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Abstract—This paper presents a novel method to compute 

various measures of effectiveness (MOEs) at a signalized 
intersection using vehicle trajectory data collected by flying 
drones. MOEs are key parameters in determining the quality of 
service at signalized intersections. Specifically, this study 
investigates the use of drone raw data at a busy three-way 
signalized intersection in Athens, Greece, and builds on the open 
data initiative of the pNEUMA experiment. Using a microscopic 
approach and shockwave analysis on data extracted from real-
time videos, we estimated the maximum queue length, whether, 
when, and where a spillback occurred, vehicle stops, vehicle 
travel time and delay, crash rates, fuel consumption. Results of 
the various MOEs were found to be promising, which confirms 
that the use of traffic data collected by drones has many 
applications. We also demonstrate that estimating MOEs in real-
time is achievable using drone data. Such models can track 
individual vehicle movements within street networks and thus 
allow the modeler to consider any traffic conditions, ranging from 
highly under-saturated to highly over-saturated conditions. These 
microscopic models have the advantage of capturing the impact 
of transient vehicle behavior on various MOEs. 

Index Terms—Measures of effectiveness (MOEs); Signalized 
intersection; Unmanned Aerial Vehicles (UAVs); Drones; Traffic 
data 

I. INTRODUCTION 

Signalized intersections are major elements in causing 
abrupt changes in traffic patterns that lead to high traffic 
delays, fuel consumption, and emissions. Roadways often 
experience operational restrictions when they have 
signalized intersections. As a result, the control systems 
put in place to manage the right of way should consider 
both the specific location's requirements and the 
network's overall standards. For each approach at the 
intersection to be effective, several requirements must 
hold true, and the duration of the traffic signal should be 
optimized based on interconnected variables. Vehicle 
acceleration and speed change dramatically during the 
operation of signalized intersections. It depends on each 
driver's behavior how they decelerate, stop, and move 
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through the intersection's queue before accelerating to 
clear an intersection. When it is noticed that there is no 
right of way at the signal, some drivers may accelerate 
more strongly, while others may decide to begin 
decelerating very early. Aggressive drivers, for example, 
may accelerate during the amber phase to get through the 
intersection more quickly, while drivers who are more 
cautious may decide to slow down or even break suddenly 
to avoid passing the stop sign once the red phase begins. 
However, traffic signals are crucial in increasing traffic 
safety along the intersection by avoiding conflicts of 
various movements. Traffic engineers carefully design 
traffic signal controllers to efficiently operate traffic 
movements with the aim of minimizing traffic queues, 
delays, fuel consumption, and emissions. Traffic demand 
data is used by traffic signal controllers to determine how 
traffic should move through the intersection. This 
information can be fed from different detection 
techniques, such as the traditional inductive loop 
detectors and camera systems. Recently, researchers have 
developed traffic signal controllers using advanced 
detection techniques such as probe vehicles (vehicles with 
GPS/Bluetooth devices and connected vehicles) [1]. These 
advanced techniques allow traffic signal controllers to use 
real-time information that assists in improving traffic 
stream efficiency. 

Using vehicles’ trajectory extracted from Unmanned 
Aerial Vehicles (UAVs) (i.e., drones) at a busy signalized 
intersection in Athens, Greece, this study investigates the 
use of UAVs data to determine measures of effectiveness 
(MOEs) for signalized intersections including the maximum 
queue length, whether, when, and where a spillback 
occurred, vehicle stops, vehicle travel time, delay, crash 
rates, and fuel consumption. The UAVs technology has 
shown a promising future in a wide range of applications 
such as transportation, security, monitoring, survey, 



environmental mapping, etc. Furthermore, UAVs 
technology is easy to deploy, introduces minimum 
interruptions to the studied area’s traffic stream, and is 
relatively low-cost to maintain. 

Traffic delays and queues are principal measures for 
determining the capacity and the traffic quality of service 
of signalized intersections. Calculating the number of 
vehicles and the queue length helps estimate the 
performance measures of an intersection. Many studies 
have used several methods to estimate the elements of 
MOEs, including using the Kalman Filtering technique to 
estimate the number of vehicles traveling along signalized 
approaches using real-time probe vehicle data [1, 2] and 
applying Lighthill–Whitham–Richards (LWR) shockwave 
theory [3]. Liu et al. used LWR shockwave theory to 
identify traffic state changes that distinguish queue 
discharge flow from upstream arrival traffic. Moreover, 
Ban et al. proposed methods to estimate real-time queue 
lengths at signalized intersections using sample travel 
times from mobile traffic sensors. The estimation was 
based on the observation that critical pattern changes of 
intersection travel times or delays. The model and 
algorithm were tested using field experiments and 
simulation data [4]. 

Traffic delays and queues are key parameters in 
determining the quality of service of signalized 
intersections. In this study, we used a microscopic 
approach and shockwave analysis on data extracted from 
a real-time video, which were collected using a drone, to 
characterize the various MOEs on a signalized approach for 
a three-way signalized intersection in Athens, Greece. 
Specifically, for the specified area in green shown in Fig. 1, 
we used Unmanned Aerial Data to estimate the measures 
of effectiveness, including the maximum queue length, 
whether, when, and where a spillback occurred, vehicle 
stops vehicle travel time, and delay, crash rates, and fuel 
consumption. 
 

 

Fig. 1: Study area (Map data ©2021 Google). 

II. RELATED WORK 

Numerous studies were conducted on UAV video data 
to analyze and improve transportation networks. Recent 
research efforts utilized UAV datasets to detect queue and 
estimate its length on freeways and intersections [5, 6], 
identify and track heavy vehicles [7], investigate crash risk 
[8], detect hazard obstacles and accidents [9, 10], and 
better monitor traffic violations [11]. In the area of 
estimating queue lengths using UAV data, there are limited 
efforts conducted at signalized intersections. Freenmn et 
al. employed UAV to capture the traffic formulation at two 
signalized intersections in Kuwait [12]. They first utilized 
two drones to capture the entire area around the 
intersection while it was fully congested. Two periods with 
different traffic volumes were used. The authors were able 
to estimate the stationary stacking headway for individual 
vehicles, and types of vehicles were estimated. However, 
this study only used static UAV video and measured the 
stacking gab graphically at a stationary status. 

Khan et al. has used UAV video data to develop 
analytical methodology at four-way intersections in Sint-
Truiden, Belgium [7]. The authors extracted the individual 
trajectories of vehicles and drew the flow fundamental 
diagrams, dividing them into three states. Afterward, they 
conducted a shockwave analysis macroscopically and 
calculated the queue length for each direction based on 
the flow fundamental diagrams and shockwave analysis. 
Yet, the authors did not investigate and consider the 
microscopic level to calculate the queue length and other 
MOEs. Ke et al. adopted Machine Learning (ML) 
techniques such as K-means and Kanadelucas-Tomasi 
algorithms to estimate both macroscopic and microscopic 
traffic parameters [13]. Although they have achieved a 
high accuracy, the computational time remains an obstacle 
for ML algorithms, especially when it comes to estimating 
the real-time queue length. In a different research effort, 
Ke et al. proposed a framework to estimate seven traffic 
flow fundamental parameters for both macroscopic and 
microscopic levels, yet queue length and other MOEs were 
not investigated [14]. 

Unlike the previous related works, this study proposes a 
microscopic methodology to estimate the MOEs of an 
approach in a signalized intersection using UAV data. 
Specifically, our approach can be used dynamically for real-
time estimation of MOEs using UAV data, which could be 
used for traffic management applications. Our approach 
uses a microscopic method based on shockwave analysis, 
which considers the mobility and interaction of individual 
vehicles and deemed to be more accurate than 
macroscopic methods. While our approach is believed to 
achieve high accuracy in estimating MOEs, it effectively 
accomplishes that with a relatively less computational 
complexity and time. 



III. DATASET 

This study used a 14-min video, which was recorded by 
a UAV at a three-way signalized intersection in Athens, 
Greece, as shown in Fig. 1 and Fig. 2. The video was filmed 
in sunny weather by a drone hanging over a sufficiently 
high point at the center of the intersection to cover three 
approaches as follows: 1) Leof. Alexandras Road, with 
direction towards the west to 28is Oktovriou Road (Red 
polygon with 300m length), 2) 28is Oktovriou Road, with 
direction towards north to Leof. Alexandras Road (Yellow 
polygon with 100m length), and 3) 28is Oktovriou Road, 
with direction towards south to 28is Oktovriou Road 
(Green polygon with 100m length). The geometric design 
of the intersection consists of five lanes (including a left-
turn pocket) for the green polygon, three lanes for the red 
one, and two lanes for the orange one. The red polygon 
contains two additional traffic signals, and the speed limit 
for the three polygons is 55 km/h (34 mph). 

 

Fig. 2: Intersection layout. 

The video was then converted to second-by-second 
trajectories for all types of vehicles, including cars, taxis, 
powered two-Wheeler’s, buses, and medium and heavy 
vehicles as shown in Fig. 3. Each trajectory has a unique 
tracking ID with vehicle type in addition to initial traveled 
distance and average speed (once they enter the polygon). 
Each point in the trajectory has a timestamp (in seconds), 
instantaneous latitude and longitude, instantaneous 
vehicle speed, instantaneous latitude, and longitude 
acceleration/deceleration. These features were utilized to 
identify the starting of each point of the trajectory and 
determine the lane allocations for each vehicle. More 
information on the methodology will be provided in the 
following two sections. 

 

Fig. 3: Illustration of extracted trajectories. 

The first step in using the UAV data entailed utilizing 
Google Earth to divide each polygon into smaller 
subpolygons representing the lanes in the green area 
shown in Fig. 1 and Fig. 2. We used a Keyhole Markup 
Language (KML) file, which is an international standard 
maintained by the Open Geospatial Consortium, Inc. 
(OGC), to display the geographic data from Google Earth. 
KML files were created by pinpointing the resulted 
locations of adding an image overlay of the study area. This 
geographic data was used in identifying the lane (i.e., sub-
polygon) that the vehicles were on during their trip within 
the green-defined area. Keeping in mind that many 
vehicles may change their lane multiple times during their 
trip, the instantaneous longitude and latitude of each 
vehicle. That said, in order to validate the lane allocations 
at the upstream edge of the defined area and after leaving 
the downstream, the origin-destination of each trajectory 
was identified, and the mismatched values were 
corrected. Subsequently, a lane-specific time-space 
diagram was created using vehicle trajectories that were 
associated with the determined sub-polygon (i.e., lane). 
The third step entailed applying shockwave analysis on the 
microscopic level to determine the backward formation 
and backward recovery waves for each lane-specific 
queue. This was used to mainly identify the queues and the 
spillbacks past the upstream edge of the polygon, which is 
considered the zero reference of our study. The results of 
this process and other information were used in estimating 
the other MOEs for the defined area on the signalized 
intersection, as will be described in Section IV. It is worth 
mentioning here that we assumed that a vehicle traveling 
at a speed less than or equal to the typical pedestrian 
speed of 4.5 km/h (1.2 m/s) is stopped. 

IV. PROBLEM FORMULATION AND ESTIMATION APPROACHES 

A. Problem Formulation 

The new era of sharing information and “big data” has 
raised expectations to make mobility more predictable and 
controllable through a better utilization of data and 
existing resources. The realization of these opportunities 



requires going beyond the existing traditional ways of 
collecting traffic data that are based either on fixed-
location sensors or GPS devices with low spatial coverage 
or penetration rates and significant measurement errors, 
especially in congested urban areas [15]. pNEUMA is a 
first-of-its-kind experiment aiming to create the most 
complete urban dataset to study congestion. A swarm of 
10 drones hovering over the central business district of 
Athens, Greece over multiple days to record traffic 
streams in a congested area of a 1.3 km2 area with more 
than 100 km-lanes of road network, around 100 busy 
intersections (signalized or not), many bus stops and close 
to half a million trajectories. The aim of the experiment is 
to record traffic streams in a multi-modal congested 
environment over an urban setting using UAV that can 
allow the deep investigation of critical traffic phenomena. 
The pNEUMA experiment develops a prototype system 
that offers immense opportunities for researchers. This 
open science initiative creates a unique observatory of 
traffic congestion, a scale and order-of-magnitude higher 
than what was available till now, that researchers from 
different disciplines around the globe can use to develop 
and test their own models [15]. 

This study is built on the open data initiative of 
pNEUMA, which is a unique dataset that was acquired 
during a first of-its-kind experiment using a swarm of 
drones over a dense city center of Athens. This dataset 
consists of more than half a million detailed trajectories of 
almost every vehicle that was present in the study area. 
The dataset includes trajectories that were monitored by 
one single drone covering a wide area over the central 
district of Athens, Greece. Both major and minor roads, 
bus stops, and signalized intersections are included in the 
study area. The dataset includes trajectories from cars, 
taxis, powered two-wheelers, buses, medium and heavy 
vehicles [15]. In this study, we used part of pNEUMA 
dataset to estimate the measures of effectiveness 
including the maximum queue length, whether, when and 
where a spillback occurred, vehicle stops, vehicle travel 
time and delay, crash rates, and fuel consumption. 

As mentioned in Section III, the first phase of our 
proposed approach was dividing each polygon into mini 
polygons, representing the lanes into each polygon using 
Google Earth. We visually determined the mini polygons 
(i.e., lanes) for each direction. The second phase was 
identifying which lane the vehicles were on. Using the 
instantaneous longitude and latitude, we were able to 
track each vehicle from upstream to downstream the 
specified area. Then, we created time-space diagrams 
(vehicle trajectories) and then linked this to the associated 
lane for each polygon. Fig. 4 depicts a spacetime diagram 
resulted from this process. The third phase was using 
shockwave analysis to determine when the queue starts 
spilling back at the onset of the yellow/red signal traffic 
indication. This information along with instantaneous 

vehicle counts helped us characterize the signal phase 
timing for the traffic light at the intersection. For 
verification purposes, we matched between the vehicle 
counts per lane with the OD matrix (calculated from the 
trajectories). This process is summarized in Fig. 5. 

B. Shockwave Analysis 
According to the Lighthill-Whitham-Richards (LWR) 

traffic flow model, flow at every point along the road is a 
function of density [3]. The mobility of an abrupt shift in 
concentration is referred to as a shockwave. Traffic 
shockwave theory is generated from the LWR model and 
is used to analytically solve the partial differential equation 
(PDE) in the model [3]. Multiple shock waves are produced 
at signalized intersection as a result of the stop-and-go 
traffic caused by signal changes. It is safe to presume that 
during the green phase, where the queue is completely 
discharged, vehicles are forced to halt during the next red 
interval, which alters the flow and density of both arriving 
and stopped traffic. Such halt in traffic creates a 
shockwave of queued vehicles that moves upstream of the 
intersection [5, 7]. 

We built an automatic simplified model that receives the 
extracted vehicle trajectories as input. This allows the 
model to be used in real-time applications. To make it 
easier to see how traffic flow changes at a signalized 
crossing, the raw trajectory data is represented in Fig. 4. 
We identified the critical points [3, 4] for the purpose of 
checking every vehicle in the stream at the approach of 
interest and find the queues and spills back. The critical 
point is defined as that point in a vehicle trajectory after 
which the motion of vehicle changes significantly. Based 
on this methodology, the important spots on the vehicle 
trajectories that reflect the significant or irreversible 
changes in the motion of the cars along the route are 
determined. 

After shockwave analysis and to assess the performance 
of signalized intersections under investigation, a number 
of performance indicators can also be retrieved based on 
microscopic models. Understanding the specifics of the 
traffic flow at the intersection at vehicle level requires the 
use of both shockwave analysis and microscopic models. 
Results of shockwave analysis can be useful for studying 
signal cycle lengths as well as figuring out how quickly 
shockwaves are generated and dissipated. Additionally, a 
thorough examination of the queue at an intersection or 
in any other situation where there is a halted flow can be 
done using microscopic models. In the next sections, each 
of these factors and performance indicators has been 
estimated and presented in detail. 



Fig. 4: Time-space diagram. 

Fig. 5: Summary of proposed approach. 

C. Computation of Queue Information 
We assumed that a vehicle is queued when its speed is 

less than or equal to the typical pedestrian speed of 1.2 
m/s. We constructed the time-space diagram for each lane 
in the approach. For each vehicle in the stream, we moved 
along its trajectory from the furthest upstream record 
within the defined area to its defined area exit record (see 
the green area shown in Fig. 1 and Fig. 2. We then 
identified the time stamps and locations (relative to the 
defined area upstream point) of the points at which the 
vehicles enter (backward forming shockwave) and exit 
(backward recovery shockwave) a queuing state. The 
furthest upstream record that the trajectory enters a 
queuing state was located. The spatial extent of a queue is 
computed relative to the downstream end of the defined 
area, which equals to the area length minus the distance 
relative to the furthest upstream area boundary. Spillbacks 
were identified in the area when entry into queuing was 
immediately prior to the upstream edge of the area. 

D. Estimation of Travel Time 
The model we developed determines the travel time for 

any given vehicle by providing that vehicle with a timecard 
upon its entry to any of the identified links. Subsequently, 
this timecard is retrieved when the vehicle leaves the link. 
The difference between these entries and exit times 
provides a direct measure of the link travel time 

experienced by each vehicle as Equation (1) and Equation 
(2) show. 

N(t)	=	N(t	−	∆t)	+	u(t) (1) 

TT(t)	=	H(t)	×	N	(t) (2) 
where N(t)	is the number of vehicles traversing the link at 
time t, N(t	−	∆t)	is the number of vehicles traversing the 
link in the previous time interval, and u(t)	 is the system 
inputs, as described in Equation (1). Equation (2) 
represents the system output by measuring the average 
travel time for the CVs. H(t)	 is a transition vector that 
converts the vehicle counts to travel times, as shown in 
Equation (2). 

E. Estimation of Vehicles Stops 
Each time a vehicle decelerates, the drop in speed is 

recorded as a partial stop, as demonstrated in Equation (3) 
[16]. The sum of these partial stops is also recorded. This 
sum, in turn, provides a very accurate explicit estimate of 
the total number of stops that were encountered along 
that particular link. This means that this method will often 
report that a vehicle has experienced more than one 
complete stop along a link. Multiple stops arise from the 
fact that a vehicle may have to stop several times before 
ultimately clearing the link stop line. This finding, while 
seldom recorded by or even permitted within macroscopic 
models, is a common observation within actual field data 
for links on which considerable over-saturation queues 
exist.   

            𝑆(𝑡!) =
"($!)&"($!"#)

"$
                                 (3) 

where: 
S(ti): Instantaneous partial stop estimates at time 
ti	,	u(ti): Speed at instant ti,	u(	ti−1): Speed at 
instant ti−1,	and	uf: Roadway free-flow speed. 

F. Estimation of Vehicle Delay 
The model estimates vehicle delays every Deci-second 

as the difference in travel time between travel at the 
vehicle’s instantaneous speed and travel at free-speed, as 
indicated in Equation (4) [17]. This model has been 
validated against analytical time-dependent queuing 
models, shockwave analysis, and the Canadian Capacity 
Guide, Highway Capacity 
Manual, and Australian Capacity Guide procedures [17, 
18]. 

          𝑑(𝑡!) = ∆𝑡 (1 − "($!)
"$
+                          (4) 

where: 
∆t	 : The data processing time step (0.1 seconds in our 
case). 
F. Estimation of Crash Rates 

The safety model that was used here is based on US 
national crash statistics. The model computes the crash 



risk for 14 different crash types as a function of the facility 
speed limit and a time-dependent measure of exposure. 
The use of a time-dependent measure of exposure allows 
the model to capture differences in the crash risk that 
result from differences in the network efficiency. The 
model also computes the vehicle damage and level of 
injury to the passengers involved in the crash based on the 
vehicle’s instantaneous speed. The use of the 
instantaneous speed means that the crash damage and 
injury level is responsive to the level of congestion. 
Consequently, the model can capture the safety impacts of 
operational-level alternatives including Intelligent 
Transportation Systems. By multiplying the distance-based 
crash rate by the facility free-speed, it was possible to 
estimate a time-based crash rate. The advantage of a time-
based crash rate is that the rate level of exposure increases 
with higher levels of congestion even though vehicles 
might not necessarily travel longer distances. More 
information can be found here [19]. 

												𝐶𝑟𝑎𝑠ℎ𝑅𝑎𝑡𝑒! =	𝑒'#
!∗"$)'%! 				∀	1: 15        (5) 

where: 
a1: Regression Coefficient a1. 
a2: Regression Coefficient a2. 
uf: Free-flow Speed 

G. Fuel Consumption 
To find Fuel consumption, we used the Virginia Tech 

Comprehensive Power-Based Fuel Consumption Model 
(VTCPFM). VT-CPFM is a microscopic fuel consumption 
model based on instantaneous power; the detailed VT-
CPFM model is described in the original paper by Rakha et 
al., which also includes a MATLAB script to run the model 
[20]. 
Other models either require calibration of specific 
parameters from laboratory or field testing or produce a 
bang-bang control. VT-CPFM avoids both of these 
problems: because data collection is not always feasible, 
VT-CPFM uses only publicly available data. Additionally, 
because the function for fuel consumption is a second-
degree polynomial with respect to vehicle specific power 
(VSP), the partial derivative with respect to torque is a 
function of torque and the bang-bang control is not 
produced [20]. The model also can be used for different 
vehicle classes including light-duty vehicles [20], heavy-
duty vehicles [21], and buses [22]. 

First, power is calculated using Equation (6), as follows:
  

                 𝑃(𝑡!) = 8*($!))+.-./'($!)
0,2--3&

9 ∗ 𝑣(𝑡!)              (6)                       

where: 
P(ti)	= power at time step ti	(kW), m	= vehicle 
mass (kg), a(ti)	= vehicle acceleration at time 

step ti	(m/s2), v(ti)	= vehicle speed at time step ti	
(km/h), ηd	= driveline efficiency, and 

R(ti)	= resistance force at time step ti	(N). 

The resistance force is calculated with Equation (7), as 
follows: 
𝑅(𝑡!) =

4
56.75

𝐶8𝐶9𝐴:𝑣(𝑡!)5 +

9.8066𝑚 ;'
+,---

(𝐶+𝑣(𝑡!) + 𝐶5) + 9.8066𝑚𝐺(𝑡!)      
(7) 
where: 
ρ	= density of air (1.2256 kg/m3	at sea level and 15°C), Cd	= 
vehicle drag coefficient (unitless), 
Ch	= correction factor for elevation [which equals 1	0.085H	
where H	is elevation (km)], Af	= vehicle frontal area (m2), 
G(ti)	= roadway grade at time step ti, and cr, c1, and c2	= 
rolling resistance parameters (unitless) [20]. 

Then, fuel consumption, FC(L/s), is calculated by using 
Equation (8). The alpha values are calculated by using time, 
power, and fuel consumed from the EPA city and highway 
test cycles. A detailed list of required variables and 
potential sources for the VT-CPFM can be found in [20]. 
 

𝐹𝐶(𝑡𝑖) = &𝑎0 +𝑎1	𝑃(𝑡𝑖)+	𝑎2	𝑃(𝑡𝑖)
2				∀𝑃(𝑡𝑖) ≥ 0

𝑎0																																														∀𝑃(𝑡𝑖) < 0
	  (8) 

where: 
α0, α1	and α2	are vehicle-specific model constants that are 
calibrated for each vehicle. 

V. RESULTS AND DISCUSSION 

Using a microscopic approach and based on shockwave 
analysis that considers the mobility and interaction of 
individual vehicles, we estimated the MOEs of an approach 
to a signalized intersection using UAV data. We 
constructed the time-space diagrams for each lane on the 
studied approach, as shown in Fig. 1 and Fig. 2. The green 
polygon consists of five lanes (four lanes plus a left turn 
pocket lane). We labeled the pocket lane as follows: the 
leftmost lane as Lane 1 and increased the counter until the 
rightmost lane, which is labeled Lane 5. The total number 
of vehicles in the area is 750 during the monitoring period. 
We also identified the distribution of the vehicle types in 
each lane as shown in TABLE I. In the table, a vehicle may 
be counted multiple times as we were able to capture the 
vehicles that make lane-change movement from a lane to 
another during the monitoring period (See TABLE II). 
However, a vehicle is counted one time in each lane at the 
end. We also investigated the 95th	percentile and found it 
to be about 42 km/hr as shown in Fig. 6. 



 

Fig. 6: Vehicle speed distribution. 

TABLE I: Total number of vehicles for each Vehicle types 
per lane. 

Vehicle Type Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 
Light- & medium-duty 124 210 277 195 69 

Motorcycle 24 53 124 160 66 
Heavy-duty 1 3 4 4 3 

Bus 0 1 1 9 11 
Total 149 267 406 368 149 

 
TABLE II: Lane changes of each Vehicle type. 

Vehicle Type Number of Vehicles Number of Lane Changes 
Light- & medium-duty 491 384 

Motorcycles 237 190 
Heavy-duty 8 7 

Bus 14 8 
Total 750 589 

A. Queue Information 
Using the information extracted from the time-space 

diagram of each lane, we were able to identify the length 
of each queue that was formed in each lane during the 
monitoring period, as shown in TABLE III. The table shows 
the queue length that occurred on each lane, when, and 
where it was occurred (i.e., the latitude (lat) and longitude 
(long) of the beginning of the queue and the end). The 
table demonstrates that the maximum queue length in the 
green polygon occurred in Lane 2 (the leftmost upstream 
of the left turn pocket lane) at a length of 102.7m 
(between the coordinates of (37.99225, 23.73141) and 
(37.99280, 23.73154)), which happened at time of 350.2s 
after the beginning of the monitoring period. Moreover, 
we used the time-space diagram to identify spillbacks on 
each lane during the monitoring period. TABLE IV 
summarizes the results for the various spillbacks. It shows 
that there were two spillbacks as follows: one in Lane 2 
(middle-left lane), which is also recorded as the maximum 
queue length; and the other one in Lane 3 (middle lane) - 
both occurred at time 350.2s after the beginning of the 
monitoring period. 

TABLE IV: The spillbacks information. 
Lane Timestamp (s) 
Lane 2 350.20 
Lane 3 350.20 

B. Travel Time 
Our model to determine the travel time on each lane is 

a microscopic based on Equation (1) and Equation (2). The 
model determines the link travel time for any given vehicle 
by providing that vehicle with a timecard upon its entry 
and exit from any link. The results of estimating the travel 
time on each lane per the vehicle types is shown in TABLE 
V and per the traffic movement of each vehicle type is 
shown in TABLE VI. The tables show that the maximum 
travel time occurred by a heavy-duty vehicle on Lane 3 
(i.e., part of the through traffic movement) and is equal to 
about 32s. They also show that Lane 5 has the highest 
average travel time for all vehicles traveling through the 
study area. This could be as it is the closest lane to the 
parking lane and to the curbside, which pedestrians usually 
use. The second highest average travel time was for Lane 
2, which is part of the left turn traffic movement. 

TABLE V: Travel time on each lane per the number of 
vehicle types (s). 

Vehicle Type Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 
Light- & medium-duty 20.29 23.27 19.48 13.58 13.14 

Motorcycles 9.02 9.70 10.53 9.93 30.20 
Heavy-duty 2.08 4.80 31.99 22.74 9.28 

Bus - 1.40 5.36 9.45 16.09 
Total 18.35 20.29 16.84 11.99 20.84 

 
TABLE VI: Travel Time per movement for each vehicle 

type (s). 
Vehicle Type Left Turn (Lane 1 & 2) Through (Lane 3, 4, & 5) 

Light- & medium-duty 22.17 16.55 
Motorcycles 9.49 13.97 
Heavy-duty 4.12 22.43 

Bus 1.40 12.73 
Total 19.60 15.55 

C. Vehicle Stops 
To calculate vehicle stops, we used a microscopic model 

that computes instantaneous partial and full stops for 
undersaturated and oversaturated conditions in signalized 
intersection by using second-by-second speed 
measurements as described in in Equation (4) [17]. This 
model has shown that there is a significant impact of 
vehicle stops on fuel consumption and emissions [23]. The 
model indicates that the vehicle fuel consumption rate is 
more sensitive to cruise-speed levels than to vehicle stops 
[23]. TABLE VII shows the number of vehicles stops on each 
lane per the number of vehicle types. It shows that vehicles 
on Lane 2 experienced the highest number of stops, 



followed by Lane 3. It also shows that heavy-duty vehicles 
experienced the highest number of stops, which occurred 
in Lane 3, followed by light- and medium-duty vehicles 
experience in Lane 2. Moreover, TABLE VIII shows that the 
total number of vehicles turning left experienced stops 
more than vehicles going through the intersection. 

TABLE VII: Vehicles stops on each lane per the number of 
vehicle types. 

Vehicle Types Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 
Light- & medium-duty 0.12 0.40 0.28 0.23 0.19 

Motorcycle 0.11 0.21 0.24 0.21 0.24 
Heavy-duty vehicle 0.09 0.11 0.68 0.26 0.04 

Bus - 0.01 0.07 0.10 0.13 
Total 0.12 0.36 0.27 0.20 0.20 

 
TABLE VIII: Vehicle stops per movement for each vehicle 
type. 

Vehicle Type Left Turn (Lane 1 & 2) Through (Lane 3, 4, & 5) 
Light- & medium-duty 0.30 0.24 

Motorcycle 0.18 0.22 
Heavy-duty vehicle 0.10 0.35 

Bus 0.01 0.11 
Total 0.27 0.23 

D. Vehicle Delay 

Delay at signalized intersections is considered a 
significant factor in determining the level of service at the 
intersection approaches as well as a parameter that is used 
in the optimization of traffic signal timings. In this study, 
we used a microscopic approach to obtain delay estimates 
in the study area. Within the model, delay is estimated for 
each individual vehicle by calculating, for each traveled 
link, the difference between the vehicle’s recorded travel 
time and the travel time that the vehicle would have 
experienced on the link at free speed, as shown in 
Equation (4) [17]. TABLE IX shows the results of travel 
delay on each lane of the study area divided by the number 
of each vehicle type. When all vehicle types are 
considered, Lane 2 has the highest delay of all lanes, 
followed by Lane 5 and Lane 1. This depicts that the 
vehicles turning to left are more likely to experience higher 
delay than vehicles traveling through the intersection, 
which is clearly shown in TABLE X. Moreover, the highest 
delay recorded was for heavy-duty vehicles traveling 
through Lane 3 and is equal to 20.63s. TABLE X also shows 

that light- & medium-duty vehicles and motorcycles have 
higher travel delay when turning to the left. However, 
heavy-duty vehicles and buses have higher travel delays 
when traveling through the intersection. 

 
TABLE IX: Global average delay on each lane per vehicle 

type (s). 
Vehicle Type Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 

Light- & medium-duty 11.63 15.77 10.30 7.51 8.98 
Motorcycle 8.55 7.40 5.57 4.01 16.68 

Heavy-duty vehicle 1.18 1.87 20.63 13.89 1.53 
Bus - 0.71 2.75 3.88 8.12 

Total 11.06 13.90 8.94 5.97 12.18 
 

TABLE X: Travel delay per movement for each vehicle type 
(s). 

Vehicle Type Left Turn (Lane 1 & 2) Through (Lane 3, 4 & 5) 
Light- & medium-duty 14.23 9.12 

Motorcycles 7.76 6.95 
Heavy-duty 1.70 12.97 

Bus 0.71 6.05 
Total 12.88 8.28 

E. Crash Rates 
We used a safety model that is based on US national 

crash statistics as described in [19]. The model computes 
the crash risk for 14 different crash types as a function of 
the facility speed limit and a time-dependent exposure 
measure as shown in Equation 5. The model can capture 
the safety impacts of operational-level alternatives 
including Intelligent Transportation Systems (ITS). TABLE XI 
shows the crash rates for the 14 crash types included in the 
model. Results show that the rear-end crashes in the same 
traffic way and same direction has the highest crash rate 
in the intersection, followed by forward impact of a single 
driver. The total crash rate was found to be about 0.038 
crashes for every vehicle mile traveled (VMT). 
 
TABLE XI: Crash rates for 14 crash types (crashes/VMT). 

Crash Type Crash Rate 
Single Driver - Right Roadside Departure 0.00296 
Single Driver - Left Roadside Departure 0.00243 

Single Driver - Forward Impact 0.00544 
Same Traffic Way and Same Direction - Rear-End 0.00597 

Same Traffic Way and Same Direction - Forward Impact 0.00023 
Same Traffic Way and Same Direction - Sideswipe/Angle 0.00179 

TABLE III: The queue information on each lane. 
Lane Queue length (m) Timestamp (s) Start lat Start long End Lat End long 
Lane 1 25.0 565.04 37.99190 23.73136 37.99211 23.73140 
Lane 2 102.7 350.20 37.99225 23.73141 37.99280 23.73154 
Lane 3 102.2 346.00 37.99229 23.73139 37.99280 23.73150 
Lane 4 97.6 529.56 37.99275 23.73148 37.99275 23.73148 
Lane 5 98.6 783.12 37.99200 23.73121 37.99277 23.73142 

 



Same Traffic Way and Opposite Direction - Head-On 0.00041 
Same Traffic Way and Opposite Direction - Forward Impact 0.00090 
Same Traffic Way and Opposite Direction - Sideswipe/Angle 0.00244 
Change Traffic Way and Vehicle Turning – Turn Across Path 0.00366 
Change Traffic Way and Vehicle Turning – Turn Input Path 0.00434 

Intersecting Paths – Perpendicular Crash 0.00267 
Backing Vehicle 0.00043 

Other or Unknown 0.00367 
Total Crash Rate 0.03760 

F. Fuel Consumption 

Using traffic data from drones, we investigated the use 
of Virginia Tech Comprehensive Power-Based Fuel 
Consumption Model (VT-CPFM). We investigated the 
applicability of VT-CPFM as a microscopic fuel 
consumption model based on instantaneous power [20]. 
VT-CPFM function for fuel consumption is a second-degree 
polynomial with respect to vehicle specific power (VSP) 
using Equation (6) [20]. We used VT-CPFM in this study for 
the different vehicle classes including light-duty vehicles 
[20], heavy-duty vehicles [21], and buses [22] that passed 
through the study area. We found that the total fuel 
consumption resulted from all the 750 vehicles passing 
through the approach is about 207L during the 14-min 
study period; about 0.28L per vehicle; or 0.25 L/s. 

VI. CONCLUSION 

Traffic delays, fuel consumption, stopping, spillbacks, 
and queues are key parameters in determining the quality 
of service at signalized intersections. This study 
investigates the use of drone raw data at a busy signalized 
intersection in Athens, Greece to find the corresponding 
MOEs. Collecting traffic data using flying drones is an 
emerged technology that has shown promising future in a 
wide range of applications because drones are easy to 
deploy and introduce minimum interruptions to the traffic 
stream of the studied area. 

This study builds on the open data initiative of the 
pNEUMA experiment that used a swarm of drones over a 
dense city center of Athens. Using a microscopic approach 
and shockwave analysis on the data extracted from real-
time video, we determined the various MOEs of the 
signalized approach on a busy three-way signalized 
intersection in Athens, Greece. Specifically, we estimated 
the measures of effectiveness including the maximum 
queue length, whether, when and where a spillback 
occurred, vehicle stops, vehicle travel time and delay, 
crash rates, and vehicle fuel consumption. One challenge 
in this study was the duration of the data. Given that the 
proposed method of this study is intended to be used in a 
real time applications and there are some restrictions on 
storing big data in each controller’s intersection; it was 
suggested to use a 14-min video data to evaluate the 
performance of signalized intersections. Results of the 
various MOEs were found to be promising, which confirms 

that the use of traffic data collected by drones has many 
advantages. 

In this study, we found that understanding the specifics 
of the traffic flow on the microscopic level at intersections 
requires the use of a combination of methods – shockwave 
analysis and other microscopic models in our case. This 
combination can be useful for studying performance at 
intersections as well as figuring out how quickly 
shockwaves are generated and dissipated. Additionally, a 
thorough analysis of the queue at an intersection or in any 
other situation where there is an interrupted flow can be 
done using the extracted parameters and shockwave 
speeds. 

We also found that the use of microscopic approaches 
to computing the MOEs at signalized intersections in real-
time is achievable and desirable. Such models have the 
ability to track individual vehicle movements within street 
networks and thus capture traffic conditions on various 
MOEs, ranging from highly under-saturated to highly 
oversaturated conditions. The results of these models 
have higher accuracy than other aggregate models given 
that the approach captures vehicle transient behavior. 
Specifically, at the delay level, microscopic models can 
determine the delay incurred by an individual vehicle while 
traveling without the need for macroscopic formulas. This 
allows them to evaluate uniform and overflow delay, or 
delays in under-saturated and over-saturated traffic 
conditions, allowing for the evaluation of complex traffic 
situations. In addition, the ability to record vehicle speed 
and position on a second-by-second basis further allows 
the recording of speed profiles and the direct estimation 
of deceleration, stopped and acceleration delays, crash 
risk, and vehicle fuel consumption levels, as demonstrated 
in this study. 
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