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Highlights:
What are the main findings?

• Demonstrates the effectiveness of a novel multitask learning (MTL) framework utilizing large
language models (LLMs) for real-time analysis of road traffic crashes (RTCs) through the
integration of social media data.

• Fine-tuning GPT-2 for language modeling demonstrated that it outperformed baseline models,
including GPT-4o mini in zero-shot mode and XGBoost, across various classification and infor-
mation retrieval tasks. This study benchmarks the performance of the fine-tuned GPT-2 model
against these baselines, highlighting its superior performance in these tasks.

• The study collected and curated a dataset of 26,226 RTC-related tweets from Australia over a
year. This dataset extracted fifteen unique features, with six used in classification tasks and nine
in information retrieval tasks.

• Developed an advanced automated labeling system using GPT-3.5, followed by rigorous expert
verification to ensure the accuracy and reliability of feature extraction from tweets. The resulting
meticulously curated dataset serves as a foundational resource for training and validating
subsequent models, establishing a new standard for RTC analysis.

What is the implication of the main finding?

• Offers a transformative approach to traffic safety analytics, providing detailed, timely insights
crucial for emergency responders, urban planners, and policymakers.

• By leveraging cutting-edge AI techniques within an MTL framework, this study demonstrates a
transformative approach to real-time RTC analysis, setting the stage for future advancements in
the field.

• The curated dataset generated in this research not only advances traffic safety measures but
also serves as a valuable resource for extracting insights, developing models, and conducting
further research. This resource provides a solid foundation for future studies aimed at enhancing
road safety.

Abstract: Road traffic crashes (RTCs) are a global public health issue, with traditional analysis
methods often hindered by delays and incomplete data. Leveraging social media for real-time
traffic safety analysis offers a promising alternative, yet effective frameworks for this integration are
scarce. This study introduces a novel multitask learning (MTL) framework utilizing large language
models (LLMs) to analyze RTC-related tweets from Australia. We collected 26,226 traffic-related
tweets from May 2022 to May 2023. Using GPT-3.5, we extracted fifteen distinct features categorized
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into six classification tasks and nine information retrieval tasks. These features were then used to
fine-tune GPT-2 for language modeling, which outperformed baseline models, including GPT-4o
mini in zero-shot mode and XGBoost, across most tasks. Unlike traditional single-task classifiers
that may miss critical details, our MTL approach simultaneously classifies RTC-related tweets and
extracts detailed information in natural language. Our fine-tunedGPT-2 model achieved an average
accuracy of 85% across the six classification tasks, surpassing the baseline GPT-4o mini model’s
64% and XGBoost’s 83.5%. In information retrieval tasks, our fine-tuned GPT-2 model achieved a
BLEU-4 score of 0.22, a ROUGE-I score of 0.78, and a WER of 0.30, significantly outperforming the
baseline GPT-4 mini model’s BLEU-4 score of 0.0674, ROUGE-I score of 0.2992, and WER of 2.0715.
These results demonstrate the efficacy of our fine-tuned GPT-2 model in enhancing both classification
and information retrieval, offering valuable insights for data-driven decision-making to improve
road safety. This study is the first to explicitly apply social media data and LLMs within an MTL
framework to enhance traffic safety.

Keywords: road traffic crashes; social media data analysis; large language models; multitask
learning; GPT

1. Introduction

Analyzing social networks offers a rapid and cost-effective means to gain diverse
insights into various phenomena, such as violence, natural disasters, and road traffic crashes
(RTCs). Traditional RTC analysis relies heavily on direct reporting and monitoring systems,
often delayed and inaccurate due to under-reporting. With the advent of social media
platforms like Twitter, now rebranded as X, there is a real-time alternative for capturing
RTC data. These platforms enable immediate information dissemination from eyewitnesses,
providing valuable insights into incidents and public reactions [1,2]. However, unstructured
data’s sheer volume, velocity, and veracity pose significant challenges for traditional data
processing methods [3].

Recent advancements in large language models (LLMs) such as GPT-3.5 and GPT-4
have significantly transformed the data analysis landscape, particularly in applications
requiring the interpretation of vast and complex datasets. These models, known for their
extensive training on diverse datasets, have demonstrated remarkable adaptability and
performance across a wide range of tasks [1,2]. This shift towards utilizing LLMs through
prompt engineering and fine-tuning methods has challenged the traditional approach of
developing specialized models for each task, suggesting a more unified framework where
a single model can handle multiple tasks effectively [3,4].

The primary motivation behind our research is to explore the potential of LLMs in
the critical domain of traffic safety, explicitly focusing on detecting and analyzing road
traffic crashes (RTCs) using social media data. Traditional RTC analysis has primarily
relied on direct reporting and monitoring systems, which are often delayed and prone to
inaccuracies due to under-reporting. However, the advent of social media platforms like
Twitter provides a real-time alternative for capturing RTC data, enabling immediate infor-
mation dissemination from eyewitnesses and offering valuable insights into incidents and
public reactions [5,6]. Despite this potential, social media data’s sheer volume, velocity, and
unstructured nature pose significant challenges for traditional data processing methods [7].

To address these challenges, our study employs a multitask learning (MTL) framework
leveraging LLMs, specifically fine-tuning GPT-2 and utilizing GPT-4 in a zero-shot setting.
This approach allows us to explore the capabilities of LLMs in handling both classification
and information retrieval tasks related to RTCs, thereby enhancing the efficiency and
accuracy of traffic crash analysis. While traditional methods often involve single-task
models requiring extensive feature engineering, our framework integrates multiple tasks
within a single model, demonstrating how LLMs can surpass conventional methods in
both scope and performance [8,9]. Our framework integrates classification and information
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retrieval tasks within a fine-tuned language model, specifically GPT-2. This approach
enhances the detection of traffic crashes and the extraction of detailed insights from social
media data, surpassing traditional methods [10,11].

In particular, our research investigates the efficacy of LLMs in processing social media
data to detect the occurrence of a traffic crash, assess its severity, identify collision types,
and determine public sentiment and emotions related to the incidents. Additionally, the
information retrieval tasks, such as the number of injured or deceased, accident location,
and contributing factors, offer detailed contextual information essential for comprehensive
accident analysis and improving preventive measures [3,9]. These critical tasks provide
immediate insights for emergency response teams, law enforcement, and urban planners
to implement effective road safety measures [7,8,10,11]. Moreover, by comparing the
performance of fine-tuned GPT-2 with GPT-4’s zero-shot capabilities, we aim to establish a
baseline that highlights the advantages of task-specific fine-tuning over general-purpose
models [12].

This study also addresses the critical challenges of data scarcity and imbalance, which
frequently impede the training of reliable ML models. By efficiently utilizing available data
to simultaneously train on multiple related tasks, our model ensures that even limited or
imbalanced datasets can yield highly informative and dependable results. This capability
is particularly crucial in regions where RTC reporting is insufficient and conventional data
collection methods are impractical [13,14].

Our research aims to develop a methodology for multitask learning using social media
data analysis. By leveraging advanced NLP technologies, MTL seeks to enhance the real-
time analysis of road traffic crashes by systematically examining social media platforms,
particularly Twitter. This approach promises to enable more effective accident response
management strategies and improve public safety initiatives by providing immediate and
accurate insights into traffic incidents. Our objectives are as follows:

• Develop a multitask learning framework: design a comprehensive MTL framework
that integrates classification and information retrieval tasks, surpassing traditional
multi-class classifiers.

• Label tweets and verify via domain experts: implement an automated labeling system
using GPT-3.5, followed by expert verification to ensure the accuracy and reliability of
the extracted features. The resulting dataset is used for fine-tuning the GPT-2 model.

• Fine-tune GPT models for multitask objectives: fine-tune GPT-2 for simultaneous
classification and information extraction tasks, ensuring the model can handle both
types of tasks efficiently.

• Incorporate GPT-4 zero-shot as a baseline: utilize GPT-4 in a zero-shot setting to
establish a performance baseline, enabling a robust comparison with the fine-tuned
GPT-2 model and highlighting the effectiveness of task-specific fine-tuning.

• Evaluate and test model efficiency and applicability: rigorously test the model’s
performance using real-world Twitter data to assess its effectiveness and applicability
in real-time RTC monitoring and analysis.

• Provide a dataset of tweets related to traffic crashes: make this dataset available for
further model development or to gain insights about traffic crashes using social media.

The rest of this paper is structured as follows: Section 2 provides essential background
information on multitask learning, LLMs, prompt engineering, fine-tuning, and the chal-
lenges associated with traffic crash detection and analysis. Section 3 presents related work,
contextualizing our research within the broader field. Section 4 details the methodology
employed, including the design and implementation of the multitask learning framework
and the fine-tuning process. Section 5 offers a comprehensive overview of the experimental
setup, experiments, and results, providing insights into the effectiveness of our approach.
Finally, Section 6 summarizes our key findings and contributions and discusses potential
avenues for future research and improvements.
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2. Background

This section provides an overview of the key concepts and theoretical foundations
underpinning our research.

2.1. Multitask Learning

Multitask learning (MTL) is an approach in machine learning where a model is trained
simultaneously on multiple related tasks, allowing it to learn shared representations across
these tasks. The primary advantage of MTL lies in its ability to leverage commonalities
among tasks, which can lead to improved generalization and performance compared to
models trained on each task individually [10]. By learning shared features and represen-
tations, MTL can often reduce the risk of overfitting and enhance the model’s ability to
generalize to new, unseen data [14].

The concept of multitask learning has its roots in the field of neural networks, where it
was first applied to tasks such as speech recognition, natural language processing, and com-
puter vision. In these domains, MTL has been shown to improve the performance of models
by allowing them to benefit from the auxiliary information provided by related tasks [15].
For instance, in natural language processing, tasks like part-of-speech tagging, named
entity recognition, and dependency parsing are often learned together in a multitasking
framework, as they share standard linguistic features [16].

MTL is particularly effective in scenarios where there is a limited amount of labeled
data for individual tasks. Combining data from related tasks allows the model to use the
available information better, leading to more robust predictions [17]. Moreover, MTL can
help mitigate data imbalance, where some tasks have significantly more data than others.
In such cases, the shared learning process can prevent the model from being biased towards
the more dominant tasks [18].

Multitask learning has been shown to improve the performance of models such
as BERT and GPT by enabling them to leverage shared features across tasks like text
classification, sentiment analysis, and named entity recognition [10,14]. MTL employs the
advanced capabilities of the GPT-2 model, renowned for generating coherent human-like
text and deciphering complex language patterns [11]. This allows the model to perform
well in various natural language processing tasks by leveraging shared features across
multiple related tasks, enhancing overall performance and generalization. By fine-tuning
this model on a curated dataset of RTC-related tweets, we achieve dual functionality:
precise classification of RTC features such as collision type and severity and extracting
contextual details often overlooked by conventional models [3,19].

The application of MTL in conjunction with large language models (LLMs) like GPT-2
and GPT-4 further enhances its effectiveness. These models are capable of learning complex
language patterns and representations, which can be shared across tasks in a multitasking
setting, thereby improving the overall performance of the system [20].

2.2. Large Language Models (LLMs)

Large Language Models (LLMs) are advanced neural networks designed to generate,
comprehend, and interpret human language. These models are distinguished by their
vast number of parameters, deep architectures, and extensive training on large datasets.
LLMs excel at capturing the complexities and subtleties of language, making them highly
useful for a broad range of applications such as text generation, sentiment analysis, and
question-answering systems [21]. A pivotal advancement in the development of LLMs
was the introduction of the transformer architecture by Vaswani et al., which showcased
the effectiveness of self-attention mechanisms, significantly improving performance across
various natural language processing (NLP) tasks like language translation, sentiment
analysis, and text generation [22].

A notable feature of LLMs is their ability to learn contextual representations of words
and phrases. Unlike earlier models that used static word embeddings [23], LLMs employ
dynamic embeddings, providing a more nuanced understanding of language across dif-
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ferent contexts. This innovation led to the creation of landmark models such as OpenAI’s
Generative Pretrained Transformer (GPT), which demonstrated the potential of unsu-
pervised learning for language comprehension and generation [9]. Subsequent models,
including GPT-2 and GPT-3, expanded on these foundations, further increasing the scale
and capabilities of transformer architectures [8]. Following the advancements of GPT-3,
models like ChatGPT have evolved significantly, being fine-tuned specifically for conver-
sational tasks, which illustrates the shift from general language understanding to more
specialized, context-aware applications [24]. This trend highlights the growing dependence
on LLMs for the development of systems and applications, reducing the need for separate
machine learning models.

2.3. Prompt Engineering

Prompt engineering is a technique employed to leverage the capabilities of LLMs for
specific tasks by crafting precise prompts or instructions. This method directs LLMs to
generate desired outputs or perform specific tasks effectively. Various prompt engineering
strategies include zero-shot, few-shot, role-playing, and chain-of-thought prompting. For
instance, zero-shot prompting involves structuring a task so that the LLM can understand
and generate a suitable response without prior task-specific training [25]. In contrast,
few-shot prompting provides the model with a few examples to guide its responses, which
is particularly effective for controlling output format but may be less suitable for tasks
requiring complex reasoning [26]. Role-playing prompts involve guiding the LLM to
simulate a particular role or persona, thereby enhancing its ability to produce contextually
relevant responses [6]. Chain-of-thought prompting encourages the model to provide a
step-by-step rationale before arriving at a final response, aiding the model in making more
informed decisions by understanding the underlying reasoning behind specific actions [27].
These strategies are critical in understanding the broader applications of LLMs; however,
in our study, we specifically utilized zero-shot prompting as a baseline model for multitask
learning in traffic crash analysis.

2.4. Fine-Tuning LLMs

Fine-tuning is a crucial process that adapts pretrained LLMs to specialized tasks by
further training them on domain-specific datasets, thereby improving their performance
in targeted applications. This process customizes the general language capabilities of
LLMs to excel in specific domains, such as traffic crash analysis. Typically, fine-tuning
starts with a pretrained LLM like GPT-2, which has already learned a broad spectrum of
language patterns and semantics from large text corpora. The model is then fine-tuned
on a smaller, domain-specific dataset, transferring its general language knowledge to the
specialized task [28]. This method enables LLMs to become highly effective in specific
tasks while retaining their overall language comprehension. In this study, the fine-tuning
of GPT-2 is concentrated on performing both classification and information retrieval tasks
related to Road Traffic Crashes (RTCs), ensuring the model is adept at managing the
complexities of this domain. The detailed methodology of fine-tuning is elaborated in the
subsequent section.

2.5. Traffic Crash Detection and Analysis

The application of large language models (LLMs) in traffic crash detection and analysis
represents a significant advancement in intelligent transportation systems. Traditionally,
traffic crash detection has relied on physical sensors, camera footage, and manual reporting,
which often suffer from latency and coverage limitations. The emergence of social media
as a data source, coupled with the capabilities of LLMs, offers a powerful alternative for
real-time traffic incident detection and analysis [6].

LLMs, such as GPT-3.5 and GPT-4, have demonstrated their ability to process and
analyze vast amounts of unstructured text data, making them ideal for extracting meaning-
ful insights from social media platforms like Twitter [9]. By employing advanced natural



Smart Cities 2024, 7 2427

language processing techniques, these models can identify relevant patterns in tweets
related to road traffic crashes (RTCs), such as location, severity, and cause. For instance, a
fine-tuned LLM can classify tweets to determine whether they report an accident, predict
its severity, and extract key details such as the number of vehicles involved or the presence
of injuries [8].

Moreover, multitask learning frameworks have enhanced the performance of LLMs
in traffic crash detection by allowing the models to tackle multiple related tasks simul-
taneously. This approach improves the analysis’s efficiency and accuracy, as the shared
representations learned across tasks lead to better generalization [24]. For example, a
multitask LLM might be trained to detect crashes, classify the type of incident, and retrieve
detailed contextual information, such as the specific location and time of the crash. This
simultaneous processing of multiple tasks speeds up the detection process and provides
a richer understanding of the incident, which is crucial for timely and effective response
measures [25].

Integrating LLMs with real-time social media monitoring systems offers significant
benefits for traffic management and safety. By continuously analyzing social media data,
these systems can quickly detect emerging traffic incidents, allowing authorities to deploy
emergency services or issue public alerts more swiftly than traditional methods. Stud-
ies have shown that such systems can reduce response times and improve situational
awareness, ultimately leading to enhanced road safety and reduced accident severity [5].

3. Literature Review

The utilization of social media for traffic crash detection and analysis represents a
significant shift in real-time data gathering and processing in the field of road safety. Social
media platforms provide a continuous stream of real-time, user-generated content that
can offer immediate information about road incidents, which is invaluable for emergency
response and traffic management [27]. Researchers have increasingly harnessed these data
sources to detect and analyze road traffic incidents more effectively, using advanced NLP
and machine learning techniques to sift through vast amounts of unstructured data.

3.1. Social Media as a Data Source for Traffic Analysis

Recent studies have highlighted the potential of social media data in various traffic-
related applications. For instance, social media has been effectively used to identify activity
patterns [29], monitor special traffic events [30], predict traffic flow [31,32], manage trans-
port information [31], detect travel modes [33], and analyze destination or route choices [8].
Social media data, reflecting real-life user situations, often avoids the biases typical in
traditional data collection methods [9]. Twitter’s timeliness and location accuracy have
been validated in accident detection studies leveraging GPS-enabled smartphones [34] and
travel behavior studies validated by household travel surveys [35].

Incident detection studies have utilized tweets to deliver precise research outcomes.
For example, microblogs have been used for small-scale incident detection [36], while
D’Andrea et al. compared different regression models for detecting traffic incidents from
Twitter streams [37]. Additionally, research has explored the relationship between tweets
and traffic jams [38], and other studies have used the Naïve Bayes classification with
multiple data sources to identify major incident types [39]. However, challenges like the
limited volume of accident-related tweets compared to widely publicized events [32,40] and
their confinement to specific areas and time frames [36] persist. The unstructured nature of
tweet data and language ambiguity further complicate the analysis [41]. While support
vector machines (SVM) [36,37] and natural language processing (NLP) techniques [42]
have been employed, keyword detection alone often falls short due to the concise nature of
tweets. Social media platforms like Twitter serve as valuable auxiliary sources for traffic
safety analysis, providing real-time insights into incidents that may not be captured by
traditional reporting methods [43].
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3.2. Advances in NLP and Large Language Models (LLMs)

Deep learning models have shown considerable promise in addressing these chal-
lenges. Architectures such as deep belief networks (DBN), recurrent neural networks
(RNN), and long short-term memory (LSTM) networks have outperformed traditional
neural networks in traffic flow prediction [3]. RNNs and LSTMs, particularly effective in
processing sequential data, have proven their worth in applications like speech and hand-
writing recognition [44,45]. These models’ ability to capture long-term dependencies makes
them suitable for classifying accident-related tweets, often containing sequential data.

NLP has become an indispensable tool in extracting meaningful information from the
vast and varied data generated on social media platforms. The deployment of LLMs such
as GPT-2, GPT-3.5, and recently GPT-4 in social media data analysis offers a sophisticated
approach to understanding complex language patterns and generating human-like text
responses. GPT-4, in particular, has been applied in zero-shot and few-shot settings to
analyze traffic-related tweets, demonstrating its ability to handle a wide variety of tasks
with minimal or no task-specific training [46,47]. These models are particularly effective
in handling the informal, often unstructured text found in social media posts, which can
vary significantly from formal written language [48,49]. LLMs, trained on diverse datasets
comprising extensive textual content, are capable of grasping and generating nuanced
language characteristic of social media communication. The application of these models in
social media analysis has revolutionized how data are processed, moving beyond simple
keyword searches to more complex semantic understanding and sentiment analysis [50].
This capability allows researchers to extract a richer, more detailed set of data from social
media, which is critical in areas such as public sentiment analysis, market trends, and
emergency situations like road traffic incidents.

To further illustrate the application of social media in traffic analysis, Table 1 sum-
marizes recent studies that have utilized various methodologies to harness social media
data for traffic incident detection and analysis. These studies highlight the evolving role
of social media as a critical data source in real-time traffic management, demonstrating
the effectiveness of different approaches in processing and analyzing the vast amounts of
unstructured data generated on these platforms.

Table 1. Most recent studies on deep learning, multitask learning, and large language models (LLMs)
for social media analysis and traffic data processing.

Study Authors (Year) Domain Model Used Data Type Key Findings

Exploring the Potential of
Social Media Data in
Interpreting Traffic
Congestion: A Case
Study of Jiangsu
Freeways [40]

[40] Traffic Congestion
Analysis

Document
Frequency-Based
Method

Sina Weibo
Microblogs

Identified
congestion-prone areas
using Sina Weibo data,
demonstrating the
potential for traffic
analysis through social
media.

Social Media-Based
Traffic Situational
Awareness under
Extreme Weather [41]

[41] Traffic Situational
Awareness LSTM Classifier Weibo Data

Enhanced traffic
situational awareness
under extreme weather
with 93.8%–95.8%
accuracy using an
LSTM classifier.

Traffic Event Detection as
a Slot Filling Problem [42] [42] Traffic Event

Detection CNN, LSTM, BERT Twitter Data

Addressed traffic event
detection from Twitter
data as a text
classification and slot
filling problem,
achieving high
performance scores.
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Table 1. Cont.

Study Authors (Year) Domain Model Used Data Type Key Findings

Identification and
Classification of Road
Traffic Incidents in
Panama City through
Social Media Stream
Analysis [43]

[43] Traffic Incident
Identification

SVM, Naïve Bayes,
Random Forest,
XGBoost

Twitter Data

Achieved high
precision rates in traffic
incident identification
and classification using
machine learning
models.

Deep Learning Ensemble
Model for the Prediction
of Traffic Accidents Using
Social Media Data [3]

[3] Traffic Accident
Prediction GRU, CNN

Social Media Data,
Bogota Climate
Information

Proposed a deep
learning ensemble
model for traffic
accident prediction,
outperforming baseline
algorithms.

Twitter-informed
Prediction for Urban
Traffic Flow Using
Machine Learning [44]

[44] Urban Traffic Flow
Prediction

Random Forest,
Gradient Boosting

Twitter Data, PeMS
Data

Combined Twitter data
with traffic and
weather information to
enhance traffic flow
prediction accuracy.

Leveraging Large
Language Models to
Detect Influence
Campaigns on Social
Media [45]

[45] Influence Campaign
Detection

Large Language
Models (LLMs)

Multilingual Social
Media Datasets

Showcased superior
performance in
detecting and adapting
to influence campaigns
using LLMs
incorporating user
metadata and network
structures.

MentaLLaMA:
Interpretable Mental
Health Analysis on Social
Media with Large
Language Models [46]

[46] Mental Health
Analysis MentaLLaMA, LLMs IMHI dataset,

Social Media Data

Introduced
MentalLLaMA,
achieving
state-of-the-art
correctness in mental
health analysis on
social media,
generating high-quality
explanations.

Accuracy of a Large
Language Model in
Distinguishing Anti- And
Pro-vaccination Messages
on Social Media: The
Case of Human
Papillomavirus
Vaccination [47]

[47] Sentiment Analysis ChatGPT, LLMs Facebook, Twitter
Data

Assessed ChatGPT’s
accuracy in sentiment
analysis of pro- and
anti-vaccination
messages on social
media.

Advancing Annotation of
Stance in Social Media
Posts: A Comparative
Analysis of Large
Language Models and
Crowd Sourcing [48]

[48] Stance Annotation LLMs,
Crowdsourcing Twitter Data

The performance of
LLMs with human
annotators in stance
annotation was
compared, and it was
found that LLMs
perform well when
human annotators do.

Multitask Prompt Words
Learning for Social Media
Content Generation [49]

[49] Content Generation Multi-modal
Information Fusion Social Media Data

Introduced a multitask
prompt word learning
framework, improving
the quality and
relevance of social
media content
generation.

Enhancing Mental Health
Condition Detection on
Social Media through
Multitask Learning [50]

[50] Mental Health
Detection

BERT, Multitask
Learning

Reddit, SWMH,
PsySym

Multitask learning was
used to enhance mental
health condition
detection,
outperforming
single-task and large
language models.
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Table 1. Cont.

Study Authors (Year) Domain Model Used Data Type Key Findings

Multitask Learning for
Recognizing Stress and
Depression in Social
Media [51]

[51] Stress and
Depression Detection

BERT, Attention
Fusion

Reddit, Stress, and
Depression
Datasets

Introduced multitask
learning frameworks
for recognizing stress
and depression,
outperforming existing
methods.

Multitask Learning for
Personal Health Mention
Detection on Social
Media [52]

[52]ss Health Mention
Detection Multitask Learning Annotated Social

Media Data

Enhanced personal
health mention
detection by
incorporating
emotional information
as an auxiliary task in a
multitask learning
framework.

The following section delves deeper into how our study aims to fill this gap by
leveraging Multi-Task Learning and Large Language Models for enhanced traffic analysis
using social media data.

3.3. Addressing the Research Gap: Multitask Learning with LLMs

While significant advancements have been made in various fields using multitask
learning (MTL) and large language models (LLMs), their application in road traffic crash
analysis is still underexplored. The key gaps that our study addresses, with a direct
contribution to road safety, are as follows:

Lack of MTL Application in Traffic Analysis:
MTL has the potential to enhance model performance by leveraging shared represen-

tations across related tasks, though its application in road traffic crash analysis remains
limited and underexplored. By applying MTL, we can simultaneously analyze multiple
aspects of traffic incidents, leading to more comprehensive and accurate insights that
improve incident response and prevention strategies.

Underutilization of Social Media for Real-Time Traffic Safety Insights:
While social media data has been used in traffic safety research, integrating advanced

LLMs with MTL for systematic data extraction and analysis remains unexplored. Leverag-
ing social media as a real-time data source enables quicker incident detection and analysis,
leading to faster response times and better-informed traffic safety decisions.

4. Methodology

This section outlines the methodologies used to retrieve, process, analyze, and classify
social media data related to traffic crashes. Figure 1 illustrates the proposed system archi-
tecture. Traffic incidents are often reported on social media platforms like Twitter. This
real-time data, however, is unstructured and filled with idioms and dynamic language,
making it difficult to analyze using traditional methods. Our methodological framework
comprises several modules: data crawling, preprocessing, labeling and verification, model
fine-tuning, and evaluation. The primary goal of the proposed framework is to auto-
mate the detection and analysis of traffic accidents and events through a multitasking
learning approach.

Initially, real-time data are gathered from Twitter using targeted hashtags and key-
words (Step 1: Data Collection). Following data collection, preprocessing techniques are
employed to clean and prepare the data for subsequent analysis (Step 2: Data Preprocess-
ing). Then, data labeling is performed using GPT-3.5 to extract relevant features from
each tweet (Step 3: Data Labeling). Domain experts then verify the labeled data to ensure
accuracy (Step 4: Manual Verification and Post-Processing).
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Next, the GPT-2 model is fine-tuned on the labeled dataset to support multitasking
learning objectives, including classification and information retrieval tasks (Step 5: Model
Fine-Tuning). Two baseline models were also employed to provide a comprehensive
evaluation: GPT-4o mini in a zero-shot setting and XGBoost trained individually on each
task. GPT-4o mini was included to compare the effectiveness of task-specific fine-tuning
versus zero-shot learning in traffic crash analysis. At the same time, XGBoost served as a
representative machine learning model trained on single tasks, providing insight into how
traditional ML approaches perform in this context.

Finally, the performance of all models—GPT-2, GPT-4o mini, and XGBoost—was
evaluated using various metrics to ensure their effectiveness in real-world applications
(Step 6: Model Evaluation). This evaluation allowed us to assess the advantages and
limitations of each approach in the context of traffic crash analysis.

4.1. Data Collection

Twitter data were collected from the Australian Twittersphere, a longitudinal database
of tweets from accounts identified as Australian. These accounts are characterized by a
connection to Australia, as indicated in the free text fields of their profiles, such as location
or bio descriptions [53]. Although tweets can include geotagging, this feature is optional
and rarely used, with less than 2% of all tweets in the Australian Twittersphere containing
location metadata [53]. Due to this lack of reliable geolocation data, the location of a
tweet can only be inferred approximately from its content. The dataset is maintained
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and continuously updated by the Digital Observatory, ensuring that the selection criteria
accurately reflect Australian social media activity.

To ensure the relevance of the data, three distinct groups of tweets were extracted
based on tailored search criteria designed to capture various aspects of Road Traffic Crashes
(RTC). All tweets included in this study were published between 1 May 2021 and 31 May
2023. The data extraction process was carefully managed to focus exclusively on content
relevant to the research objectives, drawing from a comprehensive dataset that represents a
significant portion of Australian Twitter activity during the specified period.

Group 1: tweets including terms such as hit and run, hit-and-run, hit n run, leave (or
leaving) the scene, fleeing the scene, accident flee, car crash flee, pedestrian hit and run,
cyclist hit and run, and driver fled.

Group 2: tweets mentioning work zone crash, construction zone accident, road
work collision, work zone safety, work zone incident, construction site crash, and road
work accident.

Group 3: tweets containing traffic accident, car accident, road accident, vehicle colli-
sion, crash incident, traffic incident, road collision, car crash, traffic congestion, accident
aftermath, and traffic collision.

As outlined in the methodology flowchart (Figure 1), a total of 26,226 tweets were
filtered and utilized, each meticulously curated to match our research criteria. Table 2
shows the attributes of Twitter data collected for analysis. Our focus was on the text of the
tweets, which was used as the primary source for annotating the dataset.

Table 2. Attributes and definitions of Twitter (X) data collected for analysis.

Attribute Definition

tweet_id Unique identifier of a tweet, as provided by Twitter/X.

username Name of the Twitter account that posted the tweet.

text Full body text of the tweet, including all hashtags.

created_at Time the tweet was posted.

in_reply_to_tweet_id If the tweet is a reply, this shows the ID of the tweet this replied to;
otherwise, the value is blank.

retweeted_tweet_id If the tweet is a retweet, this shows the retweeted Tweet’s ID;
otherwise, the value is blank.

quoted_tweet_id If the tweet is a quote, this shows the quoted tweet’s ID; otherwise,
the value is blank.

favorite_count The number of favorites this tweet received at the time of collection.

location Location that the tweet posted; can be blank.

The data collection process, represented in Step 1 of Figure 1, also involved specific
keywords and hashtags to ensure the relevancy of the tweets to traffic incidents. These
included keywords such as traffic accident, car accident, road accident, vehicle collision,
crash incident, traffic incident, road collision, car crash, traffic congestion, accident after-
math, and traffic collision. Hashtags used included #auspol, #7news, #9news, #springst,
#covid19aus, #tlalert, #breaking, #vicvotes, #thisisnotjournalism, #keenananderson, #weara-
mask, #covid19, #covid, #australia, #victraffic, #abc730, #covidisnotover, #andrewsymonds,
#neighbours, and #robodebtrc.

4.2. Data Preprocessing

Our data preprocessing approach prioritizes the maintenance of contextual integrity,
which is essential for effective utilization of contextual word embeddings. This importance
is emphasized in studies on word representation models [54,55], which highlight the signif-
icance of preserving context to improve model performance and representation accuracy.
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To begin the preprocessing, we employed regular expressions to systematically re-
move elements that could introduce noise or irrelevant information, such as usernames
(@username), hashtags (#hashtag), emojis, smileys, non-alphanumeric characters, and
URLs. While part of the original tweet content, these elements do not contribute meaning-
fully to the analysis of traffic incidents and could skew the embedding representations if
left unchecked.

Recognizing the global nature of Twitter data, we identified and removed tweets
containing non-English sentences to maintain consistency in language processing, ensuring
that all data passed to our models were in English. This step was critical because our
language models were trained primarily on English-language data, and non-English content
could adversely affect model performance.

Next, we addressed the issue of redundancy by filtering out duplicate tweets. Dupli-
cate content can distort frequency-based analyses and affect the model’s ability to generalize
from the data, so this step was crucial in refining the dataset to 19,384 unique tweets. This
streamlined collection was deemed ready for further analysis, guaranteeing a higher-quality
dataset tailored for our research.

Our preprocessing did not stop at basic cleaning. Given that the data collection was
driven by keywords and hashtags directly related to traffic incidents, such as “traffic
accident”, “car accident”, and “road collision”, it was imperative to ensure that these tweets
were genuinely relevant to our study. Our fine-tuned model (GPT-2) conducted an initial
classification step to enhance data quality further. This step involved verifying whether
each tweet was indeed related to a traffic crash, effectively filtering out non-crash-related
tweets. This additional verification step is vital for eliminating false positives—tweets that
may contain relevant keywords but do not actually pertain to traffic incidents.

This layered approach ensures that our framework robustly identifies and processes
relevant information, significantly improving the accuracy and applicability of our traffic
event detection and analysis system.

4.3. Data Labeling

Accurate class labeling of social media data is a critical step in enhancing the per-
formance of traffic event detection and sentiment analysis. Traditional methods heavily
relied on manual labeling and conventional machine learning classifiers [56]. However,
these approaches often resulted in low accuracy due to the inherent complexities and
variability of social media data, which include informal language and diverse content
structures. Recent advancements in deep learning, particularly the use of Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN), have offered more robust
solutions. For example, Gutierrez-Osorio et al. [3] applied CNNs and RNNs to classify
traffic event data into categories like non-traffic, traffic incidents, and traffic information.
Despite these advancements, challenges remained, particularly with the brief and unstruc-
tured nature of Twitter data. Similarly, the work of D’Andrea et al. [37] and Chen et al. [57]
leveraged Natural Language Processing (NLP) techniques and word embedding models
such as word2vec, but further progress is needed to fully capture the nuances of social
media content.

To address these challenges and streamline the data labeling process, we implemented
GPT-3.5, a powerful large language model. The use of GPT-3.5 significantly reduced
the reliance on manual labeling by automating the feature extraction process, thereby
expediting the creation of a comprehensive and high-quality dataset for training machine
learning models. This automated approach aligns with the findings of Pei et al. [9], who
demonstrated that GPT-based models excel in generating and recovering data through self-
supervision, thus improving the accuracy and efficiency of annotation tasks. Additionally,
the work by Xu et al. [58] supports the effectiveness of GPT-3 and GPT-4 models in handling
complex, multi-feature data extraction tasks across multiple languages, further validating
the choice of GPT-3.5 for this study.
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In our approach, each of the 19,834 tweets in our dataset was processed using GPT-3.5,
with a specifically crafted prompt designed to extract 15 predefined features critical for
a comprehensive understanding of each traffic incident. These features include crucial
aspects such as the presence of a road accident, its severity, and the number of casualties in-
volved, among others. The prompt engineering process was iterative, involving continuous
refinement and testing to ensure the accuracy and relevance of the extracted information.
Table 3 shows the GPT-3.5 prompt template, Algorithm 1 presents the dataset curation
process pseudocode, and Figure 2 illustrates the Workflow for Processing and Analyzing
Tweets Using GPT-3.5, together providing a detailed overview of how the labeling process
was automated.

Table 3. GPT 3.5 prompt template and dataset curation process pseudocode.

“““
Given this tweet below:
<tweet>
{text}
</tweet>
I want you to extract information for the following fields:
- Road Accident: Yes or No
- Severity: mild, moderate, fatal
- Driver:
- Driver apprehended:
- No of injured:
- No of deaths:
- Location of accident:
- Contributing factor:
- type of car involved:
- crash event type:
- driver error:
- collision type:
- case scenario:
- sentiment: (positive, negative, or neutral)
- emotions: (pick only one of these: fear, anger, sadness, happy, neutral, disgust, love, confusion,
gratitude, sympathy or empathy)
Provide your answer in a JSON dictionary.
RULES
- You must provide a value to each field above.
- if the tweet does not contain enough information to answer any of the above field, you must set
that field to the value “None.”
Your response:”““

Through this automated labeling process, we generated a substantial labeled dataset
consisting of 297,510 samples (19,834 tweets multiplied by 15 features per tweet). The
extracted features were saved in a structured JSON format for further processing, ensuring
they were suitable for classification and information retrieval tasks during model fine-
tuning. To manage large volumes of data efficiently and to conform to API rate limits, we
structured our data processing workflow to handle tweets in batches of 128, incorporating
sleep intervals of 120 s between batches.

This systematic labeling process was integral to Step 3 of our methodology (as shown
in Figure 1), where the GPT-3.5 model was employed to perform detailed feature extrac-
tion across six classification tasks and nine information retrieval tasks. These tasks were
designed to provide a nuanced understanding of the data, ranging from identifying the
sentiment expressed in the tweets to determining the type of collision and the contributing
factors involved.
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Algorithm 1: Dataset Curation Process pseudocode

1: procedure DATASET_CURATION()
2: D← LOAD_RAW_DATA()
3: D← REMOVE(#, duplicates, emojis, etc., from D)
4: auth← AUTHENTICATE(API_KEY)
5: P← CREATE_PROMPTS(D)
6: F← DEFINE_FEATURES()
7: M_config← CONFIGURE_MODEL(GPT_3_5, F)
8: M← Configure_MODEL(M_config)
9: PD← BATCH_PROCESS(M, D)
10: do
11: SLEEP(120)
12: PD← CONTINUE_PROCESS(M)
13: loop until ALL_PROCESSED(P.D.)
14: if NEED_ITERATION() then
15: go to step 3
16: endif
17: J← TO_JSON(PD)
18: C← TO_CSV(J)
19: FD← FINAL_CLEAN(C)
20: SD← STANDARDIZE(FD)
21: if ¬VALIDATE(SD) then
22: raise ERROR(“Validation Failed”)
23: endif
24: return SD
25: end
DATASET_CURATION
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4.4. Manual Verification and Post-Processing

Following the automated data labeling process, the dataset underwent a compre-
hensive post-processing phase aimed at standardizing and cleansing the output values
extracted by GPT-3.5. This step was essential to ensure the reliability and accuracy of the
data before they were used for model fine-tuning and evaluation. The primary objectives
of this phase were to resolve inconsistencies, standardize the data outputs, and address
any errors or anomalies detected during the initial labeling. Standardization was crucial
for producing a dataset that is not only consistent but also aligned with the structured
requirements of machine learning models.

To ensure the high quality of the synthesized dataset, a subset of the data was manually
reviewed. This manual verification process involved cross-checking the labels generated
by GPT-3.5 with the original tweet content to confirm their accuracy and relevance. This
step was critical in identifying and correcting any misclassifications or inaccuracies that
might have occurred during the automated labeling process.

The post-processing and expert review involved several key activities:
Standardization: This included reconciling different spellings and formats, such as

standardizing variations of terms like “hit-and-run” to a consistent format. For exam-
ple, Table 4 provides illustrative examples of how various GPT-generated labels were
standardized across different features, ensuring consistency and clarity in the dataset.

Table 4. Illustrative examples of standardization.

Feature GPT Label Standardized Value

No of Deaths “1 (pregnant mate)” “1”

“at least 12” “≥12”

“dependent on scenario” “unknown”

“one million Americans” “unknown”

Driver Apprehended “one male detained, second
tracked by pd falco” “yes”

“varies” “unknown”

“no information” “unknown”

“not applicable” “no”

Crash Event Type “hit my parked car” “single-vehicle crashes”

“reckless joyride and crashing
into a house”

“vehicle crashing into a
building”

“road accidents” “traffic accidents”

“roll-over” “vehicle rollover”

Collision Type “animal-vehicle” “single-vehicle crashes”

“back collision” “backing collision”

“broadside collision” “broadside collision”

“hit and run accidents” “hit and run accidents”

Severity “catastrophic” “fatal”

“mild to moderate” “moderate”

“serious non-life threatening” “moderate”

“tragic” “fatal”

Driver Error “abandoning critically injured
passenger” “failure to render aid”

“attempted hit-and-run” “hit-and-run attempt”

“confusion” “not applicable”
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Table 4. Cont.

Feature GPT Label Standardized Value

“dangerous driving, impaired,
impaired 80+” “impaired driving”

Sentiment “confusion” “negative”

“shocked” “negative”

“unknown” “neutral”

Emotions “amusement” “happy”

“annoyed” “angry”

“anxious” “fear”

Contributing Factor “alleged shooting” “not applicable”

“allegedly caused a sickening
three-car crash” “possible contributing factor”

“bad interview” “not applicable”

“banana peel thrown onto
road” “possible contributing factor”

Type of Car Involved “conservation police officer’s
vehicle and another vehicle”

“police officer’s vehicle,
another vehicle”

“grey, 2 door car with dark
tinted windows, loud exhaust,

and black hardtop”

“grey, 2 door car with dark
tinted window and black

hardtop”

“unidentified” “unidentified”

No of Injured “1 (deputy)” “1”

“at least 5” “≥5”

“dozens” “12+”

“none” “0”

Verification: A manual review of a subset of the data was conducted to ensure that the
automated labels were accurate and reliable. This was particularly important for ensuring
that the model correctly interpreted complex or ambiguous tweet content.

Cleaning: This involved removing redundant or nonsensical label values and ensuring
consistency across all labels. The cleaning process was essential to ensure that the dataset
was free from errors that could compromise the integrity of subsequent analyses.

Finalization: The data were prepared for subsequent training and evaluation phases,
ensuring it met the necessary quality standards.

Given the diverse nature of the tweets and the complex data extracted, post-processing
was essential to reconcile discrepancies and standardize values across various features. For
instance, as shown in Table 4, the standardization process addressed variations in how
features like the number of deaths, driver apprehension, and collision types were labeled
by GPT-3.5, ensuring consistency across the dataset.

A key step in our methodology involved the initial filtering of tweets to ensure
relevance to road traffic crashes (RTCs). Keywords related to traffic crashes were used for
initial filtering through the Twitter API, focusing on terms such as “hit and run”, “road
accident”, and “traffic collision.” However, recognizing the limitations of keyword-based
filtering, we further refined the dataset using a fine-tuned GPT-2 model to perform an
additional classification task. This task involved verifying whether a tweet was genuinely
related to a traffic crash before proceeding to a detailed analysis.

This additional step was crucial in enhancing the accuracy of the dataset by filtering
out non-crash-related content that may have been erroneously captured by the API filters.
Table 5 presents examples where the API filters misclassified tweets as crash-related, but the
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GPT-2 model correctly identified them as non-crash-related. These examples demonstrate
the effectiveness of the fine-tuned GPT-2 model in refining the dataset and ensuring that
only relevant tweets were included for further analysis.

Table 5. Examples of API vs. fine-tuned GPT-2 model classification.

Serial Number Tweet API Filter
Classification

GPT-2 Model
Classification Context

1

R.T. @9NewsGoldCoast: The
Maroons will travel from the Gold
Coast to Western Australia today
aiming to execute a hit-and-run
mission in the west to regain the

Origin Shield. #9News
https://t.co/qfEJem4RJO

(accessed on 7 November 2023)

Crash-related Non-crash-related

The tweet uses
“hit-and-run” in the
context of a sports

mission, not a traffic
crash.

2

If she’s still hung over some guy
whether for good or for bad my

guy flee the scene. No try fix wetin
you no spoil

(accessed on 7 November 2023)

Crash-related Non-crash-related

The phrase “flee the
scene” is used in a

relationship context,
not related to a traffic

incident.

3

Monday—Mixed 4’s: Slap That
Ace beat Hit n Run (23–15)
https://t.co/n0PAcPwi5f

(accessed on 7 November 2023)

Crash-related Non-crash-related

The term “Hit n Run”
is part of a sports score

update, unrelated to
any traffic crash.

4

The best interview I have seen
Laura do, and I’ll admit I’m not
always a fan. A car crash of an
interview for the PM. Gave me

absolutely no faith in sorting out
the country’s issues. @bbclaurak
(accessed on 7 November 2023)

Crash-related Non-crash-related

“Car crash” is used
metaphorically to

describe a disastrous
interview, not an actual

traffic incident.

This hybrid approach, combining automated standardization with manual verification,
significantly improved the quality of the dataset. This meticulous process ensured that the
data were consistent and reliable and prepared it for effective use in training and evaluating
machine learning models, as illustrated in Step 4 of Figure 1.

The detailed post-processing approach highlighted the complexity and extensive effort
required to manage and prepare the data for subsequent modeling tasks, ensuring that the
final dataset was robust and applicable to real-world scenarios.

4.5. Final Curated and Annotated Dataset Description

The resulting dataset consists of 297,510 samples derived from the 19,834 tweets, with
15 features extracted from each tweet. This dataset was divided into training and testing
sets to evaluate the model’s performance effectively. Specifically, 287,010 samples were
allocated for training, while 10,500 samples were reserved for testing. This allocation was
carefully designed to meet the requirements for each of the 15 targeted outputs, ensuring
a robust and balanced dataset for model evaluation. Table 6 below provides an overview
of the data distribution and statistics, detailing the number of samples, features, and their
allocation between training and testing sets. Appendix A provides a few samples of the
labeled dataset and the extracted values from RTC tweets.

https://t.co/qfEJem4RJO
https://t.co/n0PAcPwi5f
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Table 6. Dataset statistics.

Statistic Value

Number of samples 26,226

Number of samples after preprocessing 19,834

No. of features generated for each tweet 15

Total number of samples 19,384 × 15 = 297,510

Training samples 287,010

Testing samples 10,500

To provide further clarity on the dataset’s structure, Table 7 shows the distribution
of data labels across the six classification tasks. This table illustrates how the data are
segmented between different categories for both the training and testing sets, highlighting
the distribution of labels that are critical for accurate model training and evaluation.

Table 7. Dataset split for the six classification tasks.

Was There a Road Traffic Accident?

Dataset Yes No Unknown Total
Training Set 16,702 2431 1 19,134
Testing Set 605 95 0 700
Total 17,307 2526 1 19,834

Severity: How bad was the road traffic accident?

Dataset Fatal Mild Moderate None Severe Critical Unknown Total
Training Set 6824 6736 2302 2269 619 287 97 19,134
Testing Set 277 228 83 86 13 9 4 700
Total 7101 6964 2385 2355 632 296 101 19,834

Was the culprit driver identified?

Dataset Yes No Unknown Reportedly Some Total
Training Set 2339 15,682 1106 6 1 19,134
Testing Set 102 559 39 0 0 700
Total 2441 16,241 1145 6 1 19,834

What is the collision type?

Dataset Training Set Testing Set Total
Hit-And-Run 3049 110 3159
Pedestrian 1486 46 1532
Broadside 390 16 406
Single-Vehicle Crashes 179 6 185
Stationary Object 133 9 142
Chain Reaction 127 6 133
Rear-End 101 0 101
Type of Car 103 4 107
Rollover 32 0 32
Intersection 10 0 10
Sideswipe 3 0 3
Side-Impact 2 0 2
Backing 2 0 2
Not Applicable 13,517 503 14,020
Total 19,134 700 19,834

What is the sentiment?

Dataset Negative Positive Neutral Total
Training Set 13,348 2388 3398 19,134
Testing Set 490 83 127 700
Total 17,307 2526 1 19,834
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Table 7. Cont.

What is the emotion?

Dataset Training Set Testing Set Total
Sadness 6788 249 7037
Anger 4980 183 5163
Fear 3481 112 3593
Neutral 2187 87 2274
Happy 922 36 958
Disgust 309 12 321
Gratitude 207 11 218
Confusion 202 5 207
Sympathy 30 2 32
Love 24 1 25
Curiosity 3 1 4
Empathy 1 1 2
Total 19,134 700 19,834

4.6. Model Training and Fine-Tuning

The selection of models in this study is driven by a balance of performance, computa-
tional efficiency, and domain-specific relevance, ensuring that the chosen models align with
the study’s objectives and the nature of the data. GPT-2 Fine-Tuning was selected due to its
demonstrated capability to provide strong language model performance while maintaining
computational efficiency and open source, making it a suitable choice for tasks where re-
source constraints are considered. Additionally, its success in similar domain-specific tasks,
such as analyzing specialized text data, underscores its relevance and applicability in this
context [11]. GPT-4 Zero-Shot was chosen for its superior language processing capabilities,
enabling it to perform complex tasks without the need for task-specific training, thereby
offering a robust baseline for comparison in scenarios where task-specific fine-tuning is not
feasible [8]. Finally, XGBoost was selected for its effectiveness in handling structured data,
particularly in classification tasks where it has been shown to deliver strong performance
across various NLP domains. Its widespread recognition and consistent results in predictive
modeling further justify its inclusion as a key component of the study’s methodology [57].

4.7. Model Evaluation

In evaluating the performance of models, particularly in natural language processing
(NLP) and machine learning tasks, several metrics are commonly employed to measure
the accuracy and effectiveness of the models. Accuracy is a fundamental metric used
to determine the proportion of correctly predicted instances out of the total instances
and is widely applied in classification tasks due to its straightforward interpretation [59].
However, accuracy alone can be misleading, especially in cases of imbalanced datasets.
Therefore, precision, recall, and F1-score are often utilized alongside accuracy to provide
a more comprehensive assessment. Precision measures the proportion of true positive
predictions out of all positive predictions, emphasizing the model’s ability to avoid false
positives. Recall, on the other hand, calculates the proportion of true positives out of all
actual positives, focusing on the model’s capacity to identify all relevant instances. The F1-
score is the harmonic mean of precision and recall, providing a single metric that balances
the trade-off between these two, particularly useful when the cost of false positives and
false negatives is significant [59].

For information retrieval and text generation tasks, specific metrics such as ROUGE,
BLEU, and Word Error Rate (WER) are widely employed. ROUGE (Recall-Oriented Un-
derstudy for Gisting Evaluation) primarily measures the overlap of n-grams between the
generated text and reference text, making it effective for summarization tasks [60]. BLEU
(Bilingual Evaluation Understudy) is another metric that evaluates the precision of n-grams
but is often used for machine translation tasks, measuring how many n-grams in the can-
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didate translation are present in the reference translations [61]. Lastly, WER is utilized
to assess speech recognition systems by calculating the number of insertions, deletions,
and substitutions needed to convert the output text into the reference text, with a lower
WER indicating a more accurate transcription [62]. These metrics, collectively, provide a
robust framework for evaluating models across various NLP and information retrieval
tasks, ensuring that the models not only perform accurately but also meet the specific
requirements of the task at hand.

5. Experimental Setup

This section outlines the computing environment, model configurations, and fine-
tuning procedures applied to adapt the GPT-2 model for classification and information
retrieval tasks related to road traffic accident (RTC) data. Additionally, GPT-4o mini
and XGBoost models were employed as baseline models to benchmark the performance
of GPT-2.

5.1. Dataset

The dataset used in this study comprises 297,510 samples derived from 19,834 RTC-
related tweets, with 15 features extracted from each tweet. The detailed process of con-
verting these tweets into a structured format is described in Sections 4.1–4.5. To ensure
effective model evaluation, the dataset was divided into training and testing sets, with
287,010 samples allocated for training and 10,500 samples reserved for testing. This distri-
bution was carefully designed to meet the requirements for each of the 15 targeted outputs.
Table 6 provides an overview of the dataset’s statistics.

5.2. Computing Environment

Our experiments were conducted using Google Colab, a cloud-based Jupyter notebook
environment that provides access to both GPU and CPU resources, leveraging the extensive
functionalities offered by the Hugging Face Transformers library. Specifically, we used
an NVIDIA Tesla T4 GPU with approximately 12 GB of available memory. This setup
was sufficient for fine-tuning the GPT-2 medium model, although careful management
of memory resources was necessary. To address memory constraints, especially during
the fine-tuning of larger models, we implemented gradient accumulation, which allows
effective training with larger batch sizes by accumulating gradients over multiple steps
before updating the model’s parameters.

While Google Colab also provides access to TPUs, the PyTorch-based implementation
of GPT-2 (version 2.4.0), used in this study, did not fully support TPU usage at the time of
the experiments. Therefore, GPU-based fine-tuning was chosen.

5.3. Fine Tuning of GPT-2

For our experiments, we selected the GPT-2 Medium model, which contains 355 million
parameters. The GPT-2 model comes in several sizes, each with a different number of
parameters. The original sizes provided by OpenAI include 124 M, 355 M, 774 M, and
1.5 B parameters. These models vary in their capacity and performance, with larger models
typically delivering better results but requiring more computational resources. In our exper-
iments, we utilized the gpt2-medium model, which contains 355 M parameters. This model
strikes a balance between computational efficiency and the ability to generate high-quality
outputs, making it suitable for our tasks involving road traffic accident-related tweets.

GPT-2 was chosen for its robustness and reliability in domain-specific fine-tuning
tasks. First, GPT-2, despite being an earlier model, remains a robust and reliable option for
fine-tuning in domain-specific tasks. Its smaller size and lower computational requirements
compared to more recent models make it a practical choice for research settings with limited
resources, allowing for efficient adaptation to specialized tasks such as those involving
RTC-related tweets [11]. While GPT-3.5 and GPT-4 represent more advanced architectures,
their computational demands are significantly higher, making GPT-2 a viable option where
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resource efficiency is critical [8]. Additionally, GPT-2’s architecture has been extensively
validated in various NLP applications, demonstrating strong performance when fine-
tuned on specific datasets, thus providing a solid foundation for our multitask learning
framework [11].

5.3.1. Data Preparation

The dataset used for fine-tuning was derived from tweets related to road traffic acci-
dents (RTC). It comprised 15 distinct tasks, including six classification tasks (e.g., determin-
ing if a tweet is related to an RTC) and nine information retrieval (IR) tasks (e.g., extracting
the number of injuries from a tweet). The data were formatted as prompt-response pairs,
where the prompt posed a question and the response provided the corresponding answer.

In this structure, the prompt represents the question (e.g., “What is the sentiment?”),
and the response is the expected output (e.g., “positive”). This prompt-response structure
was crucial in preparing the model for both classification and IR tasks.

5.3.2. Tokenization and Input Preparation

The input data were processed using the GPT-2 tokenizer, which is essential for con-
verting the raw text into a format that the model can understand and process. Tokenization
involves breaking down the text into individual tokens, which are then converted into
numerical representations that the model can work with. The key steps in this process are
as follows:

1. Truncation and Padding:
The input sequences were truncated to a maximum length of 256 tokens. This trunca-
tion was necessary to ensure that all sequences fit within the model’s input capacity,
allowing for efficient processing and reducing computational overhead.
Padding was applied to shorter sequences to create uniform input lengths across all
sequences, ensuring that the model received inputs of consistent size, which is crucial
for batch processing during training.

2. Label Preparation for Classification Tasks:
For classification tasks, labels were assigned to the prompts. The input sequences
were tokenized and paired with their corresponding labels. The model was then
trained to predict the correct labels based on the input tokens, enabling it to perform
tasks such as classifying whether a tweet is related to a road traffic accident (RTC).

3. Handling Long Inputs:
If an input prompt exceeded the maximum token length of 256 tokens, it was truncated
to fit within the model’s input capacity. The truncation was performed carefully to
preserve the essential parts of the input, ensuring that the context required for accurate
predictions was maintained.

4. Input Preparation for Information Retrieval (IR) Tasks:
In IR tasks, the model was fine-tuned to generate the correct answer based on a
provided prompt. The prompt and expected response were tokenized together, with
the model learning to predict the sequence of tokens that correspond to the correct
answer. This approach allowed the model to handle a wide range of queries related
to RTCs, such as extracting the number of injuries or identifying the location of
an accident.

5. Tokenization Process:
The entire process of tokenization and input preparation can be represented by
Equation (1). This formula illustrates how the prompt and response are combined
and tokenized into a format suitable for GPT-2, ensuring that the input is ready for
fine-tuning. Figure 3 shows a flowchart showing the step-by-step process from input
tweets and questions to the tokenized format ready for GPT-2 fine-tuning.
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input_tokens = tokenizer(prompt+”\n”+response+tokenizer.eos_token, truncation=True,
max_length=max_length, return_tensors=“pt”)[“input_ids”].squeeze()

(1)
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5.3.3. Model Training Process

The GPT-2 medium model comprises 24 layers, 1024 hidden units, and 16 attention
heads. These specifications enable the model to handle complex language tasks while
maintaining a reasonable level of computational demand. Initialized with pre-trained
weights from a broad internet text dataset, the model provided a strong foundation for
language understanding. Fine-tuning was conducted to adapt GPT-2 for both classification
and information retrieval (IR) tasks using a specially curated dataset derived from RTC-
related tweets. These tasks included six classification tasks (e.g., determining whether a
tweet is related to a road traffic accident) and nine IR tasks (e.g., extracting the number
of injuries or the accident location). The fine-tuning process focused on optimizing GPT-
2’s language generation capabilities to accurately classify tweets and extract relevant
information, such as crash severity or the number of injuries. This was accomplished by
carefully adjusting hyperparameters, including learning rate, batch size, and the number of
training epochs, to maximize performance across the specific tasks.

5.3.4. Multitask Learning Objective

In this study, the GPT-2 model was fine-tuned using a multitask learning framework,
which allows the model to learn multiple tasks simultaneously by sharing representations
across these tasks. This approach not only improves generalization but also optimizes the
model’s ability to handle varied tasks efficiently.

The objective function for this multitask learning framework is a weighted sum of the
individual task loss functions. Specifically, the language modeling loss LLM is calculated as
the negative log-likelihood of the predicted token given the preceding tokens (Equation (2)):
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LLM = −
T

∑
t=1

log P(xt|x<t; θ), (2)

where

• xt is the token at position t;
• x<t represents the sequence of tokens before position t;
• θ denotes the model parameters;
• T is the total number of tokens in the sequence;
• P(xt|x<t;θ) is the probability of token xt given the preceding tokens x<t and model

parameters θ.

The classification loss (LCLS), typically using cross-entropy, measures the difference
between the predicted and actual class distributions (Equation (3)):

LCLS = −
N

∑
i=i

C

∑
c=1

yic log(ŷic), (3)

where

• N is the number of examples in the dataset;
• C is the number of classes in the classification task;
• yic is the true label, for example, i and class c;
• ŷic is the predicted probability, for example, i and class c.

The combined loss (L) for the multitask learning framework is a weighted sum of
the language modeling and classification losses, allowing the model to balance between
generating accurate text and classifying the inputs correctly (Equation (4)):

L = αLLM + βLCLS, (4)

where

• α is the weighting factor for the language modeling loss; and
• β is the weighting factor for the classification loss.

5.3.5. Training Setup and Configuration

The GPT-2 was fine-tuned on a meticulously curated dataset to support our multitask
learning objectives, which include both classification and information retrieval tasks. This
dual approach not only classifies relevant tweets but also extracts valuable information,
crucial for enhancing traffic safety measures [28]. The model handles various classification
and information retrieval tasks. The features extracted for fine-tuning the model are
detailed in Table 8.

Table 8. The extracted features for fine tuning.

No. Feature Task

1 Was there a road traffic accident? Classification

2 How bad was the road traffic accident? Classification

3 Was the driver identified? Classification

4 What is the collision type? Classification

5 What is the sentiment? Classification

6 What is the emotion? Classification

7 Who is the driver? Information Retrieval (IR)

8 How many people were injured? Information Retrieval (IR)
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Table 8. Cont.

No. Feature Task

9 How many people died? Information Retrieval (IR)

10 What is the location of the accident? Information Retrieval (IR)

11 What is the contributing factor to the accident? Information Retrieval (IR)

12 What is the car type involved? Information Retrieval (IR)

13 What is the crash event type? Information Retrieval (IR)

14 What was the driver error? Information Retrieval (IR)

15 What was the scenario in this narrative? Information Retrieval (IR)

The hyperparameters selected for the training phase are detailed in Table 9, ensuring
transparency and reproducibility of our methods [8,11]. This approach aligns with the best
practices in machine learning for natural language processing, as highlighted by Vaswani
et al. [22] in their foundational paper on transformers, Wolf et al. [63] in their comprehensive
guide on utilizing the Hugging Face Transformers library, and Radford et al. [11], who
demonstrate the potential of language models like GPT-2 to learn a variety of language
processing tasks in an unsupervised manner.

Table 9. GPT-2 hyperparameter values.

Hyperparameter Value

Model Name GPT-2 Medium
Max Length 256 tokens
Batch Size 6

Learning Rate 5 × 10−5

Model/Tokenizer Name GPT2-medium
Weight Decay 0.0

Number of Epochs 12
Optimizer AdamW

Gradient Accumulation Steps 128
Warmup Steps 100

Evaluation Strategy Steps
Save Steps 32
Eval Steps 32

Logging Steps 4
Output Directory “/path/to/output_dir”

5.3.6. Optimization and Learning Rate Scheduling

The optimization process used the Adam optimizer with a cosine annealing learning
rate schedule. This helps in gradually reducing the learning rate to a minimum value over
the training period. The gradient descent update and learning rate schedule are described
by Equations (5) and (6):

θt + 1 = θt− η∇θL, (5)

where

• θ: the parameters or weights of the model;
• η: the learning rate, a hyperparameter that controls how much to change the model

parameters in response to the gradient of the loss function;
• ∇θL: the gradient of the loss function L with respect to the parameters θ;
• L: the loss function that measures how well the model’s predictions match the actual data.

ηtx = ηmin +
1
2
(ηmax − ηmin)

(
1 + cos

(
t
T

π

))
, (6)
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where

• ηt: the learning rate at time t;
• ηmin: the minimum learning rate;
• ηmax: the maximum learning rate;
• t: the current time step or iteration;
• T: the total time or the period over which the learning rate schedule is applied;
• π: the mathematical constant pi, approximately equal to 3.14159.

5.4. Baseline Benchmark Models

Given the limited studies exploring multitask learning or advanced large language
models (LLMs) for multitask objectives, our research aimed to establish a comprehensive
benchmark. To achieve this, we included GPT-4o mini in a zero-shot setting and XGBoost
as baseline models. GPT-4o mini, renowned for its advanced language understanding
capabilities, serves as an ideal comparison against fine-tuned models, offering insights into
performance without task-specific training [58]. On the other hand, XGBoost, a traditional
and widely respected machine learning model, was selected for its efficiency and robust
performance in classification tasks [57]. This approach provides a strong foundation for
evaluating the effectiveness of the GPT-based models in handling RTC-related data.

5.4.1. Prompt Engineering Using Zero-Shot GPT-4o Mini

To benchmark the performance of the fine-tuned GPT-2 model, we employed GPT-4o
mini in a zero-shot setting. Zero-shot learning enables the model to handle tasks without
task-specific training, offering insights into the model’s ability to generalize across various
tasks inherently. For this experiment, we used the same 700-sample test set, formatted
in JSON structure as prompt-response pairs, that was previously employed for GPT-2
fine-tuning. Utilizing this consistent dataset ensured a direct and fair comparison between
the models.

The prompts for GPT-4o mini were designed to elicit precise responses to specific
queries within the tweets. Each prompt was aligned with the 15 predefined features used
in the GPT-2 fine-tuning process. These prompts were meticulously crafted with clear
instructions to ensure the model’s output adhered to the required format and avoided
unnecessary verbosity. Figure 4 illustrates examples of prompts used to determine whether
a tweet described a road accident and its severity. The complete set of prompts for the
various tasks is provided in Appendix B.
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5.4.2. XGBoost Model Training

XGBoost was included as a traditional machine learning baseline to compare its perfor-
mance with that of the GPT models. XGBoost is renowned for its speed and effectiveness
in classification tasks, making it a suitable benchmark against more complex models like
GPT-2 and GPT-4o mini.

For each classification task, the same dataset used for GPT-2 fine-tuning was employed
to train the XGBoost model. The data were preprocessed by converting the text features into
numerical representations using TF-IDF (Term Frequency-Inverse Document Frequency)
vectors, ensuring that the textual data were appropriately formatted for XGBoost’s gradient
boosting algorithm.

We conducted a search through the literature to identify the best hyperparameter
values for XGBoost. Based on this search, we determined the optimal final configuration
for our model: n_estimators=500, use_label_encoder=False, and eval_metric=‘mlogloss.’
These values were selected to balance performance and computational efficiency, ensuring
a robust baseline for comparison.

It is important to note that XGBoost was trained on specific individual tasks, focusing
solely on six classification tasks. This was due to the model’s inherent design as a traditional
machine learning approach, which contrasts with the multitask learning capability of GPT-2.
The focus on classification tasks only was determined by the nature of the RTC-related data
and the comparative purpose of this experiment.

6. Analysis and Results
6.1. Fine-Tuned GPT-2 Performance

To comprehensively assess the effectiveness of our models across both classification
and information retrieval (IR) tasks, we employ a suite of widely recognized statistical
metrics tailored to each task type. For the classification tasks, we utilize accuracy, F1-score,
recall, and precision to evaluate how effectively the model performs the classification tasks.
For IR tasks, which focus on extracting or generating relevant information from the data,
we measure performance using BLEU-4 [61] as shown in Equation (7), which measures the
precision of 4-g between the model output and reference text, ROUGE-I [60], which evalu-
ates the recall of unigrams and is shown in Equation (8), and Word Error Rate (WER) [62]
as shown in Equation (9), which measures the errors in the generated text compared to
the reference text. These metrics help assess how closely the model’s outputs align with
human-generated reference texts. BLEU-4 measures the correspondence of n-grams be-
tween the model’s output and reference texts, focusing on precision. Generally, the higher,
the better. ROUGE-I focuses on recall by comparing the overlap of unigrams between the
generated text and the reference. Focusing on recall in the evaluation. Generally, the higher,
the better. Word Error Rate (WER) indicates the proportion of errors in the generated
text compared to the reference. It is determined by counting the number of substitutions,
insertions, and deletions required to convert the system output into the reference text, then
normalizing this count by the total number of words in the reference text. Generally, the
lower, the better. These metrics are instrumental in evaluating the quality and relevance of
information retrieved or generated by the model, as described by [61] for BLEU-4, [60] for
ROUGE-I, and [62] for WER.

BLEU − 4 = BP. exp

(
4

∑
n=1

wnlog pn

)
, (7)

where BP is the brevity penalty, wn are the weights, and pn is the precision of n-grams.

ROUGE− I =
Number o f Overlapping Unigrams

Total Number o f Unigrams in Re f erence
, (8)

WER =
S + D + 1

N
, (9)
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where S is the number of substitutions, D is the number of deletions, I is the number of
insertions, and N is the number of words in the reference.

Table 10 provides a detailed breakdown of accuracy, precision, recall, and F1-score,
enabling a thorough evaluation of the model’s ability to predict diverse aspects of traffic
crashes. Figure 5 presents the confusion matrices for these six classification features, visually
illustrating the model’s accuracy in predicting each feature.

Table 10. Model evaluation per class.

Feature Class Value Precision Recall F1-Score

Was there a road traffic
accident?

Yes 0.825 0.842 0.833

No 0.975 0.972 0.974

What is the severity of the
road traffic accident?

Fatal 0.933 0.953 0.943

Moderate 0.638 0.530 0.579

Critical 1.000 0.778 0.875

None 0.877 0.744 0.805

Mild 0.754 0.833 0.792

Unknown 0.000 0.000 0.000

Severe 0.812 1.000 0.897

What is the collision type?

Single vehicle 0.400 0.333 0.364

Multiple Vehicle 0.000 0.000 0.000

Broadside 0.647 0.688 0.667

Chain reaction 0.000 0.000 0.000

Hit-and-run 0.589 0.509 0.546

Stationary object 0.500 0.333 0.400

Pedestrian 0.342 0.283 0.310

Not applicable 0.852 0.913 0.881

What is the sentiment?
Negative 0.901 0.967 0.933

Positive 0.887 0.759 0.818

What is the emotion?

Sympathy 0.000 0.000 0.000

Gratitude 0.750 0.545 0.632

Love 1.000 0.000 1.000

Disgust 0.500 0.167 0.250

Anger 0.723 0.814 0.766

Neutral 0.643 0.517 0.573

Confusion 0.000 0.000 0.000

Curiosity 0.000 0.000 0.000

Sadness 0.784 0.892 0.835

Empathy 0.000 0.000 0.000

Happy 0.698 0.833 0.759

Fear 0.765 0.580 0.660

Was the driver identified?

Yes 0.958 0.902 0.929

No 0.936 0.971 0.953

Unknown 0.500 0.308 0.381



Smart Cities 2024, 7 2449

Smart Cities 2024, 7, FOR PEER REVIEW  28 
 

What is the sentiment? 
Negative 0.901 0.967 0.933 
Positive 0.887 0.759 0.818 

What is the emotion? 

Sympathy 0.000 0.000 0.000 
Gratitude 0.750 0.545 0.632 

Love 1.000 .000 1.000 
Disgust 0.500 0.167 0.250 
Anger  0.723  0.814  0.766 

Neutral 0.643  0.517 0.573 
Confusion 0.000 0.000 0.000 
Curiosity 0.000 0.000 0.000 
Sadness 0.784 0.892 0.835 

Empathy 0.000 0.000 0.000 
Happy 0.698 0.833 0.759 

Fear 0.765 0.580 0.660 

Was the driver identified? 
Yes 0.958 0.902 0.929 
No 0.936 0.971 0.953 

Unknown 0.500 0.308 0.381 

 

  

Smart Cities 2024, 7, FOR PEER REVIEW  29 
 

  

  

Figure 5. Confusion matrices for the six classification tasks. 

Results showed that our model exhibits strong performance in predicting the absence 
of a road traffic accident, with a high precision of 0.975 and a recall of 0.972, leading to an 
impressive F1-score of 0.974. This indicates a high degree of accuracy in identifying neg-
ative cases, ensuring that false positives are minimal. Additionally, the model demon-
strates reliable performance for identifying the presence of an accident with a precision of 
0.825, recall of 0.842, and an F1-score of 0.833. These results affirm that the model is profi-
cient and dependable in classifying both positive and negative instances of road traffic 
accidents. 

Our model’s performance is particularly notable for the “fatal” and “severe” accident 
categories. For “fatal” accidents, the model achieves high precision (0.933), recall (0.953), 
and an F1-score of 0.943, reflecting its strong capability to accurately identify the most 
severe accidents. Similarly, for “severe” accidents, the model achieves a precision of 0.812, 
recall of 1.000, and an F1-score of 0.897, ensuring that severe cases are correctly identified. 
These results underscore the model’s effectiveness in assessing accident severity, provid-
ing critical insights for emergency response and resource allocation. 

The model performs exceptionally well in identifying collision types, with high pre-
cision, recall, and F1-score for some classes. For “broadside collisions,” the model achieves 
a balanced performance with a precision of 0.647, recall of 0.688, and an F1-score of 0.667, 
demonstrating its ability to handle more complex classification tasks effectively. 

Figure 5. Confusion matrices for the six classification tasks.

Results showed that our model exhibits strong performance in predicting the absence
of a road traffic accident, with a high precision of 0.975 and a recall of 0.972, leading to an
impressive F1-score of 0.974. This indicates a high degree of accuracy in identifying negative
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cases, ensuring that false positives are minimal. Additionally, the model demonstrates
reliable performance for identifying the presence of an accident with a precision of 0.825,
recall of 0.842, and an F1-score of 0.833. These results affirm that the model is proficient
and dependable in classifying both positive and negative instances of road traffic accidents.

Our model’s performance is particularly notable for the “fatal” and “severe” accident
categories. For “fatal” accidents, the model achieves high precision (0.933), recall (0.953),
and an F1-score of 0.943, reflecting its strong capability to accurately identify the most
severe accidents. Similarly, for “severe” accidents, the model achieves a precision of 0.812,
recall of 1.000, and an F1-score of 0.897, ensuring that severe cases are correctly identified.
These results underscore the model’s effectiveness in assessing accident severity, providing
critical insights for emergency response and resource allocation.

The model performs exceptionally well in identifying collision types, with high preci-
sion, recall, and F1-score for some classes. For “broadside collisions”, the model achieves a
balanced performance with a precision of 0.647, recall of 0.688, and an F1-score of 0.667,
demonstrating its ability to handle more complex classification tasks effectively.

The sentiment analysis model shows commendable performance, particularly for “neg-
ative” sentiment, with a precision of 0.901, a recall of 0.967, and an F1-score of 0.933. This
high level of accuracy ensures that the model can reliably detect negative sentiments, which
is crucial for understanding public perception and feedback. The model also performs well
for “positive” sentiment, with a precision of 0.887, recall of 0.759, and an F1-score of 0.818,
indicating its applicability in sentiment analysis tasks.

Our model also demonstrates outstanding performance in identifying “love” with
perfect precision, recall, and an F1-score of 1.000. This highlights the model’s capability to
accurately detect strong, positive emotions. Additionally, the model shows good perfor-
mance for “sadness”, with a precision of 0.784, recall of 0.892, and an F1-score of 0.835, and
for “anger”, with a precision of 0.723, recall of 0.833, and an F1-score of 0.774. These results
emphasize the model’s reliability in emotion classification, which can be instrumental in
various applications, such as customer feedback analysis and mental health monitoring.

The model excels in predicting both “yes” and “no” cases for culprit identification,
with high precision (0.958 and 0.936), recall (0.902 and 0.971), and F1-scores (0.929 and
0.953), respectively. This indicates a strong capability in distinguishing between cases
where the culprit was identified and where they were not. Such reliable performance is
crucial for applications in law enforcement and incident reporting.

The classification tasks demonstrate a high level of performance across multiple
categories, underscoring the reliability and applicability of our models. The models exhibit
exceptional accuracy in identifying severe accidents, negative sentiments, and specific
emotions such as “love” and “sadness”, showcasing their robustness in handling complex
classification tasks. The consistently high precision, recall, and F1-scores across various
tasks highlight the models’ dependability and consistency in real-world applications. These
results affirm the strengths of our models and their potential to provide valuable insights
across different domains, ensuring that our work is both reliable and highly applicable.

Nonetheless, evaluating the model’s performance on IR tasks presented a unique
challenge. Unlike classification tasks with predefined categories, these tasks demanded
assessing the model’s ability to generate coherent and informative natural language re-
sponses to open-ended questions. Table 11 summarizes the model’s performance using
different metrics.

The highest BLEU-4 score is achieved for the query “What is the crash event type?”
with a score of 0.47, suggesting that the model excels at accurately retrieving specific details
about the type of crash event. Other queries, such as “What was the location?” and “What
was the driver error?” also show respectable BLEU-4 scores of 0.26 and 0.23, respectively,
highlighting the model’s ability to handle questions requiring precise information retrieval.
The highest ROUGE-I score is 0.87 for the query “How many people died?” This indicates
that the model is particularly effective at retrieving information related to fatalities. Other
tasks, such as “How many people were injured?” and “What is the crash event type?” also
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score high with ROUGE-I values of 0.85 and 0.81, respectively, demonstrating the model’s
robustness in extracting relevant information. The query “How many people died?” has the
lowest WER of 0.13, indicating high accuracy in retrieving fatality counts. Conversely, the
query “What was the case scenario?” has the highest WER of 0.75, suggesting challenges in
accurately retrieving complex scenario details. Nonetheless, for most other tasks, such as
“What car was involved?” and “What is the crash event type?” with WERs of 0.22 and 0.28,
respectively, the model performs reasonably well.

Table 11. Model evaluation metrics for IR tasks.

Feature BLEU-4 ROUGE-I WER

How many people were injured? 0.15 0.85 0.15
How many people died? 0.15 0.87 0.13
What was the location? 0.26 0.80 0.27

What are the contributing factors? 0.16 0.78 0.26
What car was involved? 0.15 0.80 0.22

What is the crash event type? 0.47 0.81 0.28
What was the case scenario? 0.15 0.58 0.75
What was the driver error? 0.23 0.75 0.37

Was the culprit driver identified? 0.21 0.80 0.28
Average metric performance across all features 0.22 0.78 0.30

Across all IR tasks, the model showed a balanced performance with an average BLEU-4
score of 0.22, ROUGE-I score of 0.78, and WER of 0.30. These results indicate that the model
is reliable and effective in handling a wide range of queries related to road traffic accidents.
The high ROUGE-I scores and relatively low WER values underscore the model’s capability
to retrieve accurate and relevant information, making it a valuable tool for information
retrieval in traffic crash analysis.

To assess the model’s performance on IR tasks, we evaluated its ability to answer
various questions related to RTCs mentioned in tweets. The examples provided in Table 12
illustrate the model’s strong performance in several specific IR tasks, including identify-
ing collision types, determining the number of injuries, identifying contributing factors,
pinpointing locations, describing case scenarios, and recognizing driver errors. The model
demonstrates high accuracy in retrieving relevant information for these tasks. While some
retrievals were not entirely accurate, the overall results indicate the model’s reliability and
applicability in processing and understanding complex real-world scenarios as described
in tweets.

Table 12. Examples of IR tasks labeling and prediction.

Tweets for Each Feature GPT-3.5 Labels Model Prediction

What is the collision type?

Six people were hurt, including four pedestrians, in a serious
hit-and-run crash in River North, Chicago police said. hit-and-run pedestrian

R.T. @DerrickRBickley: Like a “tough, all-action thriller” and
would love a “book you can’t put down” THE HIT-AND-RUN

MAN at or your favourite digital store and PAPERBACK
HARDBACK AUDIOBOOK plus other formats

hit-and-run not applicable

Woman dies from injuries two weeks after hit and run in
Darwin’s CBD pedestrian hit-and-run

@yourallon Hit and run mission, we were there for about 5 min. hit-and-run not applicable
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Table 12. Cont.

Tweets for Each Feature GPT-3.5 Labels Model Prediction

How many people were injured?

Harrison Grey in an induced coma after Bees Creek Road,
Darwin hit and run 1 1

Three people and a dog have avoided serious injury after a
multi-car crash in Oxenford. It happened at the intersection of

Hope Island Road and the Pacific Highway exit.
3 3

R.T. @DerrickRBickley: Fancy a reader-acclaimed FIVE/FOUR
star but no E-reader? THE HIT AND RUN MAN is available in
three print formats: PAPERBACK HARDBACK (Amzn) (B&N)

LARGE PRINT

unknown 0

R.T. @9NewsSyd: Three teenage boys on their way home from
school have been hit by a car at a Sydney pedestrian crossing.

The driver leaving the scene without stopping to help.
@LizzyBryan1

3 3

What were the contributing factors?

There are reports a motorcycle was seen leaving the scene in
Gnangara after the shooting. shooting shooting

R.T. @mlmartens: @MissionRCMP It was a hit and run. Why
are excusing the behaviour of the driver? driver error hit-and-run

FEED: BUS @TransLinkSEQ: Buses travelling along Waterworks
Rd, The Gap are delayed up to 15 min due to a traffic accident. not applicable not applicable

2 Alberta students dead, 3 in serious condition after
single-vehicle car crash <prompt> what is the contributing

factor to the accident?:
unknown unknown

What is the location?

A witness to a fatal hit-and-run crash in Melbourne in which a
woman was dragged alongside a moving car, has told how

neighbours desperately tried to save the woman.
melbourne melbourne

R.T. @MaggieRaworth: A man has been killed after a hit and
run incident in Hampton Park this morning. Police have

created a crime scene in front of Kilberry Valley Primary School.
@9NewsMelb

hampton park in front of
kilberry valley primary school hampton park

R.T. @manny745: A Walk to Revenge A drizzly Manchester
night, a hit and run. A chance meeting decades later leads
ultimately to the exposure of a transatlantic crime family.

manchester manchester

@sultan_sydney hit and run sultsssssss sydney unknown

What is the case scenario?

A car tied to two separate hit-and-run incidents in Lexington,
including one involving a child, has been found and the driver

questioned, according to Lexington Police.
child involved in one incident hit-and-run incident involving

a child

An elderly man who suffered critical injuries in an alleged
hit-and-run in Sydney has undergone a number of surgeries, as

police share footage of the vehicle they believe is involved.

elderly man suffered critical
injuries

elderly man undergoing
surgery

Bicyclist killed in Bronx hit and run; driver fled in another car
with baby.

hit-and-run resulting in
fatality

hit-and-run resulting in
fatality

The family of a woman allegedly run down in a hit and run on
a suburban street while walking her dog has made a

heartbreaking plea for her recovery from critical injuries.

woman walking her dog hit
by a car

hit-and-run while walking her
dog
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Table 12. Cont.

Tweets for Each Feature GPT-3.5 Labels Model Prediction

What is the driver error?

@etsysofttotouch @BandB_CBS And covered up her drunken
hit and run of Darla and slept with her daughter’s love Rick! driving under the influence driving under the influence

Child in serious condition after being struck by hit-and-run
driver evading Queensland police fleeing from law enforcement evading police

@laurarichards99 @jessradio I hope you are sitting—you may
start to feel the rage after reading this. It is actually based

around a hit and run case in Oz but somehow it has become
this, a petition about changing the law against women?

reckless driving not applicable

Judge Raoul Neave strikes again. A decade after going easy on
hit-and-run investment banker Guy Hallwright, he’s done it
again to a recidivist drink driver who ran a red light, drunk,

killed an innocent driver then fled the scene.

running red light driving under the influence

What is the crash event type?

Police have seized a car used in a suspected hit and run that
killed a father of four in Fairfield yesterday morning. hit-and-run hit-and-run

@BLUEfingers2021 Only if you’re in a new Jag. Also, it’s
obligatory to drive into the side of a house and repeatedly

attempt to leave the scene.
single-vehicle not applicable

1 driver taken to hospital following 3-vehicle collision in
downtown Cedar City chain reaction car accidents chain reaction car accidents

TRAFFIC LIGHTS WENT DOWN, IMPAIRED CHARGES
LAID after single vehicle collision 3:20 am Sept 18 at Main &
Dundas St, Cambridge. Vehicle struck pole, traffic lights fell.
Cambridge man 23 charged w dangerous driving, impaired,

impaired 80+. Intersection reopened after repairs.

single-vehicle crashes single-vehicle crashes

6.2. Baseline Model Performance: GPT-4o Mini and XGBoost

In this section, we evaluate the performance of the baseline models, GPT-4o mini
and XGBoost, across the same classification and information retrieval (IR) tasks and the
same test set used to assess the fine-tuned GPT-2 model. The performance metrics include
accuracy, precision, recall, and F1-score for classification tasks and BLEU-4, ROUGE-I, and
Word Error Rate (WER) for IR tasks.

6.2.1. Classification Task Performance

Table 13 provides a comparative summary of the performance of GPT-4o mini and
XGBoost on the six classification tasks, alongside the results from GPT-2. Overall, GPT-2
consistently outperforms both baseline models across most classification tasks, reflecting the
benefits of task-specific fine-tuning. However, GPT-4o mini and XGBoost each demonstrate
particular strengths, with XGBoost showing robust performance in tasks where simpler,
more structured data can be leveraged and GPT-4o mini exhibiting high recall in certain
tasks despite lower precision.
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Table 13. Model performance for classification tasks.

Classification Task Model Accuracy Precision Recall F1-Score

Is there a road traffic accident? XGBoost 0.950 0.920 0.850 0.880

GPT-2 0.954 0.900 0.907 0.903

GPT-4 0.856 0.741 0.912 0.780

Was the driver identified? XGBoost 0.930 0.870 0.700 0.750

GPT-2 0.924 0.798 0.727 0.755

GPT-4 0.610 0.315 0.303 0.307

What is the severity of the accident? XGBoost 0.820 0.780 0.730 0.740

GPT-2 0.831 0.716 0.691 0.699

GPT-4 0.476 0.469 0.551 0.380

What is the emotion in this tweet? XGBoost 0.680 0.420 0.340 0.360

GPT-2 0.743 0.489 0.446 0.456

GPT-4 0.496 0.372 0.389 0.308

What is the collision type? XGBoost 0.770 0.530 0.380 0.430

GPT-2 0.777 0.370 0.340 0.352

GPT-4 0.533 0.243 0.263 0.203

What is the sentiment in the tweet? XGBoost 0.860 0.830 0.720 0.770

GPT-2 0.879 0.849 0.780 0.810

GPT-4 0.861 0.786 0.811 0.797

6.2.2. Information Retrieval Task Performance

The IR tasks presented unique challenges for the baseline models, particularly for
GPT-4o mini, which was evaluated in a zero-shot setting without task-specific fine-tuning.
Table 14 compares the performance of GPT-4o mini and GPT-2 across the nine IR tasks.
The results show that GPT-2 significantly outperforms GPT-4o mini in both BLEU-4 and
ROUGE-I metrics, highlighting the importance of fine-tuning in generating more accurate
and contextually appropriate responses. GPT-4o mini, while capable of retrieving infor-
mation, shows a substantial drop in performance, particularly evident in the higher WER
values across most tasks.

Table 14. Model evaluation metrics for information retrieval tasks.

Feature GPT-2
BLEU-4

GPT-4
BLEU

GPT-2
ROUGE-I

GPT-4
ROUGE-L GPT-2 WER GPT-4 WER

How many people were injured? 0.15 0.0203 0.85 0.1143 0.15 0.8857

How many people died? 0.15 0.1331 0.87 0.7486 0.13 0.2514

What was the location? 0.26 0.2105 0.80 0.6644 0.27 0.3506

What are the contributing factors? 0.16 0.0041 0.78 0.0162 0.26 1.7179

What car was involved? 0.15 0.1164 0.80 0.6324 0.22 0.3689

What is the crash event type? 0.47 0.0530 0.81 0.1146 0.28 0.9752

What was the case scenario? 0.15 0.0144 0.58 0.0976 0.75 11.9861

What was the driver error? 0.23 0.0017 0.75 0.0081 0.37 1.2303

Who Was the culprit? 0.21 0.0529 0.80 0.2964 0.28 0.8771

Average Metric Performance 0.22 0.0674 0.78 0.2992 0.30 2.0715
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6.2.3. Comparative Analysis of Baseline Models

In comparing the baseline models—GPT-4o mini and XGBoost—with the fine-tuned
GPT-2 model, it is evident that GPT-2 consistently outperforms the baseline models across
most classification and information retrieval tasks. This superiority is particularly notice-
able in the metrics of accuracy, F1-score, precision, and recall, where GPT-2 demonstrates a
clear advantage due to the benefits of task-specific fine-tuning.

Classification Task Performance

Figure 6 presents a comparative analysis of the accuracy for the three models across
the six classification tasks. The fine-tuned GPT-2 model shows superior accuracy across all
tasks, with the most significant performance gap observed in the tasks of “Identifying Road
Traffic Accidents” and “Severity of the Accident”. For instance, while XGBoost achieves
an accuracy of 0.950 in detecting road traffic accidents, GPT-2 slightly outperforms it with
an accuracy of 0.954. GPT-4o mini (zero shot), in contrast, lags with an accuracy of 0.856,
highlighting the impact of fine-tuning in improving model performance.
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Similarly, the F1-Score comparison in Figure 7 emphasizes GPT-2’s dominance, partic-
ularly in the “Sentiment Detection” and “Driver Identification” tasks, where it outperforms
both XGBoost and GPT-4o mini. The GPT-2 model’s F1-scores reflect its balanced pre-
cision and recall, essential for reliable classification in nuanced tasks like emotion and
sentiment detection.
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Information Retrieval Task Performance

The challenges presented by information retrieval (IR) tasks are evident when com-
paring GPT-2 with GPT-4o mini. Figure 8 shows the overall average performance metrics
across all IR tasks for both models. GPT-2 outperforms GPT-4o mini significantly in BLEU-4
and ROUGE metrics, indicating its superior capability in generating contextually appropri-
ate and accurate responses. For example, the average BLEU-4 score for GPT-2 across all
tasks is 0.22, compared to GPT-4o mini’s 0.0674, illustrating the gap in generative quality.

Similarly, the ROUGE score for GPT-2 is 0.78, significantly higher than GPT-4o mini’s
0.2992. This trend highlights GPT-2’s strength in retrieving and generating relevant infor-
mation, which is crucial for accurate information retrieval. Additionally, GPT-4o mini’s
higher WER score of 2.0715, compared to GPT-2’s WER of 0.30, underscores the limitations
of zero-shot learning without task-specific fine-tuning.

The comparative analysis demonstrates that while GPT-4o mini and XGBoost serve
as competent baseline models, particularly in structured classification tasks, the fine-
tuned GPT-2 model consistently delivers superior performance across both classification
and information retrieval tasks. The results underline the importance of fine-tuning in
enhancing model capabilities, making GPT-2 the most reliable and effective model for
handling the complexities of road traffic accident data.
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7. Discussion
7.1. Multitask Learning Framework for Enhanced RTC Analysis

This study introduces an innovative multitask learning (MTL) framework that lever-
ages large language models (LLMs) to analyze road traffic crashes (RTCs) using real-time
social media data, particularly from Twitter (now X). By employing advanced natural
language processing (NLP) techniques, we demonstrate the potential of LLMs, specifically
GPT-2 fine-tuned within our framework, to enhance road safety measures through timely
and detailed insights.

The MTL framework efficiently handles multiple classification and information re-
trieval tasks simultaneously, significantly improving the extraction and classification of
information from unstructured social media data. The integration of GPT-2 for fine-tuning
highlights the model’s adaptability in processing large volumes of diverse text data, leading
to high precision and recall in tasks such as detecting road traffic accidents and assessing
accident severity.

Our results underscore the reliability and effectiveness of the MTL framework. The
fine-tuned GPT-2 model consistently achieved high performance across various metrics,
making it a robust tool for traffic safety analytics. The practical implications of these
results are substantial, offering stakeholders actionable insights for emergency response
and traffic management. Furthermore, this approach addresses challenges related to data
scarcity and imbalance, ensuring that even limited datasets can produce reliable and
comprehensive insights.

7.2. Comparison with GPT-4 Zero-Shot Baseline

In comparison, the GPT-4o mini model, evaluated in a zero-shot setting, and the XG-
Boost model, a traditional machine learning baseline, provided valuable insights into the
strengths and limitations of different approaches. GPT-4o mini, while capable of handling
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tasks without specific training, showed lower performance across all classification and
information retrieval tasks compared to the fine-tuned GPT-2 model. This difference un-
derscores the importance of fine-tuning LLMs for domain-specific tasks, where contextual
understanding and precision are critical.

XGBoost, on the other hand, demonstrated strong performance in structured classifi-
cation tasks, particularly those involving more straightforward data patterns. However,
it struggled with more nuanced tasks that required deeper contextual understanding,
highlighting the limitations of traditional machine learning models in handling complex,
unstructured data compared to LLMs.

Overall, these comparisons reinforce the superiority of fine-tuned LLMs like GPT-2
for complex and diverse RTC-related tasks. While GPT-4o mini and XGBoost serve as
competent baselines, the results emphasize the necessity of task-specific fine-tuning to
achieve high accuracy and relevance in real-time traffic safety analysis.

8. Conclusions and Future Work

This study has demonstrated the effectiveness of a multitask learning framework
(MTF) leveraging large language models (LLMs) for the real-time analysis of road traffic
crashes (RTCs) using social media data. The robust performance observed across both
classification and information retrieval tasks underscores the potential of this approach to
significantly enhance road safety measures. By delivering detailed, timely, and actionable
insights, our methodology represents a substantial advancement in traffic safety analytics,
offering valuable tools for emergency responders, urban planners, and policymakers
focused on improving public safety on the roads.

8.1. Key Contributions

1. Development of multitask learning framework (MMF) for classification and in-
formation retrieval: this study introduced a sophisticated MTF that utilizes LLMs
to manage multiple classification and information retrieval tasks simultaneously,
enabling a more comprehensive and efficient analysis of RTCs.

2. Curated dataset: We developed a curated dataset specifically designed to fine-tune
models for more accurate RTC analysis. This dataset includes a variety of labels and
classes relevant to road traffic accidents, contributing significantly to the research
community and providing a valuable resource for further RTC-related studies.

3. Automated labeling using prompt engineering: The study employed prompt engi-
neering techniques to automate the labeling process, enhancing both the efficiency
and accuracy of data annotation. This automation is essential for scaling the analysis
to larger datasets while maintaining consistency in labeling.

4. Benchmarking fine-tuning vs. prompt engineering: By comparing the performance
of fine-tuned models against those utilizing prompt engineering in a zero-shot setting,
this study sets a benchmark for future research. This comparison provides valuable
insights into the strengths and limitations of different methodologies, guiding the
development of more effective approaches in RTC analysis.

8.2. Limitations and Future Directions

While this study presents promising results, there are several limitations to consider.
The reliance on Twitter data introduces potential biases due to the demographic and
geographic distribution of its users. Additionally, the current dataset may not encompass
the full spectrum of road traffic scenarios. Future research should aim to broaden the
dataset by collecting more Twitter data to cover a wider range of scenarios. This would
enhance the robustness and accuracy of the findings and provide a more comprehensive
analysis of road traffic crashes.

As the field of LLMs evolves rapidly, future research could explore more advanced
models and fine-tune other lightweight open-source models to further enhance the extrac-
tion and classification of RTC-related information. Additionally, leveraging other sources
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of crash data, such as images and videos from traffic cameras, could provide a more com-
prehensive analysis of road traffic crashes by adding visual context and insights that are
not available through text alone.

8.3. Implications for Research and Practice

The findings of this study have significant implications for both research and practical
applications in traffic safety. By utilizing advanced AI techniques and social media data
within a multitask learning framework, we have introduced a transformative approach to
real-time RTC analysis. This methodology not only enhances proactive decision-making
for emergency response teams but also supports the development of targeted interventions
and policy adjustments aimed at reducing traffic accidents and improving road safety.

Additionally, the curated dataset generated through this research represents a valuable
resource for the traffic safety community. Researchers can leverage this dataset to extract
deeper insights, develop and validate predictive models, and enhance real-time monitoring
systems. The integration of diverse data sources demonstrated in this study has the
potential to greatly enrich our understanding of road safety dynamics, ultimately informing
more comprehensive strategies for accident prevention and management.
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Appendix A. Example Labeled Data from Traffic Incident Tweets

This appendix provides detailed examples of the labeled data used in model de-
velopment, showcasing how the raw tweets were processed and annotated for various
classification tasks. Tables A1 and A2 below provide examples of the labeled data and
the distribution of data labels across the six classification tasks. The careful curation of
these samples was essential to ensure that the machine learning models were trained and
evaluated on diverse and representative data, which is crucial for effective performance in
real-world applications.

Table A1. Example tweets used for training (part 1).

Tweet Road Accident Severity Culprit Culprit
Apprehended No of Injured No of Deaths

“23 yr old man charged over
Caboolture hit and run that

killed Collin Young”
Yes Fatal 23 yr old man Yes None 1

“Teenage driver arrested,
woman in critical condition after
alleged hit-and-run in Darwin”

Yes Critical Teenage driver Yes 1 None
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Table A1. Cont.

Tweet Road Accident Severity Culprit Culprit
Apprehended No of Injured No of Deaths

“A professional Perth golfer
accused of a hit-and-run that
killed an elderly man on the

freeway in October 2019 claims
he was suffering a medical

episode at the time and did not
have control of his body.”

Yes Fatal Professional
Perth golfer No None 1

“#Duingal—Three stable
patients have been transported
to Bundaberg Hospital after a
traffic incident on the Bruce

Highway at 12.46pm.”

Yes Mild None None 3 0

“UPDATE: Peel St remains
closed northbound at Swan St

due to a 2-car crash with a
person trapped. Diversions are

via Swan St, Johnson St, Tribe St,
Moore Creek Rd, Browns Ln to
rejoin Manilla Rd near Hallsville.

Continue to allow extra
travel time.”

Yes Moderate None None 1 None

“#Beenleigh—Two vehicle traffic
incident with three patients, all

with minor injuries. Paramedics
transporting two patients to

Logan Hospital in a
stable condition.”

Yes Mild None None 3 0

“Monday—Mixed 4’s: Slap That
Ace beat Hit n Run (23–15)” No None None None None None

Brisbane City: several lanes are
closed on Countess Street due to
a traffic incident where a truck
has crashed into a rail bridge.
Motorists are advised to use

Hale Street as an alternate route,
and avoid the area or

expect delays.

Yes Moderate Truck None None None

7NEWS understands a
13-year-old boy has died at the

Children’s Hospital after
yesterday’s stolen car crash in

Oakey. A 14-year-old boy
remains on life support—while

another teenager has been
released from the Base Hospital

and charged.

Yes Fatal Stolen car Yes 2 1

Table A2. Example tweets used for training (part 2).

Location of
Accident

Contributing
Factor

Type of Car
Involved

Crash Event
Type Driver Error Collision

Type Case Scenario Sentiment Emotions

Caboolture Hit-and-run None Hit-and-run None None
Hit-and-run
resulting in

fatality
Negative Sadness

Darwin Alleged
hit-and-run Unknown Hit-and-Run Reckless

driving Unknown Alleged
hit-and-run Negative Sadness

Freeway in
Perth

Medical
episode Unknown Hit-and-run None None

Medical episode
leading to fatal

hit-and-run
Negative Sadness



Smart Cities 2024, 7 2461

Table A2. Cont.

Location of
Accident

Contributing
Factor

Type of Car
Involved

Crash Event
Type Driver Error Collision

Type Case Scenario Sentiment Emotions

Bruce
Highway None None Traffic

incident None None
Stable patients
transported to

hospital
Neutral Neutral

Peel St at
Swan St Driver error None 2-car

collision Yes None Person trapped Neutral Fear

Beenleigh None Two vehicles Traffic
incident None None None Neutral Neutral

None None None None None None None Neutral None

Countess
Street,

Brisbane
City

Crash into a
rail bridge Truck

Collision
with a rail

bridge
None

Vehicle-
structure
collision

Traffic incident Negative Fear

Oakey Stolen car
crash Stolen car Collision None Car crash

Stolen car crash
resulting in
death and

injuries

Negative Sadness

Appendix B. Prompt Templates for Zero-Shot GPT-4o Mini

prompt = “““
Given this tweet below:
<tweet>
{text}
</tweet>
{instruction}
“““
road_accident_prompt = “““
I want you to classify for this field:
- Road Accident: (Yes or No)
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Pick the best answer (only one value from the list provided) as the value for this field.
Use the values’ spellings as they have been provided you in your response.
- Do not be unnecessarily verbose or make additional statements.
Your response:”““
severity_prompt =“““
I want you to classify for this field:
- Severity: (none, unknown, mild, moderate, severe, critical, or fatal)
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Pick the best answer (only one value from the list provided) as the value for this field.
Use the values’ spellings as they have been provided you in your response.
- Do not be unnecessarily verbose or make additional statements.
Your response:
“““
culprit_prompt = “““
I want you to extract information for this field:
- Culprit:
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Do not be unnecessarily verbose or make additional statements.
Your response:
“““
culprit_appehended_prompt=“““
I want you to classify for this field:
- Culprit apprehended: (unknown, Yes or No)
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RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Pick the best answer (only one value from the list provided) as the value for this field.
Use the values’ spellings as they have been provided you in your response.
- Do not be unnecessarily verbose or make additional statements.
Your response:
“““
num_injured_prompt = “““I want you to extract information for this field:
- No of injured:
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Do not be unnecessarily verbose or make additional statements.
Your response:”““
num_deaths_prompt = “““
I want you to extract information for this field:
- No of deaths:
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Do not be unnecessarily verbose or make additional statements.
Your response:
“““
location_prompt=“““I want you to extract information for this field:
- Location of accident:
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Do not be unnecessarily verbose or make additional statements.
Your response:”““
contributing_factor_prompt=“““I want you to extract information for this field:
- Contributing factor:
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Do not be unnecessarily verbose or make additional statements.
Your response:”““
type_of_car_involved_prompt=“““I want you to extract information for this field:
- type of car involved:
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Do not be unnecessarily verbose or make additional statements.
Your response:”““
crash_event_type_prompt=“““I want you to extract information for this field:
- crash event type:
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Do not be unnecessarily verbose or make additional statements.
Your response:”““
driver_error_prompt=“““I want you to extract information for this field:
- driver error:
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Do not be unnecessarily verbose or make additional statements.
Your response:”““
collision_type_prompt=“““I want you to classify for this field:
- collision type: (single-vehicle crashes, ‘types of car’ accidents, broadside collision, chain reaction car
accidents, hit and run accidents, stationary object collision,
pedestrian accidents or not applicable)
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RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Pick the best answer (only one value from the list provided) as the value for this field.
Use the values’ spellings as they have been provided you in your response.
- Do not be unnecessarily verbose or make additional statements.
Your response:”““
case_scenario_prompt=“““I want you to extract information for this field:
- case scenario:
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Do not be unnecessarily verbose or make additional statements.
Your response:”““
sentiment_prompt=“““I want you to classify for this field:
- sentiment: (positive, negative or neutral)
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Pick the best answer (only one value from the list provided) as the value for this field.
Use the values’ spellings as they have been provided you in your response.
- Do not be unnecessarily verbose or make additional statements.
Your response:”““
emotions_prompt=“““I want you to classify for this field:
- emotions: (fear, anger, sadness, happy, neutral, disgust, love, confusion, curiosity, gratitude, sympathy or
empathy)
RULES
- You must provide a value for this field above.
- if the tweet does not contain enough information to answer, you must return ‘None’.
- Pick the best answer (only one value from the list provided) as the value for this field.
Use the values’ spellings as they have been provided you in your response.
- Do not be unnecessarily verbose or make additional statements.
Your response:”““
model_prompt = PromptTemplate.from_template(prompt)
model = ChatOpenAI(model=“gpt-4o-mini”, temperature=0, streaming=False)#.bind(response_format=
{“type”:”json_object”})
chain = model_prompt | model | StrOutputParser()
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