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A B S T R A C T   

In recent years, there has been a focus on developing and discovering novel Bruton’s tyrosine kinase (BTK) 
inhibitors, as they offer an effective treatment strategy for B-cell malignancies. BTK plays a crucial role in B cell 
receptor (BCR)-mediated activation and proliferation by regulating downstream factors such as the NF-κB and 
MAP kinase pathways. To address this challenge and propose potential therapeutic options for B-cell lymphomas, 
researchers conducted 2D-QSAR and ADMET studies on pyrrolopyrimidine derivatives that act as inhibitors of 
the BCR site in cytochrome b. These studies aim to improve and identify new compounds that could serve as more 
potent potential BTK inhibitors, which would lead to the identification of new drug candidates in this field. 

In our study, we used 2D-QSAR (multiple linear regression, multiple nonlinear regression, and artificial neural 
networks), molecular docking, molecular dynamics, and ADMET properties to investigate the potential of 35 
pyrrolopyrimidine derivatives as BTK inhibitors. A molecular docking study and molecular dynamics simulations 
of molecule 13 over 10 ns revealed that it establishes multiple hydrogen bonds with several residues and exhibits 
frequent stability throughout the simulation period. Based on the results obtained by molecular modeling, we 
proposed six new compounds (Pred1, Pred2, Pred3, Pred4, Pred5, and Pred6) with highly significant predicted 
activity by MLR models. A study based on the in silico evaluation of the predicted ADMET properties of the new 
candidate molecules is strongly recommended to classify these molecules as promising candidates for new 
anticancer agents specifically designed to target Bruton’s tyrosine kinase (BTK) inhibition.   

1. Introduction 

In recent years, the development of Bruton’s tyrosine kinase (BTK) 
inhibitors has garnered significant attention due to their efficacy in 
treating B-cell malignancies (Yang et al., 2022). BTK, a member of the 
Tec family of tyrosine kinases, is predominantly expressed in B cells, 
macrophages, and monocytes, while being absent in T cells, NK cells, 
and plasma cells (Draper et al., 2022). BTK plays a central role in B cells, 

facilitating B cell receptor (BCR)-mediated activation and proliferation. 
It achieves this by modulating downstream factors of the BCR, particu-
larly by activating the NF-κB and MAP kinase pathways (Satterthwaite 
et al., 1998). Disruptions in BTK, given its crucial functions in BCR and 
Fc receptor (FcR) signaling, can lead to the development of severe leu-
kemias and B-cell-related lymphomas. Beyond its involvement in BCR 
signaling, BTK also plays a critical role in Fc receptor (FcγR) signaling. 
This pathway induces the production of BTK-dependent pro- 
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inflammatory cytokines, particularly in cells like macrophages (Di Paolo 
et al., 2011). The discovery of X-linked agammaglobulinemia (XLA), an 
inherited immune deficiency, by Dr. Ogden Carr Bruton, an American 
pediatrician, in 1952 underscored the enzyme’s significance in B-cell 
development (Salemi et al., 2015). XLA, an orphan disease, is charac-
terized by diminished immunoglobulin production, rendering in-
dividuals more susceptible to bacterial infections (Goyal et al., 2016; 
Rezaei et al., 2011). This condition also leads to a deficiency in circu-
lating naive B lymphocytes due to impaired B lymphoid maturation and 
an inability to form secondary lymphoid organs (Tangye et al., 2013). 
Concerns persist regarding the limited oral bioavailability and selec-
tivity towards the kinase of covalent BTK inhibitors (Burger, 2014). This 
necessitates a wider range of inhibitors with innovative structures and 
enhanced target-binding selectivity (Singh et al., 2011). Consequently, 
BTK has emerged as a highly attractive therapeutic target for a diverse 
spectrum of diseases characterized by aberrant activation of B lym-
phocytes and/or macrophages, including B-cell malignancies (Puri et al., 
2013; Singh, 2022). 

Several approved covalent inhibitors, including evobrutinib, spe-
brutinib, and branebrutinib, which belong to the category of irreversible 
inhibitors, have been introduced through clinical trials (Fig. 1). Addi-
tionally, numerous non-covalent BTK inhibitors have been reported in 
the literature. Irreversible BTK inhibitors face challenges related to their 
low oral bioavailability and limited kinase selectivity, necessitating high 
clinical doses that may lead to undesirable side effects (Bye et al., 2017; 
de Vries et al., 2016; Senis et al., 2014). Consequently, there remains a 
demand for a broader range of inhibitors with innovative structures and 
precise target binding profiles to overcome current limitations. Thera-
peutic trials have resulted in the development of numerous approved 
covalent inhibitors in the field of drug design and discovery. This 
approach offers several advantages, including reduced experiment 
duration and quantity, while providing valuable insights for rational 
drug design. To this end, we conducted an in silico study to investigate 
the biological inhibitory activity of thirty-five novel pyrrolopyrimidine- 
derived small molecules as novel BTK inhibitors (Yang et al., 2022). 

In recent years, the use of molecular modeling techniques has yielded 
highly impressive results in the drug discovery process [1, 2]. Two- 
dimensional quantitative structure–activity relationship (2D-QSAR), 
molecular docking, pharmacokinetic parameters (ADMET), and molec-
ular dynamics (MD) simulation have been carried out to design new 
molecules capable of inhibiting Bruton’s tyrosine kinase (BTK). In this 
study, 35 BTK inhibitors were thoroughly investigated using a variety of 

sophisticated molecular modeling methods, including 2D-QSAR (El 
fadili et al., 2022; Mrabti et al., 2022). density functional theory (DFT), 
molecular docking, pharmacokinetic property analysis, drug-like 
ADMET, as well as molecular dynamics simulations (Er-rajy et al., 
2022a, 2023), to identify key structural factors affecting inhibitory ac-
tivity. In addition, the QSAR model, which links molecular descriptors to 
activity, provides suggestions for the creation of new drugs. To assess 
their drug potential, all designed compounds were evaluated by calcu-
lating ADMET properties. Moreover, molecular dynamics simulations 
were conducted for 10 ns to estimate the ligand’s stability within the 
protein under normal physiological conditions. The remainder of this 
article is structured as follows: the second section outlines the materials 
and methods employed in this study. Subsequently, the third section 
presents the study’s findings. Finally, the concluding section summa-
rizes the discussion of the key results and the overall implications of this 
research. 

2. Materials and methods 

2.1. Experimental dataset 

The following table (Table 1) presents experimental data on 35 
pyrrolopyrimidine-derived molecules as novel inhibitors of BTK. 

2.2. Examined compounds 

To perform the molecular modeling, we employed experimental data 
on the Bruton’s tyrosine kinase (BTK) inhibitory activities of 35 previ-
ously synthesized pyrrolopyrimidine-derived molecules (Yang et al., 
2022). The observed activities (IC50) were therefore transformed into 
(pIC50) by a logarithm of the log IC50 scale and are presented in Table 1. 

2.3. Calculation of descriptors for the compounds studied 

To build a reliable QSAR model, a total of 17 descriptors, including 
lipophilic, geometric, physicochemical, and steric descriptors, were 
used. These descriptors were determined using the MM2 technique with 
ACD/ChemSketch (Österberg and Norinder, 2001) and ChemBioOffice 
(Milne, 2010). Additionally, the geometry of the molecules concerned 
was optimized using the density functional theory (DFT) method, with a 
6-31G basis set and the B3LYP functional (Parr and Yang, 1995; Zhang 
et al., 2009). Electronic descriptors were also determined using the 

Fig. 1. Approved and representative BTK inhibitors in clinical trials.  
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Table 1 
Structures and pIC50 values of pyrrolopyrimidine derivatives as novel BTK inhibitors.  

Comp Structure pIC50 Comp Structure pIC50 Comp Structure pIC50 

1* 7.76 13 9.30 25* 8.85 

2 8.89 14 9.30 26* 8.72 

3 7.28 15 9.10 27 8.92 

4* 7.01 16 8.85 28 8.68 

5 8.08 17 9.10 29 8.66 

(continued on next page) 
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Table 1 (continued ) 

Comp Structure pIC50 Comp Structure pIC50 Comp Structure pIC50 

6 9.22 18* 8.70 30 8.92 

7 8.72 19 7.63 31* 8.72 

8 8.35 20 8.96 32* 9.15 

9 8.66 21* 8.89 33 9 

10 7.03 22 9.10 34 9.10 

(continued on next page) 
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Gaussian 03 quantum chemistry software (Frisch et al., 2004). The re-
sults of the descriptor calculations used in this work are presented in 
additional data (Table S1). The categories of these descriptors grouped 
together in this work are presented in Table 2. 

2.4. Quantitative structure-activity relationship modeling 

With a view to developing a QSAR model, we selected a set of 35 
molecules from previous work that were shown to have significant ac-
tivity as novel BTK inhibitors. The set was randomly divided into two 
subsets: a training set (26 molecules) to build the model, and a test set (9 
molecules) to assess the model’s validity. Various statistical methods 
were used to build the QSAR model, namely MLR and ANN (Gupta et al., 
2016). 

2.4.1. Multiple linear regression (MLR) 
The MLR method is extensively utilized in QSAR studies to select 

molecular descriptors due to its simplicity and reliability (Roy and 
Mitra, 2011a). MLR is also employed in conjunction with the MNLR 
(multinomial logistic regression) and ANN (artificial neural network) 

methods to determine suitable descriptors used as input parameters for 
developing QSAR models. The fundamental premise of MLR is that the 
dependent variable exhibits a linear relationship with certain indepen-
dent variables, as expressed by the following equation. 

Y = a0 +
∑n

i=1
aiXi (1)  

Where Y is the dependent variable, Xi are the independent variables, n is 
the number of molecular descriptors, a0 is the constant component of 
equation (1), ai represent the coefficients of the molecular descriptors. 

2.4.2. Multiple nonlinear regression (MNLR) 
The MNLR method is a non-linear concept that consists of selecting 

the mathematical model that best describes the non-linear variation of a 
molecular property or a biological activity (Y) in relation to the mo-
lecular descriptors (Xi) (Er-rajy et al., 2022b). In this context, we use the 
second-order polynomial model to build the QSAR model via the MNLR 
technique, based on the descriptors defined by the MLR model. The non- 
linear relationship between the molecular descriptors and the biological 
activity is determined by the following equation: 

Y = a0 +
∑n

i=1
ai×Xi + bi × X2

i (2)  

In the context of the MLR method for QSAR studies, the equation can be 
reformulated as follows: 

In the model equation (2), Y represents the dependent variable, 
which corresponds to the biological activity to be predicted. The inde-
pendent variables, Xi, encompass the molecular descriptors, and their 
count is denoted by ’n’. The model equation includes a fixed value, a0, 
along with factors, ai and bi, which represent the coefficients associated 
with each descriptor in the equation (1). 

2.4.3. Artificial neural networks (ANN) 
ANNs are employed to enhance the likelihood of characterizing 

compounds and to construct a predictive model that establishes a rela-
tionship between all the quantitative molecular descriptors acquired 
from the MLR model and the observed biological activity values. Our 
focus lies in developing an ANN-based QSAR model to validate the 

Table 1 (continued ) 

Comp Structure pIC50 Comp Structure pIC50 Comp Structure pIC50 

11 9.15 23 8.60 35 8.85 

12* 9.40 24 9.10 

*Refer to test set molecules, pIC50 = 9-log10 (IC50). 

Table 2 
Description of the descriptors used in this work.  

Descriptors Symbol Class 

Stretch S Geometrical 
Bend B 
Stretch-Bend S-B 
Torsion Tor 
LogP LogP lipophilic 
Mol Refractivity MRef steric 
Mol weight MW Constitutional 
Number of HBond Acceptors NHBA 

Number of HBond Donors NHBD 

Num Rotatable Bonds NRB topology 
Total Connectivity TC 
Total Valence Connectivity TVC 
Polarizability Polariz Quantum (Electronic) 
Energy HOMO EHOMO (ev) 

Energy LUMO ELUMO (ev) 
total energy ET (ev) 
Dipole moment Dp (D)  
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exceptional accuracy of the molecular descriptors selected through the 
MLR model. Additionally, leveraging the ANN model enables us to 
achieve highly precise predictions of biological activity for each mole-
cule (Salt et al., 1992). This approach relies on using the sigmoid acti-
vation function in the hidden layer and the linear activation function in 
the output layer. The ANN architecture utilized in this study comprises 
three layers of neurons, namely, the input layer, the hidden layer, and 
the output layer, as illustrated in Fig. 2. 

In the input layer, the number of neurons should be equal to or less 
than the total number of descriptors obtained from the multiple linear 
regression model. The output layer, on the other hand, contains the 
predicted activity values. Once the number of neurons in the hidden 
layer is determined, calculating the parameter ρ becomes essential. This 
parameter, denoted as ρ, is computed using the equation ρ = (number of 
weights) / (number of connections). As per the recommendations of 
certain authors, for the ANN model to be statistically acceptable and to 
ensure comprehensive contribution from all elements in the database 
used, the parameter ρ should ideally fall within the range of 1 to 3 
(Kůrková, 1992). 

2.5. Leave one out cross-validation (LOO-CV) 

To assess the accuracy of the QSAR models created through MLR, 
MNLR, and ANN, we utilize an internal validation method known as 
LOO-CV (Golbraikh and Tropsha, 2002). In the LOO-CV process, we 
iteratively modify the dataset by removing one molecule at a time, and 
then reconstruct the QSAR model using the remaining molecules to 
predict the activity of the deleted molecule. This cycle is repeated for 
each molecule in the dataset until all molecules have been tested and 
included in the validation process (Roy and Mitra, 2011a). This vali-
dation approach relies on calculating the R2

cv coefficient of performance, 
as described in Eq. (3). Following this methodology, we can assess the 
model’s accuracy and determine its predictive capabilities (Golbraikh 
and Tropsha, 2002), Ideally, the R2

cv value should exceed 0.5, indicating 
that the developed model demonstrates robustness concerning internal 
predictions. 

R2
cv = 1 −

∑
(Yob(trai) − Yca(trai))2

∑
(YOb(trai) − Ytrai(trai))2 (3)  

Yob(train) refers to the actual observed response value in the training set. 
Yca(trai) represents the response value predicted by the LOO-CV tech-
nique applied to the training set. Lastly, Ytrai(trai) denotes the mean 
value of both the observed and predicted responses in the training set. 

2.6. Y-randomization test 

The Y-randomization test is utilized to eliminate the chance of any 
random correlation between the descriptors and their corresponding 
biological activities in the MLR-generated model. This test helps ensure 
that the model’s predictive power is not a result of random associations 
between the variables. Consequently, the presence of any random cor-
relation between the X values (molecular descriptors) and the Y values 
(biological activity) could significantly affect the performance and 
reliability of not only the MLR model but also the MNLR and ANN 
models. Therefore, it is of utmost importance to safeguard the efficacy 
and validity of all these models against any potential influence from 
such random associations. The randomization test Y involves random-
izing the experimental values of properties/activities across the de-
scriptors in the original model. This process generates multiple new 
models by creating different distributions of the data (Rücker et al., 
2007). The Y randomization test deems the QSAR model acceptable and 
not obtained by chance when the average random correlation coefficient 
(R2

r ) calculated from the randomly generated models is lower than the 
correlation coefficient R2 of the original non-random model. This com-
parison ensures that the actual model’s performance is significantly 
better than what could be expected from random associations (Roy and 
Mitra, 2011b). 

2.7. Molecular docking simulations 

Molecular docking is a precise, fast and efficient technology in the 
pharmacology sector (Bassani et al., 2022; Er-Rajy et al., 2023). Mo-
lecular docking simulation was performed using AutoDock 4.2.3 soft-
ware to analyze the interaction process and determine binding modes to 
better understand key structural and geometric requirements (Nour 
et al., 2022). The docking study is a tool to recognize pharmacophores 
with the ability to interconnect with an enzyme, which is a function of 
binding affinity. According to Ritchie et al, 2008, the impulsive nature of 
the binding relationship between the ligand and the enzyme being 
studied could be enhanced by lowering the binding energy (Trott and 
Olson, 2010). 

The protein molecules and the compound were selected in order to 
conduct an analysis about their interactions, which assists with the 
determination of how accurately the target was hit. After that, utilizing 
the Protein Data Bank (PDB) database (https://www.rcsb.org/)(Rose 
et al., 2021), the PDB file of protein was mined. The process of molecular 
docking between the acquired protein and ligand was carried out. With 
the help of the Biovia discovery studio visualizer, both the two- 
dimensional (2D) and the three-dimensional (3D) images of the in-
teractions between proteins and compound were studied. The active site 

Fig. 2. The architecture of the ANN model used in this study.  
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is surrounded by the three-dimensional configuration (X = 22.13, Y =
7.91, Z = 2.81), which has a grid with a size of 60*60*60 points in the x, 
y, and z directions. 

2.8. Molecular dynamics (MD) 

The MD simulation was conducted using the Desmond simulation 
package developed by Schrödinger LLC (Schrödinger, 2017). During the 
simulation runs, an NPT ensemble with a temperature of 300 K and 
pressure of 1 bar was employed. The simulations were run for duration 
of 10 ns, and a relaxation time of 1 picosecond was set for both the lead 
inhibitors and the optimally designed ligand. The OPLS_2005 force field 
parameters were used (Shivakumar et al., 2012, 2010) and the long- 
range electrostatic interactions were calculated using the Particle 
Mesh Ewald method (Essmann et al., 1995; Petersen, 1995) with a cutoff 
radius of 9.0 Å. The Simple Point Charge model was employed to 
explicitly depict the water molecules. To control pressure, a Martyna- 
Tuckerman-Klein chain coupling approach with a coupling constant of 
2.0 ps was utilized, while temperature control was achieved using a 
Nose-Hoover chain coupling scheme (Jang and Voth, 1997; Martyna 
et al., 1992; Patra and Bhattacharya, 2014). An r-RESPA integrator was 
employed to calculate the non-bonded forces, updating short-range 
forces every step and long-range forces every three steps. Trajectories 
were saved at 4.8 ps intervals to facilitate analysis. The Desmond MD 
package implemented the Simulation Interaction Diagram, which was 
used to examine the behavior and interactions between the ligands and 
protein. To monitor the stability of the MD simulations, the Root Mean 
Square Deviation (RMSD) of both the ligand and protein was assessed at 
various time points. The AMBER 14(Salomon-Ferrer et al., 2013) 
package with the AMBER force field FF99 (Spasic et al., 2012) was also 
used to minimize, add counter ions, solvate, equilibrate, and run peri-
odic box, explicit water (TIP4P) MD simulations for the best inhibitors. 
The protein–ligand-water system data analysis was carried out with the 
AMBER Tools distribution program (Kalayan et al., 2023; Kalayan and 
H. Henchman, 2021). 

2.9. In silico pharmacokinetic-pharmacodynamic modeling (ADMET) 

The progress in computer technology has played a crucial role in 
advancing new drug candidate development by reducing the reliance on 
extensive experimental studies and enhancing overall success rates. 
Consequently, in the drug discovery process, ADMET pharmacokinetic 
parameters and drug similarity are now determined early on for pre-
liminary estimation. In silico studies offer a pathway to assess crucial 
ADMET parameters, including absorption, distribution, metabolism, 
excretion, and toxicity (Vickers, 2017). The processes involved in drug 
development include absorption, which refers to the uptake of com-
pounds in the human small intestine; distribution, which involves the 
movement of compounds throughout the body tissues; metabolism, 
which pertains to the chemical biotransformation of a compound by the 
body; excretion, which is the removal of a compound from the body; and 
the assessment of the compound’s toxicity level. 

To predict the familiarity of drugs with selected compounds, criteria 
established by Lipinski, Ghose, Veber, Egan, and Muegge are used. 
Lipinski, Veber, and Egan’s rules are particularly valuable in evaluating 
the ADME properties of human drugs. These rules are highly beneficial 
for identifying potential drugs based on the 2D structure of small mol-
ecules and the bioavailability of these molecules when administered 
orally (Hansch et al., 2004). Compounds that fail to meet at least two of 
the Lipinski, Veber, and Egan rules often encounter various issues with 
their pharmacokinetic properties related to ADMET. Approximately 10 
% of drugs that reach the clinical trial phase do not comply with any of 
these rules (Lipinski, Veber, and Egan). In addition to the aforemen-
tioned rules, we also assess two other factors: the number of rotational 
bonds (n-ROTB) and the topological polar surface area (TPSA) (Jin et al., 
2020). The prediction of these factors allows us to know if the molecule 

interacts with the receptor in a flexible or inflexible mode. 

3. Results 

3.1. Multiple linear regressions 

After calculating the molecular descriptors of 35 derivatives 
(Table S1), several attempts were made to build a reliable model. The 
best model we obtained was built on four descriptors such as NHBD, Tc, 
EHOMO, and ET. Based on the obtained results, the following molecules 
(1, 4, 8, 12, 18, 21, 25, 26, 31, and 32) have been chosen for the test set. 
Meanwhile, the following molecules (2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 
16, 17, 19, 20, 22, 23, 24, 27, 28, 29, 30, 33, 34, and 35) are included in 
the training set. The QSAR model produced by the MLR technique is 
shown in Eq. (4) below. 

pIC50 = 13.47 − 0, 39772 × NHBD − 12951 × Tc + 22, 76787

× EHOMO − 0, 00079 × ET R2
Ajus

= 0.924; MSE = 0.027; F = 77, 3 ; Pr < 0. 0001; R2
cv = 0. 91 (4)  

N represents the number of compounds in the training set; MSE repre-
sents the root mean square error 

Fig. 3 shows the relationship between the observed activity values 
and predicted values. HOMO orbital energy has a positive effect on ac-
tivity, but number of H-bond donors, total Connectivity and total energy 
influence it negatively, as shown in Fig. 4. 

3.2. Multiple nonlinear regression 

The nonlinear QSAR model obtained using the MNLR technique is 
shown in Eq. (5) below. 

pIC50 = 37.06650 − 0.36441 × NHBD − 26410 × TC+ 346.47310

× EHOMO − 5198 × 106 × TC2 + 759.90603 × E2
HOMO − 3.44994

× 10− 6 × E2
T N

= 26;R = 0.97;R2 = 0.945;MSE = 0.028
(5)  

The biological activities observed and estimated by the QSAR model 
developed on the basis of the training set and the test set for the linear 
and non-linear models are presented in the additional data (Table S2). 

Fig. 5 illustrates the uniform distribution of experimental pIC50 
values compared to the predicted values obtained through the MNLR 
technique, confirming the superiority of the developed QSAR model in 
terms of efficiency. 

3.3. Artificial neural networks (ANN) 

When using the ANN technique to develop a QSAR model, the ar-
chitecture used is 4–3-1 with a ρ parameter of 1.368. With a value of ρ 
between 1 and 3, it is clear that the number 3 in the hidden layer is 
proportional to the number of descriptors 4 in the input layer, thus 
predicting the pIC50 values expressed by the output layer 1. 

Fig. 6 illustrates that the candidate pIC50 values are evenly distrib-
uted in the training set, ensuring that the ANN model predictions are 
very similar to the experimentally observed pIC50 values. 

3.4. Leave-one-out cross-validation (LOO-CV) 

Fig. 7 presents the results of the cross-validation performed with the 
LOO method. 

3.5. External validation 

We perform an external validation using the Golbraikh and Tropsha 
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criteria (Golbraikh et al., 2003) to evaluate the QSAR models’ capability 
in predicting pIC50 activity values for molecules in the test set (Table 3 
and 4). This assessment involves calculating the correlation coefficient 
R2, a significant criterion in evaluating how well externally validated 
models can predict the activities of molecules that were not part of the 
model development process (Fig. 8). 

3.6. Y-randomization test 

Randomization is a commonly employed technique in QSAR studies 
to ensure the reliability and robustness of the obtained models. After 
selecting a regression model, randomization is performed to validate the 

model by assessing potential correlations. In this specific case, Y- 
randomization is utilized to assess the effectiveness of the model. 

The activity values of the compound series are randomly shuffled 
and redistributed multiple times, and each time the model is recon-
structed using the original descriptors and procedure. This process is 
repeated 100 times to obtain a comprehensive evaluation (Table S3). 

3.7. Molecular docking simulations 

Table 5 shows the binding energy for three compounds (12, 13 and 
14). In addition, the docking analysis found that the chemical has a high 
affinity for interacting with the protein correspondingly (Figs. 9, 10 and 

Fig. 3. Correlations between the observed activity values and the predicted ones via the MLR model.  

Fig. 4. Analysis of the contribution coefficients of the four molecular descriptors of the MLR model.  

Fig. 5. Correlations between the observed/ predicted activity by the MNLR model.  
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11). 

3.8. Molecular dynamics simulations studies 

The molecular docking analyses have revealed specific information 
regarding the binding modes of the protein-inhibitor complex. However, 
to identify even the smallest discrepancies, we conducted molecular 
dynamics simulations. By utilizing the most favorable interactions and 
energy-optimized conformation obtained from the molecular docking 
results, we examined the atomic details of compound 13 within the 

solvent system. 
To commence the MD study, we selected the most active confor-

mation based on hydrogen bond interactions, root-mean-square devia-
tion (RMSD), and energy values. Subsequently, we performed a 10 ns 
simulation to assess the stability of the protein-inhibitor complex. 
Moreover, we extensively investigated the results obtained from the 
simulation to gain further insights into the system (Fig. 12). 

The RMSF attribute enables the identification of specific modifica-
tions in the protein chain. As depicted in Fig. 13, the catalytic domain 
exhibits significant fluctuations in the RMSF values of the protein’s 
backbone amino acids, particularly at the N- and C-terminals, when 
compared to other regions of the Protein. 

Fig. 6. Correlation between the observed and the predicted activities calculated by ANN.  

Fig. 7. Correlation of observed and predicted activities calculated using LOO-CV.  

Table 3 
Criteria of Golbraikh and Tropsha’s for external validation.  

Parameter Threshold Modelscore 

Q2
training Q2

training > 0.5 0.91 

r2 r2 > 0.6 0.85 
r2

0  0.84 
r′2

0  0.848 
|r02- r’0

2| |r02- r’02| <0.3 0.008 
K 0.85 < k < 1.15 1 
r2 − r2

0
r2 

r2 − r2
0

r2 < 0.1 
0.01 

k′ 0.85 < k’ <1.15 0.99 

r2 − r′2
0

r2  
r2 − r′20

r2 < 0.1  
0.002  

Table 4 
The results of the prediction by MLR methods for the test set.  

Compounds pIC50 obs Pred (pIC50) MLR Residual 

1  7.762  7.854  − 0.092 
4  7.006  6.961  0.045 
20  9.398  9.094  0.304 
27  8.699  9.143  − 0.444 
30  8.886  8.853  0.033 
35  8.854  8.904  − 0.050 
36  8.721  8.715  0.006 
41  8.721  9.060  − 0.339 
42  9.155  8.659  0.496  
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The MD results show that the RMSD value for the protein backbone 
atom, relative to its initial position, increased to 2.20 Å over the first 5 ns 
of the trajectory, but then decreased to 1.75 Å at 10 ns. The average 
RMSD value for Compound 13 backbone atoms was 1.95 Å for the heavy 
atoms, indicating excellent structural reconstruction throughout the 
simulation of the compound 13_5P9J complex. Throughout the simu-
lation, the protein’s RMSF (root mean square fluctuation) remained 
stable at approximately 1.50 Å, providing a solid foundation for further 
investigation (Fig. 14 and Fig. 15). 

3.9. Design of new compounds 

The main objective of this study is to design new BTK inhibitors 
derived from pyrrolopyrimidine, based on the recommendations we 
extracted from the 2D-QSAR studies. In this study, six pyrrolopyrimidine 
derivatives were designed (Pred1, Pred2, Pred3, Pred4, Pred5 and 
Pred6) to enhance the inhibitory activity of Bruton’s tyrosine kinase 
inhibitor Table 6 and Table 7. 

3.10. Lipinski’s rule 

All the proposed new compounds comply with Lipinski’s five rules 
(Table 8). 

3.11. ADMET properties 

To ensure the potential suitability of the designed molecules as 
medications, we employed pharmacokinetic parameters such as 
ADMET. In silico ADMET properties were predicted using the pkCSM 
online tool (Pires et al., 2015), and the details are provided in the cor-
responding table (Table 9). 

Fig. 8. Correlations between the observed / predicted activity by the MLR model for the test set.  

Table 5 
The results of molecular docking for the three most active compounds of the 
studied series.  

Compound Binding energy NOHB HBAA Distance 

12  − 8.12 3 GLU 599 
TYR 617 
HIS620 

2.284 
2.728 
2.889 

13  − 9.26 3 ASN526 
ARG525 
LYS430 

3.017 
2.204 
2.854 

14  − 8.08 2 GLU59 
TYR61 

2.150 
2.798  

Fig. 9. 2D/3D -predicted binding modes of molecule 14 and the active site of human 5p9g.  

M. Aloui et al.                                                                                                                                                                                                                                   



Saudi Pharmaceutical Journal 32 (2024) 101911

11

Fig. 10. 2D/3D-predicted binding modes of molecule 13 and the active site of human 5p9g.  

Fig. 11. 2D/3D-predicted binding modes of molecule 12 and the active site of human 5p9g.  

Fig. 12. The RMSD of protein 5P9J relative to the starting complexes during 10 ns MD trajectory for compound 13.  
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4. Discussion 

RLM results clearly indicate that the four selected descriptors are 
linearly correlated with BTK inhibitory biological activity (pIC50) values 
Eq. (4). The QSAR model obtained by this technique is evaluated ac-
cording to the following parameters: R2, F, MSE, P-value and R2

cv. 
Coefficients of determination with a higher value (R2 = 0.94), a 

lower MSE value (MSE = 0.027), and a high value of the statistical 
confidence level (F = 77.37), certifying that the QSAR model presented 
in Eq. (4) is statistically acceptable. In addition, the P-value obtained of 
less than 0.05 (Pr < 0.0001) shows that the QSAR model equation is 
statistically significant at a level greater than 95 %. Otherwise, the value 
of cross-validation correlation coefficient (R2

cv = 0. 91), much greater 
than 0.5, indicates the correctness of the QSAR model obtained by the 
MLR technique. The R2

cv value less than R2 indicate the lightness and 
weakness of the model when excluding an item from the training set. 
The MLR-based QSAR model for the test and training set molecules ac-
quires the latter. Fig. 3 shows that the significant correlation between 
the observed and predicted pIC50 values is explained by the low value of 
the MSE. It appears that the four descriptors in equation (4) are strongly 
linearly correlated with the biological activity of pIC50. To improve the 
correlation between the activities predicted by the MLR-based QSAR 
model and the four molecular descriptors (NHBD, TC, EHOMO and ET), 
a novel QSAR model is created using two non-linear methods, namely 
the MNLR and ANN techniques. 

The performance indicators of the obtained non-linear QSAR model, 
namely R = 0.97, R2 = 0.945 and MSE = 0.028, clearly demonstrate that 
this model is statistically valid (Fig. 5). Furthermore, the value of the 

L00-CV coefficient (R2
cv = 0.64) confirms that the nonlinear model is 

internally validated, emphasizing that the efficiency and reliability of 
this model is attributed to the contribution of all elements (N = 27) of 
the training set in its construction. 

The QSAR model created using the ANN technique displays a very 
high coefficient of determination R2 of 0.97, indicating an excellent fit to 
the data. In addition, the MSE is low, with a value of 0.18, suggesting 
high accuracy in the model predictions. The results obtained show that 
the QSAR model possesses significant statistical quality when it comes to 
predicting BTK inhibitory activity. Therefore, it is relevant to use the 
four descriptors (NHBD, Tc, EHOMO and ET) in the prediction of pIC50 
values. These descriptors were selected with relevance to this task. 

The obtained parameters, R2 = 0.91 and RMSE = 0.17, indicate that 
the constructed QSAR model is not significantly influenced by the cross- 
validation method (Fig. 7). These clear results demonstrate the stability 
and robustness of the proposed QSAR model. However, it should be 
noted that cross-validation is not an adequate measure to fully evaluate 
the capabilities of QSAR models. 

The R2 test yielded a value of 0.85, and all values fell within the 
acceptable range, confirming the successful validation of the Golbraikh 
and Tropsha criteria. These results indicate that the QSAR model created 
is highly effective. Additionally, the external validation of the QSAR 
models further demonstrates their strong capability to accurately pre-
dict pIC50 values for the experimental inhibitory activity of BTK in-
hibitors (Table 4 and Fig. 8). 

The average correlation coefficients from these randomized models 
yield an R value of 0.38, R2 value of 0.16, and Qcv

2 value of 0.86. 
Comparing these averages to the values of the model, it is evident that 
the random target values generate significantly lower average R2 and 
Qcv

2 values. These results demonstrate that the correlations observed in 
model MLR between the descriptors and activities are not coincidental, 
confirming the robustness of the model. Therefore, the model’s predic-
tive power and reliability are validated through this randomization test. 

Among three compound; compound 13 had the highest binding en-
ergy (-9.26 kcal/mol), in comparison to compound 12 (-8.12 kcal/mol), 
14(-8.08 kcal/mol) (Table 5). Compound 13 interacted with ASN526, 
ARG525, LYS430 hydrogen bonding amino acid with 3 hydrogen bond 
(Fig. 10), while compound 12 interacted with 3 hydrogen bond with 3 
amino acid GLU 599, TYR 617 and HIS620 (Fig. 11). Compound 14 
interacted with amino acids GLU59 and TYR61 connected linked by two 
hydrogen bonds (Fig. 9). The Biovia discovery visualization tool 
demonstrated many interactions of ligand with protein through a variety 

Fig. 13. The RMSF of 5P9J protein during 10 ns MD, representing local 
changes along the rotein chain for compound 13. 

Fig. 14. The plot represents the hydrogen bonding interactions of compound 13 with respect to residues of 5P9J.  
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of amino acid residues. These interactions included hydrogen bonds, 
alkyl bonds, sigma bonds, ionic bonds, sulfate bonds, and van der Waals 
bonds. Table 5 provides a rundown of the binding energy, the hydrogen 
bond, as well as 2D and 3D images of proteins that have been shown to 
interact with ligands. 

The MD simulation of compound 13 (Figs. 12, 13 and 14) revealed 
the presence of water-bridge, hydrogen bonding, and hydrophobic in-
teractions in various stable regions, namely Glu475–Met477, 
Lys430–Asp539, and Leu408–Leu542. Throughout the MD simulation, 
Glu475 formed hydrogen bonds, while Lys430, Met477, and Cys481 
interacted with water bridges through hydrogen bonding. Water bridges 
were exclusively observed with Thr410, Gln412, and Asp539. Addi-
tionally, Ala428, Leu528, Phe540, and Leu542 exhibited both hydro-
phobic and ionic interactions, while Leu408 displayed interactions with 
both hydrophobic and water bridges. These specific residues played a 
significant role in the active binding site, contributing to the stabiliza-
tion of compound 13 within the cavity. 

During the simulation, numerous hydrogen bonds were detected at 
favorable frequencies. Moreover, it was observed that Met477 (–C 
N–H–O–Met) adopted a stable conformation of compound 13 at the 
active site for approximately 85 % of the simulation duration. The 
presence of hydrogen bond–water bridge networks was also 
demonstrated:  

1. In 35 % of the molecular dynamics (MD) simulation, a nitrogen atom 
attached to a terminal keto oxygen atom formed a hydrogen bond 
with a conserved water molecule and residue Lys430.  

2. In 30 % of the MD simulation, a nitrogen atom attached to compound 
13 formed a hydrogen bond with a conserved water molecule and 
residue Cys481. 

Throughout the entire simulation, the hydrogen bonding was sys-
tematically assessed, indicating that compound 13 possesses inhibitory 
potential due to the presence of additional water bridges (refer to 
Fig. 15). 

The ROG (radius of gyration) was used to estimate the rigidity of the 
protein structure. The impact of the Compound13_5P9J complex on the 
overall tightness of the protein (5P9J) was investigated, revealing a mild 
stretching effect within a range of 1.95–2.20 Å during the simulation. 
Throughout a 10 ns MD simulation, Compound 13 displayed a consis-
tently stable gyration radius, averaging 5.8 Å. The reference molecule 
exhibited a solvent-accessible surface area (SASA) ranging from 120.22 
to 180.30 Å2, along with a significant polar surface area (PSA) between 
135.10 and 150.30 Å2, indicating its stability during the entire 10 ns MD 
simulation. 

The descriptors of these new compounds were calculated in the same 
way as the molecules in the series studied. The predicted activity of the 
newly designed compounds was obtained by the RLM model developed 
Table 6. From the table we can see that the new candidate compounds 
have an inhibitory activity close to and greater than that of the most 
active compounds in the series studied. 

This compliance indicates that these compounds (Table 7) have 
favorable physicochemical properties, suggesting a higher likelihood of 
good oral bioavailability and potential as effective drug candidates 
(Table 8). However, while adherence to Lipinski’s Rule is a positive sign, 
it’s important to remember that these rules serve as guidelines rather 
than definitive determinants. Additional assessments and evaluations, 
such as further preclinical studies, are still essential to fully assess the 
compounds viability as potential medications. 

Details of the in-silico study are provided in Table 9. An absorbance 

Fig. 15. Two-dimensional diagram of hit compound 13_5P9J interaction during 10 ns MD simulation.  

Table 6 
The values of parameters calculated for the news molecules and this predict 
activity.  

Comp NHBD Tc EHOMO ET pIC50_pred 

Pred1 1 2.19 × 10-6  − 0.20472  − 1982.461592  9.69 
Pred2 1 2.19 × 10-6  − 0.20688  − 1982.457269  9.64 
Pred3 2 1.89 × 10-6  − 0.20042  − 1638.500400  9.16 
Pred4 2 1.89 × 10-6  − 0.20512  − 1638.482827  9.05 
Pred5 1 2.19 × 10-6  − 0.20166  − 1639.612407  9.49 
Pred6 1 2.19 × 10-6  − 0.20224  − 1982.459187  9.75  
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value below 30 % indicates inadequate absorption, while values 
exceeding 72 % suggest favorable absorption in the human intestines. 
Notably, a VDss (Volume of distribution) above 0.45 is considered 
substantial, indicating a wide distribution within the body. The enzy-
matic metabolism, which involves the biochemical transformation of 
drugs in the body, plays a critical role in altering drug compounds. This 
process leads to the formation of various enzymatic metabolites, which 
can influence drug reactions at different concentrations (Ahmed, 2015). 

An in-depth examination of drug metabolism is crucial, considering the 
possible differences in physicochemical and pharmacological charac-
teristics. Of particular importance in this regard is the participation of 
cytochrome P450 (CYP450), notably the CYP1, CYP2, CYP3, and CYP4 
families, responsible for over 90 % of phase I metabolism (Ahmed, 2015; 
Šrejber et al., 2018). Among these, CYP3A4 holds particular significance 
in our study(Chandrasekaran et al., 2018), as the newly designed com-
pounds display properties of both substrates and inhibitors for this 

Table 7 
Structures of new compounds and their pIC50 predicted on the basis of the 2D-QSAR model.  

Compounds Structure pIC50_pred 

Pred1 9.69 

Pred2 9.64 

Pred3 9.16 

Pred4 9.05 

Pred5 9.49 

Pred6 9.75  

M. Aloui et al.                                                                                                                                                                                                                                   



Saudi Pharmaceutical Journal 32 (2024) 101911

15

enzyme. 
Clearance, a parameter representing the relationship between drug 

concentration and elimination rate, determines the drug’s duration in 
the body. As a result, the recently developed compounds show notably 
high clearance values, ensuring a favorable retention of the drug. 
Moreover, evaluating the non-toxic nature of the predicted compounds 
is crucial in the process of drug selection. Encouragingly, all the com-
pounds we designed exhibit non-toxic characteristics, which signifi-
cantly bolster their promise as potential candidates for medication. 

5. Conclusion 

The study aimed to create new pyrrolopyrimidine-derived drugs as 
BTK inhibitors. A 2D-QSAR study evaluated 35 analogues’ structural 
components, constructing a QSAR model with predictive power. The 
molecule N◦13 showed significant hydrogen bonding and frequent sta-
bility, indicating its potential in BTK inhibitory activity. In addtition, six 
new molecules with potent BCR inhibitory activity were developed 
using various methods. These molecules have acceptable pharmacoki-
netic properties and favorable ADMET properties, making them poten-
tial agents for cancer treatment. Future research plans include 
developing 3D-QSAR models and synthesizing the predicted molecules. 
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