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1. Introduction

Structural strengthening is very important to restore existing struc-
tures and rehabilitate any structural damage due to extreme loading
events such as earthquakes. Fiber Reinforced Polymers (FRP) is a very
common and reliable technology that proved efficiency in strengthen-
ing Reinforced Concrete (RC) elements against flexural stresses [1-7].
The ultimate capacity of FRP strengthened flexural elements, such
as RC beams, is represented by two possible failure modes: concrete
crushing of the extreme compression fibers Fig. 1(a) or FRP rupture
located at the extreme tension fibers Fig. 1(b). When certain rein-
forcement characteristics, such as high FRP reinforcement, exist, high
stresses become attracted to the FRP zone. If these stresses overcome
the bond between the FRP and the RC beam being strengthened, FRP
sheet debonding failure mode controls the ultimate strength, Fig. 1(c).
When the stresses exceed the bond between the concrete strata itself,
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Concrete Cover Delamination (CDD) is the controlling failure mode,
Fig. 1(d). The last two modes are called premature failure modes [8].
The American Concrete Institute (ACI) published guidelines for the
design and construction of externally bonded FRP systems [9] in which
a design limit state was specified for the sheet debonding limit state.
However, the CCD is not yet addressed as a design limit state due to
the complexity of obtaining a practical and accurate predicting model
for this failure mode. This paper presents the development of software
that utilizes Machine-Learning (ML) to predict the CCD failure mode.
The software is called ML-CCD.

2. ML-CCD workflow

The process of predicting the CCD premature failure mode using a
ML-based model, specifically Random Forest (RF) regression, involves
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Fig. 1. Failure modes of FRP strengthened RC beams.
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Fig. 2. ML-CCD process flowchart.

a series of interconnected steps. Fig. 2 shows the flowchart of the
prediction process. It starts with data collection, where a database
containing various features like beam dimensions and FRP properties is
gathered and passed to verifications functions. The database will form
the dataset for training the RF model. Within the RF model, the dataset
then undergoes data preprocessing to handle issues such as missing

values and outliers while ensuring feature scaling and normalization.
Finally, RF performs feature selection in which it determines the most
relevant attributes that influence CCD. In this software, the authors
helped preprocess the collected dataset to ensure the best feature
selection based on mechanics-based model as will be discussed in the
Impact Overview section. The database was split into training (80%)
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Fig. 3. Steps of using the software as it appears in the user interface.

and testing (20%). Model evaluation is facilitated by allowing the user
to visualize the error after the prediction is completed. Once the model
performance is satisfactory, it can be deployed for use in predicting
the critical strengthening ratio considering all possible failure modes

shown in Fig. 1. Continuous monitoring and maintenance are crucial
to ensure the model’s accuracy and relevance as new data becomes
available, allowing it to provide valuable insights into the likelihood
of CCD in CFRP-strengthened RC beams.
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Fig. 3. (continued).
3. ML-CCD description and use needs to read the excel file that exists in the master code directory
“database.xls”. This file contains the database used to train the model
In the Code Metadate section at the beginning of this paper, the and contains two sheets. The first sheet is the database that contains

user is directed to download or clone the ML-CCD code. The software 70 beams tested experimentally and were found to fail in CCD, these
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Fig. 4. Accuracy of ML-CCD (a) Mechanics-based model — unknown critical surface (b) Mechanics-based model — known critical surface (¢) ML-CCD — unknown critical surface.



F.H. Salahat, H.A. Rasheed and H.I. Ashqar

are the beams that will be passed to the verification functions and will
be used to develop and train the RF model. The second sheet is made
available as an additional input location the software can read from
when making new predictions. The titles of the columns in both sheets
should not alternate since they are the key for proper file reading and
processing. The graphical user interface of this software is simple and
easy to follow and is shown in Fig. 3.

4. Impact overview

The authors of this work developed a mechanics-based model that
provides accurate predictions of the CCD failure mode [10]. However,
the developed model has one limitation: the accuracy of the prediction
is dependent on determining the location of critical surface of failure
in the concrete strata. Due to the complexity of the failure mechanism,
the critical surface of failure is still an unknown property that is not
yet accurately determined. ML-CCD overcomes this limitation through
utilizing machine-learning and training the model to predict the CCD
failure mode without the need to determine the critical surface of
failure. Also, ML-CCD took advantage of having the critical parameters
influencing the CCD identified from the mechanics-based model and
employed in the RF feature selection. Fig. 4 shows how ML-CCD helped
achieve prediction accuracy without compromising the error tolerance.
In Fig. 4(a), the prediction is made based on the mechanics-based
model that was developed by the authors [10] disregarding the critical
surface of failure. The figure indicates that in order to achieve 90%
accuracy or above, the error tolerance was about 83%. In Fig. 4(b), the
authors used the experimental information to decide the critical surface
of failure and implemented that in the mechanics-based model. The
required accuracy was achieved at 24% error. Finally, using ML-CCD,
and without any regards to the critical surface of failure, the required
accuracy was achieved at even lower error margin of 20%.

This development will have a major impact on structural designers
who implement FRP strengthening strategies to produce safe strength-
ening designs. ML-CCD not only offers a novel approach to CCD failure
prediction but also opens avenues for exploring new research questions.
Moreover, ML-CCD can provide more accurate estimations of ultimate
flexural capacity and effective strengthening ratio, thus aiding in the
optimization of RC beam designs and avoid unpredicted failure mech-
anisms. The software’s user-friendly interface and accurate predictions
have the potential to transform daily practices for engineers and de-
signers, controlling and monitoring the strengthening design process of
RC beams.

5. Future development

While ML-CCD represents a significant advancement, it also comes
with limitations, such as reliance on experimental data for training
and potential biases in predictions. Future improvements could involve
incorporating more diverse datasets to further enhance prediction ac-
curacy and applicability across a broader range of beam characteristics.
Another development feature is to expand the ability of ML-CCD to
predict premature failure under cyclic loading pattern. This will have
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a major impact on FRP strengthening for seismic applications. Finally,
as more features are incorporated in ML-CCD, the user interface (UI)
might need further professional development to include error handling
and provide the user with more options and functionalities.
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