
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Traffic Estimation of Various Connected Vehicle
Penetration Rates: Temporal Convolutional

Network Approach
Mujahid I. Ashqer, Huthaifa I. Ashqar , Mohammed Elhenawy , Hesham A. Rakha , Fellow, IEEE,

and Marwan Bikdash , Member, IEEE

Abstract— Traffic estimation using probe vehicle data is a
crucial aspect of traffic management as it provides real-time
information about traffic conditions. This study introduced a
novel framework for traffic density estimation using Temporal
Convolutional Network (TCN) for time series data. The study
used two datasets collected from a three-leg intersection in Greece
and a four-leg intersection in Germany. The model was built to
predict the density in an approach of the signalized intersection
using features extracted from the other approaches. The results
showed that the highest accuracy was achieved when only probe
vehicle data was used. This implies that relying solely on probe
vehicle data from two approaches can effectively predict traffic
density in the third approach, even when the Market Penetration
Rate (MPR) is low. The results also indicated that having Signal
Phase and Timing (SPaT) information may not be necessary for
high accuracy in traffic estimation and that as the MPR increases,
the model becomes more predictable.

Index Terms— Deep learning, probe vehicles, traffic density,
congestion, temporal convolutional network.

I. INTRODUCTION

THE continuous progress in communications, comput-
ing, Connected and Automated Vehicles (CAVs), and

the Internet of Things (IoT) has expanded the possibilities
for intelligent transportation systems. As a result of these
technological advancements, the need for various types of
data, such as traffic, travel times, congestion times, traffic
monitoring, and movement trends, has become increasingly
diverse. Consequently, there is an urgent need to explore and
implement new methods for collecting data on traffic volume
on roads [1], [2].

Traffic density estimation is a crucial aspect of transporta-
tion planning and traffic management. Accurate traffic density
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estimation is essential for the efficient use of road infrastruc-
ture, reducing congestion, and improving traffic safety [3],
[4]. There are various methods for estimating traffic density,
including traditional methods such as loop detector data and
video-based methods, as well as newer methods such as GPS-
based data and floating car data [5], [6].

Traffic density estimation plays an important role in advanc-
ing CAVs for several reasons [7], [8]. First, it can improve
traffic management by optimizing traffic density and reducing
congestion, which can improve the performance of CAVs.
Second, CAVs rely on real-time traffic information to make
safe and efficient driving decisions. Accurate traffic density
estimation can help ensure that CAVs have access to the
most up-to-date traffic information, improving safety for all
road users. Third, it can improve energy efficiency and opti-
mize energy usage by adapting to real-time traffic conditions.
Accurate traffic density estimation can help CAVs make more
efficient driving decisions, leading to improved fuel efficiency
and reduced emissions. Fourth, it can improve mobility as
accurate traffic density estimation can help improve the mobil-
ity of CAVs by allowing them to navigate the road network
more efficiently. This can help reduce travel times and improve
travel reliability for CAVs. Last, accurate traffic density esti-
mation can help plan and model the traffic density in urban
areas and highways. This can help in better understanding
the traffic dynamics and by this, improve the planning of the
transportation infrastructure.

The MPR for Connected Vehicles (CVs) can impact traffic
density estimation [9], [10]. As the number of CVs on the
road increases, more real-time data will be available to traffic
management systems, which can help improve traffic density
estimation accuracy. Additionally, as more CVs communicate
with each other and traffic management systems, they can
help reduce congestion and improve traffic density, further
increasing the demand for CVs and increasing the market
penetration rate. In addition, the accuracy of traffic density
estimation can also affect the demand for CVs. Poor traffic
density estimation can lead to CVs being less efficient and
unsafe, decreasing the demand for these vehicles and, thus,
decreasing the market penetration rate.

Road network complexity and traffic congestion depend on
time, location, and heterogeneous traffic patterns. As a result,
different parts of the road often have unique, time-varying
traffic patterns, making it challenging to process and model
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traffic data [6], [11]. Therefore, various deep learning and
machine learning techniques, which can handle large amounts
of historical and real-time stochastic data, are utilized to
predict traffic density at various road infrastructures.

Collecting traffic data is an important step in understanding
and managing the density of vehicles on roads and highways
[12], [13], [14]. Various methods for collecting this data
include manual counts, automated sensors, and GPS track-
ing. Manual counts involve physically counting vehicles at a
specific location and can provide detailed information about
traffic density and patterns. Automated sensors, such as loop
detectors and video cameras, can continuously monitor traffic
density and provide real-time data. GPS tracking, through
mobile devices or dedicated tracking devices, can provide
information on the movement of vehicles and can be used
to infer traffic patterns and congestion. Each method has its
own advantages and disadvantages, and the choice of method
will depend on the specific needs and resources of the project.
Understanding the methods of data collection is crucial for the
accurate measurement and analysis of traffic density, which in
turn is essential for the effective planning and management of
transportation infrastructure [12], [13], [14].

Collecting traffic data using drones, also known as
unmanned aerial vehicles (UAVs), is an innovative and increas-
ingly popular method for monitoring and analyzing traffic
density [14], [15]. Drones equipped with cameras and other
sensors can capture detailed images and video of traffic,
including the number and types of vehicles and the speed
and direction of travel. This data can be used to generate
real-time traffic maps, identify bottlenecks, and measure the
effectiveness of traffic management strategies. Additionally,
drones can provide a unique perspective on traffic density,
allowing for the analysis of traffic patterns in hard-to-reach
areas such as bridges, tunnels, and highways.

This study introduced a novel framework for traffic density
estimation using Temporal Convolutional Network (TCN) for
sequential time series data. One of the main advantages
of TCNs is their ability to handle long-term dependencies
in sequential data [16], [17], [18]. This study used two
datasets collected from a three-leg intersection in Greece
and a four-leg intersection from Germany. The model was
built to predict the density in an approach of the signal-
ized intersection using features extracted from the other
approaches.

II. RELATED WORK

Various studies have been conducted to estimate traffic
flow and density using different data collection methods. It is
important to note that the choice of method for traffic flow
and density estimation depends on the specific needs and
constraints of the project, as well as the availability of data.
Therefore, it is important to carefully evaluate the suitability of
different methods and to properly utilize the available sources.
One widely used method for traffic density estimation is the
Kalman filter, which is a mathematical tool for estimating the
state of a system based on noisy measurements. The Kalman
filter has been applied to traffic density estimation in various
studies, including [8], [19]. Another method for traffic flow

estimation is the Macroscopic Fundamental Diagram (MFD),
which describes the relationship between traffic flow and
density on a network level. The MFD has been used in various
studies, including [7], [20], [21].

Various studies have been conducted to estimate traffic
density and congestion using different data modalities, such
as Bluetooth travel time sensors, anonymous call data, GPS
trajectories, license plate recognition, mobile sensors, and
social media data [22], [23], [24]. In [25], authors presented
case studies measuring the sampling rate of Bluetooth sensors
on highway segments in Maryland and Delaware, with results
showing an average hourly Bluetooth sampling rate of 2% to
8% of vehicles. Caceres et al. [3] proposed models for infer-
ring the number of vehicles moving from one cell to another
using phone call data and tested them on intercell boundaries
with different traffic backgrounds and features. Zhan et al.
[26] developed various frameworks using machine learning
and license plate recognition data for citywide traffic volume
prediction, link-based traffic state estimation, and lane-based
real-time queue length estimation, respectively. Experimental
results demonstrated that the proposed framework could signif-
icantly improve citywide traffic volume prediction. Liu and Ma
[27] described a real-time arterial data collection and archival
system and an innovative algorithm for time-dependent arterial
travel time estimation. Mo et al. [28] proposed a new vehicle
speed profile estimation model using license plate recognition
data. Genser et al. [29] proposed a simple yet efficient multiple
linear regression model that fuses information from thermal
cameras, video data, and travel times from the Google Distance
Matrix API for arterial traffic state representation. Mei et al.
[30] used enhanced semi-supervised clustering algorithms to
identify probe vehicle trajectories in a mixed traffic corridor.
Hiribarren and Herrera [31] proposed a method to estimate
traffic states on arterials based on trajectory data, and Wang
et al. [4] proposed a traffic congestion estimation framework
using Twitter data. Aslam et al. [32] demonstrated that vehic-
ular GPS taxi network data can be used to infer general traffic
patterns in urban areas.

Using advanced techniques, Zheng et al. [33] applied
a gradient-enhanced regression tree (DSTO-GBRT) for
short-term traffic density prediction. They used electronic
registration identification (ERI) to gather vehicle informa-
tion, and their results showed promising insights in rush
hour. Zhang et al. [34] combined Generative Adversarial Net
(GAN) with graph CNN to address the blurry prediction issue
and simultaneously predict traffic conditions in multiple future
time intervals.

However, to the best of our knowledge, this is the first paper
that uses TCNs model to infer traffic density in an intersec-
tion’s approach using various MPRs of probe vehicle data from
other intersection’s approaches. The second crucial contribu-
tion of this study is investigating the effect of various scenarios
on the accuracy of real-time traffic estimation. The problem
was divided into three scenarios labelled as Scenario 1, 2,
and 3. In Scenario 1, the model was given access to both
probe vehicle data (from CVs) and SPaT information from
the controller. In Scenario 2, the model was only given access
to the probe vehicle data. Lastly, in Scenario 3, the model was
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given access to the probe vehicle data, SPaT information, and
memory that saved five previous observations from the probe
vehicle data. The study also tested the framework in two cases:
three- and four-leg signalized intersection.

The practical significance of estimating traffic on one leg of
an intersection based on information gathered from the other
legs is underscored by its potential to enhance both traffic
management and overall road safety. While traffic observa-
tions through CAVs in one leg offer valuable real-time data,
relying solely on this source could result in blind spots and
incomplete coverage, particularly in complex urban settings
where communication disruptions can occur. By leveraging
data from neighbouring legs of the intersection, the estima-
tion process gains robustness and reliability. This approach
becomes vital for accurately identifying congestion patterns,
fine-tuning signal timings, and promptly responding to emer-
gencies. Furthermore, the incorporation of data from multiple
legs ensures a holistic representation of traffic conditions,
accounting for a diverse array of road users, such as pedes-
trians and cyclists, and varying vehicle types. Consequently,
this multi-leg approach transcends the limitations of single-
source reliance, mitigating the risks of data gaps and fostering
a more effective and dependable traffic estimation system that
is crucial for optimizing intersection management and safety
protocols. As this analysis lacks literature, this study will fill
these gaps.

III. METHODOLOGY

A. Overview

This study aims to develop a real-time model for traffic
density estimation using probe data. Figure I shows our
proposed methodology as a framework. In general, we sampled
a dataset of vehicles at a signalized intersection to create
various rates of CVs market penetration. For each sample,
we extracted ten different features that only depends on one
sensor data (i.e., drones in our case). Consequently, we divided
each sample into training and testing datasets to train and
validate a TCN model that can be used for real-time prediction.

B. pNEUMA Dataset (T-Intersection)

The rise of sharing information and big data has led to a
desire for more predictable and manageable mobility through
better data utilization and resource use. This requires new
methods of collecting traffic data, as the traditional methods
of using fixed sensors or GPS devices are not effective enough
in congested urban areas due to low coverage and high
measurement errors. pNEUMA is an experiment that creates
a comprehensive dataset of congestion by using ten drones
to record traffic in a congested 1.3 km2 area with 100 km
of road network, 100 busy intersections, and half a million
trajectories [14]. The use of UAVs in this multi-modal urban
environment allows for deep examination of crucial traffic
issues. This open-science project creates a unique and unprece-
dented observation of traffic congestion, offering numerous
opportunities for researchers worldwide to use and test their
models [14].

Fig. 1. Proposed framework for traffic density estimation.

Fig. 2. Study area of a 3-way signalized intersection in athens, greece.

TABLE I
THE TOTAL NUMBER OF VEHICLES IN EACH POLYGON

In this study, a 14-minute video was recorded by a drone at
a 3-way signalized intersection in Athens, Greece, as shown
in Figure 2. The video showed the approach of three roads:
Leof. Alexandras Road (west-bound to 28is Oktovriou Road)
represented by a 300m red polygon, 28is Oktovriou Road
(north-bound to Leof. Alexandras Road) represented by a
100m yellow polygon, and 28is Oktovriou Road (south-bound
to 28is Oktovriou Road) represented by a 100m green polygon.
The intersection was filmed from a high point in sunny
weather. The intersection design has 5 lanes for the green
polygon (including a left-turn pocket), 3 for the red one, and
2 for the yellow one. The red polygon has two extra traffic
signals and the speed limit for all polygons is 55 km/h. The
total number of vehicles in each polygon divided by the vehicle
class during the monitoring period is shown in TABLE I. For
simplicity, we used this dataset of three-leg intersection as a
pilot case study to extensively develop the framework.
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C. InD Dataset (Four-Leg Intersection)

We used this dataset to test our proposed framework on a
four-leg intersection and with data with longer period. The
inD dataset [15] includes trajectories of more than 11,500
road users, which are beside cars, trucks, and busses: more
than 5000 VRUs such as pedestrians and bicyclists. The
trajectories are extracted from drone video recordings made at
German intersections in Aachen from 2017 to 2019. At four
different locations, recordings were taken with a typical dura-
tion of around 20 minutes covering intersection areas of
80 × 40 meters to 140 × 70 meters. The speed limit is at
50 km/h and walkways exist. Apart from that, the measurement
locations differ in terms of intersection shape, the number and
types of lanes, right-of-way rules, traffic composition and kind
of interaction.

In this study, we used data from the intersection at the
Frankenburg near the city centre, which has four legs. Directly
next to the crossing is a zebra crossing and many parking lots.
At the intersection the right before left rule applies [15]. Due to
the location in a residential area and at a park, there is a high
number of cyclists and pedestrians. While the vehicles and
cyclists interact with each other mainly at the intersection, the
interaction with pedestrians takes place primarily at the zebra
crossing. In addition, traffic is affected by vehicles moving in
or out of parking spaces. We ignored the pedestrian crossing
the road and included all other modes of transportation on the
road. Figure 3 shows Frankenburg intersection in Aachen [15].

D. Feature Extraction

The model uses various sample percentages as inputs start-
ing from 5% to 50% with 5% increment. The data sample
taken from the drones and can be considered as probe-vehicle
data (e.g., CVs). The data is obtained by randomly select-
ing the sample from the actual measurements, which were
acquired in the experimental campaign described in Dataset
section. For each sample, we extracted the following features:

• Target: The total number of vehicles from the orange
polygon plus the green polygon for each second, which
was used as the output in the model.

• Feature 1: The number of sample vehicles in the orange
and green polygon for each second.

• Feature 2: The number of sample vehicles in the orange
polygon for each second.

• Feature 3: The number of sample vehicles in the green
polygon for each second.

• Feature 4: Passed green time for the orange polygon,
where 0 is not green and once the signal turns green, the
feature starts counting from 1.

• Feature 5: Passed green time for the green polygon,
where 0 is not green and once the signal turns green,
the feature starts counting from 1.

• Feature 6 to Feature 10:Historical number of sample
vehicles in the orange and green polygon at each time
observation (ti ) (i.e., ti−1, ti−2, ti−3, ti−4, and ti−5).

The passed green time is the longest time the vehicles would
ever sit at a red light, which means the time it takes for the
traffic light to change from red to green. In this study, the data

Fig. 3. Frankenburg intersection, Aachen.

was divided into a training and testing dataset. About 70% of
the data was utilized for training the model and the remaining
30% was used for validation.

E. Temporal Convolutional Network (TCN)

A temporal convolutional network (TCN) is a type of deep
learning architecture that is specifically designed to process
sequential data, such as time series data [16], [17], [18].
TCNs are built on the same principles as convolutional neural
networks (CNNs) but are modified to handle sequential data.
In a TCN, the input data is passed through a series of layers,
each of which applies a convolution operation to the data. The
convolution operation is a mathematical operation that allows
the network to extract features from the input data. The output
of each layer is then passed through a non-linear activation
function, such as a rectified linear unit (ReLU), before being
passed to the next layer [16], [17], [18].

One of the main advantages of TCNs is their ability to han-
dle long-term dependencies in sequential data. In traditional
recurrent neural networks (RNNs), such as the long short-
term memory (LSTM) network, the hidden state is passed
through multiple time steps, which can lead to vanishing
gradients and make it difficult for the network to learn long-
term dependencies [16], [17], [18]. Although RNN is a typical
model that can be used for sequence series data, however
training the model might be relatively more difficult because
of vanishing gradients, in which TCN does not suffer from.
In contrast, TCNs use dilated convolutions, which allow the
network to look at the input data over a much larger temporal
context, effectively enabling it to learn long-term dependen-
cies. TCNs have been applied to a variety of tasks such as
time series forecasting, natural language processing and speech
recognition [16], [17], [18]. Some studies that have shown the
effectiveness of TCNs include [35], [36], [37], [38], [39], [40].

This study utilized TCN as a convolutional network that
convolves over the time domain. TCN consists of dilated,
causal 1D convolutional layers with the same input and output
sizes [16], [17], [18]. Causal convolution is used to confident
the model will not catch information from the future. Dilated
convolutions were implemented where the filter is applied
over an area larger than Its size by skipping input values
with a specific step. The TCN contained a stack of causal
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Fig. 4. Dilated causal convolution structure of TCN.

dilated convolutional layers with increasing dilation to increase
the receptive field size rampantly [16], [17], [18]. Figure 4
represents dilated causal convolution structure of TCN.

We used Root-mean-square error (RMSE) (shown in
Equation (1)) to evaluate the model and to compare between
the predicted and actual number of vehicles on the road. RMSE
has a value of 0 if the predicted values fit the referenced values
perfectly and a positive value if the fit is less than perfect [41].

RM SE =

√√√√ n∑
i=1

(
Ypred − Yre f

)2

n
(1)

where Ypred is the predicted target value, Yre f is the actual
target value, and n is the number of testing observations i .

IV. ANALYSIS AND RESULTS

A. pNEUMA Dataset (T-Intersection) Results

The developing of the framework in this study was based on
the pNEUMA open data initiative, which is a unique collection
of data acquired through an experiment using drones in the
densely populated city centre of Athens. The dataset consists
of over half a million detailed vehicle trajectories and covers
a wide area in the central district of Athens, including both
major and minor roads, bus stops, and signalized intersections.
The dataset includes data from various types of vehicles, such
as cars, taxis, motorcycles, buses, and heavy vehicles. In the
study, part of the pNEUMA dataset was used to build a model
that can estimate the traffic density in an approach using probe
vehicle data and other features of the other approaches at a
signalized intersection.

We divided the problem into three scenarios: Scenarios 1,
2, and 3. In Scenario 1, we assumed that the model has access
to the probe vehicle data (i.e., information from CVs) and the
signal phase and timing messages (sPaT) from the controller,
which describes the current phase at a signalized intersection,
together with the residual time of the phase, for every lane
(hence every approach and movement) of the intersection
sPaT. This means that features from 1 to 5 are used as inputs.
In Scenario 2, we assumed that the model has only access to
the probe vehicle data and has no access to the sPaT messages.
This means that in this scenario, only features from 1 to 3 will
be used as inputs. Lastly, in Scenario 3, we assumed that the

Fig. 5. Results for scenario 1.

Fig. 6. Box plot for scenario 1.

model has access to the probe vehicle data, sPaT information,
and has a memory that can save five previous observations
from Feature 1, which is the number of sample vehicles in the
orange and green polygon.

We executed the model for each sample using 5-fold cross
validation then we took the average RMSE for each sample.
Before applying the model, we hyper-parametrized the TCN
model using Scenario 1 as a baseline and found that the
optimal parameters for the number of filters, filter size, and
the number of stacked residuals blocks are 32, 2, and 2,
respectively.

For each scenario, we created two figures. The first one
shows the results of running the 5-fold cross validation for
each sample, the line average of the results, and the linear
regression line that describes the mode”s relationship between
MPR and RMSE. This is shown in Figure 5, Figure 7, and
Figure 9 for Scenario 1, 2, and 3, respectively. The second
figure shows the box plots of each scenario. The goal of
constructing box plots is to determine if the values in the
results for each sample are significantly different by comparing
the distributions of the data sets. This is shown in Figure 6,
Figure 8, and Figure 10 for Scenario 1, 2, and 3, respectively.
Results show that as the MPR increases, RMSE decreases
in all scenarios, which means the model becomes more pre-
dictable. Results also show that R2 for Scenario 2 was the
highest with about 0.78, followed by R2 for Scenario 1 (about
0.65), where Scenario 3 achieved the lowest R2 with about
0.44. Results from the box plots for the three scenarios show
that there is a significant difference of RMSE for different
values of MPR.

B. InD Dataset (Four-Leg Intersection) Results

We used this dataset to investigate the ability of the pro-
posed framework to be applied on a four-leg intersection
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Fig. 7. Results for scenario 2.

Fig. 8. Box plot for scenario 2.

Fig. 9. Results for scenario 3.

and for longer monitoring period of 10 hours. As Scenario
1, in which we only used the probe vehicle data feature,
outperformed the other two scenarios, Scenario 1 was used
to test the framework. We used increment samples of CVs
data from three approaches of the intersection to estimate
the traffic density of the fourth approach. We applied a 5-
fold cross-validation on each sample to implement the model,
subsequently calculating the mean RMSE for every sample.
We used the optimal parameter values for essential factors such
as the quantity of filters (set at 32), filter dimensions (fixed at
2), and the count of stacked residual blocks (established at 2).

Figure 11 depicts the results of the RMSE across the
different MPRs. The results confirmed that as MPR increased,
the accuracy of the estimation increased. Results showed that
when the number of approaches in the intersection (i.e., data
sources) increased, the performance of the model improved.
We can also argue that the confidence level on the model has
also enhanced as the number of approaches increased and to
some extent, the monitoring period was also relatively higher.

Fig. 10. Box plot for scenario 3.

Fig. 11. RMSE results for the inD dataset.

V. DISCUSSION

Probe vehicle data, which was used in all three scenarios,
is important in traffic estimation because it provides real-
time information about traffic conditions and movements.
By collecting data from CVs, traffic analysis systems can
accurately predict traffic density and make more informed
decisions about traffic management, such as adjusting traffic
signal timings or redirecting traffic. This data can also help
to identify congestion, bottlenecks, and other traffic issues,
leading to more efficient and effective solutions for reducing
congestion [3], [42], improving traffic flow [43], and the study
of driving behavior [44], [45]. In addition, probe vehicle data
can provide valuable information for transportation planning
and can support the development of new technologies for
improved traffic management. SPaT data, which was used
in Scenario 1 and 3, provides information about the current
state of a traffic signal [9]. This information is critical for
improving the efficiency and safety of traffic flow at inter-
sections. By analyzing SPaT data, traffic analysis systems can
make more informed decisions about traffic management, such
as adjusting signal timings or redirecting traffic to alleviate
congestion.

Additionally, SPaT data can optimize traffic signal timings
for different traffic conditions and improve the coordination
of signals at multiple intersections, leading to reduced delay,
improved travel time, and enhanced safety. The availability
of SPaT data also enables CAVs to make more informed
decisions about route selection and speed control, leading to
a more efficient and safer transportation system. However,
results of this study (shown in Figure 12) found that Sce-
nario 2, where only probe vehicle data was used, has achieved
the highest accuracy if compared with Scenario 1 and 3,
where SPaT information and previous probe data were used
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Fig. 12. Average RMSE for the three scenarios.

as additional inputs. This means that using only probe vehicle
data from two approaches at a signalized intersection can
be relatively sufficient to predict traffic density in the third
approach, even when MPR is low. This also means that the
availability of SPaT information might not be necessary to
achieve high accuracy for traffic estimation. We also found
that as the MPR increases, the difference of RMSE between
the three scenarios decreases. In a mixed traffic, this method
can be very beneficial to estimate traffic conditions in the
presence of both traditional and CVs but also different vehicle
classes including private and commercial vehicles, such as
cars, trucks, and buses. However, the accuracy of the traffic
estimation may vary depending on the heterogeneity and
distribution of the mixed traffic and the quality of the probe
data as shown in Figure 12.

Estimating traffic on one leg of a three-way intersection
based on data from the other two legs holds practical sig-
nificance for enhancing traffic management and safety. While
CAVs on the same leg provide valuable real-time data, relying
solely on them can lead to blind spots due to potential commu-
nication issues or incomplete coverage, especially in complex
urban environments and low MPR. By cross-referencing obser-
vations from neighboring legs, the estimation becomes more
robust, allowing for accurate detection of congestion, optimal
signal timing adjustments, and prompt response to emergen-
cies. This approach also accounts for a diverse range of
road users and vehicle types, ensuring a comprehensive traffic
picture. Therefore, while CAVs on the same leg offer valuable
insights, a multi-leg approach mitigates risks associated with
data gaps and ensures a more reliable traffic estimation system
for better intersection management.

We also tested the framework using on four-leg intersection
and for a relatively longer monitoring period. Based on the
results, we can argue that our framework can be generalized
into other cases. The success of employing TCNs within our
framework and obtaining promising results in two distinct case
studies underscores the potential for broader transferability.
TCNs’ ability to capture intricate temporal patterns and rela-
tionships, while minimizing vanishing gradient issues, makes
them a robust choice across various cases. The underlying
principles that made TCNs effective in the initial case studies
can likely be leveraged in other scenarios as well. With proper
adaptation and fine-tuning of hyperparameters, architecture,

and input data preprocessing, TCNs hold promise for general-
ization to different case studies, providing a strong foundation
to tackle new challenges in domains beyond those in which
they were initially tested.

VI. CONCLUSION AND FUTURE WORK

Traffic estimation using probe vehicle data is important
because it provides real-time information about traffic con-
ditions, which can be used for various purposes such as
traffic management, navigation, and incident detection. This
method can also provide more accurate and timely traffic
information than traditional methods such as loop detectors
or road-side cameras. By continuously monitoring the traffic,
traffic estimation using probe vehicle data helps make better
informed decisions and improve traffic efficiency and safety.
This study introduced a novel framework for traffic density
estimation using TCN network for sequential time series data.
TCN was used as it was built on the same principles as
CNN, but they are modified to handle sequential data and
handle long-term dependencies by using dilated convolutions.
We used two datasets of vehicles collected by drones from
a three-leg intersection in Greece, and a four-leg intersection
in Germany. We built the model to predict the density in an
approach of the signalized intersection using features extracted
from the other approaches. We extracted ten features including
probe vehicle data with various MPRs, SPaT information,
and previous probe vehicle data to create three scenarios.
We computed the RMSE for each scenario to evaluate the
proposed model, which in general showed promising real-
time prediction results. We also discussed that estimating
traffic on one leg of a signalized intersection based on data
from the other legs holds practical significance for enhancing
traffic management and safety. While CAVs on the same leg
offer valuable insights, a multi-leg approach mitigates risks
associated with data gaps and ensures a more reliable traffic
estimation system for better intersection management.

In general, as the MPR increases, RMSE decreases, which
means the model becomes more predictable. This can be
applied to the three scenarios. The study’s findings showed
that the highest accuracy was achieved in Scenario 2, which
used only probe vehicle data, compared to Scenario 1 and 3,
which used additional inputs of SPaT information and previous
probe data. This suggests that relying solely on probe vehicle
data from two approaches at a signalized intersection can
effectively predict traffic density in the third approach, even
when the MPR is low. Additionally, the results indicate that
having SPaT information may not be crucial for achieving high
accuracy in traffic estimation. Moreover, as the MPR increases,
the difference in RMSE between the three scenarios becomes
smaller, making the proposed method suitable for estimating
traffic density in the presence of both traditional and CVs at
the intersection.

Applying TCNs directly to traffic density estimation
presents both potential and challenges. While TCNs are adept
at capturing temporal dependencies, challenges arise from
data preprocessing, model architecture, and domain-specific
nuances. Addressing varying data granularities and missing
values requires careful preprocessing, and adapting input
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sequences to TCN’s demands consideration. Tuning hyperpa-
rameters and network architecture, such as kernel sizes and
dilation factors, is crucial for optimal performance. Complex
traffic patterns may necessitate additional mechanisms like
attention layers or Transformer-based components. Handling
overfitting, ensuring real-time inference, and selecting appro-
priate evaluation metrics are further hurdles. Incorporating
domain expertise and possibly transferring learning to specific
road networks can enhance TCN’s applicability. Ultimately,
successful deployment hinges on iterative experimentation,
aligning TCN’s capabilities with the intricacies of traffic
behavior and infrastructure.
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