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Abstract 

The manufacturing of semiconductor wafers is a complex process that is prone to 

defects. In this study, we present DefectClassifierX, an automated pattern classification 

system that uses a convolutional neural network model based on the GoogLeNet 

architecture and leverages CUDA for faster training and testing speed. We aim to improve 

defect classification in the semiconductor manufacturing process by accurately 

classifying single and mixed wafer defect patterns. To validate our approach, we 

conducted thorough experimentation using the newly introduced dataset called "WM-

300K+ wafer map [single and mixed]," which consists of 36 different defect patterns. The 

experiment results show that the precision, recall, and F1-score for testing our model were 

all measured at 0.97, indicating excellent performance. Also, the results demonstrate a 

remarkable level of accuracy, with an average classification accuracy of 99.9% for both 

single and mixed defect types. Our approach outperforms previous studies in wafer defect 

pattern classification and has the potential to significantly improve the efficiency and 

effectiveness of wafer defect analysis in semiconductor manufacturing. Additionally, we 

utilized hyperparameter tuning with Optuna and implemented a patience stop mechanism 

for improved convergence. Moreover, we incorporated the AdamW optimizer to further 

enhance the model's performance. DefectClassifierX is compatible with multiple 

operating systems, ensuring accessibility for a broader user base. While our results are 

encouraging, further research is needed to address limitations regarding dataset quality, 

computational resource requirements, and data augmentation techniques. Additionally, it 

is important to evaluate the model using real wafer map images for practical applicability 

assessment.  
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Chapter One 

Introduction 

This chapter serves as an introduction to the study. It provides background 

information on the topic and presents the research problem and questions to be addressed. 

The aims and objectives of the study are outlined, highlighting the purpose and goals. The 

significance and motivation behind the study are discussed, emphasizing its importance. 

Additionally, the chapter delves into the research scope, defining the boundaries and 

extent of the study. Lastly, the organization of the thesis is described, providing an 

overview of how the subsequent chapters are structured. 

Background Information 

The demand for electronic devices has significantly increased owing to the Fourth 

Industrial Revolution (Industry 4.0), advancements in semiconductor manufacturing and 

Internet of Things devices[1], [2]. Fortune Business Insights statistics indicate that the 

global consumer electronics market is expected to see substantial growth reaching 989.37 

billion USD by 2027 [3]. Electronic devices are composed of integrated circuits 

containing various electronic components such as resistors, transistors, and diodes [4]. 

These components and their connections are built on a semiconductor wafer typically 

composed of single-crystal Si, as shown in Figure 1 [5]. 
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Figure 1: A sample of silicon ingots and wafer surfaces 1 

The fabrication process of integrated circuits involves the use of a thin, circular 

slice of material known as a wafer [6]. This process involves the transformation of raw 

materials or components into a final product. Semiconductor wafer manufacturing forms 

the core of integrated circuit production, is highly complex, as illustrated in Figure 2 [7]. 

 

Figure 2: Overview of general processes in integrated circuits manufacturing. 

 In the context of silicon wafer manufacturing, the processes include general steps 

such as Wafer processing, Oxidation, Photomask, Etching, Film Deposition, 

Interconnection, Testing and Packaging. The details of these steps are as follows: 

1. Wafer processing: In this process, silica sand is heated to separate silicon and 

carbon monoxide until ultra-high-purity electronic-grade silicon (EG-Si) is 

obtained. Then the “EG-Si” is melted and cast into a large cylinder form called 

“ingot.” After that, the “ingot” is sliced into a certain thickness called "die" which 

is an unprocessed raw wafer [8]. 

 

1 Image was uploaded by Yoshifumi Uesaka from Nikkei staff writer (source Image URL) 

https://www.ft.com/__origami/service/image/v2/images/raw/https%253A%252F%252Fcms-image-bucket-production-ap-northeast-1-a7d2.s3.ap-northeast-1.amazonaws.com%252Fimages%252F9%252F3%252F5%252F1%252F12541539-3-eng-GB%252F20180201-Sumco_Wafer.jpg?width=700&fit=cover&gravity=faces&dpr=2&quality=medium&source=nar-cms
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2. Oxidation: In this process, a protection layer is added to the wafer surface to 

protect it from chemical impurities, current leakage, and wafer slipping during the 

etching phase [9].  

3. Photomask: In this process, circuit patterns are printed onto wafers using 

photomask technology, which uses ultraviolet irradiation [10]. 

4. Etching: This is a very important phase that includes removing all oxide film and 

unwanted parts from the wafer’s surface using wet or dry etching, depending on 

the materials used [11]. 

5. Film Deposition: This process uses a variety of techniques, including chemically 

vaporized deposition (CVD), atomic layer deposition (ALD), and physical vapour 

deposition (PVD), to produce film materials on a semiconductor wafer at the 

molecular level [10]. 

6. Interconnection: In this process, the wafer components and layers are connected 

electrically to allow the transmission of signals from one layer to another. 

Aluminium (Al) and copper (Cu) are primarily used in the interconnection process 

[12]. 

7. Testing: In this process, different types of testing are performed to ensure that the 

wafer’s quality meets semiconductor manufacturing standards. All components 

are performed normally, defects in the wafer are identified and eliminated, and 

defective components are replaced [13]. 

8. Packaging: This is the final process in which individual wafer chips are 

encapsulated for protection, and an electrical connection is added before wafer 

dicing, which allows the attachment of many integrated circuits into a single wafer 

[14]. 
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Semiconductor wafer manufacturing is a series of costly, complicated, and highly 

disciplinary processes in which the incidence of defects is significant. Complex and time-

consuming diagnosis, inspection, and analysis processes are required in each phase to 

detect defects, which helps semiconductor engineers track and handle the source of failure 

in each phase before reaching the final production stage and ensure that the components 

are aligned correctly and operated correctly in a desired manner [15].  

Typically, the semiconductor manufacturing process takes up to 26 weeks [16]. 

In addition, the training process for operators or engineers to manually classify defects 

with an accuracy of 90% takes up to 9 months [17]. During the wafer manufacturing 

process, there are two main sources of defects in the wafer: dust particles in the 

manufacturing environment, equipment and/or human errors [18]. Figure 3 shows an 

example of a real defect appearing at the edge of a semiconductor wafer. 

 

Figure 3: A real sample of a defect on the edge of the semiconductor wafer.2 

In wafer manufacturing, there are typically two types of defect patterns: global 

defects, which are evenly spread across the entire wafer, and local defects, which show 

distinct spatial patterns. These spatial patterns can provide valuable information regarding 

specific manufacturing issues.  

 

2 Image was uploaded by Shannon Davis from Semiconductor Digest’s (source Image URL) 

https://www.semiconductor-digest.com/wp-content/uploads/2019/07/Screen-Shot-2019-07-19-at-1.49.56-PM-768x838.png
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Local defects are classified according to their distribution from the edge to the 

center of the wafer surface. The most common defect patterns are Center, Donut, Edge-

Loc, Edge-Ring, Loc, Near-full, Random and Scratch, as shown in Figure 4 [19].  

    

(A) (B) (C) (D) 

    
(E) (F) (G) (H) 

Figure 4: Display of common defect patterns in wafer maps, including (A) Center, (B) Donut, 

(C) Edge-Loc, (D) Edge-Ring, (E) Loc, (F) Near-Full, (G) Random, and (H) Scratch. 

The various defects observed in the product can be attributed to various issues 

during the manufacturing process. For instance, a scratch often indicates mishandling by 

the machine, whereas Edge-Ring is typically associated with problems encountered 

during etching. The appearance of a center defect may signal complications arising from 

thin-film deposition techniques.[20]. Table 1 provides a summary of different defect 

patterns encountered in the manufacturing process and their related issues. Each defect 

pattern is associated with specific causes and implications, ranging from alignment and 

etching problems to contamination, uneven deposition, material defects, insufficient 

material, impurities, equipment malfunctions, and mishandling by the machine. 

Understanding these defect patterns is crucial for identifying and addressing 

manufacturing issues effectively [21]. 

Table 1: Defect Patterns and Related Issues in Manufacturing. 

Defect Pattern Related Issues 

Center 

It indicates issues with alignment or positioning during the manufacturing 

process. 

Donut 
It may be caused by problems with the etching process or contamination 

during manufacturing. 
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Edge-Loc It could be caused by improper handling or alignment during manufacturing. 

Edge-Ring It associated with problems encountered during the etching process. 

Loc 
It could be caused by various factors such as contamination, uneven 

deposition, or material defects. 

Near-full 
It could be caused by problems with the deposition process or insufficient 

material. 

Random 

It could be caused by various factors such as impurities, equipment 

malfunctions, or process variations. 

Scratch 
It often indicates mishandling by the machine or improper contact during 

manufacturing. 

 

In general, there are many methods for inspection processes, the most popular of which 

is the automated inspection machine test, which produces wafer maps, as shown in Figure 

5. The use of wafer maps is to visualize abnormal locations on silicon wafers and other 

important information for tracking and manufacturing processes [22]. 

 

Figure 5: A close-up view of a wafer map generated by wafer testing equipment3. 

The wafer map indicates that each wafer dies if it passes or fails to meet 

performance standards [23]. Thus, a spatial pattern of wafer maps can be derived to 

classify whether the wafer production meets the performance standards and identify 

which wafer die contains a defect. During the inspection test phase, engineers can 

manually identify the causes of the defects in the wafer at each step, address them, 

improve the production lines, and reduce the production cost as much as possible. 

However, the accuracy of defect classification achieved by human experts is only 

 

3 Image was uploaded by Andre van de Geijn from English Wikipedia under public domain (source: 
https://en.wikipedia.org/wiki/Substrate_mapping#/media/File:Wafermap.jpg) 

https://en.wikipedia.org/wiki/Substrate_mapping%23/media/File:Wafermap.jpg
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45%[24]. Furthermore, these methods are time-consuming, costly, complicated, and 

highly disciplinary. 

In recent years, machine learning (ML), a subset of artificial intelligence (AI), has 

been gained significant traction in various research fields and has integrated into diverse 

domains, such as speech recognition and computer vision [25]. ML allows complex tasks 

to be solved without explicit programming by enabling machines to analyse data and 

uncover patterns similar to the human brain. Deep learning (DL) is a subset of neural 

networks within machine learning and can handle unstructured data in its raw form, 

including images and audio. Unlike traditional ML approaches that require human 

intervention for feature extraction determination, DL can automatically extract features 

from given data [26]. 

Various approaches exist for DL classification, including supervised, 

unsupervised, and partially supervised learning. In supervised learning; the model is 

trained using a dataset consisting of inputs (referred to as "features") and labelled outputs. 

This dataset is divided into three subsets: the training dataset used for model training, the 

validation dataset utilized to mitigate overfitting during training and enhance prediction 

accuracy and finally the testing dataset employed to validate overall model performance 

[27].  With the rapid advancement of DL techniques, automated defect detection and 

classification systems have emerged as promising solutions to overcome these 

limitations. The benefit of leveraging DL for wafer defect classification is improved 

performance, specifically, higher defect classification accuracy, minimized human error, 

and reduced time. The adaption and integration of DL for wafer defect classification is a 

heavily researched and developed application in which many studies have utilized wafer 
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map images to deploy different pre-processing and learning strategies that are typically 

used to learn wafer map defect patterns [2]. 

This study introduced a silicon wafer defect classification system using deep 

learning techniques by adapting a deep convolutional neural network (CNN) as a model 

for wafer defect classification using wafer-map images as inputs. This approach relies on 

a series of data pre-processing and data augmentation operations to produce an effective 

method to advance the classification of single or mixed-type wafer map defects. In 

addition, this study introduced an automated pattern classification system for wafer 

defects called “DefectClassifierX.” The motivation behind this study was to develop an 

accurate and efficient system for classifying silicon wafer defects by leveraging DL 

techniques. 

Research Problem and Questions 

The production of semiconductor wafers involves complex procedures and strict 

quality-control measures. Defects in wafer manufacturing are common and necessitate 

thorough assessment, inspection, and analysis at each stage of production. Early defect 

classification plays a crucial role in addressing this issue effectively. Deep learning 

techniques have shown promise for achieving accurate and automated defect 

classification. However, a major challenge is the limited availability of public datasets 

specifically designed for wafer map defects [28].  

The existing public ‘WM-811k' dataset suffers from class imbalance issues [29]. 

A new dataset called "Mixed-type Wafer Defect" has been derived from the 'WM-811k' 

dataset to overcome class imbalance issues. This new dataset focuses on capturing mixed 

types of wafer-map defect patterns, enabling researchers to develop more robust and 

accurate deep-learning models for defect classification [30]. In addition, researchers face 
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access restrictions to electronic wafer maps and integrated circuit designs as they are 

proprietary to companies. These restrictions hinder the ability to conduct studies using 

real-world data for defect classification on wafers, thereby limiting the generalizability 

and applicability of the research findings. 

Therefore, the research problem at hand revolves around addressing the 

challenges of limited public datasets, class imbalance issues, and restricted access to real-

world data to develop effective deep learning models for early defect classification in 

semiconductor wafer production. Overcoming these challenges will contribute to 

improving quality control processes, reducing manufacturing costs, and enhancing 

overall productivity in the semiconductor industry [31].  

The challenges of deep-learning-based classification models for wafer map defects can 

be summarized as follows [30], [32], [33], [34]: 

1. Limited availability of datasets: One challenge in this research area is the scarcity 

of publicly available datasets for wafer map defects, which hampers the evaluation 

and comparison of deep-learning-based defect classification models on diverse 

datasets. Furthermore, owing to ownership rights and confidentiality concerns, 

electronic wafer designs are often inaccessible to researchers, making it difficult 

to obtain crucial resources for analysis. 

2. Preparation of data: To ensure the accurate classification of defects, it is crucial 

to identify and implement appropriate methods for data preparation before the 

training and testing phases of the deep learning-based model. 

3. Investigation of deep learning-based model for classification of mixed-type 

defects: It is important to assess the capability of the deep learning-based model 
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to accurately classify multiple defects within a single wafer, particularly when 

dealing with mixed types of wafer defect patterns. 

4. Achieving high classification performance: It is essential to identify effective 

methods to achieve high classification performance using deep-learning-based 

models. 

5. Overcoming performance problems: It is necessary to find solutions to address 

performance problems, such as memory limits during the pre-processing of data, 

training, and evaluation of the DL model. 

These challenges were mapped using the following questions: 

1. What are the appropriate methods for addressing class imbalance issues in an 

available dataset? 

2. What are the appropriate methods for preparing data before the training and 

testing phases of a DL model? 

3. How can mixed-type wafer defect patterns be generated? Can the DL model 

accurately classify multiple defects on a single wafer? 

4. What are the methods for achieving high classification performance using deep 

learning-based classification models? 

5. How can performance problems such as memory limits that may appear during 

the pre-processing of the data, training, and evaluation of the DL model be 

addressed? 

Aims and Objectives of the Study 

This study aims to revolutionize the classification of silicon wafer defects by 

developing an automated system that surpasses the limitations of traditional methods. A 
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deep convolutional neural network architecture is employed as a model for classifying 

single and mixed types of wafer defects using wafer map images.  

The approach involves data pre-processing and augmentation to enhance the accuracy of 

defect classification, reduce false positives and false negatives, and improve overall 

manufacturing efficiency. The implementation of this system can bring about significant 

implications for the semiconductor industry, including enhanced quality control, cost 

reduction, increased productivity, and improved customer satisfaction by achieving the 

objectives outlined below. 

Therefore, this aim is achieved through the following objectives: 

RO1: Produce a new, balanced wafer map defect dataset that includes various types 

of defects. Address the issues present in the current dataset, such as class imbalance, 

to ensure a more representative and balanced dataset for training and evaluation. 

RO2: Publish the dataset to provide researchers with a representative and reliable 

resource for conducting in-depth studies and advancing the field of wafer map defect 

analysis. 

RO3: Develop and deploy a customized DL model for accurate classification of wafer 

defects in an autonomous system that surpasses the performance of existing methods 

by achieving high precision and accuracy in categorizing different types of defects 

present on wafers. 

RO4: Improve the DL model's capability to accurately classify mixed types of defect 

patterns in a single wafer map by developing techniques to address the complexity 

and variability associated with mixed-type defects, thereby achieving precise 

classification outcomes. 



12 
 

RO5: Enhance the processing speed and efficiency of the DL classification model 

and overcome performance limitations by employing parallel computation techniques 

such as Compute Unified Device Architecture (CUDA).  

Motivation And Significance of The Study 

This study aims to revolutionize wafer defect classification using deep learning 

techniques. Traditional methods have limitations in accuracy and efficiency, leading to 

quality control issues, increased costs, and decreased productivity. The available dataset 

also has issues such as class imbalance and limited labelled data, affecting classification 

accuracy and efficiency. 

The proposed automated pattern classification system for wafer defects called 

"DefectClassifierX" utilizes deep learning, specifically a deep CNN architecture, to 

accurately classify both single and mixed types of wafer defects using wafer map images. 

The study employs modern techniques like data preprocessing and augmentation to 

overcome dataset problems, improve defect classification accuracy, reduce false positives 

and false negatives, and enhance manufacturing efficiency. 

Implementing this system has significant implications for the semiconductor industry. It 

enhances quality control by accurately identifying and rectifying defects, increasing 

productivity through faster defect classification and allowing for timely interventions. 

Ultimately, it improves customer satisfaction by delivering high-quality electronic 

components. 

The study's specific goals include producing a new and balanced wafer map defect 

dataset called "WM-300K+ wafer map [Single & Mixed]" for single and mixed types of 

defect patterns, publishing it to advance the field, developing and deploying a customized 

deep learning model for accurate classification, improving the model's capability to 
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handle mixed-type defects, and enhancing process speed and efficiency through CUDA. 

This study has the potential to transform wafer defect classification, benefiting the 

semiconductor industry with enhanced quality control, cost reduction, increased 

productivity, and improved customer satisfaction. 

Research Scope and Outlines 

The research scope of this study is to create an accurate and effective system for 

classifying defects in silicon wafers through the application of DL techniques based on 

CNN that leverages wafer map images as input data. Various techniques for data 

preprocessing and augmentation are incorporated in the proposed methodology to 

enhance the classification of single or mixed types of wafer defect patterns. As a result, 

the baseline performance exceeds 90% accuracy. However, this research aims to achieve 

model performance with a maximum error rate of 10%. Therefore, we are introducing a 

production-ready software model solution. The "WM-811k" dataset is utilized, which 

includes single or mixed defect patterns and employs different strategies for data 

preprocessing to address imbalanced class issues. a new balanced wafer map defect 

dataset that includes various types of single and mixed defects will be published via the 

Kaggle website4.   

The study will present an application that takes input images of defects and outputs their 

respective defect classes. The application will be designed to be user-friendly, efficient, 

and reliable for seamless integration into the manufacturing process. 

 

4 The Kaggle website is an online platform for data science and machine learning that hosts a wide range 
of datasets.  

https://www.kaggle.com/
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Thesis Organization 

The rest of this thesis is organized into several chapters. Chapter 2 discusses key 

theories and concepts related to digital images and convolutional neural networks 

(CNNs).  

Chapter 3 reviews the existing literature related to the research topic, identifies gaps or 

limitations in the existing literature, highlights areas where further research is needed. 

Chapter 4 describes the dataset used in the research, analyzes its characteristics, explains 

the data preprocessing techniques applied, presents data augmentation techniques for 

increasing defect pattern frequencies and generating mixed defect patterns, and discusses 

the categorical encoding technique used for labels or classes.  

Chapter 5 presents the proposed methodology for solving the research problem, explains 

the GoogLeNet model and its components, discusses the implementation details of the 

classification framework and application development, discusses hyperparameter tuning 

and optimization techniques, and discusses evaluation metrics for assessing model 

performance.  

Chapter 6 lists the development tools and system requirements used in the research 

project, describes the experimental setup, presents the results obtained from training 

experiments, evaluates model performance, discusses memory limit issues encountered 

during experiments and their solutions, analyzes and discusses results in comparison with 

previous research findings.  

Chapter 7 summarizes the contributions made by the research study, discusses limitations 

faced during the research project, proposes potential future research directions or 

extensions, and provides a concise conclusion summarizing key findings and outcomes 

of the study. 



15 
 

Preliminaries 

In this chapter, an overview of key theories and concepts related to the topic are discussed, 

including digital images and convolutional neural networks. 

Digital Images 

Digital images play a vital role in the digital information system and contemporary 

communication because of their capacity to visually depict and graphically convey 

information. Within computer vision, a digital image is formed through the amalgamation 

of an illumination source with the reflection of light rays from said source onto the scene 

being recorded [35]. A digital image can be described mathematically as a function  

𝑓 (𝑥, 𝑦), of coordinates (x, y). The value assigned to each coordinate represents the 

intensity or amplitude of the image at that point. Each element in the image is referred to 

as a pixel and holds information regarding color or intensity as shown in Figure 6.  

 

Figure 6: The RGB representation of digital image, explaining the color channels used in pre-

processing raw images for CNN-based defect classification. 

Typically, color information is represented using color models such as RGB, CIELAB, 

XYZ or CMYK [36]. RGB color space is an 8-bit depth where each pixel is represented 

as a tuple as demonstrated in the following equation [37]: 

〈𝑅, 𝐺, 𝐵〉 ∈ {0 … 255}3  (1) 

Where R, G and B present the red, green and blue channel values for the pixel 

respectively. The values range for each channel is from 0 to 255. 
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Convolutional Neural Network 

Artificial Neural Network (ANN), inspired by the structure and function of 

biological neurons in the human brain serves as the foundation for ANN. The human 

nervous system, which consists of specialized cells known as "neurons," is responsible 

for processing sensory information [38]. In ANN, each neuron receives input multiplied 

by a specific weight, influencing the computation performed by that particular unit. An 

instance of a neuron in an ANN is referred to as a "perceptron" [27]. 

The perceptron, a basic ANN developed by Frank Rosenblatt in 1958, is 

composed of multiple input nodes and one output node, as depicted in Figure 7 [39]. 

 

Figure 7: The architecture of a single perceptron of ANN, illustrates the fundamental building 

block of neural network. 

ANN commonly consist of several layers, namely the input layer, hidden layers, 

and output layer. Each of these layers is composed of multiple perceptrons as depicted in 

Figure 8.  
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Figure 8: The Architecture of ANN showcasing an input layer, two hidden layers, and an output 

layer. 

The input data flow through the perceptron from the input layer to the output layer 

(forward direction) is called “Feedforward propagation”. Feedforward propagation refers 

to the process of passing input data through the network's layers in a forward direction to 

generate predictions or output. During feedforward propagation, the input data is fed into 

the first layer of the network, and the computations are performed sequentially layer by 

layer until the output layer is reached. Each layer applies a transformation to the input 

data using its weights and biases, followed by an activation function. The output of one 

layer serves as the input to the next layer until the final output is obtained. During the 

feedforward propagation phase, random initialization of weights and bias can lead to 

errors in achieving the desired output.  

A mechanism known as "Backpropagation" is employed to address this issue. The 

backpropagation algorithm works by computing the gradient of the loss function 

concerning the network parameters (weights and biases) and then updating the parameters 

in the opposite direction of the gradient. This process is repeated iteratively until the loss 

is minimized and the network produces satisfactory results. During backpropagation, the 

error is first calculated at the output layer and then propagated backwards through the 

network. The error is used to update the weights and biases in each layer, with larger 
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updates for layers that contribute more to the error. This process is repeated for each 

training example in the dataset until convergence is reached [39]. 

Back to CNN which is a class of DL was first invented by Yann LeCun and others 

in 1998. When ANN contains more than three layers, it is referred to as a deep learning 

algorithm.  CNN is typically used in supervised learning tasks. In supervised learning, the 

CNN is trained using labelled data, where each input sample is associated with a 

corresponding target or output label. The goal of the CNN is to learn a mapping between 

the input data and the corresponding output labels.  CNN can handle data in the form of 

arrays like RGB images. CNN can extract input information (features extraction) 

automatically by-passing inputs to its layers [40]. The term convolutional in CNN refers 

to the usage of convolutional layers to extract spatial features from images, making them 

more efficient and effective for image-related tasks than ANN. 

The CNN typically consists of an input layer, hidden layers and an output layer. 

The hidden layers include one or more layers that perform convolutions as shown in 

Figure 9. 

 

Figure 9: The architecture of CNN. 

 Feedforward propagation in CNN is the same as in ANN however, there are some 

differences in the specific operations performed in each layer of a CNN compared to an 

ANN, but the core principles of feedforward propagation remain the same. It involves 

passing the input data through various layers, such as convolutional layers, pooling layers, 
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and fully connected layers while applying activation functions and weight parameters.  

Also, the backpropagation phase in CNN follows the same general steps as in Artificial 

Neural Networks (ANNs) [41]. 

The steps of backpropagation in CNNs are as follows [41]: 

1.  Forward Pass: Perform a forward pass through the network by feeding the input 

data and calculating the output of each neuron layer by layer by performing 

specific operations, such as convolution, activation, and pooling, to generate 

intermediate outputs. 

2. Loss Calculation: Compute the loss or error between the predicted output and the 

actual target output using a suitable loss function, such as categorical cross-

entropy (CCE) for classification. The CCE is calculated by the following 

Equation: 

𝐶𝐶𝐸 =  − ∑ 𝑡𝑖 log(𝑠𝑖)

𝐶

𝑖

 (2) 

Where C is the number of classes, 𝑡𝑖 is the target prediction for class i and 𝑠𝑖 is 

the probability for i class. 

3.  Backward Pass: The backward pass is where the actual backpropagation happens. 

It involves calculating the gradients of the loss concerning the parameters 

(weights and biases) of the CNN. 

4. Gradient Calculation and Weight Update: Propagate the gradients backwards 

through the layers, calculating the gradients of the loss concerning the weights 
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and biases of each neuron. Update the weights and biases using an optimization 

algorithm to minimize the loss. 

5. Repeat steps 1-4: The forward pass, loss calculation, backward pass, and weight 

update steps are repeated iteratively for a certain number of epochs or until 

convergence is achieved. 

Each layer in CNN performs specific operations on the input data, extracting 

relevant features and transforming the information [40]. These layers have their 

functionality as follows: 

1. Convolutional Layer: 

It consists of a collection of learnable filters called "kernels". The inputs passe 

through these filters as tensors5 with a shape of (number of inputs) × (input height) 

× (input width) × (input channels) to generate the output feature maps by 

performing a dot product between the kernels and the inputs with the same size as 

the kernels. This operation covers all elements in the input by sliding the filter 

over the element of the input with a fixed value known as "stride". The dimension 

of filters depends on the number of channels in input. For example, if the input is 

an RGB image (has 3 dimensions reflecting red, green, and blue channels) then 

kernels will have a depth of three. When the kernel size does not cover the whole 

image, padding can be added to extend the processing area and cover all pixels in 

the input image [42]. The convolution operation for a given RGB image 𝐼 with 

three channels 𝐶 = 3 , a set of kernels 𝐾 of a dimension 𝑘1 × 𝑘2 and biases 𝑏  is 

calculated by the following equation: 

 

5 A tensor is a concept in machine learning to organize and represent data such as multidimensional 
array. 
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(𝐼 ⊗ 𝐾)𝑖,𝑗 = ∑ ∑ ∑ 𝐾𝑚,𝑛,𝑐 ⋅ 𝐼𝑖+𝑚,𝑗+𝑛,𝑐 + 𝑏
𝐶

𝑐=1

𝑘2−1

𝑛=0

𝑘1−1

𝑚=0
 (3) 

The output size of the convolution is calculated by the following Equation: 

𝑇ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑊 − 𝐹 + 2𝑃

𝑆
+ 1 (4) 

Where 𝑊 represent the width of a square input image,  𝐹 represent the spatial size 

of the kernel, 𝑃 represent the padding amount and 𝑆 represents the sliding size. 

 Figure 10 shows an example of converting 4 𝑏𝑦 4 image to 2 𝑏𝑦 2 image by 

applying dot product for the input image with filter 2 𝑏𝑦 2 with zero-padding and 

sliding size of 2. 

 

Figure 10: An illustration of 4x4 to 2xrios image conversion using a 2x2 filter and zero-padding. 

2. Pooling Layer: It is used to sample/shrink the feature maps to extract important 

features by using pooling functions like Average Pooling, which takes the average 

pixel value for each patch6, Min Pooling, which takes the minimum pixel value, 

 

6 Patch mean here the set of pixels that the pooling operation will apply on it and its always has a size 
less than feature map. 
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or Max Pooling, which takes the maximum pixel value [43]. Figure 11 illustrates 

the operation of these functions. All three types of pooling operations are 

commonly used in CNN to reduce the spatial dimensions of feature maps and help 

prevent overfitting. By reducing the size of feature maps, pooling operations also 

help to decrease the computational complexity of subsequent layers in the 

network. 

 

Figure 11: An illustration of pooling operations types in CNN. 

3. Activation layer: The activation layer comes after all layers of CNN and consists 

of the activation function, which determines whether or not to activate the neuron. 

This operation allows CNN to adjust weights and biases, improving the learning 

phase (back-propagation) [44]. There is a common function associated with CNN 

called the rectified linear activation function (ReLU), as visualized in Figure 12. 

 

Figure 12: Visualization of ReLU activation function. 
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ReLU gained its popularity due to its phenomenal performance within CNN. The 

ReLU function converts all values to positive numbers as expressed in the 

following equation [45]. 

𝑓(𝑥) = max (0, 𝑥) (5) 

4. Fully connected layer: This layer represents the classifier of CNN. it’s located at 

the end of CNN where each node of this layer is connected to all nodes of the 

previous layer as shown in Figure 13. It is responsible for learning and mapping 

the high-level features extracted by the preceding convolutional and pooling 

layers to the desired output classes or predictions. 

 

Figure 13: The Fully-connected layer, an essential component in CNN for finalizing the 

classification of defects. 

 The input of this layer is flatted into a one-dimensional array and then performs 

the calculation as in CNN feedforward propagation. The calculation is repeated 

for all layers and then an activation function called the “softmax activation 

function” is used to calculate the probability of the input to obtain the particular 

class. The softmax activation function formula is as follows [27]: 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗

 (6) 
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Where the 𝑧 represent the vector of input, the 𝑒𝑧𝑖 represent the exponential of 𝑖 

element of the 𝑧 and the  𝑘 represents the number of classes. 

5. Dropout layer: This layer is a regularization technique used to prevent overfitting 

by breaking the dependencies among neurons and encouraging the network to 

learn more robust representations that generalize better to new data. It works by 

randomly setting a fraction of the nodes in a layer to 0 during training, which 

creates a new and slightly modified network architecture for each run. The dropout 

probability determines how many nodes are set to 0, and the optimal probability 

depends on the layer type. For the input layer, a dropout probability close to one 

is optimal, while for hidden layers, a probability close to 50% leads to better 

results[46]. 
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Chapter Two 

Literature Reviews 

In this chapter, an overview of relevant literature is presented. It explores existing 

research and identifies gaps in the literature that the study aims to address. 

2.1 Overview of Relevant Literature 

Several prior studies have been conducted on wafer defect classification, with 

each study incorporating different datasets, CNN architectures, and training techniques. 

In Table 2, a comprehensive overview of these studies is presented. It also includes 

details such as the utilized dataset, number of defect patterns considered in the analysis, 

whether single or mixed defects were classified, the specific CNN architecture employed 

in each study and its corresponding test accuracy for classification. 

Table 2: A comprehensive overview of the performance of different CNN models in defect 

classification. 

Ref Dataset used 

#’s defects 

patterners 

Single or Mixed 

defects 

classification 

CNN 

architecture 

Accuracy 

[47] WM-811K 8 Single 

Proposed 

architecture with 

13 layers 

93.25% 

[48] 

WM-811K and 

MixedWM38 

38  Single and Mixed 

(WM-PeleeNet) 

with 9 layers 

93.6% for 

single and 

97.5% for 

mixed 

[49] WM-811K 8 Single 

(ShuffleNet-v2) 

with 7 layers 

96.93% 
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[50] WM-811K 9 Single 

(CNN-WDI) with 

16 layers 

96.2% 

[51] Dataset-TT 12 Single 

(ResNet) with 

(VGG-16) 

96.2% 

[29] WM-811K 8 Single (ResNet-18) 95.46% 

[52] WM-811K 9 Single 

(YOLO) version 

3, 3-tiny and 4 

95.7% 

[53] MixedWM38 38 Single and Mixed (U-Net) 95.8% 

Our work 

 pre-processed 

WM-811K 

36 Single and Mixed 

(Modified 

GoogLeNet) 

99.9% 

 

Researchers in the field of wafer defect classification have made significant 

contributions to CNN architectures. While some researchers have designed their own 

CNN architectures, others have utilized existing ones. However, they face challenges 

such as imbalanced datasets and issues with overfitting and underfitting during model 

training. Researchers have employed data augmentation, regularization techniques, and 

attention mechanisms to tackle these problems. Additionally, investigations into the 

efficacy of current CNN architectures for accurately classifying various wafer defects are 

being conducted. Furthermore, semantic segmentation has been applied by some 

researchers to segment different defect patterns on wafer maps. As a result of these efforts 

from the research community improvements in accuracy and efficiency within wafer 

defect classification systems can be observed. 

Researchers have developed custom CNN architectures for classifying wafer 

defects, aiming to improve performance and efficiency. In [47], they proposed using a 

13-layer CNN to detect and classify eight known wafer map defects. The authors applied 

a median filter algorithm to remove noise from the wafer map images and resized them 
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to 224x224 pixels. A Dropout method with a probability of 0.5 was employed to address 

the overfitting problem during training. The 'WM-811K' dataset which consists of 

811,457 wafer map images including 172,950 labelled images and nine single defect 

patterns, served as the dataset for this study. The dataset was split into three subsets - 

training (60%), validation (15%), and testing (25%). The experiments conducted resulted 

in an impressive accuracy of 99.98% for detecting the presence of defect patterns on the 

wafer map. However, when it comes to classification, they achieved an average accuracy 

of 93.25%. The 'Donut' defect had a minimum average accuracy rate of 86%, while both 

the 'Edge-Ring' and 'Near-Full' defects achieved a maximum average accuracy rate of 

100%. 

Researchers have also utilized existing CNN architectures like 'PeleeNet', 

'ShuffleNet-v2', and 'CNN-WDI' for the classification of wafer defects. By adapting these 

models specifically for this task, researchers intend to capitalize on their strengths and 

enhance performance within this specific domain. In [48], the researchers proposed a 

lightweight classifier for wafer defect classification based on a proposed CNN 

architecture called ‘’WM-PeleeNet” with nine layers derived from the 'PeleeNet' CNN 

architecture to achieve a good balance between accuracy and efficiency in wafer defect 

classification. The datasets used were the 'WM-811K' and 'MixedWM38' datasets. The 

'MixedWM38' dataset contains 38,000 wafer maps with nine single defect patterns and 

29 mixed defect patterns. A data augmentation approach was used based on convolutional 

autoencoder, GAN-based, and image transformation methods to address the unbalanced 

distribution of defect images in the datasets. The input images were resized to 224x224 

pixels to standardize the dimensions. The experiments showed that an average accuracy 

of 93.6% was achieved for single wafer defect patterns, with the minimum average 
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accuracy for classifying the 'Local' defect being 92.2%, and the maximum average 

accuracy for classifying the 'Edge-ring' defect being 97.6%. Also, for mixed types of 

wafer defects using the 'MixedWM38' dataset, the experiments showed an average 

accuracy of 97.5%, with the minimum average accuracy for classifying the 'Center with 

Edge-Ring with Scratch' defect being 93.4%, and the maximum average accuracy for 

classifying the 'Donut with Edge-Ring with Scratch' defect being 100%.  

In [49], a silicon wafer defect identification and classification model was proposed 

by researchers. This model consists of a pre-trained deep transfer learning model called 

ShuffleNet-v2 with seven layers using CNN architecture. It achieves an overall accuracy 

of 96.93%, precision of 95.40%, recall of 96.26%, and F1-score of 95.75% in classifying 

the defects. The training and testing phase utilized the 'WM-811K' wafer dataset, with 

data augmentation performed using a six-layer convolutional autoencoder CNN model. 

The total number of images used after data augmentation was 19,707, representing nine 

different patterns for wafer defects. However, because it is focused on being lightweight, 

the ShuffleNet-v2 may sacrifice some accuracy to achieve faster inference time and lower 

computational cost. 

Furthermore, in [50] the researchers proposed a deep learning-based CNN for 

automatic wafer defect identification with 16 layers. The model utilizes convolution 

layers to extract features and incorporates data augmentation and regularization 

techniques to enhance classification performance. Experimental results demonstrate that 

the model surpasses previous machine learning-based models, achieving an average 

classification accuracy of 96.2% on a wafer dataset 'WM-811K' consisting of nine wafer 

defect patterns. Methods such as image flipping, shifting, rotating, and zooming were 

applied during augmentation to address the class-imbalance problem in the dataset. 
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However, no mention was made regarding how they addressed the overfitting problem 

associated with their CNN model's high accuracy. 

The researchers proposed an automatic defect classification system for wafer 

defect identification and classification. In, [51] the researchers present a system that 

utilizes DL techniques, specifically a ResNet101-based CNN model that was pre-trained 

on the ‘ImageNet’ dataset. For the sizing classification of two specific classes, the system 

employs a single-shot detection architecture based on VGG-16. The research utilized a 

dataset consisting of 8 defect classes, with 2 subclasses representing similar defects but 

varying in sizes. Data augmentation techniques were implemented to expand the dataset 

size. The obtained results showed a top-1 accuracy of 91.1% and a top-3 accuracy rate of 

96.2%, with each class being correctly classified at least 69% of the time. The study 

acknowledges that the used dataset was relatively small and nonuniform. Future studies 

will explore employing advanced CNNs on larger datasets. 

Some researchers have modified the existing CNN architecture by replacing 

certain layers with different algorithms to improve and increase the accuracy of defect 

classification in the system.  In [29], researchers propose a DL method that leverages the 

attention mechanism and cosine normalization to learn robust knowledge from 

imbalanced datasets. They introduce an improved convolutional attention module called 

CBAM to enhance the representation capabilities of the CNN model. They use the 

ResNet-18 CNN model with an improved convolutional block attention module (CBAM). 

The proposed method achieves an average accuracy of 95.46% on the imbalanced ‘WM-

811K’ dataset with nine wafer defect patterns. The researchers propose the use of a cosine 

normalization algorithm as a replacement for the fully connected layer to address quantity 

distribution imbalance. The fine-tuning of the classifier was achieved by minimal iterative 
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training which decreased the quantitative distribution sensitivity. Resolving the issue of 

imbalanced datasets may facilitate the implementation of the algorithm in actual 

manufacturing. 

Some researchers have investigated the performance of several current CNN 

architectures in wafer defect classification. This investigation aims to evaluate the 

effectiveness of these architectures in accurately classifying different types of wafer 

defects. In [52], researchers focus on using DL approaches for automated wafer defect 

detection in semiconductor manufacturing. This study emphasizes the importance of 

defect localization by evaluating the performance of ‘YOLOv3’ and ‘YOLOv4’ object 

detection models in accurately locating and classifying wafer defects. The dataset ‘WM-

811K’ was used with nine wafer defect patterns and input wafer images were resized to 

416x416 dimensions. The results show that these models achieve over 95.7% 

classification accuracy in real-time. Other architectures like ‘ResNet50’ and 

‘DenseNet121’ were also evaluated for defect classification but lacked localization 

abilities. The study highlights the significance of defect detection for quality management 

and yield improvement in semiconductor manufacturing. It discusses the effectiveness of 

‘YOLOv4’ in defect localization and classification, with an average F-score of 0.92. The 

challenges in training DL models for wafer defect detection and the trade-off between 

underfitting and overfitting are also addressed in their study. 

Finally, other researchers have used semantic segmentation in the field of image 

processing and computer vision. This technique involves dividing an image into multiple 

parts or regions and assigning a semantic label or category to each region. This technique 

is typically implemented using CNN. in [53]  the researchers proposed a new framework 

for segmenting different defect patterns on wafer maps using a semantic segmentation 
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approach, particularly when multiple defect types are mixed on the same wafer. They 

used ‘U-NET’ CNN architecture which consists of an encoder path that captures the 

contextual information and a decoder path that recovers the spatial information. The 

proposed method works well on single and known/unknown mixed types of defects. The 

authors extract defects from the single-defect wafer map of the ‘MixedWM38’ dataset to 

generate single-defect pixel-level labels. They then generate a mixed defect pattern 

dataset suitable for semantic segmentation using single-defect wafer maps and labels. The 

proposed method achieves an average accuracy of over 97% on the test set of their 

synthetic dataset and 95.8% on the ‘MixedWM38’ dataset when using the trained model 

for testing. This study addresses the challenge of identifying and distinguishing complex 

defect patterns that arise when different defect types coexist on the same wafer. This can 

be a difficult task due to the complexity and variability of mixed-type defects. 

2.2 Gaps In the Literature 

In the current literature on wafer defect classification, there are notable gaps that 

require attention. One of the main challenges is dealing with multiple defect types on the 

same wafer which makes accurately classifying each defect difficult. The overlapping or 

mixed nature of different defect types can lead to ambiguity and confusion in the 

classification process. Developing effective algorithms and techniques to handle such 

complex scenarios is crucial for improving the accuracy of wafer defect classification. 

However, few studies have classified mixed types of wafer defects, indicating a need for 

further investigation. 

Moreover, some studies have attempted to address this challenge by performing complex 

tasks for data augmentation. However, not all input wafer images require such complex 

methods for data augmentation. In some cases, the input wafer images may be relatively 
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simple, and simpler data augmentation techniques may be more appropriate. Therefore, 

further research is required to identify the most effective data augmentation techniques 

for different types of wafer defect images. 

There is a need to address the lack of information on the variability of defect 

patterns in the literature. Defects can have various characteristics and appearances which 

makes it difficult to create a reliable classification model. The differences in size, shape, 

texture, and intensity of defects make it even more challenging to classify them correctly. 

Advanced feature extraction methods should be explored along with innovative 

approaches that can accurately capture and represent the wide range of defect patterns to 

overcome this gap. 

Furthermore, the absence of standardized datasets for assessing and comparing 

classification methods makes it challenging to evaluate objectively CNN model 

performance and determine the most effective methods. The creation of standardized 

datasets covering a wide range of defect types would significantly aid fair comparisons 

and advancements in wafer defect classification research. Addressing these gaps in the 

literature will contribute to the advancement of wafer defect classification techniques and 

pave the way for more reliable and efficient defect classification and quality control 

processes in semiconductor manufacturing.  
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2.3 Dataset and Data Pre-processing  

This chapter focuses on the dataset used in the study. It provides a description and analysis 

of the dataset, highlighting its characteristics. The data pre-processing techniques 

employed are explained, including data cleaning and extracting, converting images to 

RGB format, and image resizing. Additionally, data augmentation techniques are 

discussed, such as increasing defect pattern frequencies and using a mixed defect patterns 

generator. The chapter concludes with a discussion on categorical encoding techniques. 

2.3.1 Dataset Description and Analysis 

In this study, a dataset called “WM-811k” 7 was used to derive a new balanced dataset. 

This dataset available under the public domain on the Kaggle website consists of nine 

distinct patterns of wafer defects [54]. Table 3 provides detailed information about wafer 

maps, including their visual representation, size, identification details, usage labels, and 

the types of defects they may exhibit in this dataset. 

Table 3: The description of columns in the “WM-811K” dataset. 

# Column Name Column Description Column Type 

1 waferMap 

A two-dimensional array presentation for an 8-bit 

image for a wafer map. 

2d array 

2 dieSize 

The size of the die in the wafer is in millimetres (die 

width * die height). 

Float (64 bits) 

3 lotName 

Identification string for wafer fabrication process batch 

number. Many wafer maps can hold the same lotName. 

string 

4 waferIndex Identification number for wafer map. Float (64 bits) 

 

7 The dataset available under public domain on Kaggle website (source: 
https://www.kaggle.com/datasets/qingyi/wm811k-wafer-map) 

https://www.kaggle.com/datasets/qingyi/wm811k-wafer-map
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5 trianTestLabel 

Label to determine if the rows are used for training or 

testing processes. (Test, Training) 

string 

6 failureType 

Wafer defects type. (Center, Donut, Edge-Loc, Edge-

Ring, Local, Near-full, None, Random and Scratch) 

1d array 

 

Notably, the "waferMap" column in our dataset represents wafer map images. These 

images are stored as two-dimensional arrays, with each pixel being represented by an 8-

bit unsigned integer, as shown in Figure 14. 

 

Figure 14: Visualization of wafer map representation with color map value from a dataset. 

The color map used for visualizing the wafer map image comprises three values 

according to Equation 7 that helps in identifying the defect patterns and their distribution 

in the wafer map, which is crucial for accurate defect classification using CNN models. 

𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 = {

0 →  𝑁𝑜𝑛 − 𝐷𝑖𝑒 𝐴𝑟𝑒𝑎 (𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑜𝑟 𝑛𝑜𝑛 − 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛)
1 → 𝐷𝑖𝑒 𝑃𝑎𝑠𝑠 𝑇𝑒𝑠𝑡 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 (𝑛𝑜 𝑑𝑒𝑓𝑒𝑐𝑡𝑠)

2 → 𝐷𝑖𝑒 𝐶𝑜𝑛𝑡𝑎𝑖𝑛 𝐷𝑒𝑓𝑒𝑐𝑡 (𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑔𝑖𝑜𝑛)
 (7) 

 

The dataset contains a total of 811,457 wafer maps. However, it is worth noting that 

approximately 79% of these wafer maps do not have any pattern label for defect type or 
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have “none” pattern label as shown in the histogram graph of failure types in Figure 15. 

A total of 25,519 wafer maps in the dataset have defect pattern labels. 

 

Figure 15: Histogram of failure types, showcasing the distribution of different defect patterns in 

the dataset. 

Additionally, by examining the frequency distribution of defect patterns in the 

dataset  for wafer maps with defect pattern labels as depicted in Figure 16, we can observe 

significant variations across different types of defect patterns. Moreover, it is important 

to highlight that the wafer maps arrays exhibit dimensions spanning across 632 unique 

values. Consequently, considering these variations in both defect pattern frequencies and 

wafer map dimensions becomes crucial during the data pre-processing phase to ensure 

accurate classification of defects using our proposed model. 
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Figure 16: Visualization of Defect Patterns and their frequency in the "WM-811K" dataset. 

2.3.2 Data Pre-processing 

Data pre-processing is essential to prepare the dataset for analysis and modelling, 

ensuring more accurate and reliable results. This becomes even more important in the 

context of a dataset that has variations in defect pattern frequencies and wafer map 

dimensions. The pre-processing methods include data cleaning, extraction, converting 

wafer map images to RGB format, and resizing these images to 56 𝑥 56 dimensions. The 

data pre-processing phase includes several steps, as demonstrated in Figure 17. 

Additionally, Figure 17 illustrates the other steps to prepare data for the training and 

testing phase. 
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Figure 17: Illustration of the main steps in data preprocessing, data augmentation, and encoding 

class labels, outlining the essential preprocessing steps required for training a CNN model for 

defect classification. 

2.3.3 Data Cleaning and Extracting 

During the dataset preparation process for our deep learning model, a critical stage 

involved addressing classes that either had no defects or exhibited inaccurate defect 

patterns (failure type). These classes contained instances where the wafers showed no 

defects or where the captured defect patterns were not accurately represented. 

A decision was made to exclude these classes from further analysis to ensure the quality 

and relevance of the dataset. The primary objective was to prioritize classes that 

represented authentic defect patterns and avoid introducing any noise or misclassification 

during the training process. By removing these classes, we successfully refined the dataset 

to include only relevant defect patterns. This refinement was crucial in facilitating more 

accurate and effective training for our deep learning model. As a result, a total of 785,938 
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rows were removed from the dataset, while 25,519 rows representing genuine defect 

patterns were retained. 

This meticulous approach in dataset preparation ensures that our deep learning 

model focuses on authentic defect patterns, ultimately enhancing its ability to detect and 

classify defects with higher precision and reliability. 

2.3.4 Converting Images to RGB Format 

In this stage, the wafer map images in the dataset, which are represented in 

grayscale format, were mapped to three specific values: 0, 127, or 255. This mapping was 

done according to Equation 8, where these values corresponded to the minimum, median, 

and maximum pixel intensities, respectively. 

𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 = {
0 →  0

1 → 127
2 → 255

 (8) 

The reason behind this mapping is that the original wafer map images had pixel 

values of 0, 1, and 2. Since these values are relatively low, the resulting images would 

appear predominantly black. By mapping the pixel values to 0, 127, and 255, the images 

are adjusted to have a wider range of intensities, allowing for better visual representation 

and analysis where 0 would correspond to pure black, while a value of 255 would 

represent pure white. The value of 127 would represent a mid-grey tone, which is halfway 

between black and white. 

In the next stage of the process, each grayscale wafer map image was converted to 

an RGB image by replicating the same intensity value across all three-color channels (red, 

green, and blue) of the RGB image. The reason for this is that in grayscale images, the 

intensity value represents the brightness of the pixel, which can be interpreted as the 

amount of light in the red, green, and blue channels combined. By replicating this value 

across all three channels in the RGB image, it appears similar to the original grayscale 
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image. This conversion to RGB format allows for better visualization and analysis of the 

wafer map images, which can aid in identifying and classifying defects. 

2.3.5 Image Resizing 

The CNN typically require input images to be of a fixed size, and variations in 

image dimensions can cause issues with model training and performance. The dataset 

contains variations in wafer map image dimensions up to 632 different dimensions. One 

approach to dealing with variations in wafer map dimensions is to resize the images to a 

fixed size before feeding them into the CNN. This can be achieved using image 

processing techniques such as Bicubic interpolation, which involves using a weighted 

average of 16 neighbouring pixels to determine the value of each pixel in the resized 

image. Bicubic interpolation is based on a mathematical algorithm that uses cubic 

convolution to calculate the new pixel values based on the surrounding pixels [55], [56]. 

In this stage, each wafer map image is resized to 56 𝑥 56. Figure 18 shows a sample of 

a resized RGB wafer map image. 

 

Figure 18: A close-up view of a resized wafer map. 

2.3.5.1 Data Augmentation Techniques 

Data augmentation techniques play a crucial role in machine learning and computer 

vision tasks by artificially expanding the size and diversity of training datasets. These 
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techniques involve applying diverse transformations and modifications to existing data, 

resulting in the generation of new augmented samples. The primary objective is to 

enhance the generalization and performance of CNN models by exposing them to a wider 

range of variations and scenarios. This, in turn, strengthens their ability to handle unseen 

data while mitigating the risk of overfitting [57].  

The utilization of data augmentation techniques offers several benefits in 

addressing common challenges such as limited training data, class imbalance, and 

overfitting [58]. By introducing variations in the input data, these techniques enable 

models to learn from a more comprehensive set of examples, making them more robust 

and adaptable to different scenarios. Consequently, the models become better equipped 

to handle real-world data with diverse characteristics, leading to improved performance 

and accuracy [59], [60]. 

In this study, two approaches of data augmentation techniques were utilized to 

enhance the performance and accuracy of the classification model [61]. The first approach 

involved increasing the frequency of defect patterns by applying various transformations 

such as random rotation, random horizontal flip, and random vertical flip. This was done 

to address the class imbalance in existing defect patterns and improve the model's ability 

to generalize and perform well on unseen data. By generating additional samples through 

these transformations, the model was exposed to a wider range of variations and 

scenarios, enhancing its robustness and reducing the risk of overfitting. 

The second approach involved combining different defect patterns to generate 

mixed types of wafer defects that inherit characteristics from each original pattern or 

introduce additional features not found individually in any of them. This approach 

allowed for the creation of new samples that could not be generated through simple 
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transformations, resulting in a more diverse and representative dataset. By training the 

model on this augmented dataset, it was able to learn more complex patterns and 

generalize better to real-world data. 

Overall, these two approaches of data augmentation techniques proved to be 

effective in improving the performance and accuracy of the classification model. By 

increasing the size and diversity of the training dataset, the model was better equipped to 

handle unseen data and achieve higher accuracy rates [59], [61]. 

2.3.6 Increase Defect Patterns Frequencies 

2.3.6.1 Image Random Rotation  

It is a technique that refers to computer vision that involves randomly rotating an 

image by a certain degree within a specified range. The main steps used to rotate a pixel 

of an RGB image around its center by a specific radian angle  𝜗 (each color channel 

independently) are as follows [62], [63]: 

1. Determine the center of the image by the following equations: 

𝑐𝑥 =
𝑡ℎ𝑒 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑜𝑟𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒

2
, 𝑐𝑦 =

𝑡ℎ𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑟𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒

2
 (9) 

Where 𝑐𝑥 and 𝑐𝑦 represent the x and y coordinates of the image's center, 

respectively. 

2. Convert the rotation angle from degree to radian by the following equations: 

𝜗 =  𝜗°  ∗ (
𝜋

180
) (10) 

Where 𝜗 represents the equivalent radian angle of the degree angle 𝜗°
. 

3. Translate the coordinates so that the center of the image is at the origin of the 

transformation by the following equation: 

𝑡𝑥 = 𝑥 − 𝑐𝑥, 𝑡𝑦 = 𝑦 − 𝑐𝑦 (11) 

Where 𝑡𝑥 and 𝑡𝑦 represent the x and y of translated coordinates, respectively. 
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4. Apply the rotation transformation to the translated coordinates by the following 

equations: 

𝑟𝑥 =  𝑡𝑥 ×  𝑐𝑜𝑠(𝜗) −  𝑡𝑦 ×  𝑠𝑖𝑛(𝜗) (12) 

𝑟𝑦 =  𝑡𝑥 ×  𝑠𝑖𝑛(𝜗) +  𝑡𝑦 ×  𝑐𝑜𝑠(𝜗) (13) 

Where 𝑟𝑥 and 𝑟𝑦 represent the x and y of the rotation coordinates, respectively. 

5. Translate the coordinates back to their original position: 

𝑥′ = 𝑟𝑥 + 𝑐𝑥, 𝑦′ = 𝑟𝑦 + 𝑐𝑦 (14) 

Where 𝑥′, 𝑦′ represents the rotated coordinates of the original position, 

respectively. 

Based on the steps mentioned earlier, Pseudocode 1 provides a clear outline of the 

main procedure for rotating an RGB image by a specific angle around its center. The 

process starts by loading the input image and extracting its pixel values, which are then 

stored in a 2D array. Each point in the image is represented by coordinates (x, y), 

indicating the pixel value at that position in the form of an RGB channel vector.  

A series of calculations are performed to determine the new position for each pixel 

to carry out the rotation. This involves several key steps. First, the center of the image is 

determined. Next, the rotation angle is converted from degrees to radians. The coordinates 

are then translated to align the center with the origin, which simplifies the subsequent 

transformation equations. The rotation transformation equations are applied to obtain the 

new rotated coordinates for each pixel. Finally, the coordinates are translated back to their 

original position. By following this pseudocode, the RGB image can be effectively rotated 

around its center by the specified angle. These calculations ensure that each pixel is 

correctly positioned in the rotated image, allowing for accurate and precise 
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transformations. Figure 19 shows a sample of the RGB wafer map image and the obtained 

rotated image by an angle of π. 

Pseudocode 1 Pseudocode of RGB image rotation 

Input: original image 𝐼 , rotation angle in degrees 𝜗°  

1: Load the original image 𝐼 as a 2D array. 

2: Determine the center of 𝐼 (𝑐𝑥, 𝑐𝑦) by the Equation 9. 

3: Convert the rotation angle into a degree 𝜗° to radian by the Equation 10.  

4:  Create a new blank image 𝐼 to hold the rotated image pixels with the same dimensions 

of 𝐼. 

5:  For x in the range of [0, 𝐼 𝑤𝑖𝑑𝑡ℎ − 1]: 

6:   For y in the range of [0, 𝐼 ℎ𝑒𝑖𝑔ℎ𝑡 − 1]: 

7: 

 

Translate the coordinates 𝑥, 𝑦 so that the center of the image is at the 

origin by Equation 11 to obtain 𝑡𝑥 and  𝑡𝑦. 

8: 

 

Apply the rotation transformation by Equations 12 and 13 to the translated 

coordinates 𝑡𝑥, 𝑡𝑦 to obtain 𝑟𝑥 and 𝑟𝑦. 

9: 

 

Translate the coordinates back to their original position by Equation 14 to 

obtain 𝑥′ and 𝑦′. 

10:  Set the pixel value of 𝐼 at (𝑥, 𝑦) by the pixel value of 𝐼 at (𝑥′, 𝑦′ ) 

11:  End For 

12: End For 

13: Return 𝐼 
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(A) (B) 

Figure 19: A comparison of the original RGB wafer image (A) and the rotated RGB image by 

π (B). 

2.3.6.2 Image Random Horizontal and Vertical Flip 

During the data augmentation process, random horizontal and vertical flip 

transformations were applied to the images. These transformations are applied 

independently to each pixel in the image, resulting in a horizontally or vertically flipped 

version of the original image [64]. This approach was used to generate additional training 

data and increase the diversity of the dataset, which is essential for training deep learning 

models. 

Pseudocode 2 outlines the implementation to flip an RGB image. The pseudocode 

takes three inputs: the original image, the probability, and the flip type. The algorithm 

allows for flipping an RGB image horizontally or vertically based on the specified flip 

type and probability. The resulting flipped image will have the same dimensions as the 

original image. The probability is used to introduce randomness and variability into the 

output, which can be useful in generating diverse and realistic results.  
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Pseudocode 2 Pseudocode of RGB image flipped 

Input: original image 𝐼 , probability 𝑝, Flip type 𝑓𝑡𝑦𝑝𝑒 

1: Load the original image 𝐼 as a 2D array. 

2:  Create a new blank image 𝐼 to hold the flipped image pixels with the same dimensions 

of 𝐼. 

3: Generate a random number 𝑟 in the range of [0,1]. 

4: If 𝑟 is greater than 𝑝 , then exit, otherwise continue. 

5: If 𝑓𝑡𝑦𝑝𝑒 equal to Horizontal, then: 

6:   For x in the range of [0, 𝐼 𝑤𝑖𝑑𝑡ℎ − 1]: 

7:   For y in the range of [0, 𝐼 ℎ𝑒𝑖𝑔ℎ𝑡 − 1]: 

8: 

 

Maps the pixel at coordinates (x, y) in 𝐼 to the pixel at coordinates (x, 

𝑤𝑖𝑑𝑡ℎ - y - 1) in 𝐼. 

9:  End For 

10:  End For 

11: If 𝑓𝑡𝑦𝑝𝑒 equal to Vertical, then: 

12:  For x in the range of [0, 𝐼 𝑤𝑖𝑑𝑡ℎ − 1]: 

13:  For y in the range of [0, 𝐼 ℎ𝑒𝑖𝑔ℎ𝑡 − 1]: 

14: 

 

Maps the pixel at coordinates (x, y) in 𝐼 to the pixel at coordinates (ℎ𝑒𝑖𝑔ℎ𝑡 

- x – 1, y) in 𝐼. 

15:  End For 

16:  End For 

17: Return 𝐼 

 

Figure 20 shows a sample of an RGB wafer map image and the obtained flipped 

image vertically and horizontally. As can be seen, flipping the image horizontally or 
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vertically can result in a significant change in the appearance of the wafer map. This 

transformation can help to increase the robustness of the model by exposing it to different 

variations of the same image. 

    

(A) (B) (C) 

Figure 20: A comparison of the original RGB wafer image (A) and its vertically (B) and 

horizontally (C) flipped versions. 

2.3.7 Mixed Defect Patterns Generator 

Incorporating multiple defects' patterns is a useful technique for improving the 

performance and accuracy of deep learning models in real-world scenarios. By combining 

existing patterns in novel ways, a comprehensive collection of training data is created, 

enhancing the representation of the various possible patterns that a model may face during 

practical applications. This can help to improve the model's ability to generalize and 

perform well on unseen data [45]. 

The maximum pixel value from all input images at the same position is taken since 

the pixel value that represents a defect has a maximum value of 255. Pseudocode 3 

presents the pseudocode for a mixed defect patterns generator algorithm. This algorithm 

takes a list of input images as input and generates a mixed image by setting each pixel 

value of the mixed image to the maximum pixel values of all input images at each 

corresponding location. The resulting mixed images will have the same dimensions as the 

input images and will contain the highest pixel values from each input image. 
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Pseudocode 3 Pseudocode of mixed defect patterns generator algorithm. 

Input: input images (𝑖𝑛𝑝𝑢𝑡𝑖𝑚𝑎𝑔𝑒𝑠) 

1:  Create a new blank image 𝑀 to hold the mixed image pixels with the same 

dimensions as the first image of 𝑖𝑛𝑝𝑢𝑡𝑖𝑚𝑎𝑔𝑒𝑠 

2: For x in the range of [0, 𝑀 𝑤𝑖𝑑𝑡ℎ − 1]: 

3:   For y in the range of [0, 𝑀 ℎ𝑒𝑖𝑔ℎ𝑡 − 1]: 

4:  Obtain the maximum pixel value 𝑝𝑖𝑥𝑒𝑙max 𝑣𝑎𝑙𝑢𝑒at (𝑥, 𝑦) for all 𝑖𝑛𝑝𝑢𝑡𝑖𝑚𝑎𝑔𝑒𝑠. 

5:  Set 𝑀[𝑥, 𝑦] to 𝑝𝑖𝑥𝑒𝑙max 𝑣𝑎𝑙𝑢𝑒 

6:  End For  

7: End For 

8: Return 𝑀 

 

By using this approach, a diverse and representative dataset can be created, which 

is essential for training deep learning models effectively. The resulting mixed defect 

pattern images can help expose the model to a wider range of variations and scenarios, 

enhancing its robustness and reducing the risk of overfitting. 

This approach allows for the exploration and generation of novel defect patterns 

that may occur in real-life situations. For instance, by combining two types of defects, 

new defect patterns can be created, as indicated in Table 5. Similarly, the combination of 

three defects yields additional new defect patterns, as shown in Table 6. Furthermore, 

when four defects are combined, it leads to the creation of even more new defect patterns, 

as illustrated in Table 7. 
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Table 4: Description of mixed defect patterns in level two, detailing the combination of two 

types of defects found in different regions of the wafer. 

# 
Mixed Defect Pattern Name and 

Symbol 
Mixed Defect Pattern Description 

1 Center with Edge-Loc 

(C+EL) 

This defect pattern combines defects found in the center 

region of the wafer with defects located along the edge but 

not in the very outer rim. It represents defects that occur 

both at the wafer's center and middle edge. 

2 Center with Edge-Ring 

(C+ER) 

This pattern merges defects from the center with those 

along the very outer rim or edge of the wafer. It indicates 

issues affecting both the central area and the wafer's 

perimeter. 

3 Center with Loc 

(C+L) 

This combines defects seen in the wafer's center with those 

located elsewhere but not near the edge. It shows problems 

in the middle as well as other scattered locations. 

4 Center with Scratch 

(C+S) 

This pattern unites defects in the center with scratches or 

abrasions found elsewhere on the wafer. It points to flaws 

at the core along with scratch-type defects randomly 

distributed. 

5 Loc with Scratch 

(L+S) 

This merges defects located elsewhere on the wafer with 

scratches. It represents randomly positioned defects 

accompanied by scratches in various locations. 

6 Donut with Scratch 

(D+S) 

This combines donut-shaped defects with scratches 

anywhere on the wafer. It signifies flaws forming a donut 

pattern plus additional scratch. 

7 Donut with Edge-Loc 

(D+EL) 

This brings together donut defects with those along the 

edge but not the outer rim. It shows donut issues as well as 

defects on the middle edge. 

8 Donut with Edge-Ring 

(D+ER) 

This merges donut defects with those along the very outer 

rim. It points to donut flaws accompanied by problems at 

the wafer's perimeter. 

9 Donut with Loc 

(D+L) 

This combines donut defects with those found elsewhere on 

the wafer but not near the edge. It represents donut issues 

together with randomly located defects. 

10 Edge-Loc with Loc 

(EL+L) 

This merges defects located along the edge but not the rim 

with those elsewhere on the wafer. It signifies flaws on the 

middle edge together with randomly positioned defects. 

11 Edge-Loc with Scratch 

(EL+S) 

This combines defects along the edge but not the rim with 

scratches anywhere on the wafer. It shows flaws on the 

middle edge co-occurring with scratches. 

12 Edge-Ring with Loc 

(ER+L) 

This merges defects along the very outer rim with those 

elsewhere on the wafer. It represents problems at the 

perimeter along with randomly located defects. 

13 Edge-Ring with Scratch 

(ER+S) 

This combines defects along the outer rim with scratches 

anywhere on the wafer. It signifies flaws at the edge 

accompanied by scratches. 
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Table 5: Description of mixed defect patterns in level three, detailing the combination of three 

types of defects found in different regions of the wafer. 

# Mixed Defect Pattern Name Mixed Defect Pattern Description 

1 
Center with Edge-Loc with 

Scratch 

(C+EL+S) 

This pattern merges all four defect types - defects in the 

center, along the middle edge, and scratches anywhere on 

the wafer. It points to issues affecting the core, edge and 

random locations with scratches. 

2 
Center with Edge-Ring with 

Scratch 

(C+ER+S) 

This combines defects in the center, along the outer rim, 

and scratches anywhere. It represents flaws at the core and 

perimeter together with scratches across the wafer surface. 

3 Center with Edge-Loc with Loc 

(C+EL+L) 

This pattern combines defects in the center region of the 

wafer with those along the edge and at the location. It 

represents issues affecting the core, middle edge, and the 

location. 

4 Center with Edge-Ring with Loc 

(C+ER+L) 

This pattern merges defects from the center with those 

along the outer rim and at the location. It indicates issues 

affecting the central area, perimeter, and the location. 

5 Center with Loc with Scratch 

(C+L+S) 

This pattern unites defects in the center with those at the 

location and scratches. It points to flaws at the core, the 

location, and scratch-type defects randomly distributed. 

6 
Donut with Edge-Loc with 

Scratch 

(D+EL+S) 

This merges donut defects with those along the edge, at the 

location, and scratches. It signifies flaws forming a donut 

pattern, problems at the edge, the location, and additional 

scratches. 

7 
Donut with Edge-Ring with 

Scratch 

(D+ER+S) 

This merges donut defects with those along the outer rim, at 

the location, and scratches. It represents problems forming 

a donut pattern, the perimeter, the location, and scratches. 

8 Donut with Edge-Loc with Loc 

(D+EL+L) 

This combines donut defects with those along the edge and 

at the location. It shows donut issues as well as defects on 

the edge and the location. 

9 Donut with Edge-Ring with Loc 

(D+ER+L) 

This merges donut defects with those along the outer rim 

and at the location. It points to donut flaws accompanied by 

problems at the edge and the location. 

10 Donut with Loc with Scratch 

(D+L+S) 

This combines donut defects with those at the location and 

scratches. It represents donut issues, the location, and 

scratches. 

11 Edge-Loc with Loc with Scratch 

(EL+L+S) 

This merges defects along the edge, at the location, and 

scratches. It signifies flaws on the middle edge, the 

location, and scratches. 
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Table 6: Description of Mixed Defect Patterns in Level four, detailing the combination of four 

types of defects found in different regions of the wafer. 

# Mixed Defect Pattern Name Mixed Defect Pattern Description 

1 
Center with Loc with Edge-Loc 

with Scratch 

(C+L+EL+S) 

This pattern combines defects in the center region of the 

wafer with those at the location, along the edge, and 

scratches. It represents issues affecting the core, the 

location, the middle edge, and scratches. 

2 
Center with Loc with Edge-Ring 

with Scratch 

(C+L+ER+S) 

This pattern merges defects from the center with those at 

the location, along the outer rim, and scratches. It indicates 

issues affecting the central area, the location, the perimeter, 

and scratches. 

3 
Donut with Loc with Edge-Loc 

with Scratch 

(D+L+EL+S) 

This merges donut defects with those at the location, along 

the edge, and scratches. It signifies flaws forming a donut 

pattern, the location, the middle edge, and additional 

scratches. 

4 
Donut with Loc with Edge-Ring 

with Scratch 

(D+L+ER+S) 

This merges donut defects with those at the location, along 

the outer rim, and scratches. It represents problems forming 

a donut pattern, the location, the perimeter, and scratches. 

 

In total, a collection of 28 new mixed defect patterns can be generated, in addition 

to the 9 single defect patterns. These mixed defect patterns provide a broader 

representation of the possible defect variations that may be encountered in practical 

applications. By incorporating these mixed defect patterns into the dataset, the model can 

be trained to recognize and classify a wider range of defect types and combinations. 

Figure 21 showcases samples of these new mixed defect patterns, visually demonstrating 

the diverse and unique nature of these combined defects. These visual examples help to 

illustrate the effectiveness of combining different defect types to generate new and 

realistic defect patterns. 
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(A)  (B)  (C)  

Figure 21: Examples of Mixed Defect Patterns, including (A) Center with Edge-Loc, (B) Center 

with Edge-Loc with Scratch, and (C) Donut with Loc with Edge-Loc with Scratch. 

2.3.7 Categorical Encoding Technique 

Categorical encoding is a crucial process in CNN for representing categorical data 

as numerical values. One common method is one-hot encoding, where each category is 

represented by a binary vector with values of 1 or 0 based on its presence [65]. The dataset 

contains various defect patterns (classes) such as Loc, Edge-Loc, Center, and others 

which have been encoded using the one-hot encoding technique outlined in Pseudocode 

4. 

Pseudocode 4 Pseudocode of one-hot encoding algorithm 

Input: list of unique defects patterns (𝑐𝑙𝑎𝑠𝑠𝑒𝑠) 

1: Create a new list  𝐿 that holds binary representation for each class. 

2: For index equal to 0 and index less than the length of 𝑐𝑙𝑎𝑠𝑠𝑒𝑠: 

3:   Create a new vector 𝑉 of length 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 with a value of zeros. 

4:  Set the element at the index of 𝑉 to 1. 

5:  Append 𝑉 to 𝐿. 

6: End For 

7: Return 𝐿 

 

After encoding classes using one-hot encoding, each class is represented by a 

binary vector of length 36. In this representation, the index corresponding to the class has 

a value of one and all other indices have values of zero. For example: The first class 'Loc' 

is represented as [1,0,0,...,0,0] and the last class 'ER+S' is represented as [0,0,0,...,0,1]. 
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Chapter Three 

Methodology 

The proposed methodology is presented in this chapter. It outlines the overall 

approach taken in the study. The GoogLeNet model is introduced, including its inception 

modules and architecture. The implementation of the classification framework is 

explained, along with the application development and deployment process. 

Hyperparameter tuning and optimization techniques are discussed, as well as the 

evaluation metrics used. 

3.1 The Proposed Methodology 

To address the gaps in the literature discussed in Section 2.2 and based on the 

study aims and objectives discussed in Section 1.3, an automatic wafer defects 

classification based on the CNN deep learning model is presented. After performing data 

preprocessing and data augmentation techniques to address data imbalance issues and 

create new mixed defect patterns for further study. The methodology involves generating 

a new dataset and exporting it for use by researchers.  

Figure 22 demonstrates the process of selecting optimal variables using Optuna to 

train the proposed model. Various evaluation metrics are employed to assess the 

performance of the model in both training and testing, aiming to achieve accurate defect 

type predictions with minimal error. After that, the pre-trained model is deployed and 

integrated with a proposed automated pattern classification System for wafer defects 

called “DefectClassifierX”. 
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Figure 22: The Proposed Classification Framework, detailing the structure and workflow of a 

CNN-based defect classification model, from hyperparameter tuning to final output. 

3.2 GoogLeNet Model 

GoogLeNet, developed by Google researchers in 2015, is a deep convolutional 

neural network architecture specifically designed for image classification [66]. With its 

original complex structure comprising 22 layers and 9 inception modules, GoogLeNet 

utilizes multiple convolutional layers of varying filter sizes and pooling operations within 

these modules. This enables the effective extraction of features at different scales, making 

it highly effective for image classification tasks. 

In addition to its unique design, GoogLeNet also includes auxiliary classifiers as 

intermediate layers, providing additional supervision during training while addressing the 

issue of vanishing gradients. This approach helps to improve the accuracy of the model 

by reducing overfitting and improving generalization [67]. 

One of the key benefits of using GoogLeNet is its computational efficiency. This 

is achieved through the use of inception modules, which allow for efficient feature 

extraction at different scales. Additionally, GoogLeNet can combat the vanishing gradient 

problem during training, which is a common issue in deep neural networks [68]. 
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However, it's worth noting that the original GoogLeNet architecture was designed to 

handle images with dimensions of 224 x 224 and 1024 classes. To modify it for use with 

images with dimensions of 56 x 56 and 36 classes, a new fully connected layer was added 

at the end of the GoogLeNet layers that maps the 1024 classes to 36 classes. This 

modification allows GoogLeNet to be used effectively for our scenario. 

3.2 Inception Modules 

The size of important elements in the image can vary significantly. This variability 

poses a challenge when selecting an appropriate kernel size for convolution operations. 

A larger kernel is required to extract information from widely distributed objects in the 

image, whereas a smaller kernel is preferable for capturing details of less dispersed 

elements. Expanding the size of neural networks, both in terms of depth and dimensions, 

is a common approach to improve their efficiency [69].  

However, larger network sizes come with risks such as overfitting. Moreover, 

increasing network size requires more computational resources. GoogLeNet solves these 

issues by performing convolutions on input from the previous layer with different kernel 

sizes including 1x1, 3x3 and 5x5 instead of one kernel [70]. For example, for an RGB 

image with dimensions of 56x56, assuming no padding, the number of operations 

required to apply a kernel size of 5x5 is (56 − 5 + 1) × (56 − 5 + 1) × (5 × 5 × 3) ×

(3) = 22,702,400 operations. But if a kernel size of 1x1 is applied, the total number of 

operations for that filter is (56 × 56) × (3 × 16) = 2,985,984. After applying the output 

of 1x1 kernel to 5x5 kernel, the total number of operations is 2,985,984 +

((52𝑥52)𝑥 (16 𝑥 5 𝑥 5)) = 13,722,624. There is a large amount of reduction in 

computation. Pseudocode 5 outlines the pseudocode of the inception module 
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implementation where the algorithm takes input parameters as illiterates in Table 7 and 

the definition of sub-modules called “branches” are demonstrated in Table 8. 

Table 7: Description of Parameters in the Inception Module. 

# Parameter Name Parameter Description 

1 in_channels Number of input channels. 

2 branch1x1 
Number of output channels for the 1x1 convolution in the first 

branch. 

3 branch3x3reduce 
Number of output channels for the 1x1 convolution in the second 

branch (reduction). 

4 branch3x3 
Number of output channels for the 3x3 convolution in the second 

branch. 

5 branch5x5reduce 
Number of output channels for the 1x1 convolution in the third 

branch (reduction). 

6 branch5x5 
Number of output channels for the 3x3 convolution in the third 

branch. 

7 branch_pool 
Number of output channels for the 1x1 convolution in the fourth 

branch. 

 

Table 8: Description of Inception Sub-Modules, detailing the name and functionality. 

# Branch Name Branch Definition 

1 first branch (branch1) 1x1 convolutional layer that takes the in_channels as input and 

produces branch1x1 output channels. 

2 second branch 

(branch2) 

It is a sequential module that consists of two convolutional layers: 

1. A 1x1 convolutional layer with branch3x3reduce output 

channels 

2. A 3x3 convolutional layer with branch3x3 output channels 

and padding. 

3 third branch (branch3) It is a sequential module similar to branch2, with different channel 

sizes. 

4 fourth branch 

(branch4) 

It is a sequential module that consists of two layers: 

1. A max-pooling layer with a kernel size of 3x3 and stride 1, 

along with padding to maintain the spatial dimensions. 

2. A 1x1 convolutional layer with branch_pool output 

channels. 

 

Pseudocode 5 Pseudocode of Inception module algorithm 

Input: input 𝑥, in_channels, branch1x1, branch3x3reduce, branch3x3, branch5x5reduce, 

branch5x5 and branch_pool 

1: Define branches as demonstrated in Table 2.  

2: Pass 𝑥 through branch1 to obtain branch1 output. 

3: Pass 𝑥 through branch2 to obtain branch2 output. 

4: Pass 𝑥 through branch3 to obtain branch3 output. 

5: Pass 𝑥 through branch4 to obtain branch4 output. 

6: Concatenate the outputs of the four branches (branch1, branch2, branch3, and branch4) 

along the channel dimension (dimension 1) to obtain 𝑜𝑢𝑡𝑝𝑢𝑡 

7: Return 𝑜𝑢𝑡𝑝𝑢𝑡 
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3.3 The GoogLeNet Architecture 

The GoogLeNet architecture has been modified that consist of 19 layers, including 

convolutional and max-pooling layers as visualized in Figure 23. It also incorporates 

inception modules, an average pooling layer, a dropout layer, and a linear layer for the 

final output. The "BasicConv2d" layer is responsible for extracting features through 

convolutional operations from the input data. Additionally, there's the "MaxPool2d" to 

reduce spatial dimensions and multi-branch convolutional blocks known as Inception 

modules that aid in capturing different scales and types of features. Lastly, there's an 

"AvgPool2d" layer to apply average pooling to the input feature maps before using a 

dropout preceding the fully connected last layer designed to map input features to output 

classes while preventing overfitting [46]. 

 

Figure 23: The visualization of the modified GoogLeNet model architecture. 

The architecture is designed to take an input of shape [512, 3, 56, 56] and produce 

an output of shape [512, 36] as illustrated in Table 9. It's notable that the number 512 

here presents the batch size, the number 3 presents the number of input image channels 

and the numbers 56,56 represent the input image dimensions. All the convolutions, 

including the convolutions inside the inception module, use rectified linear activation. 
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Table 9: Description of layers in the modified GoogLeNet model with input and output shapes. 

# Layer Name Input Shape Output Shape 

1 BasicConv2d [512, 3, 56, 56] [512, 64, 28, 28] 

2 MaxPool2d [512, 64, 28, 28] [512, 64, 14, 14] 

3 BasicConv2d [512, 64, 14, 14] [512, 64, 14, 14] 

4 BasicConv2d [512, 64, 14, 14] [512, 192, 14, 14] 

5 MaxPool2d [512, 192, 14, 14] [512, 192, 7, 7] 

6 Inception 1 [512, 192, 7, 7] [512, 256, 7, 7] 

7 Inception 2 [512, 256, 7, 7] [512, 480, 7, 7] 

8 MaxPool2d [512, 480, 7, 7] [512, 480, 3, 3] 

9 Inception 3 [512, 480, 3, 3] [512, 512, 3, 3] 

10 Inception 4 [512, 512, 3, 3] [512, 512, 3, 3] 

11 Inception 5 [512, 512, 3, 3] [512, 512, 3, 3] 

12 Inception 6 [512, 512, 3, 3] [512, 528, 3, 3] 

13 Inception 7 [512, 528, 3, 3] [512, 832, 3, 3] 

14 MaxPool2d [512, 832, 3, 3] [512, 832, 2, 2] 

15 Inception 8 [512, 832, 2, 2] [512, 832, 2, 2] 

16 Inception 9 [512, 832, 2, 2] [512, 1024, 2, 2] 

17 AvgPool2d [512, 1024, 2, 2] [512, 1024, 1, 1] 

18 Dropout [512, 1024] [512, 1024] 

19 Fully connected [512, 1024] [512, 36] 

 

The weights of the modified GoogLeNet model will be initialized via loading the 

pre-trained weights of the original GoogLeNet model that have already captured relevant 

information from the training data from a dataset called “ImageNet”. The utilization of a 

pretrained GoogLeNet model and weight initialization from it provides a strong 

foundation for our deep learning architecture. It leverages the prior knowledge acquired 

by the pretraining process and allows us to focus on fine-tuning the model to suit our 
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specific task. By incorporating this approach, we aim to enhance the performance and 

efficiency of our model while reducing the need for extensive training on dataset [71]. 

3.4 Classification Framework Implementation 

The Classification Framework Implementation relies on the PyTorch library for 

deep learning. PyTorch is an open-source python framework developed by Facebook’s 

AI researchers for machine learning based on the Torch library using Lua language, and 

it has C++ and Python interfaces. It possesses pretty efficient memory usage, and it is 

very popular among researchers. PyTorch implements two high-level features: tensor 

computing with graphical processing unit (GPU) acceleration and deep neural networks 

based on an automatic differentiation type-based system [72]. 

 PyTorch provides a flexible and efficient way to build and train CNN. The new 

dataset obtained after data pre-processing and data augmentation is then used to train and 

validate the model using k-fold cross-validation. The data loader is an important 

component in the framework as it handles the loading and batching of the dataset for 

training and validation in each fold. By using data loaders, the framework can efficiently 

load and pre-process data in parallel, making it easier to train models on large datasets. 

The data loader also provides other useful functionalities such as shuffling the data, 

dropping the last batch if it's incomplete, and loading data in a background thread while 

the model is training [73]. 

The classification framework consists of three parts: the train function, the valid 

function, and the main code. These parts use a common variable as illiterates in Table 

10. 
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Table 10: Description of Common Variables in the Classification Framework. 
# Variable Name and Symbol Variable Description 

1 
classes number 

(𝐶𝐿𝐴𝑆𝑆𝑁𝑈𝑀) 
It defines the number of defect pattern classes 

2 batch size (𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸) 
It defines the number of samples that are processed in each 

iteration during training 

3 Device (DEVICE) It defines which device to use (CPU or GPU). 

4 Optimizer (O) 
It defines the optimizer used for updating the model's 

parameters during training. 

5 loss function (F) It defines the loss function used for the training model 

6 number of folds (𝑛𝑠𝑝𝑙𝑖𝑡𝑠) 
It defines the number of subsets into which a dataset is divided 

during cross-validation 

  

The train function, also known as train_epoch, is a crucial component of the deep 

learning model training process. Its main responsibility is to train the model for one 

epoch, which involves iterating through the dataset and updating the model's parameters 

based on the computed loss. The train_epoch function takes in several arguments, 

including the model, dataloader, loss function, and optimizer. Once these arguments are 

passed in, the function sets the model to training mode and begins iterating through the 

dataloader. For each batch of images and labels, the optimizer gradients are zeroed out 

to prevent any interference from previous iterations. The output from the model is then 

computed, and the loss is calculated using the specified loss function. To perform 

backpropagation with mixed precision training, PyTorch 'autocast ()' is used. This 

approach allows for faster training times and more efficient use of GPU resources [74]. 

Finally, the function returns the total training loss and the number of correct 

predictions. These metrics are crucial for evaluating the performance of the model during 

training and making any necessary adjustments to improve accuracy. The pseudocode for 

the train_epoch function is shown in Pseudocode 6. 
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Pseudocode 6 Pseudocode of train_epoch function 

Input: model 𝑀, data loader 𝐷, classes numbers 𝐶𝐿𝐴𝑆𝑆𝑁𝑈𝑀, batch size 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸 , 

𝐷𝐸𝑉𝐼𝐶𝐸, optimizer 𝑂  and loss function 𝐹. 
1: Initialize 𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑠𝑠 and 𝑡𝑟𝑎𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 variables to keep track of the training loss 

and the number of correct predictions. 
2: Set 𝑀 to training mode. 
3: For each input images and labels in 𝐷, do the following: 
3:  Move images and labels to 𝐷𝐸𝑉𝐼𝐶𝐸 memory. 
4:  Reshape the labels to shape of [𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸, 𝐶𝐿𝐴𝑆𝑆𝑁𝑈𝑀] 
5:  set all the gradients of the optimizer to zero. 
6: 

 
Use autocast to perform automatic mixed precision training on the device 

specified by 𝐷𝐸𝑉𝐼𝐶𝐸. 
7:  Pass the input images through the 𝑀 to obtain the 𝑜𝑢𝑡𝑝𝑢𝑡 predictions. 
8:  Convert the labels to class indices using argmax function. 
9:  Compute the loss between the predictions and the labels using 𝐹. 

10: 
 

Scale the loss value using scaler to take advantage of mixed precision 

training. 
11: 

 
Update the 𝑂 parameters using the gradients computed during the backward 

pass. 
12: 

 
Compute the batch loss by multiplying the loss value with the number of 

images in the batch and add it to 𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑠𝑠. 
13: 

 
Compute the predicted class labels by finding the indices of the maximum 

values in each output prediction. 
14: 

 
Compute the number of correct predictions by comparing the predicted 

class labels with the labels and summing up the correct matches. 
15: 

 
Update the scaler's state to maintain the correct scaling factor for future 

backward passes. 
16: End For each 

17: Return 𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑠𝑠 and 𝑡𝑟𝑎𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡  

 

The valid function, also known as valid_epoch, plays a crucial role in evaluating 

the performance of the trained model on a validation dataset for one epoch. It takes in the 

model, dataloader, and loss function as arguments. Inside the valid_epoch function, the 

model is set to evaluation mode to ensure that no gradients are computed during inference. 

It then iterates through the dataloader, processing each batch of images and labels. For 

each batch, the output from the model is computed by passing the images through the 

model's forward pass. The loss is then calculated using the specified loss function, 

comparing the predicted output with the ground truth labels.  
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The function keeps track of the total validation loss and the number of correct 

predictions made by the model. These metrics are important for evaluating the model's 

performance on the validation dataset. After iterating through all the batches in the data 

loader, the valid_epoch function returns the total validation loss and the number of correct 

predictions. The pseudocode for the valid_epoch function is illustrated in Pseudocode 7. 

Pseudocode 7 Pseudocode of valid_epoch function 

Input: model 𝑀, data loader 𝐷, classes numbers 𝐶𝐿𝐴𝑆𝑆𝑁𝑈𝑀, batch size 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸 , 

𝐷𝐸𝑉𝐼𝐶𝐸, optimizer 𝑂  and loss function 𝐹. 

1: Initialize 𝑣𝑎𝑙𝑖𝑑_𝑙𝑜𝑠𝑠 and 𝑣𝑎𝑙𝑖𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡 variables to keep track of the validation 

loss and the number of correct predictions. 

2: Set 𝑀 to evaluation mode. 

3: For each input images and labels in 𝐷, do the following: 

3:  Move images and labels to 𝐷𝐸𝑉𝐼𝐶𝐸 memory. 

4:  Reshape the labels to shape of [𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸, 𝐶𝐿𝐴𝑆𝑆𝑁𝑈𝑀] 

5:  Pass the input images through the 𝑀 to obtain the 𝑜𝑢𝑡𝑝𝑢𝑡 predictions. 

6:  Convert the labels to class indices using argmax function. 

7:  Compute the loss between the predictions and the labels using 𝐹. 

8: 
 

Compute the batch loss by multiplying the loss value with the number of 

images in the batch and add it to 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠. 

9: 
 

Compute the predicted class labels by finding the indices of the maximum 

values in each output prediction. 

10: 
 

Compute the number of correct predictions by comparing the predicted 

class labels with the labels and summing up the correct matches. 

11: End For each 

12: Return 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠 and 𝑣𝑎𝑙𝑖𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡  

 

The main code for model training performs k-fold cross-validation using a loop 

that iterates through each fold. For each fold, a train sampler and test sampler are created 

using SubsetRandomSampler to split the dataset into training and validation sets. Then, 

two data loaders are created for training and validation using these samplers. A dictionary 

called history is initialized to keep track of the training and validation loss and accuracy 

for each epoch. This dictionary stores the metrics for each epoch, allowing for easy 

tracking of model performance over time. Early stopping is implemented in the form of 

a patience parameter to prevent overfitting. This parameter determines the number of 



62 
 

epochs to wait before stopping training if the validation loss does not improve. This 

approach helps to prevent the model from overfitting to the training data and improves 

generalization [75].  

The function then trains and validates the model for a specified number of epochs 

using the train and valid functions as described above respectively. Finally, the 

performance of each fold is stored in a dictionary called "foldperf". This dictionary 

contains the performance metrics for each fold, allowing for easy comparison of model 

performance across different folds. The pseudocode for the main code function is 

illustrated in Pseudocode 8.  

Pseudocode 8 Pseudocode of main code 

Input: number of folds to split 𝑛𝑠𝑝𝑙𝑖𝑡𝑠, data loader 𝐷, classes numbers 𝐶𝐿𝐴𝑆𝑆𝑁𝑈𝑀, 

batch size 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸, 𝐷𝐸𝑉𝐼𝐶𝐸, optimizer 𝑂  and loss function 𝐹. 

1: Initializes an  𝐾𝐹𝑜𝑙𝑑 object with a number of folds to split of 𝑛𝑠𝑝𝑙𝑖𝑡𝑠, randomly 

shuffling the data before splitting and a random seed of 42. 

2: For each fold 𝐾 in 𝐾𝐹𝑜𝑙𝑑, do the following: 

3: 
 

Obtain 𝑡𝑟𝑎𝑖𝑛𝑖𝑑𝑥 and  𝑣𝑎𝑙𝑖𝑑𝑖𝑑𝑥 from 𝐾 which contains the indices of 

splitting data for training and validation. 

4: 
 

Create a new sampler8 𝑡𝑟𝑎𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑟 for training data using 𝑡𝑟𝑎𝑖𝑛𝑖𝑑𝑥 

indices. 

5: 
 

Create a new data loader 𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑎𝑑𝑒𝑟 for training data using 𝑡𝑟𝑎𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑟  

and 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸. 

6: 
 

Create a new sampler 𝑣𝑎𝑙𝑖𝑑𝑠𝑎𝑚𝑝𝑙𝑒𝑟 for validation data using 𝑣𝑎𝑙𝑖𝑑𝑖𝑑𝑥 

indices. 

7: 
 

Create a new data loader 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑎𝑑𝑒𝑟 for validation data using 𝑣𝑎𝑙𝑖𝑑𝑠𝑎𝑚𝑝𝑙𝑒𝑟 

and 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸. 

8: 
 

Initialize an empty dictionary ℎ𝑖𝑠𝑡𝑜𝑟𝑦 to store the training and validation 

losses and accuracies. 

9:  Initialize variables 𝑏𝑒𝑠𝑡𝑙𝑜𝑠𝑠, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒, and 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 for early stopping. 

3: 

 

Create a new instance of GoogLeNet model 𝑀, AdamW optimizer 𝑂 with a 

learning rate of 𝐿𝐸𝐴𝑅𝑁𝐼𝑁𝐺𝑅𝐴𝑇𝐸 , loss function 𝐿 as cross-entropy loss and 

grad scaler 𝑆. 

4:  For each epoch 𝐸 in the range of  𝑁𝑈𝑀𝐸𝑃𝑂𝐶𝐻, do the following: 

7: 
 

Call train_epoch function with 𝑡𝑟𝑎𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑟  to obtain 𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑠𝑠, 

𝑡𝑟𝑎𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡. 

 

8 A sampler is an object that specifies the strategy for sampling data from a dataset during training or 
evaluation. It determines the order in which the samples are accessed and fed into the model. 
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Call valid_epoch function with 𝑣𝑎𝑙𝑖𝑑𝑠𝑎𝑚𝑝𝑙𝑒𝑟 to obtain 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠, 

𝑣𝑎𝑙𝑖𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡. 

  Compute the epoch training loss 𝐸𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑠𝑠 by 
𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑠𝑠

𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑟
. 

8:  Compute the epoch validation loss 𝐸𝑣𝑎𝑙𝑖𝑑_𝑙𝑜𝑠𝑠 by 
𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠

𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑𝑠𝑎𝑚𝑝𝑙𝑒𝑟
. 

9: 
 

Compute the epoch training accuracy 𝐸𝑡𝑟𝑎𝑖𝑛_𝑎𝑐𝑐 by 
𝑡𝑟𝑎𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑟
∗ 100. 

12: 
 

Compute the epoch validation accuracy 𝐸𝑣𝑎𝑙𝑖𝑑_𝑎𝑐𝑐 by 
𝑣𝑎𝑙𝑖𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑𝑠𝑎𝑚𝑝𝑙𝑒𝑟
∗ 100. 

13:  Append 𝐸𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑠𝑠, 𝐸𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠
, 𝐸𝑡𝑟𝑎𝑖𝑛_𝑎𝑐𝑐 and 𝐸𝑣𝑎𝑙𝑖𝑑_𝑎𝑐𝑐   to ℎ𝑖𝑠𝑡𝑜𝑟𝑦. 

14:  If the number of 𝐸 ≥ 𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ𝑠𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then: 

  If the 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠 < 𝑏𝑒𝑠𝑡𝑙𝑜𝑠𝑠then: 

  Set 𝑏𝑒𝑠𝑡𝑙𝑜𝑠𝑠 to 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠 and reset 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 to zero. 

  Otherwise increment 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 by one. 

  End if 

  End if 

  If the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟  ≥ 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 then break. 

  Append history to foldperf. 

16: End For each 

17: Return foldperf. 

 

3.5 Application Development and Deployment 

Overall, the deployment of a CNN model enables the practical application of deep 

learning techniques in various domains, providing real-time predictions, automation, 

scalability, and improved decision-making capabilities. The deployment process involves 

integrating the CNN model into an application or system where it can be utilized to 

perform tasks such as wafer defect patterns classification or any other relevant task for 

which the model was designed. An automated pattern classification System for wafer 

defects called “DefectClassifierX” is present which is a cross-platform application for 

automating wafer defect pattern classification. DefectClassifierX interface includes a 

range of elements and features that facilitate the classification process and enhance the 

user experience whereas Figure 24 shows the “welcome” screen of the proposed 

application. Some of these elements may include: 
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1. Intuitive interface: The user interface is easy to use and provides a seamless 

experience for users. It included simple and clean designs, organizing elements 

logically and clearly. 

2. Classification tool: The application provides a user-friendly tool for defect 

classification. These tools may include buttons or selection tools to specify the 

type of defect. 

3. Information presentation: The application displays detailed information about 

the classification process, such as the types of defects and any relevant statistics.  

4. Reporting functionality: The application offers the capability to generate a 

report summarizing the classification process and the ability to download it. 

 

Figure 24: "Welcome" screen of the DefectClassifierX application. 

The DefectClassifierX is implemented on top of a JavaScript framework called 

“Electronjs” used for developing a cross-platform desktop application that can run on 

Windows, macOS, and Linux operating systems using web technologies such as HTML, 
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CSS, and JavaScript [76]. It combines the Chromium9 rendering engine and Node.js 

runtime to provide a platform for creating native-like desktop applications. 

3.6 DefectClassifierX Components 

The DefectClassifierX consists of five built-in modules and two modules that run 

on a separate python server as illustrated in Figure 25. 

The built-in modules in DefectClassifierX are as follows: 

1. The configuration module: it reads the configuration file provided by the 

administrator which contains application parameters, such as the predefined classes, 

restful port, connection protocol, and all Uniform Resource Locators (URLs) that 

serve all the functionality of the application in a JavaScript Object Notation (JSON) 

format. This service is used by all other services to perform predefined tasks and 

provide the user with the ability to update the configuration parameters. 

2. The inputs handler module: it is responsible for handling user input images via the 

native NodeJS file services to read files and extract the data from them. 

3. The JSON formator module: is responsible for converting data representation for 

JSON format to be handled via the Python server. 

4. The report generator module:   it responsible for generating a report in XLS format 

for the classification result. 

5. The communication module: its responsible for mange the communication 

between the DefectClassifierX and the python server by making a Hypertext Transfer 

Protocol (HTTP) request to send or fetch data from the server. 

 

9 Chromium is an open-source web browser project that serves as the foundation for many popular 
browsers, including Google Chrome. 
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Figure 25: The main components of DefectClassifierX. 

The python server is implemented using a “Flask” framework which provides the 

necessary tools for building web applications and application programming interfaces 

(APIs). The python server consists of two modules as follows: 

1. The Classification module: it is responsible for making classification using the input 

wafer map images via a trained CNN model. 

2. The Pre-processing module: it is responsible for making pre-processing using the 

input wafer map images to prepare the data for classification. 

 Typically, Flask uses the hypertext transfer protocol (HTTP) to allow clients to 

communicate with a server and request data or perform actions. The logic beyond Flask 

is to define routes using the decorator “@app.route()” which defines the URLs that the 

server will respond to. Within each route, there is a view function that handles the 

incoming requests related to that route [77]. The server contains two main routes as 

illustrated in Table 11. The pre-processing route which takes the wafer map images as 

input, performs the pre-processing steps as explained in Section 3.2, saves the output of 

pre-processing steps and returns these pre-processing images as response in JSON format. 

The classifying route takes the output of the pre-processing route as input and then 
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performs a classification using the trained CNN model and returns the result as a list of 

input images name with its defect class in JSON format. 

Table 11: DefectClassifierX Python server APIs. 

# URL HTTP request method Request data Response data 

1 pre-processing POST Wafer map images 
Wafer map images after 

pre-processing 

2 classifying GET none Classification results 

 

2.3.8 DefectClassifierX Workflow 

All modules in the DefectClassifierX application work harmoniously. Figure 26 

illustrates the flow of the starting point of DefectClassifierX to perform a classification 

task. 

 

Figure 26: The flow chart of DefectClassifierX Workflow. 

The main steps that the user must perform to classify defect patterns in wafer map 

images are as follows:  

1. Read Configuration File: At the beginning of the DefectClassifierX, the 

DefectClassifierX reads the configuration file to retrieve its parameters via the 

Configuration module such as routes URLs for server, server IP address and port. 

2. Browse and load Wafer Map Images: The DefectClassifierX provide the user 

interface where the user can browse and select wafer map images from their local 

computer via the Inputs Handler module as shown in Figure 27. This module relies 

on the “FileReader” API in JavaScript that allows the user to select image files. When 
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the user clicks the "load images" button and files are selected, the change event is 

triggered, and the selected files are accessed through “event.target.files”. Then these 

files' content is extracted such as the number of selected images, extensions, images 

dimensions and display a sample from these selected files [78]. 

 

Figure 27: The “select wafer images” page in DefectClassifierX. 

3. Send selected images to Python Server: when the user clicks the “Perform Data 

Preprocessing” button, the DefectClassifierX send a POST request to the Python 

server, including the selected images as the request payload via the Communication 

module in JSON format. 

4. Preprocess Images on Python Server: The Python server receives the POST request 

and preprocesses the wafer map images as required via the Preprocessing module. 

After preprocessing, the server saves these processed images and sends them back as 

a response from the Python server as URLs pointing to the location of the processed 

images on the server. 

5. Display processed images: After retrieving a response from the server, the 

DefectClassifierX displays samples of processed images as shown in Figure 28.  
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Figure 28: The “data preprocessing” page in DefectClassifierX. 

6. Perform Classification: When the user clicks the "Perform Classification" button in 

the application as shown in Figure 29, the DefectClassifierX send a GET request to 

the server, indicating that a classification task should be performed. 

 

Figure 29: The “classification” page in DefectClassifierX. 

7. Handle Classification on Server: On the server, receive the GET request for 

classification and perform the necessary on the preprocessed wafer map images and 

send the classification results back to the DefectClassifierX as a response from the 

server. 
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8. Display Results as Table: In the application, parse and process the classification 

results received from the server. Display them in a table format on the user interface 

for easy viewing and analysis as shown in Figure 30. 

 

Figure 30: The “classification results” page in DefectClassifierX. 

9. Generate Report and Download as XLS File: Provide an option for the user to 

generate a report based on the classification results and download the generated XLS 

file as shown in Figure 31. 

 

Figure 31: The “Report generator” page in DefectClassifierX. 

Hyperparameter Tuning and Optimization Technique 

Hyperparameters are parameters that govern the learning process and dictate 

the values of model parameters acquired by a learning algorithm. The use of the prefix 
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'hyper_' indicates their significance as overarching parameters in determining both the 

learning process and resulting model parameters [79]. Hyperparameters are settings or 

configurations that are not learned from the data but are set before training the model 

such as batch size, learning rate, number of epochs and patience stop as illustrated in 

Table 12. Optuna which is an open-source hyperparameter optimization framework is 

selected to find the optimal hyperparameters which have a significant impact on the 

model's performance[80]. 

Table 12: The selected hyperparameters for tunning with their descriptions. 

# 
Hyper Parameter 

Name 

Hyper Parameter 

Symbol 
Hyper Parameter Description 

1 Batch size batch_size 

The batch size refers to the number of training 

examples that are used in both the forward and 

backward passes of a neural network during its 

training phase. 

2 Learning rate learning_rate 

Determines the step size at which the optimizer 

adjusts the weights of the model during 

training. 

3 Number of Epochs num_epochs 

The epoch refers to one complete pass through 

the entire training dataset during the training 

process. 

4 Patience Stops patience 
Number of epochs without improvements to 

wait before early stopping 

5 Early Stopping 

Threshold Epoch 
num_epochs_threshold 

The minimum number of epochs that must be 

completed before early stopping is checked. 

 

The Optuna employs the Bayesian Optimization Algorithm to search for the 

global maximum or minimum solution of a scalar objective function within a bounded 

domain. It works by modelling and specifying the distribution of the objective function. 

Optuna is based on the Bayesian Optimization Algorithm which is used to find the global 

maximum or minimum solution of a scaler objective function in a bounded domain 

(𝑓: ℝ𝑑 → ℝ) [81]. It aims to model the objective function 𝑓 to specify its distribution. 

For a set of points 𝑥 ∈ ℝ𝑑, the evaluation of membership of the objective function 𝑓 is 

calculated by the following equation [82]: 
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𝑥𝑛𝑒𝑤 =  𝑚𝑎𝑥𝑥∈ℝ𝑑𝑓(𝑥)  (12) 

The search space for the hyperparameters as listed in Table 12 including their 

corresponding suggestion methods and values are listed in Table 13 [80], [83]. 

Table 13: The search space for the selected hyperparameters. 

# Hyper Parameter Name Hyper Parameter Method Hyper Parameter Values 

1 Batch size List of categorical [16, 32, 64,128, 256, 512] 

2 Learning rate Log-uniform distribution [1e-4, 1e-1] 

3 Number of Epochs 
Integer values within a specified 

range 
[10, 100] 

4 Patience Stops 
Integer values within a specified 

range 
[5, 20] 

5 Early Stopping Threshold 

Epoch 

Integer values within a specified 

range 
[10, 100] 

 

Optimizers play a crucial role in adjusting the weights and learning rate of a model 

to minimize the error function or maximize production efficiency. One specific type is 

Gradient Descent, an iterative technique that modifies parameters to reduce a given 

convex function [84]. It achieves this by moving the step determined by the learning rate 

in the opposite direction of the steepest ascent, utilizing derivatives to locate minima  [85]. 

Optimizers rely on model-specific parameters such as weights and biases. An example 

optimizer is Adam with Weight Decay Regularization (AdamW), which was introduced 

in 2019 as a modification of the Adaptive Moment Estimation (Adam) algorithm that 

aims to improve the weight decay behavior of Adam. AdamW incorporates adaptive 

learning rates from its predecessor and adds weight decay regularization into its 

framework. Ultimately, employing the AdamW optimizer aims at minimizing the cost 

function value as much as possible [86].  

In the Adam optimization algorithm, weight decay is commonly implemented by 

introducing a penalization factor in the loss function to encourage smaller weights. 

Nevertheless, this approach may result in suboptimal outcomes as the penalty affects both 
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weights and adaptive learning rates. To address this limitation, AdamW integrates weight 

decay directly into the optimization process. Rather than adding a penalty term to the loss 

function, AdamW applies a decay term exclusively to the gradients during each training 

iteration [68]. This selective application of decay only impacts weights and not adaptive 

learning rates, resulting in enhanced performance for generalization and improved 

convergence properties. The weights 𝜃 decay is calculated by the following equation [86]: 

𝜃𝑡+1 =  (1 − 𝜆)𝜃𝑡 −  𝛼∇𝑓𝑡(𝜃𝑡) 
(13) 

Where 𝜆 presents the rate of the weight decay/step, 𝛼 presents the learning rate 

and ∇𝑓𝑡(𝜃𝑡) present the batch gradient of t.   

Evaluation Metrics 

Various evolutionary metrics were employed to assess the effectiveness of the 

proposed approach, encompassing confusion matrix, accuracy, F1 score, precision, 

recall and Receiver Operating Characteristic (ROC).  

The utilization of the confusion matrix aids in evaluating the classification 

performance of the CNN model by contrasting true and predicted values. Within this 

matrix, rows correspond to true values while columns represent predicted values. The 

outcomes derived from this assessment yield four possibilities: true positive, false 

positive, true negative and false negative [87]. Table 14 provides a list of four key terms 

and their descriptions. 

Table 14: Key Terms for Classification Model Evaluation: Definitions and Descriptions of True 

Positive, False Positive, True Negative, and False Negative. 

# Name Description 

1 True Positive (TP) The model correctly predicted the positive class. 

2 False Positive (FP) The model incorrectly predicted the positive class. 

3 True Negative (TN) The model correctly predicted the negative class. 
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4 False Negative (FN) The model incorrectly predicted the negative class. 

 

Accuracy refers to the extent to which the model effectively categorizes all 

instances within a dataset. It is computed by dividing the total number of correct 

predictions by the overall number of predictions made [88]. The accuracy is calculated 

by the following equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
 (14) 

In this context, TP represents true positives, FP represents false positives, TN 

represents true negatives, and FN represents false negatives. 

The F1 score is a quantitative indication of the equilibrium between precision and 

recall. It is determined by computing the harmonic mean of precision and recall. Precision 

measures the proportion of correctly predicted positive instances out of all predicted 

positive instances. This measure is calculated by dividing true positives by the sum of 

true positives and false positives. On the other hand, recall gauges how many actual 

positive instances are accurately identified as positive. It can be obtained by dividing true 

positives by the sum of true positives and false negatives [88]. The F1 score is calculated 

by the following equation: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙) 

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙)
 (15) 

The Receiver Operating Characteristic (ROC) curve is a metric used to evaluate 

the performance of a CNN model in class discrimination. It measures the ability of the 

model to accurately classify different classes by analysing true positive rate (TPR) and 

false positive rate (FPR) across various threshold values for classification. It plots the 

TPR against the FPR at various threshold settings [89]. 

The formulas for TPR and FPR are as follows: 
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𝑇𝑃𝑅 =  
𝑇𝑃 

(𝑇𝑃 +  𝐹𝑁)
 (16) 

𝐹𝑃𝑅 =  
𝐹𝑃 

(𝐹𝑃 +  𝐹𝑁)
 (17) 

The shape and position of the ROC curve can give insights into the model's 

performance [90]: 

1. The closer the ROC curve is to the top-left corner of the plot, the better the model's 

performance. This indicates a higher TPR and lower FPR, meaning the model can 

accurately classify positive cases while minimizing false positives. 

2. A ROC curve that is close to the diagonal line (connecting the bottom-left to the top-

right corners) suggests that the model's performance is no better than random 

guessing.  

3. If the ROC curve falls below the diagonal line, it suggests that the model's 

performance is worse than random guessing. This indicates the model is performing 

poorly in distinguishing between positive and negative cases. 
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Chapter Four 

Findings and Discussions 

This chapter focuses on the findings of the study and provides a detailed 

discussion. It begins by describing the development tools and system requirements used. 

The experimental setup is explained, followed by the presentation of experimental 

training results. Model evaluation is conducted, and any memory limit issues encountered 

during experiments are addressed. Finally, a discussion of the results is presented, 

comparing them with past research. 

4.1 Development Tools and System Requirements 

The proposed CNN model for classifying different types of defects across the 

wafer map was implemented using a Python environment. There are many Python 

libraries used for the development of this solution as illustrated in Table 15. 

Table 15: Python Libraries and Frameworks used in classification framework: Description and 

Version Information. 
# Library Name Library Description Library-Version 

 Pandas 

An open-source Python library is utilized to analyse and 

manipulate data, specifically tabular data, particularly data 

frames, which are similar to spreadsheets in MS Excel [91]. 

2.1.1 

1 Numpy 

An open-source Python library for numerical computation, it 

offers functionalities that are both efficient and convenient for 

performing mathematical and logical operations on data 

arrays [92]. 

1.24.3 

2 Pillow 

It’s an open-source python library that is used to manipulate 

matrices. it provides all the necessary 

functions for matrix processing [93] 

9.4.0 

3 Matplotlib 

It’s a cross-platform python library that is used to visualise 

data in graphical form and provide an interactive 

visualization in a python environment [94] 

3.7.1 

4 Torch 

It’s an open-source python framework that is used in 

scientific computation and provides all necessary algorithms 

for deep learning. It was developed by Ronan 

Collobert, Samy Bengio and Johnny Mariéthoz [95] 

2.0.1 

5 PyTorch 

It’s an open-source python library that is used to develop deep 

learning models based on neural networks introduced by 

Facebook. It allows to performs of dynamic computation on 

the central processing unit (CPU) and graphic processing unit 

(GPU). PyTorch is based on the Torch framework [72] 

2.0.1 

https://en.wikipedia.org/wiki/Samy_Bengio
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6 CUDA 

It’s a parallel computing environment developed by NVIDIA 

that is used to perform different types of computations on a 

graphic processing unit (GPU) [96], [97] 

11.8 

7 Torchvision 

Torchvision is a component of the PyTorch library that offers 

various utilities and datasets for computer vision. It provides 

multiple functionalities, including image transformation, data 

loading, and pre-trained models for tasks such as image 

classification, object detection, and segmentation.[98] 

0.15.2 

 

Also, the proposed DefectClassifierX application was implemented using python 

and NodeJS environments. Table 16 showcases key libraries and their respective 

descriptions and versions. It includes Node.js, Electronjs, Flask, and xlsx.js. 

Table 16: Libraries and Frameworks used in DefectClassifierX development: Description and 

Version Information. 
# Library Name Library Description Library-Version 

1 Node.js10 

Node.js is an open-source, cross-platform JavaScript runtime 

environment that allows developers to run JavaScript code 

outside of a web browser. It is built on the V8 JavaScript 

engine used by Google Chrome and provides an event-driven, 

non-blocking I/O model that makes it lightweight and 

efficient. 

18.16.1 

2 Electronjs11 

is an open-source framework that allows developers to build 

cross-platform desktop applications using web technologies 

such as HTML, CSS, and JavaScript. 

26.2.4 

3 Flask12 

Flask is a lightweight and flexible web framework for 

building web applications using the Python programming 

language. 

2.2.2 

4 xlsx.js13 

xlsx.js is a JavaScript library for reading and writing 

Microsoft Excel files in the xlsx file format. It allows 

developers to create, modify, and parse Excel files directly 

from their web applications using JavaScript. 

0.18.5 

 

We carried out all experiments including development, training and testing on an 

NVIDIA GeForce RTX 3080 GPU with AMD Ryzen 9 5900HX CPU, 32 GB RAM and 

windows 11 operating system. 

 

10 Official website: https://nodejs.org/en/  
11 Official website: https://www.electronjs.org/  
12 Official website: https://flask.palletsprojects.com/en/2.1.x/  
13 Official website: https://oss.sheetjs.com/js-xlsx/  

https://nodejs.org/en/
https://www.electronjs.org/
https://flask.palletsprojects.com/en/2.1.x/
https://oss.sheetjs.com/js-xlsx/
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4.2 Experimental Setup 

The raw data set underwent cleaning, pre-processing, and augmentation by the 

theoretical principles outlined in Sections 3.2 and 3.3 to ready it for training of the CNN 

model. The quantity of wafer map images was expanded to a total of 368,568 images. 

Each defect pattern constitutes approximately 3% of the dataset's entirety out of these 

images, encompassing a combined total of 36 unique defect patterns for both single and 

mixed types. Furthermore, an approach utilizing one-hot encoding was employed to 

encode the defect patterns as discussed in Section 3.4. 

Through these efforts, we successfully created a new dataset called “WM-300K+ 

wafer map [Single & Mixed]”14 for single and mixed types of defect patterns, ranging up 

to four levels and published it via the Kaggle website. This enriched dataset will be 

published on Kaggle, providing researchers with a valuable resource for further research 

and study in the field of wafer defect pattern classification. By making this dataset 

available, we hope to foster collaboration, encourage new insights, and advance the state-

of-the-art in this domain. 

The tuned hyperparameters including batch size, learning rate, number of epochs, 

patience stops and early stopping threshold epoch were selected using Optuna as 

discussed in Section 4.4. Table 17 demonstrates the values of the optimal 

hyperparameters that were used during the training phase. 

Table 17: Tunned Hyperparameter optimal values. 

# Hyper Parameter Name Hyper Parameter Value 

1 Batch size 512 

2 Learning rate 0.0008 

3 Number of Epochs 100 

 

14 The “WM-300K+ wafer map [Single & Mixed]” dataset can be accessed via this link. The dataset 
contains up to 368,568 images for 36 (single and mixed) defect patterns. 

https://www.kaggle.com/datasets/husseinsalahyounis/wm-400k-wafer-map-single-and-mixed
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4 Patience Stops 5 

5 Early Stopping Threshold Epoch 15 

 

The dataset was split into 80% for training and 20% for testing. Subsequently, the 

training set was further divided into 70% for training and 30% for validation. This division 

allowed for training the model on a subset of the data while validating its performance on 

another subset as shown in Table 18.  

Table 18: Distribution of Wafer Maps in the Dataset, detailing the number of wafer maps used 

for training, validation, and testing. 

# Dataset Number of wafer maps 

1 Total 368,568 

2 Training set 206,397 

3 Validation set 88,457 

4 Testing set 73,714 

 

The loss function employed for training the model is the cross-entropy loss. This 

loss function measures the dissimilarity between the predicted probability distribution 

and the true distribution of the target classes. The AdamW optimization algorithm was 

utilized to update the model's parameters during training. This algorithm adjusts the 

model's parameters based on the gradients computed from the loss function. For cross-

validation, 6 splits were created using a random seed of 42. These splits were employed 

to divide the dataset into training and validation sets during each fold of the training 

process. 

4.3 Experimental Training Results 

The proposed model was trained and validated using the training and validation 

dataset as demonstrated in Section 4.5. The hyperparameters were used as illustrated in 

Table 3. This study applies a stratified 6-fold cross-validation in which of them have the 
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same proportion of class distribution. Table 19 shows the average accuracy and loss value 

on both the training and validation sets for the 6 folds. The average training accuracy 

across all folds is 99.40%, indicating that the model performs well on the training data. 

The average validation accuracy is 97.80%, suggesting that the model generalizes 

reasonably well to unseen data. Also, the average training loss is 0.013, which indicates 

that the model's predictions are close to the actual values during training and the average 

validation loss is 0.044, indicating that the model's predictions are slightly less accurate 

on the validation data compared to the training data. Overall, these results suggest that 

the proposed CNN model is effective in classifying wafer defects.  

Table 19: Cross-Validation Results, detailing the average training and validation accuracy, as 

well as training and validation loss for each fold in a CNN-based defect classification model. 

# 
Fold 

Number 

Average Training 

Accuracy 

Average Validation 

Accuracy 

Average Training 

Loss 

Average Validation 

Loss 

1 Fold 1 98.35 95.17 0.044 0.153 

2 Fold 2 99.47 97.88 0.011 0.038 

3 Fold 3 99.60 98.26 0.007 0.025 

4 Fold 4 99.64 98.45 0.005 0.018 

5 Fold 5 99.67 98.47 0.004 0.017 

6 Fold 6 99.68 98.56 0.004 0.014 

Total 99.40 97.80 0.013 0.044 

 

Figures 32 and 33 visualize the average accuracy percentage and loss values across the 

6 folds per Epoch.  
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Figure 32: Line plot of Average Accuracy per Epoch, showing the trend of model performance 

across the 6 folds during training. 

 

Figure 33: Line plot of Average Loss per Epoch, showing the trend of model performance 

across the 6 folds during training. 

Also, the new dataset is used to train and validate two other CNN model namely 

ShuffleNetV2 and ResNet-50. From the Table 20, we can observe the performance of 
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these models in terms of accuracy and loss metrics. Modified GoogLeNet achieved the 

highest average training accuracy of 99.40% and a relatively high average validation 

accuracy of 97.80%. It also had the lowest average training loss of 0.013 and a moderate 

average validation loss of 0.044. ShuffleNetV2 performed slightly lower than Modified 

GoogLeNet with an average training accuracy of 98.55% and an average validation 

accuracy of 96.52%. It had a higher average training loss of 0.036 and a higher average 

validation loss of 0.077. ResNet-50 showed similar performance to Modified GoogLeNet 

with an average training accuracy of 99.37% and an average validation accuracy of 

97.83%. It had a slightly higher average training loss of 0.014 and a slightly lower average 

validation loss of 0.041. Overall, Modified GoogLeNet demonstrated the highest training 

accuracy and relatively good generalization performance on the validation set, as 

indicated by its high validation accuracy and low validation loss. ShuffleNetV2 and 

ResNet-50 also performed well but showed slightly lower accuracy and higher loss 

compared to Modified GoogLeNet. 

Table 20: Evaluation results of three deep learning models, Modified GoogLeNet, ShuffleNetV2 

and ResNet-50 in terms of their average training and validation accuracy, as well as their average 

training and validation loss. 

# Model 
Average Training 

Accuracy 

Average Validation 

Accuracy 

Average 

Training Loss 

Average 

Validation Loss 

1 
Modified 

GoogLeNet 
99.40 97.80 0.013 0.044 

2 ShuffleNetV2 98.55 96.52 0.036 0.077 

3 ResNet-50 99.37 97.83 0.014 0.041 

 

4.4 Model Evaluation 

The confusion matrix in Figure 34 highlights the strong performance of several 

classes, including "C+EL," "C+EL+L," "C+EL+S," and "C+ER." These classes 

demonstrate high numbers of true positives (TP) and true negatives (TN), indicating that 



83 
 

the model accurately classifies instances belonging to these classes. Additionally, the low 

values for false positives (FP) and false negatives (FN) further support the model's 

effectiveness in these cases. However, there are certain classes, such as "Edge-Loc" and 

"Loc," where a higher number of false negatives can be observed compared to true 

positives. This suggests that the model struggles with accurately classifying instances 

belonging to these classes, potentially leading to missed detections of defects. On a 

positive note, instances in the "Near-full" class show very few occurrences of both false 

positives and false negatives. This indicates that the model performs well in accurately 

identifying instances within this class, demonstrating its effectiveness in detecting near-

full defects. Overall, while the model shows strong performance in some classes, further 

improvements may be needed to enhance its accuracy in correctly classifying instances 

for classes like "Edge-Loc" and "Loc." 

 

Figure 34: Confusion Matrix, detailing the true positives, false positives, true negatives, 

and false negatives for each class in a CNN-based defect classification model
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Table 21 shows the accuracy, precision, recall, and F1 score of a classification 

algorithm for 36 wafer defect patterns. The average accuracy, precision, recall, and F1 

score for all classes are 99.9%, 97%, 97% and 97% respectively. The algorithm correctly 

classifies 99.9% of the instances across all classes, indicating a high level of overall 

correctness in its predictions. The algorithm achieves a precision of 97%, which means 

that out of all the instances it predicts as positive, 97% are true positives. This indicates a 

low rate of false positive predictions. The algorithm achieves a recall of 98% which means 

that it identifies 97% of the actual positive instances correctly. This indicates a low rate 

of false negatives, as the algorithm captures a high proportion of the positive instances. 

The F1 score combines both precision and recall into a single metric with an F1 score of 

97%. The algorithm demonstrates a good balance between precision and recall, indicating 

overall robust performance. These high values for accuracy, precision, recall, and F1 

score suggest that the classification algorithm is effective, and accurate in identifying and 

classifying instances across all classes. 

Table 21: Performance Metrics for Each Defect Pattern Class in a CNN-based Defect 

Classification Model, detailing the accuracy, precision, recall, and F1 score for each 

class. 

# Defect Pattern Name Accuracy (%) Precision Recall F1 Score 

1 C+EL 100% 0.99 0.97 0.98 

2 C+EL+L 100% 0.97 0.95 0.96 

3 C+EL+S 100% 0.99 0.99 0.99 

4 C+ER 100% 0.98 0.99 0.98 

5 C+ER+L 100% 0.96 0.95 0.96 

6 C+ER+S 100% 0.98 0.98 0.98 

7 C+L 100% 0.97 0.99 0.98 

8 C+L+EL+S 100% 0.97 0.95 0.96 

9 C+L+ER+S 100% 0.94 0.96 0.95 

10 C+L+S 100% 0.97 0.97 0.97 

11 C+S 100% 0.99 0.99 0.99 

12 Center 100% 0.97 0.97 0.97 

13 D+EL 100% 0.98 0.97 0.98 
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14 D+EL+L 100% 1.00 0.99 0.99 

15 D+EL+S 100% 0.97 0.96 0.96 

16 D+ER 100% 0.97 0.97 0.97 

17 D+ER+L 100% 1.00 0.99 0.99 

18 D+ER+S 100% 0.95 0.97 0.96 

19 D+L 100% 0.97 0.97 0.97 

20 D+L+EL+S 100% 0.99 0.95 0.97 

21 D+L+ER+S 100% 0.97 0.98 0.98 

22 D+L+S 100% 0.95 0.97 0.96 

23 D+S 100% 0.99 1.00 1.00 

24 Donut 100% 0.99 0.96 0.98 

25 EL+L 100% 1.00 0.99 0.99 

26 EL+L+S 100% 0.96 0.98 0.97 

27 EL+S 100% 0.99 0.99 0.99 

28 ER+L 100% 1.00 0.98 0.99 

29 ER+S 100% 0.99 0.99 0.99 

30 Edge-Loc 100% 0.92 0.95 0.94 

31 Edge-Ring 100% 0.99 0.98 0.99 

32 L+S 100% 0.99 1.00 1.00 

33 Loc 99% 0.90 0.86 0.88 

34 Near-full 100% 0.99 1.00 0.99 

35 Random 100% 0.97 0.98 0.98 

36 Scratch 100% 0.95 0.97 0.96 

Total 99.9% 0.97 0.97 0.97 

 

The TPR and FPR for 36 classes were calculated to compute the ROC curve for 

each class individually.  As shown in Figure 35, the ROC curve for all classes is closer 

to the top-left corner of the plot which indicates that the model can accurately classify 

positive cases while minimizing false positives. the majority of the classes exhibit a high 

true positive rate, with many surpassing 0.98 and a low false positive rate (3.9045e-04). 

This indicates that the model is effective at correctly identifying positive cases while 

minimizing false positives and performing effectively and accurately in distinguishing 

between these classes. Nevertheless, the "Loc" class have a lower true positive rate of 

approximately 0.8598, suggesting that there may be challenges for the algorithm to 

differentiate them accurately, potentially necessitating further fine-tunning or 

optimization efforts.  
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Figure 35: ROC Curves for all Defect classes, detailing the trade-off between true positive rate 

and false positive rate for each class. 

Also, the other trained models are evaluated using the same testing set. Table 22 

provides insights into the models' performance in terms of accuracy, precision, recall, and 

F1 score. All three models achieved high average testing accuracy, with Modified 

GoogLeNet and ResNet-50 both achieving 99.9% accuracy, and ShuffleNetV2 achieving 

99.8% accuracy. In terms of precision, recall, and F1 score, all models performed 

consistently well, with an average precision, recall, and F1 score of 0.97 for each model. 

This indicates that the models were successful in accurately classifying positive cases 

while minimizing false positives (precision), capturing true positive cases (recall), and 

achieving a balanced trade-off between precision and recall (F1 score). 

Table 22: Evaluation results of three deep learning models, Modified GoogLeNet, ShuffleNetV2 

and ResNet-50 in terms of their average accuracy, precision, recall, and F1 score. 

# Model 
Average Testing 

Accuracy 

Average 

Precision 

Average 

Recall 

Average 

F1_score 

1 
Modified 

GoogLeNet 
99.9% 

0.97 0.97 0.97 

2 ShuffleNetV2 99.8% 0.96 0.96 0.96 

3 ResNet-50 99.9% 
0.97 0.97 0.97 
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4.5 Addressing Memory Limit Issues During Experiments 

Memory limit errors were encountered during the data preprocessing and model 

training stages due to inadequate memory for handling the data or computations. Our 

study focused on optimizing memory usage during data preprocessing and model training 

in machine learning tasks. We encountered memory limit errors due to inadequate 

memory resources, which hindered our progress.  

Various strategies were employed such as using generators and data loaders, 

freeing up unnecessary variables, incorporating memory-efficient data structures, 

implementing batch processing, leveraging the auto-cast feature, and harnessing the 

CUDA parallel computing platform to overcome these errors. Our findings show that 

these memory optimization strategies were effective in addressing memory limit errors 

and improving the overall performance of our proposed CNN model. 

 By using generators and data loaders, we were able to efficiently handle large 

datasets within limited memory resources. Freeing up unnecessary variables and 

employing memory-efficient data structures further contributed to efficient memory 

utilization. Batch processing allowed for efficient training, while the auto-cast feature 

reduced computational resource requirements and enabled the use of larger batch sizes. 

Leveraging the CUDA parallel computing platform provided an opportunity to harness 

the power of NVIDIA GPUs for general-purpose computing tasks, further optimizing 

resource allocation. The PyTorch allows to use of CUDA devices with simple APIs to 

transfer data to GPU memory and perform operations on GPU. Also, the training and 

validation processes are performed on GPU. Table 23 demonstrate a performance 

analysis for using CUDA for training and validation phase of Modified GoogLeNet. The 

Modified GoogLeNet model achieved an average CPU usage of 35.17% and a maximum 
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memory usage of 19469.69 MB during execution on the CPU. When executed on the 

GPU, the model achieved an average GPU usage of 81.30% and a maximum CUDA 

memory usage of 6812.47 MB. The execution time on the GPU was significantly faster, 

taking only 4,641.36 seconds. The speedup achieved by using the GPU instead of the 

CPU is approximately 38.78x, indicating a significant performance improvement. 

Table 23: Performance Analysis of Modified GoogLeNet for traning phase. 

Model 

CPU GPU  

Speedup 

Average 

CPU 

usage 

(%) 

Maximum 

Memory usage 

(MB) 

Execution 

time 

(s) 

Average 

GPU 

usage 

(%) 

Maximum 

CUDA 

Memory Usage 

(MB) 

Execution 

time 

(s) 

Modified 

GoogLeNet 
35.17% 19469.69 MB 180,000 s 81.30% 6812.47 MB 4,641.36 s 38.78 

 

4.6 Discussion of Results Comparing with Past Research 

In this investigation, we examined the effectiveness of our proposed CNN model 

for classifying single and mixed types of wafer defect patterns. Our results indicate that 

our algorithm attained an accuracy of 99.9%, outperforming the state-of-the-art works as 

demonstrated in Section 2.1 by 2.4%. Moreover, neither of the previous studies 

specifically addresses the use of parallel programming techniques like CUDA to improve 

performance in wafer defect classification. Based on previous studies, many researchers 

who deal with ‘WM-811K’ dataset have resized images to 224x224 or 416x416, even 

though the wafer image dimensions of 27x25 have the maximum count in the original 

dataset. However, this resizing process has some drawbacks such as loss of fine-grained 

details present in the original image and increased computational resources like memory 

and CPU consumption - impacting model performance and training/testing times. To 

reduce these issues and improve efficiency, we choose 56x56 standard dimensions for all 

wafer images using Bicubic interpolation for smoother results. 
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Our findings are consistent with previous research for single and mixed defect 

pattern classification. For example, in [48] the researchers use sophisticated methods such 

as convolutional autoencoder in a GAN-based architecture to perform data augmentations 

which is computationally expensive and time-consuming. However, in our finding, we 

use a simple data augmentation as illustrated in Section 3.3 which is relatively easy to 

implement and computationally efficient. In addition, their experiments showed an 

average accuracy of 97.5% for mixed types of wafer defects using the 'MixedWM38' 

dataset with a minimum average accuracy of 93.4% for classifying the 'Center with Edge-

Ring with Scratch' defect and a maximum average accuracy of 100% for classifying the 

'Donut with Edge-Ring with Scratch' defect. Our findings demonstrate that our proposed 

model exceeds their work in terms of accuracy, reaching up to 99.9% while in the class 

'Center with Edge-Ring with Scratch,' we achieved an accuracy of 100%. similarly, the 

researchers in [53] use the 'MixedWM38' dataset with a semantic segmentation approach 

to generate multiple defect types. They achieved an average accuracy of 95.8%. however, 

our findings demonstrate that our proposed model exceeds their work in terms of 

accuracy, reaching up to 99.9%. 

In [47], the researchers just address the overfitting issue by utilizing the dropout 

method with a probability of 0.5. however, they didn’t address the unbalanced classes 

issue that exists in the ‘WM-811K’ dataset. They achieved an average accuracy of 93.25% 

while the 'Donut' defect had a minimum average accuracy rate of 86%. Our finding solves 

the overfitting issue and unbalanced classes issue that exists in the ‘WM-811K’ dataset 

by utilizing data augmentation methods and the “stop early” method by stopping the 

training process before the model has fully converged. Also, our findings demonstrate 
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that our proposed model exceeds their work in terms of accuracy, reaching up to 99.9% 

while the class Donut achieved an accuracy of 100%. 

Also, our finding shows that our proposed classification framework outperforms 

the work in [49] that use the ShuffleNet-v2 model in term of accuracy, precision, recall 

and F1-score in single wafer defect patterns classification. In [50] the researcher uses 

simple data augmentation methods such as zooming and shifting, however, these methods 

can indeed result in the loss of some information in an image. They didn’t explain how 

they controlled shifts and zooms while preserving the integrity of the image information. 

they achieved an average classification accuracy of 96.2%. our proposed classification 

framework outperformed their work by 3.7% for single defect patterns classification. 

In [51], the researchers achieved a top-3 accuracy rate of 96.2% which indicates that the 

correct label is included in the top three predictions for 96.2% of the cases. Therefore, in 

terms of overall accuracy, our proposed model with a 99.9% accuracy outperforms the 

model with a top-3 accuracy rate of 96.2%. It should be noted here that a dataset 

containing real images of wafer defects was used in their work, which is a positive thing. 

In [29], the researchers leverage the attention mechanism and cosine normalization to 

solve the imbalanced WM-811K dataset and they use fine-tuning methods for minimal 

iterative training. The attention mechanism and cosine normalization can be 

computationally expensive and the interpretation of attention weights can be challenging. 

Therefore, in terms of overall accuracy, our proposed model with a 99.9% accuracy 

outperforms the model with an accuracy of 95.46% by 4.44%. 

In [52] the researchers evaluate the performance of YOLOv3, YOLOv4, 

ResNet50, and DenseNet121 in wafer defect patterns classification. This work provides 

robustness and diversity to identify which models are more robust and perform 
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consistently across the WM-811K dataset. However, the YOLOv4 model achieved an 

accuracy of 95.7%, our proposed model with a 99.9% accuracy outperforms it by 4.2%. 

also, their work using the YOLOv4 model achieved an average F-score of 0.92 but our 

proposed model achieved an average F-score of 0.97. Overall, our proposed CNN model 

has outperformed the state-of-the-art works in terms of accuracy for single and mixed 

defect patterns classification. 

Overall, our proposed work has superior performance compared to all other works, 

achieving the highest accuracies across three pretrained CNN models due to the 

methodology that involves data preprocessing, simple data augmentation and different 

tools and mechanisms to enhance training process. 
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Chapter Five 

Conclusions 

This final chapter concludes the thesis. It highlights the research contributions 

made by the study and discusses any limitations encountered. Future works are suggested 

for further exploration in the field. The chapter concludes with a summary of the main 

findings and a concise conclusion. 

5.1 Research Contributions 

Overall, our work contributes a novel framework, leveraging the GoogLeNet 

architecture, for single and mixed wafer defect patterns classification. We provide a 

cleaned balanced dataset called “WM-300K+ wafer map [Single & Mixed]” and achieve 

high accuracy, addressing the challenges associated with complex mixed-type defects. 

These contributions advance the field of wafer defect pattern classification and pave the 

way for improved wafer defect classification in semiconductor manufacturing processes. 

The key research contributions of our study are: 

1. Proposed CNN Model Based on GoogLeNet: Our research introduces a novel CNN 

model based on the GoogLeNet architecture for wafer defect pattern classification. 

The proposed GoogLeNet model provides a strong foundation for accurate and 

robust classification of wafer defect patterns. 

2. Proposed the DefectClassifierX application: an automated pattern classification 

system for wafer defects called "DefectClassifierX" is present.  This system utilizes 

the proposed CNN model based on the GoogLeNet architecture to accurately and 

efficiently classify wafer defect patterns. 

3. Classification of Single and Mixed Wafer Defect Patterns: Our proposed CNN 

model is designed to classify both single and mixed types of wafer defect patterns. 
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This allows for comprehensive and reliable classification, even when multiple defect 

types are present on the same wafer. 

4. Generalization to New Defect Types: Our proposed CNN model demonstrates 

promising generalization capabilities to new or unseen defect types. While training 

on a specific set of defect patterns, the model's underlying architecture and learned 

features enable it to potentially classify previously unseen defect types with 

reasonable accuracy. 

5. Achievement of High Accuracy: Through extensive experimentation and 

evaluation, our proposed CNN model achieves an impressive average accuracy of 

99.9% in wafer defect pattern classification. This high accuracy demonstrates the 

effectiveness and reliability of our approach in accurately identifying and classifying 

different types of wafer defects. 

6. Publication of WM-300K+ Wafer Map Dataset: In addition to proposing a novel 

CNN model, we also created a new dataset called "WM-300K+ wafer map [Single 

& Mixed]." This dataset is noteworthy as it is cleaned, and balanced, and consists of 

more than 300,000 wafer map images with 36 classes. We publish this dataset on 

Kaggle, providing a valuable resource for the research community and enabling 

further advancements in wafer map analysis and classification. 

7. Utilization of CUDA for Enhanced Training and Testing Speed: To speed up the 

training and testing process of our proposed CNN model, we utilize CUDA, a parallel 

computing platform that enables significant performance improvements when 

training deep neural networks. 
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5.2 Limitations 

While our research makes significant contributions to the field of wafer defect 

pattern classification, certain limitations should be acknowledged: 

1. Dependency on Dataset Quality: The effectiveness of our approach is highly 

dependent on the quality and diversity of the training dataset. If the dataset contains 

inaccuracies, noise, or biases, it may impact the model’s performance and 

generalizability. Therefore, ensuring a high-quality and representative dataset is 

crucial for obtaining reliable results. 

2. Computational Resource Requirements: Our proposed CNN model, particularly 

when using the GoogLeNet architecture and CUDA for enhanced speed, may require 

significant computational resources during training and testing. This includes high-

performance GPUs and sufficient memory capacity. Researchers with limited access 

to such resources may face challenges in replicating our experiments or applying our 

approach in resource-constrained environments. 

3. Data Augmentation Limitations: While data augmentation can help address 

dataset issues such as class imbalance, the effectiveness of this technique may vary 

depending on the specific characteristics of the dataset. In some cases, data 

augmentation may not fully mitigate the challenges associated with imbalanced data, 

leading to potential biases or limitations in the model’s performance. 

4. Lack of Evaluation on Real Wafer Map Images: Our proposed model has not been 

evaluated on real wafer map images. Although we achieved high accuracy using our 

dataset, the model’s performance on real-world wafer map images may differ 

because of variations in image quality, noise, and other factors specific to real 
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production environments. Further evaluation and validation of real wafer map 

images are necessary to assess the model’s practical applicability. 

6. Future Works 

Several areas warrant further investigation and exploration. Future work should 

focus on addressing the following aspects: 

1. Expand the dataset to include a wider range of defect types and variations, enabling 

the model to handle a broader array of real-world scenarios. 

2. Optimize computational resource requirements by developing more efficient 

architectures or exploring alternative hardware configurations that can achieve 

comparable performance with reduced resource demands. 

3. Further evaluation and validation of real wafer map images are necessary by 

conducting extensive evaluations to understand the model’s performance under these 

realistic conditions and identify any necessary adaptations or improvements. 

7. Conclusion 

In our study, we proposed a novel CNN model based on the GoogLeNet 

architecture for wafer defect pattern classification, which achieved an impressive average 

accuracy of 99.9%. We also developed an automated pattern classification system for 

wafer defects called "DefectClassifierX" that utilizes the proposed CNN model to 

accurately and efficiently classify wafer defect patterns. Our contributions include the 

creation of a new dataset called "WM-300K+ wafer map [Single & Mixed]" and the use 

of CUDA for enhanced training and testing speed. Notably, our approach surpasses 

existing benchmarks and achieves state-of-the-art results in wafer defect pattern 

classification, showcasing the advancements made in our proposed CNN model and its 
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potential to significantly enhance the accuracy and reliability of wafer defect analysis in 

semiconductor manufacturing. 

However, our research also highlights several limitations, including dependence 

on dataset quality, computational resource requirements, and data augmentation 

limitations. Although our proposed model achieves high accuracy using our dataset, it has 

not been evaluated on real wafer map images, indicating a need for further evaluation and 

validation to assess its practical applicability. Future work should prioritize addressing 

these limitations by improving dataset quality, optimizing computational resource 

requirements, enhancing data augmentation techniques, and evaluating the proposed 

model on real wafer map images. By doing so, we can continue to advance the field of 

wafer defect pattern classification, improving the reliability, generalizability, and 

practical applicability of our approach for real-world scenarios. 

Overall, our study contributes a powerful CNN model capable of accurately 

classifying both single and mixed wafer defect patterns, surpassing previous studies in 

accuracy. With further research and development, our approach holds significant promise 

in enhancing the efficiency and effectiveness of wafer defect analysis in semiconductor 

manufacturing. 
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 الملخص

  عد تصنيع رقائق أشباه الموصلات عملية معقدة معرضة للعيوب. في هذه الدراسة، نقدم ي

، وهو نظام آلي لتصنيف أنماط العيوب من خلال توظيف نموذج  DefectClassifierX  تطبيق

بنية   الى    GoogLeNetشبكة عصبية تلافيفية يعتمد على  استخدام معمارية الحوسبة  بالاضافة 

من أجل تسريع عملية التدريب والاختبار. نهدف في هذه الدراسة إلى تحسين    CUDAالمتوازية  

تصنيف العيوب في عملية تصنيع أشباه الموصلات من خلال التصنيف الدقيق لأنماط عيب الرقاقة  

المفردة والمختلطة. من أجل التحقق من النهج المقترح، تم اجراء تجارب شاملة باستخدام مجموعة  

," حيث تتكون من  WM-300K+ wafer map [single and mixed]سمى " بيانات جديدة ت

 ,precisionنتائج التجارب أنه قيمة كل من  أظهرت هذه     نمط من العيوب المفردة والمختلطة.  36

recall    وF1-score    كانت للنموذج  الاختبار  عملية  أداء    0.97خلال  أن  الى  يشير  ما  وهو 

%  99.9كما وأظهرت  مستوى ملحوظ من الدقة، بمتوسط دقة تصنيف     النموذج المقترح ممتاز. 

لكل من أنواع العيوب المفردة والمختلطة. يتفوق نهجنا في الأداء على الدراسات السابقة في تصنيف  

أنماط عيوب الرقاقة ولديه القدرة على تحسين كفاءة وفعالية تحليل عيوب الرقاقة بشكل كبير في  

الموصلا أشباه  التعلم   تصنيع  متغيرات  ضبط  استخدمنا  ذلك،  إلى  بالإضافة  ت. 

hyperparameter     باستخدامOptuna  المبكر التعلم  إيقاف  آلية  التقارب.     ونفذنا  لتحسين 

محسن   بتوظيف  قمنا  ذلك،  على  يتوافق    AdamWعلاوة  النموذج.  أداء  تعزيز  لزيادة 

DefectClassifierX    مع أنظمة التشغيل المتعددة، مما يضمن إمكانية الوصول لقاعدة مستخدمين

أوسع. في حين أن نتائجنا مشجعة، إلا أن هناك حاجة إلى مزيد من البحث لمعالجة القيود المتعلقة  

بجودة مجموعة البيانات ومتطلبات الموارد الحسابية وتقنيات زيادة البيانات. بالإضافة إلى ذلك، من  

 تقييم النموذج باستخدام صور حقيقة لخرائط الرقاقات لتقييم قابلية التطبيق العملي.  المهم


