
i

Arab American University

Faculty of Graduate Studies

Silicon Wafer Defects Classification Using Deep Learning Techniques

By

Hussein Salah Younis

Supervisor

Dr. Amjad Rattroot

This thesis was submitted in partial fulfilment of the requirements for

the Master’s degree in Computer Science

March /2024

© Arab American University -2024. All rights reserved.

i

Thesis Approval

Silicon Wafer Defects Classification Using Deep Learning Techniques

By

Hussein Salah Younis

This thesis was defended successfully on 18/4/2024

 and approved by:

 Committee members Signature

1. Dr. Amjad Rattroot: Supervisor

2. Dr. Mujahed Eleyat :Internal examiner

3. Dr. Rashid Jayousi :External examiner

ii

Declaration

I Hussein Salah Hussein Younis, hereby declare that the work presented in this thesis has

not been submitted for any other degree or professional qualification and that it is the

result of my independent work.

The Name of The Student: Hussein Salah Hussein Younis

Student ID: 202120178

Signature:

Date: 27/7/2024

iii

Acknowledgments

In the name of Allah, the Most Gracious, the Most Merciful

I dedicate this work to my father, Dr. Salah Younis, a constant source of inspiration and

motivation. His dedication and determination have set a high standard for me. I am

grateful for his support and hope to make him proud. Special thanks to my supervisor,

Dr. Amjad Rattroot, for his invaluable guidance. I also acknowledge the faculty members

and colleagues whose support and expertise have greatly influenced this thesis. Thank

you all for your contributions.

To my family and friends, I express my heartfelt thanks for your unwavering support and

encouragement at every stage of this thesis. Your moral support has been instrumental in

my ability to achieve this milestone.

Finally, I eagerly anticipate presenting the findings of this thesis with pride and

confidence, with the hope that it will contribute to knowledge and advancement in the

field of study.

Once again, I would like to express my gratitude to everyone for their valuable

contributions and continuous support.

Thank You

Hussein Younis

iv

Abstract

The manufacturing of semiconductor wafers is a complex process that is prone to

defects. In this study, we present DefectClassifierX, an automated pattern classification

system that uses a convolutional neural network model based on the GoogLeNet

architecture and leverages CUDA for faster training and testing speed. We aim to improve

defect classification in the semiconductor manufacturing process by accurately

classifying single and mixed wafer defect patterns. To validate our approach, we

conducted thorough experimentation using the newly introduced dataset called "WM-

300K+ wafer map [single and mixed]," which consists of 36 different defect patterns. The

experiment results show that the precision, recall, and F1-score for testing our model were

all measured at 0.97, indicating excellent performance. Also, the results demonstrate a

remarkable level of accuracy, with an average classification accuracy of 99.9% for both

single and mixed defect types. Our approach outperforms previous studies in wafer defect

pattern classification and has the potential to significantly improve the efficiency and

effectiveness of wafer defect analysis in semiconductor manufacturing. Additionally, we

utilized hyperparameter tuning with Optuna and implemented a patience stop mechanism

for improved convergence. Moreover, we incorporated the AdamW optimizer to further

enhance the model's performance. DefectClassifierX is compatible with multiple

operating systems, ensuring accessibility for a broader user base. While our results are

encouraging, further research is needed to address limitations regarding dataset quality,

computational resource requirements, and data augmentation techniques. Additionally, it

is important to evaluate the model using real wafer map images for practical applicability

assessment.

v

Table of Contents

Thesis Approval ... i

Declaration .. ii

Acknowledgments ... iii

Abstract .. iv

Table of Contents ... v

List of Tables ... viii

List of Figures ... x

List of Abbreviations .. xiii

Chapter One ... 1

Introduction ... 1

Background Information ... 1

Research Problem and Questions .. 8

Aims and Objectives of the Study ... 10

Motivation And Significance of The Study ... 12

Research Scope and Outlines ... 13

Thesis Organization .. 14

Preliminaries .. 15

Digital Images ... 15

Convolutional Neural Network ... 16

Chapter Two ... 25

Literature Reviews ... 25

2.1 Overview of Relevant Literature .. 25

2.2 Gaps In the Literature ... 31

vi

2.3 Dataset and Data Pre-processing ... 33

2.3.1 Dataset Description and Analysis .. 33

2.3.2 Data Pre-processing ... 36

2.3.3 Data Cleaning and Extracting .. 37

2.3.4 Converting Images to RGB Format .. 38

2.3.5 Image Resizing .. 39

2.3.5.1 Data Augmentation Techniques ... 39

2.3.6 Increase Defect Patterns Frequencies ... 41

2.3.7 Mixed Defect Patterns Generator ... 46

2.3.7 Categorical Encoding Technique ... 51

Chapter Three .. 52

Methodology.. 52

3.1 The Proposed Methodology ... 52

3.2 GoogLeNet Model... 53

3.2 Inception Modules .. 54

3.3 The GoogLeNet Architecture ... 56

3.4 Classification Framework Implementation .. 58

3.5 Application Development and Deployment ... 63

3.6 DefectClassifierX Components .. 65

2.3.8 DefectClassifierX Workflow .. 67

Hyperparameter Tuning and Optimization Technique .. 70

Evaluation Metrics .. 73

Chapter Four ... 76

Findings and Discussions .. 76

4.1 Development Tools and System Requirements ... 76

vii

4.2 Experimental Setup .. 78

4.3 Experimental Training Results .. 79

4.4 Model Evaluation .. 82

4.5 Addressing Memory Limit Issues During Experiments ... 87

4.6 Discussion of Results Comparing with Past Research .. 88

Chapter Five ... 92

Conclusions .. 92

5.1 Research Contributions.. 92

5.2 Limitations ... 94

6. Future Works ... 95

7. Conclusion .. 95

References ... 97

 113 ... الملخص

viii

List of Tables

Table 1: Defect Patterns and Related Issues in Manufacturing. 5

Table 2: A comprehensive overview of the performance of different CNN models in

defect classification. ... 25

Table 3: The description of columns in the “WM-811K” dataset. 33

Table 4: Description of mixed defect patterns in level two, detailing the combination of

two types of defects found in different regions of the wafer. ... 48

Table 5: Description of mixed defect patterns in level three, detailing the combination of

three types of defects found in different regions of the wafer. 49

Table 6: Description of Mixed Defect Patterns in Level four, detailing the combination

of four types of defects found in different regions of the wafer. 50

Table 7: Description of Parameters in the Inception Module. .. 55

Table 8: Description of Inception Sub-Modules, detailing the name and functionality. 55

Table 9: Description of layers in the modified GoogLeNet model with input and output

shapes. .. 57

Table 10: Description of Common Variables in the Classification Framework. 59

Table 11: DefectClassifierX Python server APIs. .. 67

Table 12: The selected hyperparameters for tunning with their descriptions................. 71

Table 13: The search space for the selected hyperparameters.. 72

Table 14: Key Terms for Classification Model Evaluation: Definitions and Descriptions

of True Positive, False Positive, True Negative, and False Negative. 73

Table 15: Python Libraries and Frameworks used in classification framework:

Description and Version Information. .. 76

ix

Table 16: Libraries and Frameworks used in DefectClassifierX development:

Description and Version Information. .. 77

Table 17: Tunned Hyperparameter optimal values. ... 78

Table 18: Distribution of Wafer Maps in the Dataset, detailing the number of wafer

maps used for training, validation, and testing. .. 79

Table 19: Cross-Validation Results, detailing the average training and validation

accuracy, as well as training and validation loss for each fold in a CNN-based defect

classification model. ... 80

Table 20: Evaluation results of three deep learning models, Modified GoogLeNet,

ShuffleNetV2 and ResNet-50 in terms of their average training and validation accuracy,

as well as their average training and validation loss. ... 82

Table 21: Performance Metrics for Each Defect Pattern Class in a CNN-based Defect

Classification Model, detailing the accuracy, precision, recall, and F1 score for each

class. ... 84

Table 22: Evaluation results of three deep learning models, Modified GoogLeNet,

ShuffleNetV2 and ResNet-50 in terms of their average accuracy, precision, recall, and

F1 score. ... 86

Table 23: Performance Analysis of Modified GoogLeNet for traning phase. 88

x

List of Figures

Figure 1: A sample of silicon ingots and wafer surfaces .. 2

Figure 2: Overview of general processes in integrated circuits manufacturing. 2

Figure 3: A real sample of a defect on the edge of the semiconductor wafer. 4

Figure 4: Display of common defect patterns in wafer maps, including (A) Center, (B)

Donut, (C) Edge-Loc, (D) Edge-Ring, (E) Loc, (F) Near-Full, (G) Random, and (H)

Scratch. ... 5

Figure 5: A close-up view of a wafer map generated by wafer testing equipment. 6

Figure 6: The RGB representation of digital image, explaining the color channels used

in pre-processing raw images for CNN-based defect classification. 15

Figure 7: The architecture of a single perceptron of ANN, illustrates the fundamental

building block of neural network. .. 16

Figure 8: The Architecture of ANN showcasing an input layer, two hidden layers, and

an output layer. ... 17

Figure 9: The architecture of CNN. .. 18

Figure 10: An illustration of 4x4 to 2xrios image conversion using a 2x2 filter and zero-

padding. .. 21

Figure 11: An illustration of pooling operations types in CNN. 22

Figure 12: Visualization of ReLU activation function. .. 22

Figure 13: The Fully-connected layer, an essential component in CNN for finalizing the

classification of defects. ... 23

Figure 14: Visualization of wafer map representation with color map value from a

dataset. .. 34

xi

Figure 15: Histogram of failure types, showcasing the distribution of different defect

patterns in the dataset. .. 35

Figure 16: Visualization of Defect Patterns and their frequency in the "WM-811K"

dataset. .. 36

Figure 17: Illustration of the main steps in data preprocessing, data augmentation, and

encoding class labels, outlining the essential preprocessing steps required for training a

CNN model for defect classification. ... 37

Figure 18: A close-up view of a resized wafer map. .. 39

Figure 19: A comparison of the original RGB wafer image (A) and the rotated RGB

image by π (B). ... 44

Figure 20: A comparison of the original RGB wafer image (A) and its vertically (B) and

horizontally (C) flipped versions. ... 46

Figure 21: Examples of Mixed Defect Patterns, including (A) Center with Edge-Loc,

(B) Center with Edge-Loc with Scratch, and (C) Donut with Loc with Edge-Loc with

Scratch. ... 51

Figure 22: The Proposed Classification Framework, detailing the structure and

workflow of a CNN-based defect classification model, from hyperparameter tuning to

final output. ... 53

Figure 23: The visualization of the modified GoogLeNet model architecture. 56

Figure 24: "Welcome" screen of the DefectClassifierX application. 64

Figure 25: The main components of DefectClassifierX. .. 66

Figure 26: The flow chart of DefectClassifierX Workflow. .. 67

Figure 27: The “select wafer images” page in DefectClassifierX. 68

Figure 28: The “data preprocessing” page in DefectClassifierX. 69

xii

Figure 29: The “classification” page in DefectClassifierX. ... 69

Figure 30: The “classification results” page in DefectClassifierX. 70

Figure 31: The “Report generator” page in DefectClassifierX. 70

Figure 32: Line plot of Average Accuracy per Epoch, showing the trend of model

performance across the 6 folds during training. ... 81

Figure 33: Line plot of Average Loss per Epoch, showing the trend of model

performance across the 6 folds during training. ... 81

Figure 34: Confusion Matrix, detailing the true positives, false positives, true negatives,

and false negatives for each class in a CNN-based defect classification model 83

Figure 35: ROC Curves for all Defect classes, detailing the trade-off between true

positive rate and false positive rate for each class. ... 86

xiii

List of Abbreviations

ML Machine Learning

AI Artificial Intelligence

DL Deep Learning

CNN Convolutional Neural Network

CUDA Compute Unified Device Architecture

CBAM Convolutional Block Attention Module

ANN Artificial Neural Network

CCE Categorical Cross-Entropy

Relu Rectified Linear Activation Function

C+EL Center with Edge-Loc

C+ER Center with Edge-Ring

C+L Center with Loc

C+S Center with Scratch

L+S Loc with Scratch

D+S Donut with Scratch

D+EL Donut with Edge-Loc

D+ER Donut with Edge-Ring

D+L Donut with Loc

EL+L Edge-Loc with Loc

EL+S Edge-Loc with Scratch

ER+L Edge-Ring with Loc

ER+S Edge-Ring with Scratch

C+EL+S Center with Edge-Loc with Scratch

C+ER+S Center with Edge-Ring with Scratch

C+EL+L Center with Edge-Loc with Loc

C+ER+L Center with Edge-Ring with Loc

C+L+S Center with Loc with Scratch

D+EL+S Donut with Edge-Loc with Scratch

D+ER+S Donut with Edge-Ring with Scratch

D+EL+L Donut with Edge-Loc with Loc

D+ER+L Donut with Edge-Ring with Loc

xiv

D+L+S Donut with Loc with Scratch

EL+L+S Edge-Loc with Loc with Scratch

C+L+EL+S Center with Loc with Edge-Loc with Scratch

C+L+ER+S Center with Loc with Edge-Ring with Scratch

D+L+EL+S Donut with Loc with Edge-Loc with Scratch

D+L+ER+S Donut with Loc with Edge-Ring with Scratch

GPU Graphical Processing Unit

JSON JavaScript Object Notation

HTTP Hypertext Transfer Protocol

Apis Application Programming Interfaces

Urls Uniform Resource Locators

Adamw Adam With Weight Decay Regularization

Adam Adaptive Moment Estimation

ROC Receiver Operating Characteristic

TP True Positives

TN True Negatives

FP False Positives

FN False Negatives

TPR True Positive Rate

FPR False Positive Rate

1

Chapter One

Introduction

This chapter serves as an introduction to the study. It provides background

information on the topic and presents the research problem and questions to be addressed.

The aims and objectives of the study are outlined, highlighting the purpose and goals. The

significance and motivation behind the study are discussed, emphasizing its importance.

Additionally, the chapter delves into the research scope, defining the boundaries and

extent of the study. Lastly, the organization of the thesis is described, providing an

overview of how the subsequent chapters are structured.

Background Information

The demand for electronic devices has significantly increased owing to the Fourth

Industrial Revolution (Industry 4.0), advancements in semiconductor manufacturing and

Internet of Things devices[1], [2]. Fortune Business Insights statistics indicate that the

global consumer electronics market is expected to see substantial growth reaching 989.37

billion USD by 2027 [3]. Electronic devices are composed of integrated circuits

containing various electronic components such as resistors, transistors, and diodes [4].

These components and their connections are built on a semiconductor wafer typically

composed of single-crystal Si, as shown in Figure 1 [5].

2

Figure 1: A sample of silicon ingots and wafer surfaces 1

The fabrication process of integrated circuits involves the use of a thin, circular

slice of material known as a wafer [6]. This process involves the transformation of raw

materials or components into a final product. Semiconductor wafer manufacturing forms

the core of integrated circuit production, is highly complex, as illustrated in Figure 2 [7].

Figure 2: Overview of general processes in integrated circuits manufacturing.

 In the context of silicon wafer manufacturing, the processes include general steps

such as Wafer processing, Oxidation, Photomask, Etching, Film Deposition,

Interconnection, Testing and Packaging. The details of these steps are as follows:

1. Wafer processing: In this process, silica sand is heated to separate silicon and

carbon monoxide until ultra-high-purity electronic-grade silicon (EG-Si) is

obtained. Then the “EG-Si” is melted and cast into a large cylinder form called

“ingot.” After that, the “ingot” is sliced into a certain thickness called "die" which

is an unprocessed raw wafer [8].

1 Image was uploaded by Yoshifumi Uesaka from Nikkei staff writer (source Image URL)

https://www.ft.com/__origami/service/image/v2/images/raw/https%253A%252F%252Fcms-image-bucket-production-ap-northeast-1-a7d2.s3.ap-northeast-1.amazonaws.com%252Fimages%252F9%252F3%252F5%252F1%252F12541539-3-eng-GB%252F20180201-Sumco_Wafer.jpg?width=700&fit=cover&gravity=faces&dpr=2&quality=medium&source=nar-cms

3

2. Oxidation: In this process, a protection layer is added to the wafer surface to

protect it from chemical impurities, current leakage, and wafer slipping during the

etching phase [9].

3. Photomask: In this process, circuit patterns are printed onto wafers using

photomask technology, which uses ultraviolet irradiation [10].

4. Etching: This is a very important phase that includes removing all oxide film and

unwanted parts from the wafer’s surface using wet or dry etching, depending on

the materials used [11].

5. Film Deposition: This process uses a variety of techniques, including chemically

vaporized deposition (CVD), atomic layer deposition (ALD), and physical vapour

deposition (PVD), to produce film materials on a semiconductor wafer at the

molecular level [10].

6. Interconnection: In this process, the wafer components and layers are connected

electrically to allow the transmission of signals from one layer to another.

Aluminium (Al) and copper (Cu) are primarily used in the interconnection process

[12].

7. Testing: In this process, different types of testing are performed to ensure that the

wafer’s quality meets semiconductor manufacturing standards. All components

are performed normally, defects in the wafer are identified and eliminated, and

defective components are replaced [13].

8. Packaging: This is the final process in which individual wafer chips are

encapsulated for protection, and an electrical connection is added before wafer

dicing, which allows the attachment of many integrated circuits into a single wafer

[14].

4

Semiconductor wafer manufacturing is a series of costly, complicated, and highly

disciplinary processes in which the incidence of defects is significant. Complex and time-

consuming diagnosis, inspection, and analysis processes are required in each phase to

detect defects, which helps semiconductor engineers track and handle the source of failure

in each phase before reaching the final production stage and ensure that the components

are aligned correctly and operated correctly in a desired manner [15].

Typically, the semiconductor manufacturing process takes up to 26 weeks [16].

In addition, the training process for operators or engineers to manually classify defects

with an accuracy of 90% takes up to 9 months [17]. During the wafer manufacturing

process, there are two main sources of defects in the wafer: dust particles in the

manufacturing environment, equipment and/or human errors [18]. Figure 3 shows an

example of a real defect appearing at the edge of a semiconductor wafer.

Figure 3: A real sample of a defect on the edge of the semiconductor wafer.2

In wafer manufacturing, there are typically two types of defect patterns: global

defects, which are evenly spread across the entire wafer, and local defects, which show

distinct spatial patterns. These spatial patterns can provide valuable information regarding

specific manufacturing issues.

2 Image was uploaded by Shannon Davis from Semiconductor Digest’s (source Image URL)

https://www.semiconductor-digest.com/wp-content/uploads/2019/07/Screen-Shot-2019-07-19-at-1.49.56-PM-768x838.png

5

Local defects are classified according to their distribution from the edge to the

center of the wafer surface. The most common defect patterns are Center, Donut, Edge-

Loc, Edge-Ring, Loc, Near-full, Random and Scratch, as shown in Figure 4 [19].

(A) (B) (C) (D)

(E) (F) (G) (H)

Figure 4: Display of common defect patterns in wafer maps, including (A) Center, (B) Donut,

(C) Edge-Loc, (D) Edge-Ring, (E) Loc, (F) Near-Full, (G) Random, and (H) Scratch.

The various defects observed in the product can be attributed to various issues

during the manufacturing process. For instance, a scratch often indicates mishandling by

the machine, whereas Edge-Ring is typically associated with problems encountered

during etching. The appearance of a center defect may signal complications arising from

thin-film deposition techniques.[20]. Table 1 provides a summary of different defect

patterns encountered in the manufacturing process and their related issues. Each defect

pattern is associated with specific causes and implications, ranging from alignment and

etching problems to contamination, uneven deposition, material defects, insufficient

material, impurities, equipment malfunctions, and mishandling by the machine.

Understanding these defect patterns is crucial for identifying and addressing

manufacturing issues effectively [21].

Table 1: Defect Patterns and Related Issues in Manufacturing.

Defect Pattern Related Issues

Center

It indicates issues with alignment or positioning during the manufacturing

process.

Donut
It may be caused by problems with the etching process or contamination

during manufacturing.

6

Edge-Loc It could be caused by improper handling or alignment during manufacturing.

Edge-Ring It associated with problems encountered during the etching process.

Loc
It could be caused by various factors such as contamination, uneven

deposition, or material defects.

Near-full
It could be caused by problems with the deposition process or insufficient

material.

Random

It could be caused by various factors such as impurities, equipment

malfunctions, or process variations.

Scratch
It often indicates mishandling by the machine or improper contact during

manufacturing.

In general, there are many methods for inspection processes, the most popular of which

is the automated inspection machine test, which produces wafer maps, as shown in Figure

5. The use of wafer maps is to visualize abnormal locations on silicon wafers and other

important information for tracking and manufacturing processes [22].

Figure 5: A close-up view of a wafer map generated by wafer testing equipment3.

The wafer map indicates that each wafer dies if it passes or fails to meet

performance standards [23]. Thus, a spatial pattern of wafer maps can be derived to

classify whether the wafer production meets the performance standards and identify

which wafer die contains a defect. During the inspection test phase, engineers can

manually identify the causes of the defects in the wafer at each step, address them,

improve the production lines, and reduce the production cost as much as possible.

However, the accuracy of defect classification achieved by human experts is only

3 Image was uploaded by Andre van de Geijn from English Wikipedia under public domain (source:
https://en.wikipedia.org/wiki/Substrate_mapping#/media/File:Wafermap.jpg)

https://en.wikipedia.org/wiki/Substrate_mapping%23/media/File:Wafermap.jpg

7

45%[24]. Furthermore, these methods are time-consuming, costly, complicated, and

highly disciplinary.

In recent years, machine learning (ML), a subset of artificial intelligence (AI), has

been gained significant traction in various research fields and has integrated into diverse

domains, such as speech recognition and computer vision [25]. ML allows complex tasks

to be solved without explicit programming by enabling machines to analyse data and

uncover patterns similar to the human brain. Deep learning (DL) is a subset of neural

networks within machine learning and can handle unstructured data in its raw form,

including images and audio. Unlike traditional ML approaches that require human

intervention for feature extraction determination, DL can automatically extract features

from given data [26].

Various approaches exist for DL classification, including supervised,

unsupervised, and partially supervised learning. In supervised learning; the model is

trained using a dataset consisting of inputs (referred to as "features") and labelled outputs.

This dataset is divided into three subsets: the training dataset used for model training, the

validation dataset utilized to mitigate overfitting during training and enhance prediction

accuracy and finally the testing dataset employed to validate overall model performance

[27]. With the rapid advancement of DL techniques, automated defect detection and

classification systems have emerged as promising solutions to overcome these

limitations. The benefit of leveraging DL for wafer defect classification is improved

performance, specifically, higher defect classification accuracy, minimized human error,

and reduced time. The adaption and integration of DL for wafer defect classification is a

heavily researched and developed application in which many studies have utilized wafer

8

map images to deploy different pre-processing and learning strategies that are typically

used to learn wafer map defect patterns [2].

This study introduced a silicon wafer defect classification system using deep

learning techniques by adapting a deep convolutional neural network (CNN) as a model

for wafer defect classification using wafer-map images as inputs. This approach relies on

a series of data pre-processing and data augmentation operations to produce an effective

method to advance the classification of single or mixed-type wafer map defects. In

addition, this study introduced an automated pattern classification system for wafer

defects called “DefectClassifierX.” The motivation behind this study was to develop an

accurate and efficient system for classifying silicon wafer defects by leveraging DL

techniques.

Research Problem and Questions

The production of semiconductor wafers involves complex procedures and strict

quality-control measures. Defects in wafer manufacturing are common and necessitate

thorough assessment, inspection, and analysis at each stage of production. Early defect

classification plays a crucial role in addressing this issue effectively. Deep learning

techniques have shown promise for achieving accurate and automated defect

classification. However, a major challenge is the limited availability of public datasets

specifically designed for wafer map defects [28].

The existing public ‘WM-811k' dataset suffers from class imbalance issues [29].

A new dataset called "Mixed-type Wafer Defect" has been derived from the 'WM-811k'

dataset to overcome class imbalance issues. This new dataset focuses on capturing mixed

types of wafer-map defect patterns, enabling researchers to develop more robust and

accurate deep-learning models for defect classification [30]. In addition, researchers face

9

access restrictions to electronic wafer maps and integrated circuit designs as they are

proprietary to companies. These restrictions hinder the ability to conduct studies using

real-world data for defect classification on wafers, thereby limiting the generalizability

and applicability of the research findings.

Therefore, the research problem at hand revolves around addressing the

challenges of limited public datasets, class imbalance issues, and restricted access to real-

world data to develop effective deep learning models for early defect classification in

semiconductor wafer production. Overcoming these challenges will contribute to

improving quality control processes, reducing manufacturing costs, and enhancing

overall productivity in the semiconductor industry [31].

The challenges of deep-learning-based classification models for wafer map defects can

be summarized as follows [30], [32], [33], [34]:

1. Limited availability of datasets: One challenge in this research area is the scarcity

of publicly available datasets for wafer map defects, which hampers the evaluation

and comparison of deep-learning-based defect classification models on diverse

datasets. Furthermore, owing to ownership rights and confidentiality concerns,

electronic wafer designs are often inaccessible to researchers, making it difficult

to obtain crucial resources for analysis.

2. Preparation of data: To ensure the accurate classification of defects, it is crucial

to identify and implement appropriate methods for data preparation before the

training and testing phases of the deep learning-based model.

3. Investigation of deep learning-based model for classification of mixed-type

defects: It is important to assess the capability of the deep learning-based model

10

to accurately classify multiple defects within a single wafer, particularly when

dealing with mixed types of wafer defect patterns.

4. Achieving high classification performance: It is essential to identify effective

methods to achieve high classification performance using deep-learning-based

models.

5. Overcoming performance problems: It is necessary to find solutions to address

performance problems, such as memory limits during the pre-processing of data,

training, and evaluation of the DL model.

These challenges were mapped using the following questions:

1. What are the appropriate methods for addressing class imbalance issues in an

available dataset?

2. What are the appropriate methods for preparing data before the training and

testing phases of a DL model?

3. How can mixed-type wafer defect patterns be generated? Can the DL model

accurately classify multiple defects on a single wafer?

4. What are the methods for achieving high classification performance using deep

learning-based classification models?

5. How can performance problems such as memory limits that may appear during

the pre-processing of the data, training, and evaluation of the DL model be

addressed?

Aims and Objectives of the Study

This study aims to revolutionize the classification of silicon wafer defects by

developing an automated system that surpasses the limitations of traditional methods. A

11

deep convolutional neural network architecture is employed as a model for classifying

single and mixed types of wafer defects using wafer map images.

The approach involves data pre-processing and augmentation to enhance the accuracy of

defect classification, reduce false positives and false negatives, and improve overall

manufacturing efficiency. The implementation of this system can bring about significant

implications for the semiconductor industry, including enhanced quality control, cost

reduction, increased productivity, and improved customer satisfaction by achieving the

objectives outlined below.

Therefore, this aim is achieved through the following objectives:

RO1: Produce a new, balanced wafer map defect dataset that includes various types

of defects. Address the issues present in the current dataset, such as class imbalance,

to ensure a more representative and balanced dataset for training and evaluation.

RO2: Publish the dataset to provide researchers with a representative and reliable

resource for conducting in-depth studies and advancing the field of wafer map defect

analysis.

RO3: Develop and deploy a customized DL model for accurate classification of wafer

defects in an autonomous system that surpasses the performance of existing methods

by achieving high precision and accuracy in categorizing different types of defects

present on wafers.

RO4: Improve the DL model's capability to accurately classify mixed types of defect

patterns in a single wafer map by developing techniques to address the complexity

and variability associated with mixed-type defects, thereby achieving precise

classification outcomes.

12

RO5: Enhance the processing speed and efficiency of the DL classification model

and overcome performance limitations by employing parallel computation techniques

such as Compute Unified Device Architecture (CUDA).

Motivation And Significance of The Study

This study aims to revolutionize wafer defect classification using deep learning

techniques. Traditional methods have limitations in accuracy and efficiency, leading to

quality control issues, increased costs, and decreased productivity. The available dataset

also has issues such as class imbalance and limited labelled data, affecting classification

accuracy and efficiency.

The proposed automated pattern classification system for wafer defects called

"DefectClassifierX" utilizes deep learning, specifically a deep CNN architecture, to

accurately classify both single and mixed types of wafer defects using wafer map images.

The study employs modern techniques like data preprocessing and augmentation to

overcome dataset problems, improve defect classification accuracy, reduce false positives

and false negatives, and enhance manufacturing efficiency.

Implementing this system has significant implications for the semiconductor industry. It

enhances quality control by accurately identifying and rectifying defects, increasing

productivity through faster defect classification and allowing for timely interventions.

Ultimately, it improves customer satisfaction by delivering high-quality electronic

components.

The study's specific goals include producing a new and balanced wafer map defect

dataset called "WM-300K+ wafer map [Single & Mixed]" for single and mixed types of

defect patterns, publishing it to advance the field, developing and deploying a customized

deep learning model for accurate classification, improving the model's capability to

13

handle mixed-type defects, and enhancing process speed and efficiency through CUDA.

This study has the potential to transform wafer defect classification, benefiting the

semiconductor industry with enhanced quality control, cost reduction, increased

productivity, and improved customer satisfaction.

Research Scope and Outlines

The research scope of this study is to create an accurate and effective system for

classifying defects in silicon wafers through the application of DL techniques based on

CNN that leverages wafer map images as input data. Various techniques for data

preprocessing and augmentation are incorporated in the proposed methodology to

enhance the classification of single or mixed types of wafer defect patterns. As a result,

the baseline performance exceeds 90% accuracy. However, this research aims to achieve

model performance with a maximum error rate of 10%. Therefore, we are introducing a

production-ready software model solution. The "WM-811k" dataset is utilized, which

includes single or mixed defect patterns and employs different strategies for data

preprocessing to address imbalanced class issues. a new balanced wafer map defect

dataset that includes various types of single and mixed defects will be published via the

Kaggle website4.

The study will present an application that takes input images of defects and outputs their

respective defect classes. The application will be designed to be user-friendly, efficient,

and reliable for seamless integration into the manufacturing process.

4 The Kaggle website is an online platform for data science and machine learning that hosts a wide range
of datasets.

https://www.kaggle.com/

14

Thesis Organization

The rest of this thesis is organized into several chapters. Chapter 2 discusses key

theories and concepts related to digital images and convolutional neural networks

(CNNs).

Chapter 3 reviews the existing literature related to the research topic, identifies gaps or

limitations in the existing literature, highlights areas where further research is needed.

Chapter 4 describes the dataset used in the research, analyzes its characteristics, explains

the data preprocessing techniques applied, presents data augmentation techniques for

increasing defect pattern frequencies and generating mixed defect patterns, and discusses

the categorical encoding technique used for labels or classes.

Chapter 5 presents the proposed methodology for solving the research problem, explains

the GoogLeNet model and its components, discusses the implementation details of the

classification framework and application development, discusses hyperparameter tuning

and optimization techniques, and discusses evaluation metrics for assessing model

performance.

Chapter 6 lists the development tools and system requirements used in the research

project, describes the experimental setup, presents the results obtained from training

experiments, evaluates model performance, discusses memory limit issues encountered

during experiments and their solutions, analyzes and discusses results in comparison with

previous research findings.

Chapter 7 summarizes the contributions made by the research study, discusses limitations

faced during the research project, proposes potential future research directions or

extensions, and provides a concise conclusion summarizing key findings and outcomes

of the study.

15

Preliminaries

In this chapter, an overview of key theories and concepts related to the topic are discussed,

including digital images and convolutional neural networks.

Digital Images

Digital images play a vital role in the digital information system and contemporary

communication because of their capacity to visually depict and graphically convey

information. Within computer vision, a digital image is formed through the amalgamation

of an illumination source with the reflection of light rays from said source onto the scene

being recorded [35]. A digital image can be described mathematically as a function

𝑓 (𝑥, 𝑦), of coordinates (x, y). The value assigned to each coordinate represents the

intensity or amplitude of the image at that point. Each element in the image is referred to

as a pixel and holds information regarding color or intensity as shown in Figure 6.

Figure 6: The RGB representation of digital image, explaining the color channels used in pre-

processing raw images for CNN-based defect classification.

Typically, color information is represented using color models such as RGB, CIELAB,

XYZ or CMYK [36]. RGB color space is an 8-bit depth where each pixel is represented

as a tuple as demonstrated in the following equation [37]:

〈𝑅, 𝐺, 𝐵〉 ∈ {0 … 255}3 (1)

Where R, G and B present the red, green and blue channel values for the pixel

respectively. The values range for each channel is from 0 to 255.

16

Convolutional Neural Network

Artificial Neural Network (ANN), inspired by the structure and function of

biological neurons in the human brain serves as the foundation for ANN. The human

nervous system, which consists of specialized cells known as "neurons," is responsible

for processing sensory information [38]. In ANN, each neuron receives input multiplied

by a specific weight, influencing the computation performed by that particular unit. An

instance of a neuron in an ANN is referred to as a "perceptron" [27].

The perceptron, a basic ANN developed by Frank Rosenblatt in 1958, is

composed of multiple input nodes and one output node, as depicted in Figure 7 [39].

Figure 7: The architecture of a single perceptron of ANN, illustrates the fundamental building

block of neural network.

ANN commonly consist of several layers, namely the input layer, hidden layers,

and output layer. Each of these layers is composed of multiple perceptrons as depicted in

Figure 8.

17

Figure 8: The Architecture of ANN showcasing an input layer, two hidden layers, and an output

layer.

The input data flow through the perceptron from the input layer to the output layer

(forward direction) is called “Feedforward propagation”. Feedforward propagation refers

to the process of passing input data through the network's layers in a forward direction to

generate predictions or output. During feedforward propagation, the input data is fed into

the first layer of the network, and the computations are performed sequentially layer by

layer until the output layer is reached. Each layer applies a transformation to the input

data using its weights and biases, followed by an activation function. The output of one

layer serves as the input to the next layer until the final output is obtained. During the

feedforward propagation phase, random initialization of weights and bias can lead to

errors in achieving the desired output.

A mechanism known as "Backpropagation" is employed to address this issue. The

backpropagation algorithm works by computing the gradient of the loss function

concerning the network parameters (weights and biases) and then updating the parameters

in the opposite direction of the gradient. This process is repeated iteratively until the loss

is minimized and the network produces satisfactory results. During backpropagation, the

error is first calculated at the output layer and then propagated backwards through the

network. The error is used to update the weights and biases in each layer, with larger

18

updates for layers that contribute more to the error. This process is repeated for each

training example in the dataset until convergence is reached [39].

Back to CNN which is a class of DL was first invented by Yann LeCun and others

in 1998. When ANN contains more than three layers, it is referred to as a deep learning

algorithm. CNN is typically used in supervised learning tasks. In supervised learning, the

CNN is trained using labelled data, where each input sample is associated with a

corresponding target or output label. The goal of the CNN is to learn a mapping between

the input data and the corresponding output labels. CNN can handle data in the form of

arrays like RGB images. CNN can extract input information (features extraction)

automatically by-passing inputs to its layers [40]. The term convolutional in CNN refers

to the usage of convolutional layers to extract spatial features from images, making them

more efficient and effective for image-related tasks than ANN.

The CNN typically consists of an input layer, hidden layers and an output layer.

The hidden layers include one or more layers that perform convolutions as shown in

Figure 9.

Figure 9: The architecture of CNN.

 Feedforward propagation in CNN is the same as in ANN however, there are some

differences in the specific operations performed in each layer of a CNN compared to an

ANN, but the core principles of feedforward propagation remain the same. It involves

passing the input data through various layers, such as convolutional layers, pooling layers,

19

and fully connected layers while applying activation functions and weight parameters.

Also, the backpropagation phase in CNN follows the same general steps as in Artificial

Neural Networks (ANNs) [41].

The steps of backpropagation in CNNs are as follows [41]:

1. Forward Pass: Perform a forward pass through the network by feeding the input

data and calculating the output of each neuron layer by layer by performing

specific operations, such as convolution, activation, and pooling, to generate

intermediate outputs.

2. Loss Calculation: Compute the loss or error between the predicted output and the

actual target output using a suitable loss function, such as categorical cross-

entropy (CCE) for classification. The CCE is calculated by the following

Equation:

𝐶𝐶𝐸 = − ∑ 𝑡𝑖 log(𝑠𝑖)

𝐶

𝑖

 (2)

Where C is the number of classes, 𝑡𝑖 is the target prediction for class i and 𝑠𝑖 is

the probability for i class.

3. Backward Pass: The backward pass is where the actual backpropagation happens.

It involves calculating the gradients of the loss concerning the parameters

(weights and biases) of the CNN.

4. Gradient Calculation and Weight Update: Propagate the gradients backwards

through the layers, calculating the gradients of the loss concerning the weights

20

and biases of each neuron. Update the weights and biases using an optimization

algorithm to minimize the loss.

5. Repeat steps 1-4: The forward pass, loss calculation, backward pass, and weight

update steps are repeated iteratively for a certain number of epochs or until

convergence is achieved.

Each layer in CNN performs specific operations on the input data, extracting

relevant features and transforming the information [40]. These layers have their

functionality as follows:

1. Convolutional Layer:

It consists of a collection of learnable filters called "kernels". The inputs passe

through these filters as tensors5 with a shape of (number of inputs) × (input height)

× (input width) × (input channels) to generate the output feature maps by

performing a dot product between the kernels and the inputs with the same size as

the kernels. This operation covers all elements in the input by sliding the filter

over the element of the input with a fixed value known as "stride". The dimension

of filters depends on the number of channels in input. For example, if the input is

an RGB image (has 3 dimensions reflecting red, green, and blue channels) then

kernels will have a depth of three. When the kernel size does not cover the whole

image, padding can be added to extend the processing area and cover all pixels in

the input image [42]. The convolution operation for a given RGB image 𝐼 with

three channels 𝐶 = 3 , a set of kernels 𝐾 of a dimension 𝑘1 × 𝑘2 and biases 𝑏 is

calculated by the following equation:

5 A tensor is a concept in machine learning to organize and represent data such as multidimensional
array.

21

(𝐼 ⊗ 𝐾)𝑖,𝑗 = ∑ ∑ ∑ 𝐾𝑚,𝑛,𝑐 ⋅ 𝐼𝑖+𝑚,𝑗+𝑛,𝑐 + 𝑏
𝐶

𝑐=1

𝑘2−1

𝑛=0

𝑘1−1

𝑚=0
 (3)

The output size of the convolution is calculated by the following Equation:

𝑇ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑊 − 𝐹 + 2𝑃

𝑆
+ 1 (4)

Where 𝑊 represent the width of a square input image, 𝐹 represent the spatial size

of the kernel, 𝑃 represent the padding amount and 𝑆 represents the sliding size.

 Figure 10 shows an example of converting 4 𝑏𝑦 4 image to 2 𝑏𝑦 2 image by

applying dot product for the input image with filter 2 𝑏𝑦 2 with zero-padding and

sliding size of 2.

Figure 10: An illustration of 4x4 to 2xrios image conversion using a 2x2 filter and zero-padding.

2. Pooling Layer: It is used to sample/shrink the feature maps to extract important

features by using pooling functions like Average Pooling, which takes the average

pixel value for each patch6, Min Pooling, which takes the minimum pixel value,

6 Patch mean here the set of pixels that the pooling operation will apply on it and its always has a size
less than feature map.

22

or Max Pooling, which takes the maximum pixel value [43]. Figure 11 illustrates

the operation of these functions. All three types of pooling operations are

commonly used in CNN to reduce the spatial dimensions of feature maps and help

prevent overfitting. By reducing the size of feature maps, pooling operations also

help to decrease the computational complexity of subsequent layers in the

network.

Figure 11: An illustration of pooling operations types in CNN.

3. Activation layer: The activation layer comes after all layers of CNN and consists

of the activation function, which determines whether or not to activate the neuron.

This operation allows CNN to adjust weights and biases, improving the learning

phase (back-propagation) [44]. There is a common function associated with CNN

called the rectified linear activation function (ReLU), as visualized in Figure 12.

Figure 12: Visualization of ReLU activation function.

23

ReLU gained its popularity due to its phenomenal performance within CNN. The

ReLU function converts all values to positive numbers as expressed in the

following equation [45].

𝑓(𝑥) = max (0, 𝑥) (5)

4. Fully connected layer: This layer represents the classifier of CNN. it’s located at

the end of CNN where each node of this layer is connected to all nodes of the

previous layer as shown in Figure 13. It is responsible for learning and mapping

the high-level features extracted by the preceding convolutional and pooling

layers to the desired output classes or predictions.

Figure 13: The Fully-connected layer, an essential component in CNN for finalizing the

classification of defects.

 The input of this layer is flatted into a one-dimensional array and then performs

the calculation as in CNN feedforward propagation. The calculation is repeated

for all layers and then an activation function called the “softmax activation

function” is used to calculate the probability of the input to obtain the particular

class. The softmax activation function formula is as follows [27]:

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑘
𝑗

 (6)

24

Where the 𝑧 represent the vector of input, the 𝑒𝑧𝑖 represent the exponential of 𝑖

element of the 𝑧 and the 𝑘 represents the number of classes.

5. Dropout layer: This layer is a regularization technique used to prevent overfitting

by breaking the dependencies among neurons and encouraging the network to

learn more robust representations that generalize better to new data. It works by

randomly setting a fraction of the nodes in a layer to 0 during training, which

creates a new and slightly modified network architecture for each run. The dropout

probability determines how many nodes are set to 0, and the optimal probability

depends on the layer type. For the input layer, a dropout probability close to one

is optimal, while for hidden layers, a probability close to 50% leads to better

results[46].

25

Chapter Two

Literature Reviews

In this chapter, an overview of relevant literature is presented. It explores existing

research and identifies gaps in the literature that the study aims to address.

2.1 Overview of Relevant Literature

Several prior studies have been conducted on wafer defect classification, with

each study incorporating different datasets, CNN architectures, and training techniques.

In Table 2, a comprehensive overview of these studies is presented. It also includes

details such as the utilized dataset, number of defect patterns considered in the analysis,

whether single or mixed defects were classified, the specific CNN architecture employed

in each study and its corresponding test accuracy for classification.

Table 2: A comprehensive overview of the performance of different CNN models in defect

classification.

Ref Dataset used

#’s defects

patterners

Single or Mixed

defects

classification

CNN

architecture

Accuracy

[47] WM-811K 8 Single

Proposed

architecture with

13 layers

93.25%

[48]

WM-811K and

MixedWM38

38 Single and Mixed

(WM-PeleeNet)

with 9 layers

93.6% for

single and

97.5% for

mixed

[49] WM-811K 8 Single

(ShuffleNet-v2)

with 7 layers

96.93%

26

[50] WM-811K 9 Single

(CNN-WDI) with

16 layers

96.2%

[51] Dataset-TT 12 Single

(ResNet) with

(VGG-16)

96.2%

[29] WM-811K 8 Single (ResNet-18) 95.46%

[52] WM-811K 9 Single

(YOLO) version

3, 3-tiny and 4

95.7%

[53] MixedWM38 38 Single and Mixed (U-Net) 95.8%

Our work

 pre-processed

WM-811K

36 Single and Mixed

(Modified

GoogLeNet)

99.9%

Researchers in the field of wafer defect classification have made significant

contributions to CNN architectures. While some researchers have designed their own

CNN architectures, others have utilized existing ones. However, they face challenges

such as imbalanced datasets and issues with overfitting and underfitting during model

training. Researchers have employed data augmentation, regularization techniques, and

attention mechanisms to tackle these problems. Additionally, investigations into the

efficacy of current CNN architectures for accurately classifying various wafer defects are

being conducted. Furthermore, semantic segmentation has been applied by some

researchers to segment different defect patterns on wafer maps. As a result of these efforts

from the research community improvements in accuracy and efficiency within wafer

defect classification systems can be observed.

Researchers have developed custom CNN architectures for classifying wafer

defects, aiming to improve performance and efficiency. In [47], they proposed using a

13-layer CNN to detect and classify eight known wafer map defects. The authors applied

a median filter algorithm to remove noise from the wafer map images and resized them

27

to 224x224 pixels. A Dropout method with a probability of 0.5 was employed to address

the overfitting problem during training. The 'WM-811K' dataset which consists of

811,457 wafer map images including 172,950 labelled images and nine single defect

patterns, served as the dataset for this study. The dataset was split into three subsets -

training (60%), validation (15%), and testing (25%). The experiments conducted resulted

in an impressive accuracy of 99.98% for detecting the presence of defect patterns on the

wafer map. However, when it comes to classification, they achieved an average accuracy

of 93.25%. The 'Donut' defect had a minimum average accuracy rate of 86%, while both

the 'Edge-Ring' and 'Near-Full' defects achieved a maximum average accuracy rate of

100%.

Researchers have also utilized existing CNN architectures like 'PeleeNet',

'ShuffleNet-v2', and 'CNN-WDI' for the classification of wafer defects. By adapting these

models specifically for this task, researchers intend to capitalize on their strengths and

enhance performance within this specific domain. In [48], the researchers proposed a

lightweight classifier for wafer defect classification based on a proposed CNN

architecture called ‘’WM-PeleeNet” with nine layers derived from the 'PeleeNet' CNN

architecture to achieve a good balance between accuracy and efficiency in wafer defect

classification. The datasets used were the 'WM-811K' and 'MixedWM38' datasets. The

'MixedWM38' dataset contains 38,000 wafer maps with nine single defect patterns and

29 mixed defect patterns. A data augmentation approach was used based on convolutional

autoencoder, GAN-based, and image transformation methods to address the unbalanced

distribution of defect images in the datasets. The input images were resized to 224x224

pixels to standardize the dimensions. The experiments showed that an average accuracy

of 93.6% was achieved for single wafer defect patterns, with the minimum average

28

accuracy for classifying the 'Local' defect being 92.2%, and the maximum average

accuracy for classifying the 'Edge-ring' defect being 97.6%. Also, for mixed types of

wafer defects using the 'MixedWM38' dataset, the experiments showed an average

accuracy of 97.5%, with the minimum average accuracy for classifying the 'Center with

Edge-Ring with Scratch' defect being 93.4%, and the maximum average accuracy for

classifying the 'Donut with Edge-Ring with Scratch' defect being 100%.

In [49], a silicon wafer defect identification and classification model was proposed

by researchers. This model consists of a pre-trained deep transfer learning model called

ShuffleNet-v2 with seven layers using CNN architecture. It achieves an overall accuracy

of 96.93%, precision of 95.40%, recall of 96.26%, and F1-score of 95.75% in classifying

the defects. The training and testing phase utilized the 'WM-811K' wafer dataset, with

data augmentation performed using a six-layer convolutional autoencoder CNN model.

The total number of images used after data augmentation was 19,707, representing nine

different patterns for wafer defects. However, because it is focused on being lightweight,

the ShuffleNet-v2 may sacrifice some accuracy to achieve faster inference time and lower

computational cost.

Furthermore, in [50] the researchers proposed a deep learning-based CNN for

automatic wafer defect identification with 16 layers. The model utilizes convolution

layers to extract features and incorporates data augmentation and regularization

techniques to enhance classification performance. Experimental results demonstrate that

the model surpasses previous machine learning-based models, achieving an average

classification accuracy of 96.2% on a wafer dataset 'WM-811K' consisting of nine wafer

defect patterns. Methods such as image flipping, shifting, rotating, and zooming were

applied during augmentation to address the class-imbalance problem in the dataset.

29

However, no mention was made regarding how they addressed the overfitting problem

associated with their CNN model's high accuracy.

The researchers proposed an automatic defect classification system for wafer

defect identification and classification. In, [51] the researchers present a system that

utilizes DL techniques, specifically a ResNet101-based CNN model that was pre-trained

on the ‘ImageNet’ dataset. For the sizing classification of two specific classes, the system

employs a single-shot detection architecture based on VGG-16. The research utilized a

dataset consisting of 8 defect classes, with 2 subclasses representing similar defects but

varying in sizes. Data augmentation techniques were implemented to expand the dataset

size. The obtained results showed a top-1 accuracy of 91.1% and a top-3 accuracy rate of

96.2%, with each class being correctly classified at least 69% of the time. The study

acknowledges that the used dataset was relatively small and nonuniform. Future studies

will explore employing advanced CNNs on larger datasets.

Some researchers have modified the existing CNN architecture by replacing

certain layers with different algorithms to improve and increase the accuracy of defect

classification in the system. In [29], researchers propose a DL method that leverages the

attention mechanism and cosine normalization to learn robust knowledge from

imbalanced datasets. They introduce an improved convolutional attention module called

CBAM to enhance the representation capabilities of the CNN model. They use the

ResNet-18 CNN model with an improved convolutional block attention module (CBAM).

The proposed method achieves an average accuracy of 95.46% on the imbalanced ‘WM-

811K’ dataset with nine wafer defect patterns. The researchers propose the use of a cosine

normalization algorithm as a replacement for the fully connected layer to address quantity

distribution imbalance. The fine-tuning of the classifier was achieved by minimal iterative

30

training which decreased the quantitative distribution sensitivity. Resolving the issue of

imbalanced datasets may facilitate the implementation of the algorithm in actual

manufacturing.

Some researchers have investigated the performance of several current CNN

architectures in wafer defect classification. This investigation aims to evaluate the

effectiveness of these architectures in accurately classifying different types of wafer

defects. In [52], researchers focus on using DL approaches for automated wafer defect

detection in semiconductor manufacturing. This study emphasizes the importance of

defect localization by evaluating the performance of ‘YOLOv3’ and ‘YOLOv4’ object

detection models in accurately locating and classifying wafer defects. The dataset ‘WM-

811K’ was used with nine wafer defect patterns and input wafer images were resized to

416x416 dimensions. The results show that these models achieve over 95.7%

classification accuracy in real-time. Other architectures like ‘ResNet50’ and

‘DenseNet121’ were also evaluated for defect classification but lacked localization

abilities. The study highlights the significance of defect detection for quality management

and yield improvement in semiconductor manufacturing. It discusses the effectiveness of

‘YOLOv4’ in defect localization and classification, with an average F-score of 0.92. The

challenges in training DL models for wafer defect detection and the trade-off between

underfitting and overfitting are also addressed in their study.

Finally, other researchers have used semantic segmentation in the field of image

processing and computer vision. This technique involves dividing an image into multiple

parts or regions and assigning a semantic label or category to each region. This technique

is typically implemented using CNN. in [53] the researchers proposed a new framework

for segmenting different defect patterns on wafer maps using a semantic segmentation

31

approach, particularly when multiple defect types are mixed on the same wafer. They

used ‘U-NET’ CNN architecture which consists of an encoder path that captures the

contextual information and a decoder path that recovers the spatial information. The

proposed method works well on single and known/unknown mixed types of defects. The

authors extract defects from the single-defect wafer map of the ‘MixedWM38’ dataset to

generate single-defect pixel-level labels. They then generate a mixed defect pattern

dataset suitable for semantic segmentation using single-defect wafer maps and labels. The

proposed method achieves an average accuracy of over 97% on the test set of their

synthetic dataset and 95.8% on the ‘MixedWM38’ dataset when using the trained model

for testing. This study addresses the challenge of identifying and distinguishing complex

defect patterns that arise when different defect types coexist on the same wafer. This can

be a difficult task due to the complexity and variability of mixed-type defects.

2.2 Gaps In the Literature

In the current literature on wafer defect classification, there are notable gaps that

require attention. One of the main challenges is dealing with multiple defect types on the

same wafer which makes accurately classifying each defect difficult. The overlapping or

mixed nature of different defect types can lead to ambiguity and confusion in the

classification process. Developing effective algorithms and techniques to handle such

complex scenarios is crucial for improving the accuracy of wafer defect classification.

However, few studies have classified mixed types of wafer defects, indicating a need for

further investigation.

Moreover, some studies have attempted to address this challenge by performing complex

tasks for data augmentation. However, not all input wafer images require such complex

methods for data augmentation. In some cases, the input wafer images may be relatively

32

simple, and simpler data augmentation techniques may be more appropriate. Therefore,

further research is required to identify the most effective data augmentation techniques

for different types of wafer defect images.

There is a need to address the lack of information on the variability of defect

patterns in the literature. Defects can have various characteristics and appearances which

makes it difficult to create a reliable classification model. The differences in size, shape,

texture, and intensity of defects make it even more challenging to classify them correctly.

Advanced feature extraction methods should be explored along with innovative

approaches that can accurately capture and represent the wide range of defect patterns to

overcome this gap.

Furthermore, the absence of standardized datasets for assessing and comparing

classification methods makes it challenging to evaluate objectively CNN model

performance and determine the most effective methods. The creation of standardized

datasets covering a wide range of defect types would significantly aid fair comparisons

and advancements in wafer defect classification research. Addressing these gaps in the

literature will contribute to the advancement of wafer defect classification techniques and

pave the way for more reliable and efficient defect classification and quality control

processes in semiconductor manufacturing.

33

2.3 Dataset and Data Pre-processing

This chapter focuses on the dataset used in the study. It provides a description and analysis

of the dataset, highlighting its characteristics. The data pre-processing techniques

employed are explained, including data cleaning and extracting, converting images to

RGB format, and image resizing. Additionally, data augmentation techniques are

discussed, such as increasing defect pattern frequencies and using a mixed defect patterns

generator. The chapter concludes with a discussion on categorical encoding techniques.

2.3.1 Dataset Description and Analysis

In this study, a dataset called “WM-811k” 7 was used to derive a new balanced dataset.

This dataset available under the public domain on the Kaggle website consists of nine

distinct patterns of wafer defects [54]. Table 3 provides detailed information about wafer

maps, including their visual representation, size, identification details, usage labels, and

the types of defects they may exhibit in this dataset.

Table 3: The description of columns in the “WM-811K” dataset.

Column Name Column Description Column Type

1 waferMap

A two-dimensional array presentation for an 8-bit

image for a wafer map.

2d array

2 dieSize

The size of the die in the wafer is in millimetres (die

width * die height).

Float (64 bits)

3 lotName

Identification string for wafer fabrication process batch

number. Many wafer maps can hold the same lotName.

string

4 waferIndex Identification number for wafer map. Float (64 bits)

7 The dataset available under public domain on Kaggle website (source:
https://www.kaggle.com/datasets/qingyi/wm811k-wafer-map)

https://www.kaggle.com/datasets/qingyi/wm811k-wafer-map

34

5 trianTestLabel

Label to determine if the rows are used for training or

testing processes. (Test, Training)

string

6 failureType

Wafer defects type. (Center, Donut, Edge-Loc, Edge-

Ring, Local, Near-full, None, Random and Scratch)

1d array

Notably, the "waferMap" column in our dataset represents wafer map images. These

images are stored as two-dimensional arrays, with each pixel being represented by an 8-

bit unsigned integer, as shown in Figure 14.

Figure 14: Visualization of wafer map representation with color map value from a dataset.

The color map used for visualizing the wafer map image comprises three values

according to Equation 7 that helps in identifying the defect patterns and their distribution

in the wafer map, which is crucial for accurate defect classification using CNN models.

𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 = {

0 → 𝑁𝑜𝑛 − 𝐷𝑖𝑒 𝐴𝑟𝑒𝑎 (𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑜𝑟 𝑛𝑜𝑛 − 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛)
1 → 𝐷𝑖𝑒 𝑃𝑎𝑠𝑠 𝑇𝑒𝑠𝑡 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 (𝑛𝑜 𝑑𝑒𝑓𝑒𝑐𝑡𝑠)

2 → 𝐷𝑖𝑒 𝐶𝑜𝑛𝑡𝑎𝑖𝑛 𝐷𝑒𝑓𝑒𝑐𝑡 (𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑟𝑒𝑔𝑖𝑜𝑛)
 (7)

The dataset contains a total of 811,457 wafer maps. However, it is worth noting that

approximately 79% of these wafer maps do not have any pattern label for defect type or

35

have “none” pattern label as shown in the histogram graph of failure types in Figure 15.

A total of 25,519 wafer maps in the dataset have defect pattern labels.

Figure 15: Histogram of failure types, showcasing the distribution of different defect patterns in

the dataset.

Additionally, by examining the frequency distribution of defect patterns in the

dataset for wafer maps with defect pattern labels as depicted in Figure 16, we can observe

significant variations across different types of defect patterns. Moreover, it is important

to highlight that the wafer maps arrays exhibit dimensions spanning across 632 unique

values. Consequently, considering these variations in both defect pattern frequencies and

wafer map dimensions becomes crucial during the data pre-processing phase to ensure

accurate classification of defects using our proposed model.

36

Figure 16: Visualization of Defect Patterns and their frequency in the "WM-811K" dataset.

2.3.2 Data Pre-processing

Data pre-processing is essential to prepare the dataset for analysis and modelling,

ensuring more accurate and reliable results. This becomes even more important in the

context of a dataset that has variations in defect pattern frequencies and wafer map

dimensions. The pre-processing methods include data cleaning, extraction, converting

wafer map images to RGB format, and resizing these images to 56 𝑥 56 dimensions. The

data pre-processing phase includes several steps, as demonstrated in Figure 17.

Additionally, Figure 17 illustrates the other steps to prepare data for the training and

testing phase.

Center Donut Edge-Loc
Edge-
Ring

Loc Random Scratch Near-full

Defect pattern 4294 555 5189 9680 3593 866 1193 149

4294

555

5189

9680

3593

866 1193

149

0

2000

4000

6000

8000

10000

12000
FR

EQ
U

EN
C

Y

DEFECT PATTERN

37

Figure 17: Illustration of the main steps in data preprocessing, data augmentation, and encoding

class labels, outlining the essential preprocessing steps required for training a CNN model for

defect classification.

2.3.3 Data Cleaning and Extracting

During the dataset preparation process for our deep learning model, a critical stage

involved addressing classes that either had no defects or exhibited inaccurate defect

patterns (failure type). These classes contained instances where the wafers showed no

defects or where the captured defect patterns were not accurately represented.

A decision was made to exclude these classes from further analysis to ensure the quality

and relevance of the dataset. The primary objective was to prioritize classes that

represented authentic defect patterns and avoid introducing any noise or misclassification

during the training process. By removing these classes, we successfully refined the dataset

to include only relevant defect patterns. This refinement was crucial in facilitating more

accurate and effective training for our deep learning model. As a result, a total of 785,938

38

rows were removed from the dataset, while 25,519 rows representing genuine defect

patterns were retained.

This meticulous approach in dataset preparation ensures that our deep learning

model focuses on authentic defect patterns, ultimately enhancing its ability to detect and

classify defects with higher precision and reliability.

2.3.4 Converting Images to RGB Format

In this stage, the wafer map images in the dataset, which are represented in

grayscale format, were mapped to three specific values: 0, 127, or 255. This mapping was

done according to Equation 8, where these values corresponded to the minimum, median,

and maximum pixel intensities, respectively.

𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 = {
0 → 0

1 → 127
2 → 255

 (8)

The reason behind this mapping is that the original wafer map images had pixel

values of 0, 1, and 2. Since these values are relatively low, the resulting images would

appear predominantly black. By mapping the pixel values to 0, 127, and 255, the images

are adjusted to have a wider range of intensities, allowing for better visual representation

and analysis where 0 would correspond to pure black, while a value of 255 would

represent pure white. The value of 127 would represent a mid-grey tone, which is halfway

between black and white.

In the next stage of the process, each grayscale wafer map image was converted to

an RGB image by replicating the same intensity value across all three-color channels (red,

green, and blue) of the RGB image. The reason for this is that in grayscale images, the

intensity value represents the brightness of the pixel, which can be interpreted as the

amount of light in the red, green, and blue channels combined. By replicating this value

across all three channels in the RGB image, it appears similar to the original grayscale

39

image. This conversion to RGB format allows for better visualization and analysis of the

wafer map images, which can aid in identifying and classifying defects.

2.3.5 Image Resizing

The CNN typically require input images to be of a fixed size, and variations in

image dimensions can cause issues with model training and performance. The dataset

contains variations in wafer map image dimensions up to 632 different dimensions. One

approach to dealing with variations in wafer map dimensions is to resize the images to a

fixed size before feeding them into the CNN. This can be achieved using image

processing techniques such as Bicubic interpolation, which involves using a weighted

average of 16 neighbouring pixels to determine the value of each pixel in the resized

image. Bicubic interpolation is based on a mathematical algorithm that uses cubic

convolution to calculate the new pixel values based on the surrounding pixels [55], [56].

In this stage, each wafer map image is resized to 56 𝑥 56. Figure 18 shows a sample of

a resized RGB wafer map image.

Figure 18: A close-up view of a resized wafer map.

2.3.5.1 Data Augmentation Techniques

Data augmentation techniques play a crucial role in machine learning and computer

vision tasks by artificially expanding the size and diversity of training datasets. These

40

techniques involve applying diverse transformations and modifications to existing data,

resulting in the generation of new augmented samples. The primary objective is to

enhance the generalization and performance of CNN models by exposing them to a wider

range of variations and scenarios. This, in turn, strengthens their ability to handle unseen

data while mitigating the risk of overfitting [57].

The utilization of data augmentation techniques offers several benefits in

addressing common challenges such as limited training data, class imbalance, and

overfitting [58]. By introducing variations in the input data, these techniques enable

models to learn from a more comprehensive set of examples, making them more robust

and adaptable to different scenarios. Consequently, the models become better equipped

to handle real-world data with diverse characteristics, leading to improved performance

and accuracy [59], [60].

In this study, two approaches of data augmentation techniques were utilized to

enhance the performance and accuracy of the classification model [61]. The first approach

involved increasing the frequency of defect patterns by applying various transformations

such as random rotation, random horizontal flip, and random vertical flip. This was done

to address the class imbalance in existing defect patterns and improve the model's ability

to generalize and perform well on unseen data. By generating additional samples through

these transformations, the model was exposed to a wider range of variations and

scenarios, enhancing its robustness and reducing the risk of overfitting.

The second approach involved combining different defect patterns to generate

mixed types of wafer defects that inherit characteristics from each original pattern or

introduce additional features not found individually in any of them. This approach

allowed for the creation of new samples that could not be generated through simple

41

transformations, resulting in a more diverse and representative dataset. By training the

model on this augmented dataset, it was able to learn more complex patterns and

generalize better to real-world data.

Overall, these two approaches of data augmentation techniques proved to be

effective in improving the performance and accuracy of the classification model. By

increasing the size and diversity of the training dataset, the model was better equipped to

handle unseen data and achieve higher accuracy rates [59], [61].

2.3.6 Increase Defect Patterns Frequencies

2.3.6.1 Image Random Rotation

It is a technique that refers to computer vision that involves randomly rotating an

image by a certain degree within a specified range. The main steps used to rotate a pixel

of an RGB image around its center by a specific radian angle 𝜗 (each color channel

independently) are as follows [62], [63]:

1. Determine the center of the image by the following equations:

𝑐𝑥 =
𝑡ℎ𝑒 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑜𝑟𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒

2
, 𝑐𝑦 =

𝑡ℎ𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑟𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒

2
 (9)

Where 𝑐𝑥 and 𝑐𝑦 represent the x and y coordinates of the image's center,

respectively.

2. Convert the rotation angle from degree to radian by the following equations:

𝜗 = 𝜗° ∗ (
𝜋

180
) (10)

Where 𝜗 represents the equivalent radian angle of the degree angle 𝜗°
.

3. Translate the coordinates so that the center of the image is at the origin of the

transformation by the following equation:

𝑡𝑥 = 𝑥 − 𝑐𝑥, 𝑡𝑦 = 𝑦 − 𝑐𝑦 (11)

Where 𝑡𝑥 and 𝑡𝑦 represent the x and y of translated coordinates, respectively.

42

4. Apply the rotation transformation to the translated coordinates by the following

equations:

𝑟𝑥 = 𝑡𝑥 × 𝑐𝑜𝑠(𝜗) − 𝑡𝑦 × 𝑠𝑖𝑛(𝜗) (12)

𝑟𝑦 = 𝑡𝑥 × 𝑠𝑖𝑛(𝜗) + 𝑡𝑦 × 𝑐𝑜𝑠(𝜗) (13)

Where 𝑟𝑥 and 𝑟𝑦 represent the x and y of the rotation coordinates, respectively.

5. Translate the coordinates back to their original position:

𝑥′ = 𝑟𝑥 + 𝑐𝑥, 𝑦′ = 𝑟𝑦 + 𝑐𝑦 (14)

Where 𝑥′, 𝑦′ represents the rotated coordinates of the original position,

respectively.

Based on the steps mentioned earlier, Pseudocode 1 provides a clear outline of the

main procedure for rotating an RGB image by a specific angle around its center. The

process starts by loading the input image and extracting its pixel values, which are then

stored in a 2D array. Each point in the image is represented by coordinates (x, y),

indicating the pixel value at that position in the form of an RGB channel vector.

A series of calculations are performed to determine the new position for each pixel

to carry out the rotation. This involves several key steps. First, the center of the image is

determined. Next, the rotation angle is converted from degrees to radians. The coordinates

are then translated to align the center with the origin, which simplifies the subsequent

transformation equations. The rotation transformation equations are applied to obtain the

new rotated coordinates for each pixel. Finally, the coordinates are translated back to their

original position. By following this pseudocode, the RGB image can be effectively rotated

around its center by the specified angle. These calculations ensure that each pixel is

correctly positioned in the rotated image, allowing for accurate and precise

43

transformations. Figure 19 shows a sample of the RGB wafer map image and the obtained

rotated image by an angle of π.

Pseudocode 1 Pseudocode of RGB image rotation

Input: original image 𝐼 , rotation angle in degrees 𝜗°

1: Load the original image 𝐼 as a 2D array.

2: Determine the center of 𝐼 (𝑐𝑥, 𝑐𝑦) by the Equation 9.

3: Convert the rotation angle into a degree 𝜗° to radian by the Equation 10.

4: Create a new blank image 𝐼 to hold the rotated image pixels with the same dimensions

of 𝐼.

5: For x in the range of [0, 𝐼 𝑤𝑖𝑑𝑡ℎ − 1]:

6: For y in the range of [0, 𝐼 ℎ𝑒𝑖𝑔ℎ𝑡 − 1]:

7:

Translate the coordinates 𝑥, 𝑦 so that the center of the image is at the

origin by Equation 11 to obtain 𝑡𝑥 and 𝑡𝑦.

8:

Apply the rotation transformation by Equations 12 and 13 to the translated

coordinates 𝑡𝑥, 𝑡𝑦 to obtain 𝑟𝑥 and 𝑟𝑦.

9:

Translate the coordinates back to their original position by Equation 14 to

obtain 𝑥′ and 𝑦′.

10: Set the pixel value of 𝐼 at (𝑥, 𝑦) by the pixel value of 𝐼 at (𝑥′, 𝑦′)

11: End For

12: End For

13: Return 𝐼

44

(A) (B)

Figure 19: A comparison of the original RGB wafer image (A) and the rotated RGB image by

π (B).

2.3.6.2 Image Random Horizontal and Vertical Flip

During the data augmentation process, random horizontal and vertical flip

transformations were applied to the images. These transformations are applied

independently to each pixel in the image, resulting in a horizontally or vertically flipped

version of the original image [64]. This approach was used to generate additional training

data and increase the diversity of the dataset, which is essential for training deep learning

models.

Pseudocode 2 outlines the implementation to flip an RGB image. The pseudocode

takes three inputs: the original image, the probability, and the flip type. The algorithm

allows for flipping an RGB image horizontally or vertically based on the specified flip

type and probability. The resulting flipped image will have the same dimensions as the

original image. The probability is used to introduce randomness and variability into the

output, which can be useful in generating diverse and realistic results.

45

Pseudocode 2 Pseudocode of RGB image flipped

Input: original image 𝐼 , probability 𝑝, Flip type 𝑓𝑡𝑦𝑝𝑒

1: Load the original image 𝐼 as a 2D array.

2: Create a new blank image 𝐼 to hold the flipped image pixels with the same dimensions

of 𝐼.

3: Generate a random number 𝑟 in the range of [0,1].

4: If 𝑟 is greater than 𝑝 , then exit, otherwise continue.

5: If 𝑓𝑡𝑦𝑝𝑒 equal to Horizontal, then:

6: For x in the range of [0, 𝐼 𝑤𝑖𝑑𝑡ℎ − 1]:

7: For y in the range of [0, 𝐼 ℎ𝑒𝑖𝑔ℎ𝑡 − 1]:

8:

Maps the pixel at coordinates (x, y) in 𝐼 to the pixel at coordinates (x,

𝑤𝑖𝑑𝑡ℎ - y - 1) in 𝐼.

9: End For

10: End For

11: If 𝑓𝑡𝑦𝑝𝑒 equal to Vertical, then:

12: For x in the range of [0, 𝐼 𝑤𝑖𝑑𝑡ℎ − 1]:

13: For y in the range of [0, 𝐼 ℎ𝑒𝑖𝑔ℎ𝑡 − 1]:

14:

Maps the pixel at coordinates (x, y) in 𝐼 to the pixel at coordinates (ℎ𝑒𝑖𝑔ℎ𝑡

- x – 1, y) in 𝐼.

15: End For

16: End For

17: Return 𝐼

Figure 20 shows a sample of an RGB wafer map image and the obtained flipped

image vertically and horizontally. As can be seen, flipping the image horizontally or

46

vertically can result in a significant change in the appearance of the wafer map. This

transformation can help to increase the robustness of the model by exposing it to different

variations of the same image.

(A) (B) (C)

Figure 20: A comparison of the original RGB wafer image (A) and its vertically (B) and

horizontally (C) flipped versions.

2.3.7 Mixed Defect Patterns Generator

Incorporating multiple defects' patterns is a useful technique for improving the

performance and accuracy of deep learning models in real-world scenarios. By combining

existing patterns in novel ways, a comprehensive collection of training data is created,

enhancing the representation of the various possible patterns that a model may face during

practical applications. This can help to improve the model's ability to generalize and

perform well on unseen data [45].

The maximum pixel value from all input images at the same position is taken since

the pixel value that represents a defect has a maximum value of 255. Pseudocode 3

presents the pseudocode for a mixed defect patterns generator algorithm. This algorithm

takes a list of input images as input and generates a mixed image by setting each pixel

value of the mixed image to the maximum pixel values of all input images at each

corresponding location. The resulting mixed images will have the same dimensions as the

input images and will contain the highest pixel values from each input image.

47

Pseudocode 3 Pseudocode of mixed defect patterns generator algorithm.

Input: input images (𝑖𝑛𝑝𝑢𝑡𝑖𝑚𝑎𝑔𝑒𝑠)

1: Create a new blank image 𝑀 to hold the mixed image pixels with the same

dimensions as the first image of 𝑖𝑛𝑝𝑢𝑡𝑖𝑚𝑎𝑔𝑒𝑠

2: For x in the range of [0, 𝑀 𝑤𝑖𝑑𝑡ℎ − 1]:

3: For y in the range of [0, 𝑀 ℎ𝑒𝑖𝑔ℎ𝑡 − 1]:

4: Obtain the maximum pixel value 𝑝𝑖𝑥𝑒𝑙max 𝑣𝑎𝑙𝑢𝑒at (𝑥, 𝑦) for all 𝑖𝑛𝑝𝑢𝑡𝑖𝑚𝑎𝑔𝑒𝑠.

5: Set 𝑀[𝑥, 𝑦] to 𝑝𝑖𝑥𝑒𝑙max 𝑣𝑎𝑙𝑢𝑒

6: End For

7: End For

8: Return 𝑀

By using this approach, a diverse and representative dataset can be created, which

is essential for training deep learning models effectively. The resulting mixed defect

pattern images can help expose the model to a wider range of variations and scenarios,

enhancing its robustness and reducing the risk of overfitting.

This approach allows for the exploration and generation of novel defect patterns

that may occur in real-life situations. For instance, by combining two types of defects,

new defect patterns can be created, as indicated in Table 5. Similarly, the combination of

three defects yields additional new defect patterns, as shown in Table 6. Furthermore,

when four defects are combined, it leads to the creation of even more new defect patterns,

as illustrated in Table 7.

48

Table 4: Description of mixed defect patterns in level two, detailing the combination of two

types of defects found in different regions of the wafer.

Mixed Defect Pattern Name and

Symbol
Mixed Defect Pattern Description

1 Center with Edge-Loc

(C+EL)

This defect pattern combines defects found in the center

region of the wafer with defects located along the edge but

not in the very outer rim. It represents defects that occur

both at the wafer's center and middle edge.

2 Center with Edge-Ring

(C+ER)

This pattern merges defects from the center with those

along the very outer rim or edge of the wafer. It indicates

issues affecting both the central area and the wafer's

perimeter.

3 Center with Loc

(C+L)

This combines defects seen in the wafer's center with those

located elsewhere but not near the edge. It shows problems

in the middle as well as other scattered locations.

4 Center with Scratch

(C+S)

This pattern unites defects in the center with scratches or

abrasions found elsewhere on the wafer. It points to flaws

at the core along with scratch-type defects randomly

distributed.

5 Loc with Scratch

(L+S)

This merges defects located elsewhere on the wafer with

scratches. It represents randomly positioned defects

accompanied by scratches in various locations.

6 Donut with Scratch

(D+S)

This combines donut-shaped defects with scratches

anywhere on the wafer. It signifies flaws forming a donut

pattern plus additional scratch.

7 Donut with Edge-Loc

(D+EL)

This brings together donut defects with those along the

edge but not the outer rim. It shows donut issues as well as

defects on the middle edge.

8 Donut with Edge-Ring

(D+ER)

This merges donut defects with those along the very outer

rim. It points to donut flaws accompanied by problems at

the wafer's perimeter.

9 Donut with Loc

(D+L)

This combines donut defects with those found elsewhere on

the wafer but not near the edge. It represents donut issues

together with randomly located defects.

10 Edge-Loc with Loc

(EL+L)

This merges defects located along the edge but not the rim

with those elsewhere on the wafer. It signifies flaws on the

middle edge together with randomly positioned defects.

11 Edge-Loc with Scratch

(EL+S)

This combines defects along the edge but not the rim with

scratches anywhere on the wafer. It shows flaws on the

middle edge co-occurring with scratches.

12 Edge-Ring with Loc

(ER+L)

This merges defects along the very outer rim with those

elsewhere on the wafer. It represents problems at the

perimeter along with randomly located defects.

13 Edge-Ring with Scratch

(ER+S)

This combines defects along the outer rim with scratches

anywhere on the wafer. It signifies flaws at the edge

accompanied by scratches.

49

Table 5: Description of mixed defect patterns in level three, detailing the combination of three

types of defects found in different regions of the wafer.

Mixed Defect Pattern Name Mixed Defect Pattern Description

1
Center with Edge-Loc with

Scratch

(C+EL+S)

This pattern merges all four defect types - defects in the

center, along the middle edge, and scratches anywhere on

the wafer. It points to issues affecting the core, edge and

random locations with scratches.

2
Center with Edge-Ring with

Scratch

(C+ER+S)

This combines defects in the center, along the outer rim,

and scratches anywhere. It represents flaws at the core and

perimeter together with scratches across the wafer surface.

3 Center with Edge-Loc with Loc

(C+EL+L)

This pattern combines defects in the center region of the

wafer with those along the edge and at the location. It

represents issues affecting the core, middle edge, and the

location.

4 Center with Edge-Ring with Loc

(C+ER+L)

This pattern merges defects from the center with those

along the outer rim and at the location. It indicates issues

affecting the central area, perimeter, and the location.

5 Center with Loc with Scratch

(C+L+S)

This pattern unites defects in the center with those at the

location and scratches. It points to flaws at the core, the

location, and scratch-type defects randomly distributed.

6
Donut with Edge-Loc with

Scratch

(D+EL+S)

This merges donut defects with those along the edge, at the

location, and scratches. It signifies flaws forming a donut

pattern, problems at the edge, the location, and additional

scratches.

7
Donut with Edge-Ring with

Scratch

(D+ER+S)

This merges donut defects with those along the outer rim, at

the location, and scratches. It represents problems forming

a donut pattern, the perimeter, the location, and scratches.

8 Donut with Edge-Loc with Loc

(D+EL+L)

This combines donut defects with those along the edge and

at the location. It shows donut issues as well as defects on

the edge and the location.

9 Donut with Edge-Ring with Loc

(D+ER+L)

This merges donut defects with those along the outer rim

and at the location. It points to donut flaws accompanied by

problems at the edge and the location.

10 Donut with Loc with Scratch

(D+L+S)

This combines donut defects with those at the location and

scratches. It represents donut issues, the location, and

scratches.

11 Edge-Loc with Loc with Scratch

(EL+L+S)

This merges defects along the edge, at the location, and

scratches. It signifies flaws on the middle edge, the

location, and scratches.

50

Table 6: Description of Mixed Defect Patterns in Level four, detailing the combination of four

types of defects found in different regions of the wafer.

Mixed Defect Pattern Name Mixed Defect Pattern Description

1
Center with Loc with Edge-Loc

with Scratch

(C+L+EL+S)

This pattern combines defects in the center region of the

wafer with those at the location, along the edge, and

scratches. It represents issues affecting the core, the

location, the middle edge, and scratches.

2
Center with Loc with Edge-Ring

with Scratch

(C+L+ER+S)

This pattern merges defects from the center with those at

the location, along the outer rim, and scratches. It indicates

issues affecting the central area, the location, the perimeter,

and scratches.

3
Donut with Loc with Edge-Loc

with Scratch

(D+L+EL+S)

This merges donut defects with those at the location, along

the edge, and scratches. It signifies flaws forming a donut

pattern, the location, the middle edge, and additional

scratches.

4
Donut with Loc with Edge-Ring

with Scratch

(D+L+ER+S)

This merges donut defects with those at the location, along

the outer rim, and scratches. It represents problems forming

a donut pattern, the location, the perimeter, and scratches.

In total, a collection of 28 new mixed defect patterns can be generated, in addition

to the 9 single defect patterns. These mixed defect patterns provide a broader

representation of the possible defect variations that may be encountered in practical

applications. By incorporating these mixed defect patterns into the dataset, the model can

be trained to recognize and classify a wider range of defect types and combinations.

Figure 21 showcases samples of these new mixed defect patterns, visually demonstrating

the diverse and unique nature of these combined defects. These visual examples help to

illustrate the effectiveness of combining different defect types to generate new and

realistic defect patterns.

51

(A) (B) (C)

Figure 21: Examples of Mixed Defect Patterns, including (A) Center with Edge-Loc, (B) Center

with Edge-Loc with Scratch, and (C) Donut with Loc with Edge-Loc with Scratch.

2.3.7 Categorical Encoding Technique

Categorical encoding is a crucial process in CNN for representing categorical data

as numerical values. One common method is one-hot encoding, where each category is

represented by a binary vector with values of 1 or 0 based on its presence [65]. The dataset

contains various defect patterns (classes) such as Loc, Edge-Loc, Center, and others

which have been encoded using the one-hot encoding technique outlined in Pseudocode

4.

Pseudocode 4 Pseudocode of one-hot encoding algorithm

Input: list of unique defects patterns (𝑐𝑙𝑎𝑠𝑠𝑒𝑠)

1: Create a new list 𝐿 that holds binary representation for each class.

2: For index equal to 0 and index less than the length of 𝑐𝑙𝑎𝑠𝑠𝑒𝑠:

3: Create a new vector 𝑉 of length 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 with a value of zeros.

4: Set the element at the index of 𝑉 to 1.

5: Append 𝑉 to 𝐿.

6: End For

7: Return 𝐿

After encoding classes using one-hot encoding, each class is represented by a

binary vector of length 36. In this representation, the index corresponding to the class has

a value of one and all other indices have values of zero. For example: The first class 'Loc'

is represented as [1,0,0,...,0,0] and the last class 'ER+S' is represented as [0,0,0,...,0,1].

52

Chapter Three

Methodology

The proposed methodology is presented in this chapter. It outlines the overall

approach taken in the study. The GoogLeNet model is introduced, including its inception

modules and architecture. The implementation of the classification framework is

explained, along with the application development and deployment process.

Hyperparameter tuning and optimization techniques are discussed, as well as the

evaluation metrics used.

3.1 The Proposed Methodology

To address the gaps in the literature discussed in Section 2.2 and based on the

study aims and objectives discussed in Section 1.3, an automatic wafer defects

classification based on the CNN deep learning model is presented. After performing data

preprocessing and data augmentation techniques to address data imbalance issues and

create new mixed defect patterns for further study. The methodology involves generating

a new dataset and exporting it for use by researchers.

Figure 22 demonstrates the process of selecting optimal variables using Optuna to

train the proposed model. Various evaluation metrics are employed to assess the

performance of the model in both training and testing, aiming to achieve accurate defect

type predictions with minimal error. After that, the pre-trained model is deployed and

integrated with a proposed automated pattern classification System for wafer defects

called “DefectClassifierX”.

53

Figure 22: The Proposed Classification Framework, detailing the structure and workflow of a

CNN-based defect classification model, from hyperparameter tuning to final output.

3.2 GoogLeNet Model

GoogLeNet, developed by Google researchers in 2015, is a deep convolutional

neural network architecture specifically designed for image classification [66]. With its

original complex structure comprising 22 layers and 9 inception modules, GoogLeNet

utilizes multiple convolutional layers of varying filter sizes and pooling operations within

these modules. This enables the effective extraction of features at different scales, making

it highly effective for image classification tasks.

In addition to its unique design, GoogLeNet also includes auxiliary classifiers as

intermediate layers, providing additional supervision during training while addressing the

issue of vanishing gradients. This approach helps to improve the accuracy of the model

by reducing overfitting and improving generalization [67].

One of the key benefits of using GoogLeNet is its computational efficiency. This

is achieved through the use of inception modules, which allow for efficient feature

extraction at different scales. Additionally, GoogLeNet can combat the vanishing gradient

problem during training, which is a common issue in deep neural networks [68].

54

However, it's worth noting that the original GoogLeNet architecture was designed to

handle images with dimensions of 224 x 224 and 1024 classes. To modify it for use with

images with dimensions of 56 x 56 and 36 classes, a new fully connected layer was added

at the end of the GoogLeNet layers that maps the 1024 classes to 36 classes. This

modification allows GoogLeNet to be used effectively for our scenario.

3.2 Inception Modules

The size of important elements in the image can vary significantly. This variability

poses a challenge when selecting an appropriate kernel size for convolution operations.

A larger kernel is required to extract information from widely distributed objects in the

image, whereas a smaller kernel is preferable for capturing details of less dispersed

elements. Expanding the size of neural networks, both in terms of depth and dimensions,

is a common approach to improve their efficiency [69].

However, larger network sizes come with risks such as overfitting. Moreover,

increasing network size requires more computational resources. GoogLeNet solves these

issues by performing convolutions on input from the previous layer with different kernel

sizes including 1x1, 3x3 and 5x5 instead of one kernel [70]. For example, for an RGB

image with dimensions of 56x56, assuming no padding, the number of operations

required to apply a kernel size of 5x5 is (56 − 5 + 1) × (56 − 5 + 1) × (5 × 5 × 3) ×

(3) = 22,702,400 operations. But if a kernel size of 1x1 is applied, the total number of

operations for that filter is (56 × 56) × (3 × 16) = 2,985,984. After applying the output

of 1x1 kernel to 5x5 kernel, the total number of operations is 2,985,984 +

((52𝑥52)𝑥 (16 𝑥 5 𝑥 5)) = 13,722,624. There is a large amount of reduction in

computation. Pseudocode 5 outlines the pseudocode of the inception module

55

implementation where the algorithm takes input parameters as illiterates in Table 7 and

the definition of sub-modules called “branches” are demonstrated in Table 8.

Table 7: Description of Parameters in the Inception Module.

Parameter Name Parameter Description

1 in_channels Number of input channels.

2 branch1x1
Number of output channels for the 1x1 convolution in the first

branch.

3 branch3x3reduce
Number of output channels for the 1x1 convolution in the second

branch (reduction).

4 branch3x3
Number of output channels for the 3x3 convolution in the second

branch.

5 branch5x5reduce
Number of output channels for the 1x1 convolution in the third

branch (reduction).

6 branch5x5
Number of output channels for the 3x3 convolution in the third

branch.

7 branch_pool
Number of output channels for the 1x1 convolution in the fourth

branch.

Table 8: Description of Inception Sub-Modules, detailing the name and functionality.

Branch Name Branch Definition

1 first branch (branch1) 1x1 convolutional layer that takes the in_channels as input and

produces branch1x1 output channels.

2 second branch

(branch2)

It is a sequential module that consists of two convolutional layers:

1. A 1x1 convolutional layer with branch3x3reduce output

channels

2. A 3x3 convolutional layer with branch3x3 output channels

and padding.

3 third branch (branch3) It is a sequential module similar to branch2, with different channel

sizes.

4 fourth branch

(branch4)

It is a sequential module that consists of two layers:

1. A max-pooling layer with a kernel size of 3x3 and stride 1,

along with padding to maintain the spatial dimensions.

2. A 1x1 convolutional layer with branch_pool output

channels.

Pseudocode 5 Pseudocode of Inception module algorithm

Input: input 𝑥, in_channels, branch1x1, branch3x3reduce, branch3x3, branch5x5reduce,

branch5x5 and branch_pool

1: Define branches as demonstrated in Table 2.

2: Pass 𝑥 through branch1 to obtain branch1 output.

3: Pass 𝑥 through branch2 to obtain branch2 output.

4: Pass 𝑥 through branch3 to obtain branch3 output.

5: Pass 𝑥 through branch4 to obtain branch4 output.

6: Concatenate the outputs of the four branches (branch1, branch2, branch3, and branch4)

along the channel dimension (dimension 1) to obtain 𝑜𝑢𝑡𝑝𝑢𝑡

7: Return 𝑜𝑢𝑡𝑝𝑢𝑡

56

3.3 The GoogLeNet Architecture

The GoogLeNet architecture has been modified that consist of 19 layers, including

convolutional and max-pooling layers as visualized in Figure 23. It also incorporates

inception modules, an average pooling layer, a dropout layer, and a linear layer for the

final output. The "BasicConv2d" layer is responsible for extracting features through

convolutional operations from the input data. Additionally, there's the "MaxPool2d" to

reduce spatial dimensions and multi-branch convolutional blocks known as Inception

modules that aid in capturing different scales and types of features. Lastly, there's an

"AvgPool2d" layer to apply average pooling to the input feature maps before using a

dropout preceding the fully connected last layer designed to map input features to output

classes while preventing overfitting [46].

Figure 23: The visualization of the modified GoogLeNet model architecture.

The architecture is designed to take an input of shape [512, 3, 56, 56] and produce

an output of shape [512, 36] as illustrated in Table 9. It's notable that the number 512

here presents the batch size, the number 3 presents the number of input image channels

and the numbers 56,56 represent the input image dimensions. All the convolutions,

including the convolutions inside the inception module, use rectified linear activation.

57

Table 9: Description of layers in the modified GoogLeNet model with input and output shapes.

Layer Name Input Shape Output Shape

1 BasicConv2d [512, 3, 56, 56] [512, 64, 28, 28]

2 MaxPool2d [512, 64, 28, 28] [512, 64, 14, 14]

3 BasicConv2d [512, 64, 14, 14] [512, 64, 14, 14]

4 BasicConv2d [512, 64, 14, 14] [512, 192, 14, 14]

5 MaxPool2d [512, 192, 14, 14] [512, 192, 7, 7]

6 Inception 1 [512, 192, 7, 7] [512, 256, 7, 7]

7 Inception 2 [512, 256, 7, 7] [512, 480, 7, 7]

8 MaxPool2d [512, 480, 7, 7] [512, 480, 3, 3]

9 Inception 3 [512, 480, 3, 3] [512, 512, 3, 3]

10 Inception 4 [512, 512, 3, 3] [512, 512, 3, 3]

11 Inception 5 [512, 512, 3, 3] [512, 512, 3, 3]

12 Inception 6 [512, 512, 3, 3] [512, 528, 3, 3]

13 Inception 7 [512, 528, 3, 3] [512, 832, 3, 3]

14 MaxPool2d [512, 832, 3, 3] [512, 832, 2, 2]

15 Inception 8 [512, 832, 2, 2] [512, 832, 2, 2]

16 Inception 9 [512, 832, 2, 2] [512, 1024, 2, 2]

17 AvgPool2d [512, 1024, 2, 2] [512, 1024, 1, 1]

18 Dropout [512, 1024] [512, 1024]

19 Fully connected [512, 1024] [512, 36]

The weights of the modified GoogLeNet model will be initialized via loading the

pre-trained weights of the original GoogLeNet model that have already captured relevant

information from the training data from a dataset called “ImageNet”. The utilization of a

pretrained GoogLeNet model and weight initialization from it provides a strong

foundation for our deep learning architecture. It leverages the prior knowledge acquired

by the pretraining process and allows us to focus on fine-tuning the model to suit our

58

specific task. By incorporating this approach, we aim to enhance the performance and

efficiency of our model while reducing the need for extensive training on dataset [71].

3.4 Classification Framework Implementation

The Classification Framework Implementation relies on the PyTorch library for

deep learning. PyTorch is an open-source python framework developed by Facebook’s

AI researchers for machine learning based on the Torch library using Lua language, and

it has C++ and Python interfaces. It possesses pretty efficient memory usage, and it is

very popular among researchers. PyTorch implements two high-level features: tensor

computing with graphical processing unit (GPU) acceleration and deep neural networks

based on an automatic differentiation type-based system [72].

 PyTorch provides a flexible and efficient way to build and train CNN. The new

dataset obtained after data pre-processing and data augmentation is then used to train and

validate the model using k-fold cross-validation. The data loader is an important

component in the framework as it handles the loading and batching of the dataset for

training and validation in each fold. By using data loaders, the framework can efficiently

load and pre-process data in parallel, making it easier to train models on large datasets.

The data loader also provides other useful functionalities such as shuffling the data,

dropping the last batch if it's incomplete, and loading data in a background thread while

the model is training [73].

The classification framework consists of three parts: the train function, the valid

function, and the main code. These parts use a common variable as illiterates in Table

10.

59

Table 10: Description of Common Variables in the Classification Framework.
Variable Name and Symbol Variable Description

1
classes number

(𝐶𝐿𝐴𝑆𝑆𝑁𝑈𝑀)
It defines the number of defect pattern classes

2 batch size (𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸)
It defines the number of samples that are processed in each

iteration during training

3 Device (DEVICE) It defines which device to use (CPU or GPU).

4 Optimizer (O)
It defines the optimizer used for updating the model's

parameters during training.

5 loss function (F) It defines the loss function used for the training model

6 number of folds (𝑛𝑠𝑝𝑙𝑖𝑡𝑠)
It defines the number of subsets into which a dataset is divided

during cross-validation

The train function, also known as train_epoch, is a crucial component of the deep

learning model training process. Its main responsibility is to train the model for one

epoch, which involves iterating through the dataset and updating the model's parameters

based on the computed loss. The train_epoch function takes in several arguments,

including the model, dataloader, loss function, and optimizer. Once these arguments are

passed in, the function sets the model to training mode and begins iterating through the

dataloader. For each batch of images and labels, the optimizer gradients are zeroed out

to prevent any interference from previous iterations. The output from the model is then

computed, and the loss is calculated using the specified loss function. To perform

backpropagation with mixed precision training, PyTorch 'autocast ()' is used. This

approach allows for faster training times and more efficient use of GPU resources [74].

Finally, the function returns the total training loss and the number of correct

predictions. These metrics are crucial for evaluating the performance of the model during

training and making any necessary adjustments to improve accuracy. The pseudocode for

the train_epoch function is shown in Pseudocode 6.

60

Pseudocode 6 Pseudocode of train_epoch function

Input: model 𝑀, data loader 𝐷, classes numbers 𝐶𝐿𝐴𝑆𝑆𝑁𝑈𝑀, batch size 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸 ,

𝐷𝐸𝑉𝐼𝐶𝐸, optimizer 𝑂 and loss function 𝐹.
1: Initialize 𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑠𝑠 and 𝑡𝑟𝑎𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 variables to keep track of the training loss

and the number of correct predictions.
2: Set 𝑀 to training mode.
3: For each input images and labels in 𝐷, do the following:
3: Move images and labels to 𝐷𝐸𝑉𝐼𝐶𝐸 memory.
4: Reshape the labels to shape of [𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸, 𝐶𝐿𝐴𝑆𝑆𝑁𝑈𝑀]
5: set all the gradients of the optimizer to zero.
6:

Use autocast to perform automatic mixed precision training on the device

specified by 𝐷𝐸𝑉𝐼𝐶𝐸.
7: Pass the input images through the 𝑀 to obtain the 𝑜𝑢𝑡𝑝𝑢𝑡 predictions.
8: Convert the labels to class indices using argmax function.
9: Compute the loss between the predictions and the labels using 𝐹.

10:

Scale the loss value using scaler to take advantage of mixed precision

training.
11:

Update the 𝑂 parameters using the gradients computed during the backward

pass.
12:

Compute the batch loss by multiplying the loss value with the number of

images in the batch and add it to 𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑠𝑠.
13:

Compute the predicted class labels by finding the indices of the maximum

values in each output prediction.
14:

Compute the number of correct predictions by comparing the predicted

class labels with the labels and summing up the correct matches.
15:

Update the scaler's state to maintain the correct scaling factor for future

backward passes.
16: End For each

17: Return 𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑠𝑠 and 𝑡𝑟𝑎𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

The valid function, also known as valid_epoch, plays a crucial role in evaluating

the performance of the trained model on a validation dataset for one epoch. It takes in the

model, dataloader, and loss function as arguments. Inside the valid_epoch function, the

model is set to evaluation mode to ensure that no gradients are computed during inference.

It then iterates through the dataloader, processing each batch of images and labels. For

each batch, the output from the model is computed by passing the images through the

model's forward pass. The loss is then calculated using the specified loss function,

comparing the predicted output with the ground truth labels.

61

The function keeps track of the total validation loss and the number of correct

predictions made by the model. These metrics are important for evaluating the model's

performance on the validation dataset. After iterating through all the batches in the data

loader, the valid_epoch function returns the total validation loss and the number of correct

predictions. The pseudocode for the valid_epoch function is illustrated in Pseudocode 7.

Pseudocode 7 Pseudocode of valid_epoch function

Input: model 𝑀, data loader 𝐷, classes numbers 𝐶𝐿𝐴𝑆𝑆𝑁𝑈𝑀, batch size 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸 ,

𝐷𝐸𝑉𝐼𝐶𝐸, optimizer 𝑂 and loss function 𝐹.

1: Initialize 𝑣𝑎𝑙𝑖𝑑_𝑙𝑜𝑠𝑠 and 𝑣𝑎𝑙𝑖𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡 variables to keep track of the validation

loss and the number of correct predictions.

2: Set 𝑀 to evaluation mode.

3: For each input images and labels in 𝐷, do the following:

3: Move images and labels to 𝐷𝐸𝑉𝐼𝐶𝐸 memory.

4: Reshape the labels to shape of [𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸, 𝐶𝐿𝐴𝑆𝑆𝑁𝑈𝑀]

5: Pass the input images through the 𝑀 to obtain the 𝑜𝑢𝑡𝑝𝑢𝑡 predictions.

6: Convert the labels to class indices using argmax function.

7: Compute the loss between the predictions and the labels using 𝐹.

8:

Compute the batch loss by multiplying the loss value with the number of

images in the batch and add it to 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠.

9:

Compute the predicted class labels by finding the indices of the maximum

values in each output prediction.

10:

Compute the number of correct predictions by comparing the predicted

class labels with the labels and summing up the correct matches.

11: End For each

12: Return 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠 and 𝑣𝑎𝑙𝑖𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡

The main code for model training performs k-fold cross-validation using a loop

that iterates through each fold. For each fold, a train sampler and test sampler are created

using SubsetRandomSampler to split the dataset into training and validation sets. Then,

two data loaders are created for training and validation using these samplers. A dictionary

called history is initialized to keep track of the training and validation loss and accuracy

for each epoch. This dictionary stores the metrics for each epoch, allowing for easy

tracking of model performance over time. Early stopping is implemented in the form of

a patience parameter to prevent overfitting. This parameter determines the number of

62

epochs to wait before stopping training if the validation loss does not improve. This

approach helps to prevent the model from overfitting to the training data and improves

generalization [75].

The function then trains and validates the model for a specified number of epochs

using the train and valid functions as described above respectively. Finally, the

performance of each fold is stored in a dictionary called "foldperf". This dictionary

contains the performance metrics for each fold, allowing for easy comparison of model

performance across different folds. The pseudocode for the main code function is

illustrated in Pseudocode 8.

Pseudocode 8 Pseudocode of main code

Input: number of folds to split 𝑛𝑠𝑝𝑙𝑖𝑡𝑠, data loader 𝐷, classes numbers 𝐶𝐿𝐴𝑆𝑆𝑁𝑈𝑀,

batch size 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸, 𝐷𝐸𝑉𝐼𝐶𝐸, optimizer 𝑂 and loss function 𝐹.

1: Initializes an 𝐾𝐹𝑜𝑙𝑑 object with a number of folds to split of 𝑛𝑠𝑝𝑙𝑖𝑡𝑠, randomly

shuffling the data before splitting and a random seed of 42.

2: For each fold 𝐾 in 𝐾𝐹𝑜𝑙𝑑, do the following:

3:

Obtain 𝑡𝑟𝑎𝑖𝑛𝑖𝑑𝑥 and 𝑣𝑎𝑙𝑖𝑑𝑖𝑑𝑥 from 𝐾 which contains the indices of

splitting data for training and validation.

4:

Create a new sampler8 𝑡𝑟𝑎𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑟 for training data using 𝑡𝑟𝑎𝑖𝑛𝑖𝑑𝑥

indices.

5:

Create a new data loader 𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑎𝑑𝑒𝑟 for training data using 𝑡𝑟𝑎𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑟

and 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸.

6:

Create a new sampler 𝑣𝑎𝑙𝑖𝑑𝑠𝑎𝑚𝑝𝑙𝑒𝑟 for validation data using 𝑣𝑎𝑙𝑖𝑑𝑖𝑑𝑥

indices.

7:

Create a new data loader 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑎𝑑𝑒𝑟 for validation data using 𝑣𝑎𝑙𝑖𝑑𝑠𝑎𝑚𝑝𝑙𝑒𝑟

and 𝐵𝐴𝑇𝐶𝐻𝑆𝐼𝑍𝐸.

8:

Initialize an empty dictionary ℎ𝑖𝑠𝑡𝑜𝑟𝑦 to store the training and validation

losses and accuracies.

9: Initialize variables 𝑏𝑒𝑠𝑡𝑙𝑜𝑠𝑠, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒, and 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 for early stopping.

3:

Create a new instance of GoogLeNet model 𝑀, AdamW optimizer 𝑂 with a

learning rate of 𝐿𝐸𝐴𝑅𝑁𝐼𝑁𝐺𝑅𝐴𝑇𝐸 , loss function 𝐿 as cross-entropy loss and

grad scaler 𝑆.

4: For each epoch 𝐸 in the range of 𝑁𝑈𝑀𝐸𝑃𝑂𝐶𝐻, do the following:

7:

Call train_epoch function with 𝑡𝑟𝑎𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑟 to obtain 𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑠𝑠,

𝑡𝑟𝑎𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡.

8 A sampler is an object that specifies the strategy for sampling data from a dataset during training or
evaluation. It determines the order in which the samples are accessed and fed into the model.

63

Call valid_epoch function with 𝑣𝑎𝑙𝑖𝑑𝑠𝑎𝑚𝑝𝑙𝑒𝑟 to obtain 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠,

𝑣𝑎𝑙𝑖𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡.

 Compute the epoch training loss 𝐸𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑠𝑠 by
𝑡𝑟𝑎𝑖𝑛𝑙𝑜𝑠𝑠

𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑟
.

8: Compute the epoch validation loss 𝐸𝑣𝑎𝑙𝑖𝑑_𝑙𝑜𝑠𝑠 by
𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠

𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑𝑠𝑎𝑚𝑝𝑙𝑒𝑟
.

9:

Compute the epoch training accuracy 𝐸𝑡𝑟𝑎𝑖𝑛_𝑎𝑐𝑐 by
𝑡𝑟𝑎𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑟
∗ 100.

12:

Compute the epoch validation accuracy 𝐸𝑣𝑎𝑙𝑖𝑑_𝑎𝑐𝑐 by
𝑣𝑎𝑙𝑖𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑𝑠𝑎𝑚𝑝𝑙𝑒𝑟
∗ 100.

13: Append 𝐸𝑡𝑟𝑎𝑖𝑛_𝑙𝑜𝑠𝑠, 𝐸𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠
, 𝐸𝑡𝑟𝑎𝑖𝑛_𝑎𝑐𝑐 and 𝐸𝑣𝑎𝑙𝑖𝑑_𝑎𝑐𝑐 to ℎ𝑖𝑠𝑡𝑜𝑟𝑦.

14: If the number of 𝐸 ≥ 𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ𝑠𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, then:

 If the 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠 < 𝑏𝑒𝑠𝑡𝑙𝑜𝑠𝑠then:

 Set 𝑏𝑒𝑠𝑡𝑙𝑜𝑠𝑠 to 𝑣𝑎𝑙𝑖𝑑𝑙𝑜𝑠𝑠 and reset 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 to zero.

 Otherwise increment 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 by one.

 End if

 End if

 If the 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 then break.

 Append history to foldperf.

16: End For each

17: Return foldperf.

3.5 Application Development and Deployment

Overall, the deployment of a CNN model enables the practical application of deep

learning techniques in various domains, providing real-time predictions, automation,

scalability, and improved decision-making capabilities. The deployment process involves

integrating the CNN model into an application or system where it can be utilized to

perform tasks such as wafer defect patterns classification or any other relevant task for

which the model was designed. An automated pattern classification System for wafer

defects called “DefectClassifierX” is present which is a cross-platform application for

automating wafer defect pattern classification. DefectClassifierX interface includes a

range of elements and features that facilitate the classification process and enhance the

user experience whereas Figure 24 shows the “welcome” screen of the proposed

application. Some of these elements may include:

64

1. Intuitive interface: The user interface is easy to use and provides a seamless

experience for users. It included simple and clean designs, organizing elements

logically and clearly.

2. Classification tool: The application provides a user-friendly tool for defect

classification. These tools may include buttons or selection tools to specify the

type of defect.

3. Information presentation: The application displays detailed information about

the classification process, such as the types of defects and any relevant statistics.

4. Reporting functionality: The application offers the capability to generate a

report summarizing the classification process and the ability to download it.

Figure 24: "Welcome" screen of the DefectClassifierX application.

The DefectClassifierX is implemented on top of a JavaScript framework called

“Electronjs” used for developing a cross-platform desktop application that can run on

Windows, macOS, and Linux operating systems using web technologies such as HTML,

65

CSS, and JavaScript [76]. It combines the Chromium9 rendering engine and Node.js

runtime to provide a platform for creating native-like desktop applications.

3.6 DefectClassifierX Components

The DefectClassifierX consists of five built-in modules and two modules that run

on a separate python server as illustrated in Figure 25.

The built-in modules in DefectClassifierX are as follows:

1. The configuration module: it reads the configuration file provided by the

administrator which contains application parameters, such as the predefined classes,

restful port, connection protocol, and all Uniform Resource Locators (URLs) that

serve all the functionality of the application in a JavaScript Object Notation (JSON)

format. This service is used by all other services to perform predefined tasks and

provide the user with the ability to update the configuration parameters.

2. The inputs handler module: it is responsible for handling user input images via the

native NodeJS file services to read files and extract the data from them.

3. The JSON formator module: is responsible for converting data representation for

JSON format to be handled via the Python server.

4. The report generator module: it responsible for generating a report in XLS format

for the classification result.

5. The communication module: its responsible for mange the communication

between the DefectClassifierX and the python server by making a Hypertext Transfer

Protocol (HTTP) request to send or fetch data from the server.

9 Chromium is an open-source web browser project that serves as the foundation for many popular
browsers, including Google Chrome.

66

Figure 25: The main components of DefectClassifierX.

The python server is implemented using a “Flask” framework which provides the

necessary tools for building web applications and application programming interfaces

(APIs). The python server consists of two modules as follows:

1. The Classification module: it is responsible for making classification using the input

wafer map images via a trained CNN model.

2. The Pre-processing module: it is responsible for making pre-processing using the

input wafer map images to prepare the data for classification.

 Typically, Flask uses the hypertext transfer protocol (HTTP) to allow clients to

communicate with a server and request data or perform actions. The logic beyond Flask

is to define routes using the decorator “@app.route()” which defines the URLs that the

server will respond to. Within each route, there is a view function that handles the

incoming requests related to that route [77]. The server contains two main routes as

illustrated in Table 11. The pre-processing route which takes the wafer map images as

input, performs the pre-processing steps as explained in Section 3.2, saves the output of

pre-processing steps and returns these pre-processing images as response in JSON format.

The classifying route takes the output of the pre-processing route as input and then

67

performs a classification using the trained CNN model and returns the result as a list of

input images name with its defect class in JSON format.

Table 11: DefectClassifierX Python server APIs.

URL HTTP request method Request data Response data

1 pre-processing POST Wafer map images
Wafer map images after

pre-processing

2 classifying GET none Classification results

2.3.8 DefectClassifierX Workflow

All modules in the DefectClassifierX application work harmoniously. Figure 26

illustrates the flow of the starting point of DefectClassifierX to perform a classification

task.

Figure 26: The flow chart of DefectClassifierX Workflow.

The main steps that the user must perform to classify defect patterns in wafer map

images are as follows:

1. Read Configuration File: At the beginning of the DefectClassifierX, the

DefectClassifierX reads the configuration file to retrieve its parameters via the

Configuration module such as routes URLs for server, server IP address and port.

2. Browse and load Wafer Map Images: The DefectClassifierX provide the user

interface where the user can browse and select wafer map images from their local

computer via the Inputs Handler module as shown in Figure 27. This module relies

on the “FileReader” API in JavaScript that allows the user to select image files. When

68

the user clicks the "load images" button and files are selected, the change event is

triggered, and the selected files are accessed through “event.target.files”. Then these

files' content is extracted such as the number of selected images, extensions, images

dimensions and display a sample from these selected files [78].

Figure 27: The “select wafer images” page in DefectClassifierX.

3. Send selected images to Python Server: when the user clicks the “Perform Data

Preprocessing” button, the DefectClassifierX send a POST request to the Python

server, including the selected images as the request payload via the Communication

module in JSON format.

4. Preprocess Images on Python Server: The Python server receives the POST request

and preprocesses the wafer map images as required via the Preprocessing module.

After preprocessing, the server saves these processed images and sends them back as

a response from the Python server as URLs pointing to the location of the processed

images on the server.

5. Display processed images: After retrieving a response from the server, the

DefectClassifierX displays samples of processed images as shown in Figure 28.

69

Figure 28: The “data preprocessing” page in DefectClassifierX.

6. Perform Classification: When the user clicks the "Perform Classification" button in

the application as shown in Figure 29, the DefectClassifierX send a GET request to

the server, indicating that a classification task should be performed.

Figure 29: The “classification” page in DefectClassifierX.

7. Handle Classification on Server: On the server, receive the GET request for

classification and perform the necessary on the preprocessed wafer map images and

send the classification results back to the DefectClassifierX as a response from the

server.

70

8. Display Results as Table: In the application, parse and process the classification

results received from the server. Display them in a table format on the user interface

for easy viewing and analysis as shown in Figure 30.

Figure 30: The “classification results” page in DefectClassifierX.

9. Generate Report and Download as XLS File: Provide an option for the user to

generate a report based on the classification results and download the generated XLS

file as shown in Figure 31.

Figure 31: The “Report generator” page in DefectClassifierX.

Hyperparameter Tuning and Optimization Technique

Hyperparameters are parameters that govern the learning process and dictate

the values of model parameters acquired by a learning algorithm. The use of the prefix

71

'hyper_' indicates their significance as overarching parameters in determining both the

learning process and resulting model parameters [79]. Hyperparameters are settings or

configurations that are not learned from the data but are set before training the model

such as batch size, learning rate, number of epochs and patience stop as illustrated in

Table 12. Optuna which is an open-source hyperparameter optimization framework is

selected to find the optimal hyperparameters which have a significant impact on the

model's performance[80].

Table 12: The selected hyperparameters for tunning with their descriptions.

Hyper Parameter

Name

Hyper Parameter

Symbol
Hyper Parameter Description

1 Batch size batch_size

The batch size refers to the number of training

examples that are used in both the forward and

backward passes of a neural network during its

training phase.

2 Learning rate learning_rate

Determines the step size at which the optimizer

adjusts the weights of the model during

training.

3 Number of Epochs num_epochs

The epoch refers to one complete pass through

the entire training dataset during the training

process.

4 Patience Stops patience
Number of epochs without improvements to

wait before early stopping

5 Early Stopping

Threshold Epoch
num_epochs_threshold

The minimum number of epochs that must be

completed before early stopping is checked.

The Optuna employs the Bayesian Optimization Algorithm to search for the

global maximum or minimum solution of a scalar objective function within a bounded

domain. It works by modelling and specifying the distribution of the objective function.

Optuna is based on the Bayesian Optimization Algorithm which is used to find the global

maximum or minimum solution of a scaler objective function in a bounded domain

(𝑓: ℝ𝑑 → ℝ) [81]. It aims to model the objective function 𝑓 to specify its distribution.

For a set of points 𝑥 ∈ ℝ𝑑, the evaluation of membership of the objective function 𝑓 is

calculated by the following equation [82]:

72

𝑥𝑛𝑒𝑤 = 𝑚𝑎𝑥𝑥∈ℝ𝑑𝑓(𝑥) (12)

The search space for the hyperparameters as listed in Table 12 including their

corresponding suggestion methods and values are listed in Table 13 [80], [83].

Table 13: The search space for the selected hyperparameters.

Hyper Parameter Name Hyper Parameter Method Hyper Parameter Values

1 Batch size List of categorical [16, 32, 64,128, 256, 512]

2 Learning rate Log-uniform distribution [1e-4, 1e-1]

3 Number of Epochs
Integer values within a specified

range
[10, 100]

4 Patience Stops
Integer values within a specified

range
[5, 20]

5 Early Stopping Threshold

Epoch

Integer values within a specified

range
[10, 100]

Optimizers play a crucial role in adjusting the weights and learning rate of a model

to minimize the error function or maximize production efficiency. One specific type is

Gradient Descent, an iterative technique that modifies parameters to reduce a given

convex function [84]. It achieves this by moving the step determined by the learning rate

in the opposite direction of the steepest ascent, utilizing derivatives to locate minima [85].

Optimizers rely on model-specific parameters such as weights and biases. An example

optimizer is Adam with Weight Decay Regularization (AdamW), which was introduced

in 2019 as a modification of the Adaptive Moment Estimation (Adam) algorithm that

aims to improve the weight decay behavior of Adam. AdamW incorporates adaptive

learning rates from its predecessor and adds weight decay regularization into its

framework. Ultimately, employing the AdamW optimizer aims at minimizing the cost

function value as much as possible [86].

In the Adam optimization algorithm, weight decay is commonly implemented by

introducing a penalization factor in the loss function to encourage smaller weights.

Nevertheless, this approach may result in suboptimal outcomes as the penalty affects both

73

weights and adaptive learning rates. To address this limitation, AdamW integrates weight

decay directly into the optimization process. Rather than adding a penalty term to the loss

function, AdamW applies a decay term exclusively to the gradients during each training

iteration [68]. This selective application of decay only impacts weights and not adaptive

learning rates, resulting in enhanced performance for generalization and improved

convergence properties. The weights 𝜃 decay is calculated by the following equation [86]:

𝜃𝑡+1 = (1 − 𝜆)𝜃𝑡 − 𝛼∇𝑓𝑡(𝜃𝑡)
(13)

Where 𝜆 presents the rate of the weight decay/step, 𝛼 presents the learning rate

and ∇𝑓𝑡(𝜃𝑡) present the batch gradient of t.

Evaluation Metrics

Various evolutionary metrics were employed to assess the effectiveness of the

proposed approach, encompassing confusion matrix, accuracy, F1 score, precision,

recall and Receiver Operating Characteristic (ROC).

The utilization of the confusion matrix aids in evaluating the classification

performance of the CNN model by contrasting true and predicted values. Within this

matrix, rows correspond to true values while columns represent predicted values. The

outcomes derived from this assessment yield four possibilities: true positive, false

positive, true negative and false negative [87]. Table 14 provides a list of four key terms

and their descriptions.

Table 14: Key Terms for Classification Model Evaluation: Definitions and Descriptions of True

Positive, False Positive, True Negative, and False Negative.

Name Description

1 True Positive (TP) The model correctly predicted the positive class.

2 False Positive (FP) The model incorrectly predicted the positive class.

3 True Negative (TN) The model correctly predicted the negative class.

74

4 False Negative (FN) The model incorrectly predicted the negative class.

Accuracy refers to the extent to which the model effectively categorizes all

instances within a dataset. It is computed by dividing the total number of correct

predictions by the overall number of predictions made [88]. The accuracy is calculated

by the following equation:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (14)

In this context, TP represents true positives, FP represents false positives, TN

represents true negatives, and FN represents false negatives.

The F1 score is a quantitative indication of the equilibrium between precision and

recall. It is determined by computing the harmonic mean of precision and recall. Precision

measures the proportion of correctly predicted positive instances out of all predicted

positive instances. This measure is calculated by dividing true positives by the sum of

true positives and false positives. On the other hand, recall gauges how many actual

positive instances are accurately identified as positive. It can be obtained by dividing true

positives by the sum of true positives and false negatives [88]. The F1 score is calculated

by the following equation:

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 (15)

The Receiver Operating Characteristic (ROC) curve is a metric used to evaluate

the performance of a CNN model in class discrimination. It measures the ability of the

model to accurately classify different classes by analysing true positive rate (TPR) and

false positive rate (FPR) across various threshold values for classification. It plots the

TPR against the FPR at various threshold settings [89].

The formulas for TPR and FPR are as follows:

75

𝑇𝑃𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (16)

𝐹𝑃𝑅 =
𝐹𝑃

(𝐹𝑃 + 𝐹𝑁)
 (17)

The shape and position of the ROC curve can give insights into the model's

performance [90]:

1. The closer the ROC curve is to the top-left corner of the plot, the better the model's

performance. This indicates a higher TPR and lower FPR, meaning the model can

accurately classify positive cases while minimizing false positives.

2. A ROC curve that is close to the diagonal line (connecting the bottom-left to the top-

right corners) suggests that the model's performance is no better than random

guessing.

3. If the ROC curve falls below the diagonal line, it suggests that the model's

performance is worse than random guessing. This indicates the model is performing

poorly in distinguishing between positive and negative cases.

76

Chapter Four

Findings and Discussions

This chapter focuses on the findings of the study and provides a detailed

discussion. It begins by describing the development tools and system requirements used.

The experimental setup is explained, followed by the presentation of experimental

training results. Model evaluation is conducted, and any memory limit issues encountered

during experiments are addressed. Finally, a discussion of the results is presented,

comparing them with past research.

4.1 Development Tools and System Requirements

The proposed CNN model for classifying different types of defects across the

wafer map was implemented using a Python environment. There are many Python

libraries used for the development of this solution as illustrated in Table 15.

Table 15: Python Libraries and Frameworks used in classification framework: Description and

Version Information.
Library Name Library Description Library-Version

 Pandas

An open-source Python library is utilized to analyse and

manipulate data, specifically tabular data, particularly data

frames, which are similar to spreadsheets in MS Excel [91].

2.1.1

1 Numpy

An open-source Python library for numerical computation, it

offers functionalities that are both efficient and convenient for

performing mathematical and logical operations on data

arrays [92].

1.24.3

2 Pillow

It’s an open-source python library that is used to manipulate

matrices. it provides all the necessary

functions for matrix processing [93]

9.4.0

3 Matplotlib

It’s a cross-platform python library that is used to visualise

data in graphical form and provide an interactive

visualization in a python environment [94]

3.7.1

4 Torch

It’s an open-source python framework that is used in

scientific computation and provides all necessary algorithms

for deep learning. It was developed by Ronan

Collobert, Samy Bengio and Johnny Mariéthoz [95]

2.0.1

5 PyTorch

It’s an open-source python library that is used to develop deep

learning models based on neural networks introduced by

Facebook. It allows to performs of dynamic computation on

the central processing unit (CPU) and graphic processing unit

(GPU). PyTorch is based on the Torch framework [72]

2.0.1

https://en.wikipedia.org/wiki/Samy_Bengio

77

6 CUDA

It’s a parallel computing environment developed by NVIDIA

that is used to perform different types of computations on a

graphic processing unit (GPU) [96], [97]

11.8

7 Torchvision

Torchvision is a component of the PyTorch library that offers

various utilities and datasets for computer vision. It provides

multiple functionalities, including image transformation, data

loading, and pre-trained models for tasks such as image

classification, object detection, and segmentation.[98]

0.15.2

Also, the proposed DefectClassifierX application was implemented using python

and NodeJS environments. Table 16 showcases key libraries and their respective

descriptions and versions. It includes Node.js, Electronjs, Flask, and xlsx.js.

Table 16: Libraries and Frameworks used in DefectClassifierX development: Description and

Version Information.
Library Name Library Description Library-Version

1 Node.js10

Node.js is an open-source, cross-platform JavaScript runtime

environment that allows developers to run JavaScript code

outside of a web browser. It is built on the V8 JavaScript

engine used by Google Chrome and provides an event-driven,

non-blocking I/O model that makes it lightweight and

efficient.

18.16.1

2 Electronjs11

is an open-source framework that allows developers to build

cross-platform desktop applications using web technologies

such as HTML, CSS, and JavaScript.

26.2.4

3 Flask12

Flask is a lightweight and flexible web framework for

building web applications using the Python programming

language.

2.2.2

4 xlsx.js13

xlsx.js is a JavaScript library for reading and writing

Microsoft Excel files in the xlsx file format. It allows

developers to create, modify, and parse Excel files directly

from their web applications using JavaScript.

0.18.5

We carried out all experiments including development, training and testing on an

NVIDIA GeForce RTX 3080 GPU with AMD Ryzen 9 5900HX CPU, 32 GB RAM and

windows 11 operating system.

10 Official website: https://nodejs.org/en/
11 Official website: https://www.electronjs.org/
12 Official website: https://flask.palletsprojects.com/en/2.1.x/
13 Official website: https://oss.sheetjs.com/js-xlsx/

https://nodejs.org/en/
https://www.electronjs.org/
https://flask.palletsprojects.com/en/2.1.x/
https://oss.sheetjs.com/js-xlsx/

78

4.2 Experimental Setup

The raw data set underwent cleaning, pre-processing, and augmentation by the

theoretical principles outlined in Sections 3.2 and 3.3 to ready it for training of the CNN

model. The quantity of wafer map images was expanded to a total of 368,568 images.

Each defect pattern constitutes approximately 3% of the dataset's entirety out of these

images, encompassing a combined total of 36 unique defect patterns for both single and

mixed types. Furthermore, an approach utilizing one-hot encoding was employed to

encode the defect patterns as discussed in Section 3.4.

Through these efforts, we successfully created a new dataset called “WM-300K+

wafer map [Single & Mixed]”14 for single and mixed types of defect patterns, ranging up

to four levels and published it via the Kaggle website. This enriched dataset will be

published on Kaggle, providing researchers with a valuable resource for further research

and study in the field of wafer defect pattern classification. By making this dataset

available, we hope to foster collaboration, encourage new insights, and advance the state-

of-the-art in this domain.

The tuned hyperparameters including batch size, learning rate, number of epochs,

patience stops and early stopping threshold epoch were selected using Optuna as

discussed in Section 4.4. Table 17 demonstrates the values of the optimal

hyperparameters that were used during the training phase.

Table 17: Tunned Hyperparameter optimal values.

Hyper Parameter Name Hyper Parameter Value

1 Batch size 512

2 Learning rate 0.0008

3 Number of Epochs 100

14 The “WM-300K+ wafer map [Single & Mixed]” dataset can be accessed via this link. The dataset
contains up to 368,568 images for 36 (single and mixed) defect patterns.

https://www.kaggle.com/datasets/husseinsalahyounis/wm-400k-wafer-map-single-and-mixed

79

4 Patience Stops 5

5 Early Stopping Threshold Epoch 15

The dataset was split into 80% for training and 20% for testing. Subsequently, the

training set was further divided into 70% for training and 30% for validation. This division

allowed for training the model on a subset of the data while validating its performance on

another subset as shown in Table 18.

Table 18: Distribution of Wafer Maps in the Dataset, detailing the number of wafer maps used

for training, validation, and testing.

Dataset Number of wafer maps

1 Total 368,568

2 Training set 206,397

3 Validation set 88,457

4 Testing set 73,714

The loss function employed for training the model is the cross-entropy loss. This

loss function measures the dissimilarity between the predicted probability distribution

and the true distribution of the target classes. The AdamW optimization algorithm was

utilized to update the model's parameters during training. This algorithm adjusts the

model's parameters based on the gradients computed from the loss function. For cross-

validation, 6 splits were created using a random seed of 42. These splits were employed

to divide the dataset into training and validation sets during each fold of the training

process.

4.3 Experimental Training Results

The proposed model was trained and validated using the training and validation

dataset as demonstrated in Section 4.5. The hyperparameters were used as illustrated in

Table 3. This study applies a stratified 6-fold cross-validation in which of them have the

80

same proportion of class distribution. Table 19 shows the average accuracy and loss value

on both the training and validation sets for the 6 folds. The average training accuracy

across all folds is 99.40%, indicating that the model performs well on the training data.

The average validation accuracy is 97.80%, suggesting that the model generalizes

reasonably well to unseen data. Also, the average training loss is 0.013, which indicates

that the model's predictions are close to the actual values during training and the average

validation loss is 0.044, indicating that the model's predictions are slightly less accurate

on the validation data compared to the training data. Overall, these results suggest that

the proposed CNN model is effective in classifying wafer defects.

Table 19: Cross-Validation Results, detailing the average training and validation accuracy, as

well as training and validation loss for each fold in a CNN-based defect classification model.

Fold

Number

Average Training

Accuracy

Average Validation

Accuracy

Average Training

Loss

Average Validation

Loss

1 Fold 1 98.35 95.17 0.044 0.153

2 Fold 2 99.47 97.88 0.011 0.038

3 Fold 3 99.60 98.26 0.007 0.025

4 Fold 4 99.64 98.45 0.005 0.018

5 Fold 5 99.67 98.47 0.004 0.017

6 Fold 6 99.68 98.56 0.004 0.014

Total 99.40 97.80 0.013 0.044

Figures 32 and 33 visualize the average accuracy percentage and loss values across the

6 folds per Epoch.

81

Figure 32: Line plot of Average Accuracy per Epoch, showing the trend of model performance

across the 6 folds during training.

Figure 33: Line plot of Average Loss per Epoch, showing the trend of model performance

across the 6 folds during training.

Also, the new dataset is used to train and validate two other CNN model namely

ShuffleNetV2 and ResNet-50. From the Table 20, we can observe the performance of

82

these models in terms of accuracy and loss metrics. Modified GoogLeNet achieved the

highest average training accuracy of 99.40% and a relatively high average validation

accuracy of 97.80%. It also had the lowest average training loss of 0.013 and a moderate

average validation loss of 0.044. ShuffleNetV2 performed slightly lower than Modified

GoogLeNet with an average training accuracy of 98.55% and an average validation

accuracy of 96.52%. It had a higher average training loss of 0.036 and a higher average

validation loss of 0.077. ResNet-50 showed similar performance to Modified GoogLeNet

with an average training accuracy of 99.37% and an average validation accuracy of

97.83%. It had a slightly higher average training loss of 0.014 and a slightly lower average

validation loss of 0.041. Overall, Modified GoogLeNet demonstrated the highest training

accuracy and relatively good generalization performance on the validation set, as

indicated by its high validation accuracy and low validation loss. ShuffleNetV2 and

ResNet-50 also performed well but showed slightly lower accuracy and higher loss

compared to Modified GoogLeNet.

Table 20: Evaluation results of three deep learning models, Modified GoogLeNet, ShuffleNetV2

and ResNet-50 in terms of their average training and validation accuracy, as well as their average

training and validation loss.

Model
Average Training

Accuracy

Average Validation

Accuracy

Average

Training Loss

Average

Validation Loss

1
Modified

GoogLeNet
99.40 97.80 0.013 0.044

2 ShuffleNetV2 98.55 96.52 0.036 0.077

3 ResNet-50 99.37 97.83 0.014 0.041

4.4 Model Evaluation

The confusion matrix in Figure 34 highlights the strong performance of several

classes, including "C+EL," "C+EL+L," "C+EL+S," and "C+ER." These classes

demonstrate high numbers of true positives (TP) and true negatives (TN), indicating that

83

the model accurately classifies instances belonging to these classes. Additionally, the low

values for false positives (FP) and false negatives (FN) further support the model's

effectiveness in these cases. However, there are certain classes, such as "Edge-Loc" and

"Loc," where a higher number of false negatives can be observed compared to true

positives. This suggests that the model struggles with accurately classifying instances

belonging to these classes, potentially leading to missed detections of defects. On a

positive note, instances in the "Near-full" class show very few occurrences of both false

positives and false negatives. This indicates that the model performs well in accurately

identifying instances within this class, demonstrating its effectiveness in detecting near-

full defects. Overall, while the model shows strong performance in some classes, further

improvements may be needed to enhance its accuracy in correctly classifying instances

for classes like "Edge-Loc" and "Loc."

Figure 34: Confusion Matrix, detailing the true positives, false positives, true negatives,

and false negatives for each class in a CNN-based defect classification model

84

Table 21 shows the accuracy, precision, recall, and F1 score of a classification

algorithm for 36 wafer defect patterns. The average accuracy, precision, recall, and F1

score for all classes are 99.9%, 97%, 97% and 97% respectively. The algorithm correctly

classifies 99.9% of the instances across all classes, indicating a high level of overall

correctness in its predictions. The algorithm achieves a precision of 97%, which means

that out of all the instances it predicts as positive, 97% are true positives. This indicates a

low rate of false positive predictions. The algorithm achieves a recall of 98% which means

that it identifies 97% of the actual positive instances correctly. This indicates a low rate

of false negatives, as the algorithm captures a high proportion of the positive instances.

The F1 score combines both precision and recall into a single metric with an F1 score of

97%. The algorithm demonstrates a good balance between precision and recall, indicating

overall robust performance. These high values for accuracy, precision, recall, and F1

score suggest that the classification algorithm is effective, and accurate in identifying and

classifying instances across all classes.

Table 21: Performance Metrics for Each Defect Pattern Class in a CNN-based Defect

Classification Model, detailing the accuracy, precision, recall, and F1 score for each

class.

Defect Pattern Name Accuracy (%) Precision Recall F1 Score

1 C+EL 100% 0.99 0.97 0.98

2 C+EL+L 100% 0.97 0.95 0.96

3 C+EL+S 100% 0.99 0.99 0.99

4 C+ER 100% 0.98 0.99 0.98

5 C+ER+L 100% 0.96 0.95 0.96

6 C+ER+S 100% 0.98 0.98 0.98

7 C+L 100% 0.97 0.99 0.98

8 C+L+EL+S 100% 0.97 0.95 0.96

9 C+L+ER+S 100% 0.94 0.96 0.95

10 C+L+S 100% 0.97 0.97 0.97

11 C+S 100% 0.99 0.99 0.99

12 Center 100% 0.97 0.97 0.97

13 D+EL 100% 0.98 0.97 0.98

85

14 D+EL+L 100% 1.00 0.99 0.99

15 D+EL+S 100% 0.97 0.96 0.96

16 D+ER 100% 0.97 0.97 0.97

17 D+ER+L 100% 1.00 0.99 0.99

18 D+ER+S 100% 0.95 0.97 0.96

19 D+L 100% 0.97 0.97 0.97

20 D+L+EL+S 100% 0.99 0.95 0.97

21 D+L+ER+S 100% 0.97 0.98 0.98

22 D+L+S 100% 0.95 0.97 0.96

23 D+S 100% 0.99 1.00 1.00

24 Donut 100% 0.99 0.96 0.98

25 EL+L 100% 1.00 0.99 0.99

26 EL+L+S 100% 0.96 0.98 0.97

27 EL+S 100% 0.99 0.99 0.99

28 ER+L 100% 1.00 0.98 0.99

29 ER+S 100% 0.99 0.99 0.99

30 Edge-Loc 100% 0.92 0.95 0.94

31 Edge-Ring 100% 0.99 0.98 0.99

32 L+S 100% 0.99 1.00 1.00

33 Loc 99% 0.90 0.86 0.88

34 Near-full 100% 0.99 1.00 0.99

35 Random 100% 0.97 0.98 0.98

36 Scratch 100% 0.95 0.97 0.96

Total 99.9% 0.97 0.97 0.97

The TPR and FPR for 36 classes were calculated to compute the ROC curve for

each class individually. As shown in Figure 35, the ROC curve for all classes is closer

to the top-left corner of the plot which indicates that the model can accurately classify

positive cases while minimizing false positives. the majority of the classes exhibit a high

true positive rate, with many surpassing 0.98 and a low false positive rate (3.9045e-04).

This indicates that the model is effective at correctly identifying positive cases while

minimizing false positives and performing effectively and accurately in distinguishing

between these classes. Nevertheless, the "Loc" class have a lower true positive rate of

approximately 0.8598, suggesting that there may be challenges for the algorithm to

differentiate them accurately, potentially necessitating further fine-tunning or

optimization efforts.

86

Figure 35: ROC Curves for all Defect classes, detailing the trade-off between true positive rate

and false positive rate for each class.

Also, the other trained models are evaluated using the same testing set. Table 22

provides insights into the models' performance in terms of accuracy, precision, recall, and

F1 score. All three models achieved high average testing accuracy, with Modified

GoogLeNet and ResNet-50 both achieving 99.9% accuracy, and ShuffleNetV2 achieving

99.8% accuracy. In terms of precision, recall, and F1 score, all models performed

consistently well, with an average precision, recall, and F1 score of 0.97 for each model.

This indicates that the models were successful in accurately classifying positive cases

while minimizing false positives (precision), capturing true positive cases (recall), and

achieving a balanced trade-off between precision and recall (F1 score).

Table 22: Evaluation results of three deep learning models, Modified GoogLeNet, ShuffleNetV2

and ResNet-50 in terms of their average accuracy, precision, recall, and F1 score.

Model
Average Testing

Accuracy

Average

Precision

Average

Recall

Average

F1_score

1
Modified

GoogLeNet
99.9%

0.97 0.97 0.97

2 ShuffleNetV2 99.8% 0.96 0.96 0.96

3 ResNet-50 99.9%
0.97 0.97 0.97

87

4.5 Addressing Memory Limit Issues During Experiments

Memory limit errors were encountered during the data preprocessing and model

training stages due to inadequate memory for handling the data or computations. Our

study focused on optimizing memory usage during data preprocessing and model training

in machine learning tasks. We encountered memory limit errors due to inadequate

memory resources, which hindered our progress.

Various strategies were employed such as using generators and data loaders,

freeing up unnecessary variables, incorporating memory-efficient data structures,

implementing batch processing, leveraging the auto-cast feature, and harnessing the

CUDA parallel computing platform to overcome these errors. Our findings show that

these memory optimization strategies were effective in addressing memory limit errors

and improving the overall performance of our proposed CNN model.

 By using generators and data loaders, we were able to efficiently handle large

datasets within limited memory resources. Freeing up unnecessary variables and

employing memory-efficient data structures further contributed to efficient memory

utilization. Batch processing allowed for efficient training, while the auto-cast feature

reduced computational resource requirements and enabled the use of larger batch sizes.

Leveraging the CUDA parallel computing platform provided an opportunity to harness

the power of NVIDIA GPUs for general-purpose computing tasks, further optimizing

resource allocation. The PyTorch allows to use of CUDA devices with simple APIs to

transfer data to GPU memory and perform operations on GPU. Also, the training and

validation processes are performed on GPU. Table 23 demonstrate a performance

analysis for using CUDA for training and validation phase of Modified GoogLeNet. The

Modified GoogLeNet model achieved an average CPU usage of 35.17% and a maximum

88

memory usage of 19469.69 MB during execution on the CPU. When executed on the

GPU, the model achieved an average GPU usage of 81.30% and a maximum CUDA

memory usage of 6812.47 MB. The execution time on the GPU was significantly faster,

taking only 4,641.36 seconds. The speedup achieved by using the GPU instead of the

CPU is approximately 38.78x, indicating a significant performance improvement.

Table 23: Performance Analysis of Modified GoogLeNet for traning phase.

Model

CPU GPU

Speedup

Average

CPU

usage

(%)

Maximum

Memory usage

(MB)

Execution

time

(s)

Average

GPU

usage

(%)

Maximum

CUDA

Memory Usage

(MB)

Execution

time

(s)

Modified

GoogLeNet
35.17% 19469.69 MB 180,000 s 81.30% 6812.47 MB 4,641.36 s 38.78

4.6 Discussion of Results Comparing with Past Research

In this investigation, we examined the effectiveness of our proposed CNN model

for classifying single and mixed types of wafer defect patterns. Our results indicate that

our algorithm attained an accuracy of 99.9%, outperforming the state-of-the-art works as

demonstrated in Section 2.1 by 2.4%. Moreover, neither of the previous studies

specifically addresses the use of parallel programming techniques like CUDA to improve

performance in wafer defect classification. Based on previous studies, many researchers

who deal with ‘WM-811K’ dataset have resized images to 224x224 or 416x416, even

though the wafer image dimensions of 27x25 have the maximum count in the original

dataset. However, this resizing process has some drawbacks such as loss of fine-grained

details present in the original image and increased computational resources like memory

and CPU consumption - impacting model performance and training/testing times. To

reduce these issues and improve efficiency, we choose 56x56 standard dimensions for all

wafer images using Bicubic interpolation for smoother results.

89

Our findings are consistent with previous research for single and mixed defect

pattern classification. For example, in [48] the researchers use sophisticated methods such

as convolutional autoencoder in a GAN-based architecture to perform data augmentations

which is computationally expensive and time-consuming. However, in our finding, we

use a simple data augmentation as illustrated in Section 3.3 which is relatively easy to

implement and computationally efficient. In addition, their experiments showed an

average accuracy of 97.5% for mixed types of wafer defects using the 'MixedWM38'

dataset with a minimum average accuracy of 93.4% for classifying the 'Center with Edge-

Ring with Scratch' defect and a maximum average accuracy of 100% for classifying the

'Donut with Edge-Ring with Scratch' defect. Our findings demonstrate that our proposed

model exceeds their work in terms of accuracy, reaching up to 99.9% while in the class

'Center with Edge-Ring with Scratch,' we achieved an accuracy of 100%. similarly, the

researchers in [53] use the 'MixedWM38' dataset with a semantic segmentation approach

to generate multiple defect types. They achieved an average accuracy of 95.8%. however,

our findings demonstrate that our proposed model exceeds their work in terms of

accuracy, reaching up to 99.9%.

In [47], the researchers just address the overfitting issue by utilizing the dropout

method with a probability of 0.5. however, they didn’t address the unbalanced classes

issue that exists in the ‘WM-811K’ dataset. They achieved an average accuracy of 93.25%

while the 'Donut' defect had a minimum average accuracy rate of 86%. Our finding solves

the overfitting issue and unbalanced classes issue that exists in the ‘WM-811K’ dataset

by utilizing data augmentation methods and the “stop early” method by stopping the

training process before the model has fully converged. Also, our findings demonstrate

90

that our proposed model exceeds their work in terms of accuracy, reaching up to 99.9%

while the class Donut achieved an accuracy of 100%.

Also, our finding shows that our proposed classification framework outperforms

the work in [49] that use the ShuffleNet-v2 model in term of accuracy, precision, recall

and F1-score in single wafer defect patterns classification. In [50] the researcher uses

simple data augmentation methods such as zooming and shifting, however, these methods

can indeed result in the loss of some information in an image. They didn’t explain how

they controlled shifts and zooms while preserving the integrity of the image information.

they achieved an average classification accuracy of 96.2%. our proposed classification

framework outperformed their work by 3.7% for single defect patterns classification.

In [51], the researchers achieved a top-3 accuracy rate of 96.2% which indicates that the

correct label is included in the top three predictions for 96.2% of the cases. Therefore, in

terms of overall accuracy, our proposed model with a 99.9% accuracy outperforms the

model with a top-3 accuracy rate of 96.2%. It should be noted here that a dataset

containing real images of wafer defects was used in their work, which is a positive thing.

In [29], the researchers leverage the attention mechanism and cosine normalization to

solve the imbalanced WM-811K dataset and they use fine-tuning methods for minimal

iterative training. The attention mechanism and cosine normalization can be

computationally expensive and the interpretation of attention weights can be challenging.

Therefore, in terms of overall accuracy, our proposed model with a 99.9% accuracy

outperforms the model with an accuracy of 95.46% by 4.44%.

In [52] the researchers evaluate the performance of YOLOv3, YOLOv4,

ResNet50, and DenseNet121 in wafer defect patterns classification. This work provides

robustness and diversity to identify which models are more robust and perform

91

consistently across the WM-811K dataset. However, the YOLOv4 model achieved an

accuracy of 95.7%, our proposed model with a 99.9% accuracy outperforms it by 4.2%.

also, their work using the YOLOv4 model achieved an average F-score of 0.92 but our

proposed model achieved an average F-score of 0.97. Overall, our proposed CNN model

has outperformed the state-of-the-art works in terms of accuracy for single and mixed

defect patterns classification.

Overall, our proposed work has superior performance compared to all other works,

achieving the highest accuracies across three pretrained CNN models due to the

methodology that involves data preprocessing, simple data augmentation and different

tools and mechanisms to enhance training process.

92

Chapter Five

Conclusions

This final chapter concludes the thesis. It highlights the research contributions

made by the study and discusses any limitations encountered. Future works are suggested

for further exploration in the field. The chapter concludes with a summary of the main

findings and a concise conclusion.

5.1 Research Contributions

Overall, our work contributes a novel framework, leveraging the GoogLeNet

architecture, for single and mixed wafer defect patterns classification. We provide a

cleaned balanced dataset called “WM-300K+ wafer map [Single & Mixed]” and achieve

high accuracy, addressing the challenges associated with complex mixed-type defects.

These contributions advance the field of wafer defect pattern classification and pave the

way for improved wafer defect classification in semiconductor manufacturing processes.

The key research contributions of our study are:

1. Proposed CNN Model Based on GoogLeNet: Our research introduces a novel CNN

model based on the GoogLeNet architecture for wafer defect pattern classification.

The proposed GoogLeNet model provides a strong foundation for accurate and

robust classification of wafer defect patterns.

2. Proposed the DefectClassifierX application: an automated pattern classification

system for wafer defects called "DefectClassifierX" is present. This system utilizes

the proposed CNN model based on the GoogLeNet architecture to accurately and

efficiently classify wafer defect patterns.

3. Classification of Single and Mixed Wafer Defect Patterns: Our proposed CNN

model is designed to classify both single and mixed types of wafer defect patterns.

93

This allows for comprehensive and reliable classification, even when multiple defect

types are present on the same wafer.

4. Generalization to New Defect Types: Our proposed CNN model demonstrates

promising generalization capabilities to new or unseen defect types. While training

on a specific set of defect patterns, the model's underlying architecture and learned

features enable it to potentially classify previously unseen defect types with

reasonable accuracy.

5. Achievement of High Accuracy: Through extensive experimentation and

evaluation, our proposed CNN model achieves an impressive average accuracy of

99.9% in wafer defect pattern classification. This high accuracy demonstrates the

effectiveness and reliability of our approach in accurately identifying and classifying

different types of wafer defects.

6. Publication of WM-300K+ Wafer Map Dataset: In addition to proposing a novel

CNN model, we also created a new dataset called "WM-300K+ wafer map [Single

& Mixed]." This dataset is noteworthy as it is cleaned, and balanced, and consists of

more than 300,000 wafer map images with 36 classes. We publish this dataset on

Kaggle, providing a valuable resource for the research community and enabling

further advancements in wafer map analysis and classification.

7. Utilization of CUDA for Enhanced Training and Testing Speed: To speed up the

training and testing process of our proposed CNN model, we utilize CUDA, a parallel

computing platform that enables significant performance improvements when

training deep neural networks.

94

5.2 Limitations

While our research makes significant contributions to the field of wafer defect

pattern classification, certain limitations should be acknowledged:

1. Dependency on Dataset Quality: The effectiveness of our approach is highly

dependent on the quality and diversity of the training dataset. If the dataset contains

inaccuracies, noise, or biases, it may impact the model’s performance and

generalizability. Therefore, ensuring a high-quality and representative dataset is

crucial for obtaining reliable results.

2. Computational Resource Requirements: Our proposed CNN model, particularly

when using the GoogLeNet architecture and CUDA for enhanced speed, may require

significant computational resources during training and testing. This includes high-

performance GPUs and sufficient memory capacity. Researchers with limited access

to such resources may face challenges in replicating our experiments or applying our

approach in resource-constrained environments.

3. Data Augmentation Limitations: While data augmentation can help address

dataset issues such as class imbalance, the effectiveness of this technique may vary

depending on the specific characteristics of the dataset. In some cases, data

augmentation may not fully mitigate the challenges associated with imbalanced data,

leading to potential biases or limitations in the model’s performance.

4. Lack of Evaluation on Real Wafer Map Images: Our proposed model has not been

evaluated on real wafer map images. Although we achieved high accuracy using our

dataset, the model’s performance on real-world wafer map images may differ

because of variations in image quality, noise, and other factors specific to real

95

production environments. Further evaluation and validation of real wafer map

images are necessary to assess the model’s practical applicability.

6. Future Works

Several areas warrant further investigation and exploration. Future work should

focus on addressing the following aspects:

1. Expand the dataset to include a wider range of defect types and variations, enabling

the model to handle a broader array of real-world scenarios.

2. Optimize computational resource requirements by developing more efficient

architectures or exploring alternative hardware configurations that can achieve

comparable performance with reduced resource demands.

3. Further evaluation and validation of real wafer map images are necessary by

conducting extensive evaluations to understand the model’s performance under these

realistic conditions and identify any necessary adaptations or improvements.

7. Conclusion

In our study, we proposed a novel CNN model based on the GoogLeNet

architecture for wafer defect pattern classification, which achieved an impressive average

accuracy of 99.9%. We also developed an automated pattern classification system for

wafer defects called "DefectClassifierX" that utilizes the proposed CNN model to

accurately and efficiently classify wafer defect patterns. Our contributions include the

creation of a new dataset called "WM-300K+ wafer map [Single & Mixed]" and the use

of CUDA for enhanced training and testing speed. Notably, our approach surpasses

existing benchmarks and achieves state-of-the-art results in wafer defect pattern

classification, showcasing the advancements made in our proposed CNN model and its

96

potential to significantly enhance the accuracy and reliability of wafer defect analysis in

semiconductor manufacturing.

However, our research also highlights several limitations, including dependence

on dataset quality, computational resource requirements, and data augmentation

limitations. Although our proposed model achieves high accuracy using our dataset, it has

not been evaluated on real wafer map images, indicating a need for further evaluation and

validation to assess its practical applicability. Future work should prioritize addressing

these limitations by improving dataset quality, optimizing computational resource

requirements, enhancing data augmentation techniques, and evaluating the proposed

model on real wafer map images. By doing so, we can continue to advance the field of

wafer defect pattern classification, improving the reliability, generalizability, and

practical applicability of our approach for real-world scenarios.

Overall, our study contributes a powerful CNN model capable of accurately

classifying both single and mixed wafer defect patterns, surpassing previous studies in

accuracy. With further research and development, our approach holds significant promise

in enhancing the efficiency and effectiveness of wafer defect analysis in semiconductor

manufacturing.

97

References

 Y. Q. Chen, B. Zhou, M. Zhang, and C. M. Chen, “Using IoT technology for

computer-integrated manufacturing systems in the semiconductor industry,”

Applied Soft Computing Journal, vol. 89, 2020, doi: 10.1016/j.asoc.2020.106065.

 A. A. R. M. A. Ebayyeh and A. Mousavi, “A Review and Analysis of Automatic

Optical Inspection and Quality Monitoring Methods in Electronics Industry,” IEEE

Access, vol. 8. 2020. doi: 10.1109/ACCESS.2020.3029127.

 Fortune Business Insights, “Consumer Electronics Market Size to Hit USD 989.37

Billion.” Accessed: Aug. 12, 2023. [Online]. Available:

https://www.globenewswire.com/news-

release/2023/02/28/2616731/0/en/Consumer-Electronics-Market-Size-to-Hit-

USD-989-37-Billion-by-2027-At-5-3-CAGR.html

 X. Guo, V. Verma, P. Gonzalez-Guerrero, S. Mosanu, and M. R. Stan, “Back to

the future: Digital circuit design in the FinFET Era,” J Low Power Electron, vol.

13, no. 3, 2017, doi: 10.1166/jolpe.2017.1489.

 K. T. Turner and S. M. Spearing, “Mechanics of direct wafer bonding,”

Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, vol. 462, no. 2065, 2006, doi: 10.1098/rspa.2005.1571.

 K. A. Jackson and W. Schroter, Handbook of semiconductor technology set. 2008.

doi: 10.1002/9783527619290.

https://www.globenewswire.com/news-release/2023/02/28/2616731/0/en/Consumer-Electronics-Market-Size-to-Hit-USD-989-37-Billion-by-2027-At-5-3-CAGR.html
https://www.globenewswire.com/news-release/2023/02/28/2616731/0/en/Consumer-Electronics-Market-Size-to-Hit-USD-989-37-Billion-by-2027-At-5-3-CAGR.html
https://www.globenewswire.com/news-release/2023/02/28/2616731/0/en/Consumer-Electronics-Market-Size-to-Hit-USD-989-37-Billion-by-2027-At-5-3-CAGR.html

98

 J. N. D. Gupta, R. Ruiz, J. W. Fowler, and S. J. Mason, “Operational planning and

control of semiconductor wafer production,” Production Planning and Control,

vol. 17, no. 7, 2006, doi: 10.1080/09537280600900733.

 A. Ciftja, T. A. Engh, and M. Tangstad, “Refining and Recycling of Silicon : A

Review,” World, no. February, 2008.

 W. Kern, “Evolution of silicon wafer cleaning technology,” in Proceedings - The

Electrochemical Society, 1990. doi: 10.1149/1.2086825.

 M. Itano, F. W. Kern, M. Miyashita, and T. Ohmi, “Particle Removal from Silicon

Wafer Surface in Wet Cleaning Process,” IEEE Transactions on Semiconductor

Manufacturing, vol. 6, no. 3, 1993, doi: 10.1109/66.238174.

 A. Khairnar, “Chapter 2 Thin Film Deposition and Characterization Techniques,”

Thin Film Growth and Characterizaiton Techniques, no. 2014, 2010.

 T. Workman et al., “Die to Wafer Hybrid Bonding and Fine Pitch Considerations,”

in Proceedings - Electronic Components and Technology Conference, 2021. doi:

10.1109/ECTC32696.2021.00326.

 W. R. Mann, “Wafer test methods to improve semiconductor die reliability,” IEEE

Design and Test of Computers, vol. 25, no. 6, 2008, doi: 10.1109/MDT.2008.174.

99

 I. S. Amiri, M. M. Ariannejad, D. Vigneswaran, C. S. Lim, and P. Yupapin,

“Performances and procedures modules in micro electro mechanical system

packaging technologies,” Results Phys, vol. 11, 2018, doi:

10.1016/j.rinp.2018.09.008.

 K. Kyeong and H. Kim, “Classification of Mixed-Type Defect Patterns in Wafer

Bin Maps Using Convolutional Neural Networks,” IEEE Transactions on

Semiconductor Manufacturing, vol. 31, no. 3, 2018, doi:

10.1109/TSM.2018.2841416.

 Semiconductor Industry Association, “Chipmakers Are Ramping Up Production

to Address Semiconductor Shortage. Here’s Why that Takes Time,” Feb. 2021,

Accessed: Aug. 12, 2023. [Online]. Available:

https://www.semiconductors.org/chipmakers-are-ramping-up-production-to-

address-semiconductor-shortage-heres-why-that-takes-time/

 R. Desineni and E. Tuv, “High-Value AI in Intel’s Semiconductor Manufacturing

Environment,” Intel. Intel, 2018. Accessed: Oct. 26, 2023. [Online]. Available:

https://www.intel.com/content/dam/www/central-libraries/us/en/documents/ai-in-

semiconductor-manufacturing-paper.pdf

 T. Yuan, S. Z. Ramadan, and S. J. Bae, “Yield prediction for integrated circuits

manufacturing through hierarchical bayesian modeling of spatial defects,” IEEE

Trans Reliab, vol. 60, no. 4, 2011, doi: 10.1109/TR.2011.2161698.

https://www.semiconductors.org/chipmakers-are-ramping-up-production-to-address-semiconductor-shortage-heres-why-that-takes-time/
https://www.semiconductors.org/chipmakers-are-ramping-up-production-to-address-semiconductor-shortage-heres-why-that-takes-time/
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/ai-in-semiconductor-manufacturing-paper.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/ai-in-semiconductor-manufacturing-paper.pdf

100

 U. Kaempf, “The Binomial Test: A Simple Tool to Identify Process Problems,”

IEEE Transactions on Semiconductor Manufacturing, vol. 8, no. 2, 1995, doi:

10.1109/66.382280.

 J. Yu and X. Lu, “Wafer Map Defect Detection and Recognition Using Joint Local

and Nonlocal Linear Discriminant Analysis,” IEEE Transactions on

Semiconductor Manufacturing, vol. 29, no. 1, 2016, doi:

10.1109/TSM.2015.2497264.

 M. Piao, C. H. Jin, J. Y. Lee, and J. Y. Byun, “Decision tree ensemble-based wafer

map failure pattern recognition based on radon transform-based features,” IEEE

Transactions on Semiconductor Manufacturing, vol. 31, no. 2, 2018, doi:

10.1109/TSM.2018.2806931.

 C. K. Hansen and P. Thyregod, “Use of wafer maps in integrated circuit

manufacturing,” Microelectronics Reliability, vol. 38, no. 6–8, 1998, doi:

10.1016/S0026-2714(98)00127-9.

 S. Parrish, “A Study of Defects in High Reliability Die Sort Applications,”

International Symposium on Microelectronics, vol. 2019, no. 1, 2019, doi:

10.4071/2380-4505-2019.1.000463.

 M. Liukkonen and Y. Hiltunen, “Recognition of Systematic Spatial Patterns in

Silicon Wafers Based on SOM and K-means,” 2018. doi:

10.1016/j.ifacol.2018.03.075.

101

 T. Tiwari, T. Tiwari, and S. Tiwari, “How Artificial Intelligence, Machine

Learning and Deep Learning are Radically Different?,” International Journal of

Advanced Research in Computer Science and Software Engineering, vol. 8, no. 2,

2018, doi: 10.23956/ijarcsse.v8i2.569.

 L. Deng and D. Yu, “Deep Learning: Methods and Applications Foundations and

Trends R in Signal Processing,” Signal Processing, vol. 7, no. 2013, 2013.

 J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural

Networks, vol. 61. 2015. doi: 10.1016/j.neunet.2014.09.003.

 F. López de la Rosa, J. L. Gómez-Sirvent, R. Morales, R. Sánchez-Reolid, and A.

Fernández-Caballero, “A deep residual neural network for semiconductor defect

classification in imbalanced scanning electron microscope datasets,” Appl Soft

Comput, vol. 131, 2022, doi: 10.1016/j.asoc.2022.109743.

 Q. Xu, N. Yu, and F. Essaf, “Improved Wafer Map Inspection Using Attention

Mechanism and Cosine Normalization,” Machines, vol. 10, no. 2, 2022, doi:

10.3390/machines10020146.

 R. E. Sarpietro et al., “Explainable Deep Learning System for Advanced Silicon

and Silicon Carbide Electrical Wafer Defect Map Assessment,” IEEE Access, vol.

10, 2022, doi: 10.1109/ACCESS.2022.3204278.

102

 X. Ran, “Research on the Optimization of Defect Detection Based on

Convolutional Neural Network Architecture,” SHS Web of Conferences, vol. 144,

2022, doi: 10.1051/shsconf/202214402018.

 J. Ma et al., “Review of Wafer Surface Defect Detection Methods,” Electronics

(Switzerland), vol. 12, no. 8, 2023, doi: 10.3390/electronics12081787.

 M. B. Alawieh, D. Boning, and D. Z. Pan, “Wafer map defect patterns

classification using deep selective learning,” in Proceedings - Design Automation

Conference, 2020. doi: 10.1109/DAC18072.2020.9218580.

 T. Ishida, I. Nitta, D. Fukuda, and Y. Kanazawa, “Deep Learning-Based Wafer-

Map Failure Pattern Recognition Framework,” in Proceedings - International

Symposium on Quality Electronic Design, ISQED, 2019. doi:

10.1109/ISQED.2019.8697407.

 A. Vyas, S. Yu, and J. Paik, “Fundamentals of digital image processing,” in Signals

and Communication Technology, 2018. doi: 10.1007/978-981-10-7272-7_1.

 V. K. Mishra, S. Kumar, and N. Shukla, “Image Acquisition and Techniques to

Perform Image Acquisition,” SAMRIDDHI : A Journal of Physical Sciences,

Engineering and Technology, vol. 9, no. 01, 2017, doi:

10.18090/samriddhi.v9i01.8333.

103

 S. Süsstrunk, R. Buckley, and S. Swen, “Standard RGB color spaces,” in Final

Program and Proceedings - IS and T/SID Color Imaging Conference, 1999. doi:

10.2352/cic.1999.7.1.art00024.

 K. Zakka, “CS231n Convolutional Neural Networks for Visual Recognition,”

Stanford University, 2021.

 R. E. Neapolitan and X. Jiang, “Neural Networks and Deep Learning,” in Artificial

Intelligence, 2018. doi: 10.1201/b22400-15.

 R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural

networks: an overview and application in radiology,” Insights into Imaging, vol.

9, no. 4. 2018. doi: 10.1007/s13244-018-0639-9.

 D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” Nature, vol. 323, no. 6088, 1986, doi:

10.1038/323533a0.

 S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual

Understanding of Convolutional Neural Network- A Deep Learning Approach,” in

Procedia Computer Science, 2018. doi: 10.1016/j.procs.2018.05.069.

 D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber,

“Flexible, high performance convolutional neural networks for image

classification,” in IJCAI International Joint Conference on Artificial Intelligence,

2011. doi: 10.5591/978-1-57735-516-8/IJCAI11-210.

104

 V. Romanuke, “Appropriate Number and Allocation of RELUS in Convolutional

Neural Networks,” Research Bulletin of the National Technical University of

Ukraine “Kyiv Politechnic Institute,” vol. 0, no. 1, 2017, doi: 10.20535/1810-

0546.2017.1.88156.

 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Commun ACM, vol. 60, no. 6, 2017, doi:

10.1145/3065386.

 N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” Journal of

Machine Learning Research, vol. 15, 2014.

 N. Yu, Q. Xu, and H. Wang, “Wafer defect pattern recognition and analysis based

on convolutional neural network,” IEEE Transactions on Semiconductor

Manufacturing, vol. 32, no. 4, 2019, doi: 10.1109/TSM.2019.2937793.

 N. Yu, H. Chen, Q. Xu, M. M. Hasan, and O. Sie, “Wafer map defect patterns

classification based on a lightweight network and data augmentation,” CAAI Trans

Intell Technol, 2022, doi: 10.1049/cit2.12126.

 R. Doss, J. Ramakrishnan, S. Kavitha, S. Ramkumar, G. Charlyn Pushpa Latha,

and K. Ramaswamy, “Classification of Silicon (Si) Wafer Material Defects in

Semiconductor Choosers using a Deep Learning ShuffleNet-v2-CNN Model,”

Advances in Materials Science and Engineering, vol. 2022, 2022, doi:

10.1155/2022/1829792.

105

 M. Saqlain, Q. Abbas, and J. Y. Lee, “A Deep Convolutional Neural Network for

Wafer Defect Identification on an Imbalanced Dataset in Semiconductor

Manufacturing Processes,” IEEE Transactions on Semiconductor Manufacturing,

vol. 33, no. 3, 2020, doi: 10.1109/TSM.2020.2994357.

 C. Phua and L. B. Theng, “Semiconductor wafer surface: Automatic defect

classification with deep CNN,” in IEEE Region 10 Annual International

Conference, Proceedings/TENCON, 2020. doi:

10.1109/TENCON50793.2020.9293715.

 P. P. Shinde, P. P. Pai, and S. P. Adiga, “Wafer Defect Localization and

Classification Using Deep Learning Techniques,” IEEE Access, vol. 10, 2022, doi:

10.1109/ACCESS.2022.3166512.

 J. Yan, Y. Sheng, and M. Piao, “Semantic Segmentation Based Wafer Map Mixed-

Type Defect Pattern Recognition,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 2023, doi: 10.1109/TCAD.2023.3274958.

 M.-J. Wu, J.-S. R. Jang, and J.-L. Chen, “Wafer Map Failure Pattern Recognition

and Similarity Ranking for Large-Scale Data Sets,” IEEE Transactions on

Semiconductor Manufacturing, vol. 28, no. 1, pp. 1–12, 2015, doi:

10.1109/TSM.2014.2364237.

 C. Suresh, S. Singh, R. Saini, and A. K. Saini, “A Comparative Analysis of Image

Scaling Algorithms,” International Journal of Image, Graphics and Signal

Processing, vol. 5, no. 5, 2013, doi: 10.5815/ijigsp.2013.05.07.

106

 D. D. Muresan and T. W. Parks, “Adaptively Quadratic (AQua) image

interpolation,” IEEE Transactions on Image Processing, vol. 13, no. 5, 2004, doi:

10.1109/TIP.2004.826097.

 A. Bansal, R. Sharma, and M. Kathuria, “A Systematic Review on Data Scarcity

Problem in Deep Learning: Solution and Applications,” ACM Comput Surv, vol.

54, no. 10, 2022, doi: 10.1145/3502287.

 Y. Fujimoto, K. Fukushima, and K. Murase, “Extensive studies of the neutron star

equation of state from the deep learning inference with the observational data

augmentation,” Journal of High Energy Physics, vol. 2021, no. 3, 2021, doi:

10.1007/JHEP03(2021)273.

 D. Hirahara, E. Takaya, T. Takahara, and T. Ueda, “Effects of data count and

image scaling on Deep Learning training,” PeerJ Comput Sci, vol. 6, 2020, doi:

10.7717/peerj-cs.312.

 E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “AutoAugment:

Learning Augmentation Policies from Data,” Cvpr 2019, no. Section 3, 2018.

 S. Wang, Z. Zhong, Y. Zhao, and L. Zuo, “A Variational Autoencoder Enhanced

Deep Learning Model for Wafer Defect Imbalanced Classification,” IEEE Trans

Compon Packaging Manuf Technol, vol. 11, no. 12, 2021, doi:

10.1109/TCPMT.2021.3126083.

107

 E. R. Davies, Computer Vision: Principles, Algorithms, Applications, Learning:

Fifth Edition. 2017.

 R. Szeliski, Texts in Computer Science: Computer Vision Algorithms and

Applications Second Edition, no. January. 2022.

 J.-H. Park, “Spatial Transformations of Shapes,” 2022. doi: 10.1007/978-3-031-

08946-6_1.

 C. Seger, “An investigation of categorical variable encoding techniques in machine

learning: binary versus one-hot and feature hashing,” Degree Project Technology,

2018.

 C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2015.

doi: 10.1109/CVPR.2015.7298594.

 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

Inception Architecture for Computer Vision,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2016.

doi: 10.1109/CVPR.2016.308.

 I. Loshchilov and F. Hutter, “Fixing Weight Decay Regularization in Adam,”

2018.

108

 P. Aswathy, Siddhartha, and D. Mishra, “Deep GoogLeNet Features for Visual

Object Tracking,” in 2018 13th International Conference on Industrial and

Information Systems, ICIIS 2018 - Proceedings, 2018. doi:

10.1109/ICIINFS.2018.8721317.

 X. Ding, X. Zhang, J. Han, and G. Ding, “Scaling Up Your Kernels to 31×31:

Revisiting Large Kernel Design in CNNs,” in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2022. doi:

10.1109/CVPR52688.2022.01166.

 M. V. Narkhede, P. P. Bartakke, and M. S. Sutaone, “A review on weight

initialization strategies for neural networks,” Artif Intell Rev, vol. 55, no. 1, 2022,

doi: 10.1007/s10462-021-10033-z.

 A. Paszke et al., “PyTorch: An imperative style, high-performance deep learning

library,” in Advances in Neural Information Processing Systems, 2019.

 PyTorch, “Datasets & DataLoaders.” Accessed: Nov. 17, 2023. [Online].

Available: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

 S. Narang et al., “Mixed precision training,” in 6th International Conference on

Learning Representations, ICLR 2018 - Conference Track Proceedings, 2018.

 Z. Ji, J. D. Li, and M. Telgarsky, “Early-stopped neural networks are consistent,”

in Advances in Neural Information Processing Systems, 2021.

https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

109

 P. Maria, “JavaScript Beyond the Browser,” Open Repository Theseus, University

of Turku, vol. 1, 2018.

 Devndra Ghimire, “Comparative study on Python web frameworks: Flask and

Django,” Metropolia University of Applied Sciences, 2020.

 MDN contributors, “FileReader.” Accessed: Nov. 18, 2023. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/FileReader?locale=en

 Y. Bengio, “Practical recommendations for gradient-based training of deep

architectures,” Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7700

LECTURE NO, 2012, doi: 10.1007/978-3-642-35289-8_26.

 T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A Next-

generation Hyperparameter Optimization Framework,” in Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

2019. doi: 10.1145/3292500.3330701.

 M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA : The Bayesian Optimization

Algorithm 1 Introduction,” Proceedings of the genetic and evolutionary

computation conference GECCO-99, vol. 1, no. 99003, 1999.

 E. Brochu, T. Brochu, and N. Freitas, “A Bayesian interactive optimization

approach to procedural animation design,” in Computer Animation 2010 - ACM

SIGGRAPH / Eurographics Symposium Proceedings, SCA 2010, 2010.

https://developer.mozilla.org/en-US/docs/Web/API/FileReader?locale=en

110

 S. Falkner, A. Klein, and F. Hutter, “Practical hyperparameter optimization for

deep learning,” in 6th International Conference on Learning Representations,

ICLR 2018 - Workshop Track Proceedings, 2018.

 H. Jiang and X. Li, “Parameter estimation of statistical models using convex

optimization,” in IEEE Signal Processing Magazine, 2010. doi:

10.1109/MSP.2010.936018.

 A. D. Jagtap, K. Kawaguchi, and G. Em Karniadakis, “Locally adaptive activation

functions with slope recovery for deep and physics-informed neural networks,”

Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, vol. 476, no. 2239, 2020, doi: 10.1098/rspa.2020.0334.

 I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in 7th

International Conference on Learning Representations, ICLR 2019, 2019.

 D. Silwal, “Confusion Matrix, Accuracy, Precision, Recall & F1 Score:

Interpretation of Performance Measures,” Linkedin.

 R. Joshi, “Accuracy, Precision, Recall & F1 Score: Interpretation of

Performance Measures - Exsilio Blog,” 2016.

 J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver

operating characteristic (ROC) curve,” Radiology, vol. 143, no. 1, 1982, doi:

10.1148/radiology.143.1.7063747.

111

 C. Marzban, “The ROC curve and the area under it as performance measures,”

Weather Forecast, vol. 19, no. 6, 2004, doi: 10.1175/825.1.

 The Pandas Develompent Team, “Pandas-dev/pandas: Pandas,” Zenodo, vol. 21,

no. 1He. 2020.

 C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825.

2020. doi: 10.1038/s41586-020-2649-2.

 J. Zook, M. Ossmann, and G. Tingwald, “Pillow,” in The Covert Life of Hospital

Architecture, 2022. doi: 10.2307/j.ctv20pxz7f.8.

 J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput Sci Eng, vol. 9,

no. 3, 2007, doi: 10.1109/MCSE.2007.55.

 R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like

environment for machine learning,” 2011.

 NVIDIA, “Cuda C Best Practices Guide,” Nvidia Corporation, vol. 7.5, no.

September, 2015.

 Nvidia, “NVIDIA CUDA C programming guide,” NVIDIA Corporation, no.

February, 2011.

112

 TorchVision maintainers and contributors, “TorchVision: PyTorch’s Computer

Vision library.” GitHub, 2016. Accessed: Nov. 19, 2023. [Online]. Available:

https://github.com/pytorch/vision

113

 الملخص

 عد تصنيع رقائق أشباه الموصلات عملية معقدة معرضة للعيوب. في هذه الدراسة، نقدم ي

، وهو نظام آلي لتصنيف أنماط العيوب من خلال توظيف نموذج DefectClassifierX تطبيق

بنية الى GoogLeNetشبكة عصبية تلافيفية يعتمد على استخدام معمارية الحوسبة بالاضافة

من أجل تسريع عملية التدريب والاختبار. نهدف في هذه الدراسة إلى تحسين CUDAالمتوازية

تصنيف العيوب في عملية تصنيع أشباه الموصلات من خلال التصنيف الدقيق لأنماط عيب الرقاقة

المفردة والمختلطة. من أجل التحقق من النهج المقترح، تم اجراء تجارب شاملة باستخدام مجموعة

," حيث تتكون من WM-300K+ wafer map [single and mixed]سمى " بيانات جديدة ت

 ,precisionنتائج التجارب أنه قيمة كل من أظهرت هذه نمط من العيوب المفردة والمختلطة. 36

recall وF1-score كانت للنموذج الاختبار عملية أداء 0.97خلال أن الى يشير ما وهو

% 99.9كما وأظهرت مستوى ملحوظ من الدقة، بمتوسط دقة تصنيف النموذج المقترح ممتاز.

لكل من أنواع العيوب المفردة والمختلطة. يتفوق نهجنا في الأداء على الدراسات السابقة في تصنيف

أنماط عيوب الرقاقة ولديه القدرة على تحسين كفاءة وفعالية تحليل عيوب الرقاقة بشكل كبير في

الموصلا أشباه التعلم تصنيع متغيرات ضبط استخدمنا ذلك، إلى بالإضافة ت.

hyperparameter باستخدامOptuna المبكر التعلم إيقاف آلية التقارب. ونفذنا لتحسين

محسن بتوظيف قمنا ذلك، على يتوافق AdamWعلاوة النموذج. أداء تعزيز لزيادة

DefectClassifierX مع أنظمة التشغيل المتعددة، مما يضمن إمكانية الوصول لقاعدة مستخدمين

أوسع. في حين أن نتائجنا مشجعة، إلا أن هناك حاجة إلى مزيد من البحث لمعالجة القيود المتعلقة

بجودة مجموعة البيانات ومتطلبات الموارد الحسابية وتقنيات زيادة البيانات. بالإضافة إلى ذلك، من

 تقييم النموذج باستخدام صور حقيقة لخرائط الرقاقات لتقييم قابلية التطبيق العملي. المهم

