PLK1 inhibitors to maintain stability in the binding site.

Thus, the two selected ligands formed dynamically stable interactions with their pro-
tein during the 50 ns simulation time. Finally, an ADMET prediction of two ligands
showed that only compound N◦ 28 could become a good drug candidate for cancer
drug development.
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