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Abstract

Square and Non-Square Fully Fuzzy Linear Systems with
Trapezoidal and Hexagonal Fuzzy Numbers

By

Aseel Saleh Mohamad Qarout

In this thesis, the definition of trapezoidal fuzzy number using right and left spread

is introduced. Then, in a similar way, we defined hexagonal fuzzy number. Also,

we gave a compact formulas for the operations on such fuzzy numbers using Alpha

cut arithmetic. Square and non-square fully fuzzy linear systems of trapezoidal and

hexagonal types using the new definitions are extensively studied. More precisely, we

were able to formulate certain conditions in order to have a fuzzy solution at first and

then a positive solution. Further, plenty of illustrative examples have been discussed.
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Chapter 1

Introduction

Systems of linear algebraic equations play an important role in many branches of science

and engineering [30]. In many applications involving linear system, part of (may be the

whole) the crisp system can be replaced by fuzzy numbers. Therefore, many authors

have deeply investigated such types of systems in order to develop mathematical tools

and numerical procedures to obtain their solutions.

M. Paripoura et al presented a numerical algorithm for solving fuzzy systems of linear

equations based on homotopy perturbation method [26]. Chandrasekaran solved fuzzy

linear system by singular value decomposition method [5]. V. Vijaylakshmi et al intro-

duced ST decomposition procedure to solve fully fuzzy linear systems [32]. Nayak et

al presented a new representation of interval arithmetic; They used it to develop algo-

rithms to solve fuzzy linear system with both triangular and trapezoidal type of fully

fuzzy numbers [24]. Radhakrishnan et al solved the fully fuzzy linear systems consisting

of positive fuzzy numbers using QR decomposition method [30]. Abdolmaleki proposed

a semi-iterative method to find a solution of the fully fuzzy linear systems [2]. Ezzati

et al used the arithmetic operations on fuzzy numbers that introduced by Kaffman and

found a positive fuzzy solution for the fully fuzzy linear system of equations [10].

Abbasbandy et al used the implicit Gauss– Cholesky algorithm of ABS class (algorithm

based on the propositions of Abaffy, Broyden and Spedicato introduced in 1984 for
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solving determined linear systems) [1].

Friedman et al numerically solved the system AX = b̂ where A is n × n crisp matrix

and b̂ is an arbitrary fuzzy vector. They solved Fuzzy linear systems by employing the

embedding approach. The original system was replaced by 2n × 2n system then the

solution is obtained [11,19].

Dehghan et al introduced a number of methods for solving Fully Fuzzy linear systems

which are comparable to the well-known methods such as : Cramer rule, Gaussain

elimination, LU decomposition method, Richard son ,Jacobi, Jacobi over relaxation

(JOR), Gauss –seidel successive over relaxation ...etc. He also shared a new method for

employing linear programming for solving square and non-square fuzzy systems [6, 8].

Nasseri and Zehmakkesh proposed Huang method for computing a nonnegative solution

of the fully fuzzy linear system of equations [23]. Kumar et al gave a new approach

for solving fully fuzzy linear systems based on the principles of linear programming

in solving a fully fuzzy linear system with arbitrary coefficients. At the same time,

a solution of fully fuzzy linear system with arbitrary coefficient was introduced by

them [14,15]. Several methods used for solving fully fuzzy linear systems with trianglar

fuzzy numbers have been introduced by many authors [37] [16] [4] [21].

Ahmad and Ibrahim proposed new matrix method for solving positive fully fuzzy linear

system; a necessary and sufficient condition were derived to have positive solution of

the left –Right fuzzy linear system [20]. A method for solving fully fuzzy linear system

with trapezoidal fuzzy numbers was introduced by kumar and other in [17]. Karthik et

al solved the fully fuzzy linear system by partitioning the coefficient matrix into sub-

matrices with trapezoidal fuzzy number matrices [30] [12]. They proposed a method to

solve fully fuzzy linear system with trapezoidal fuzzy number by converting n x n fully

fuzzy linear system into 4n x 4n crisp linear system of equations and solve by classical

methods. The solution of Non-square m × n fully fuzzy linear system where m > n

was introduced by Ezzati and Yousezed [10]. They used the least square method to
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approximate non-negative fuzzy solution.

In this work, we will discuss fully fuzzy linear system with trapezoidal and hexago-

nal fuzzy numbers. In chapter two, some preliminary topics from linear algebra are

introduced, such as determinant of block matrix, the generalized inverse method, the

Moore-Penrose inverse and the least square method. Chapter three presents the main

concepts of fuzzy sets and numbers. A new definition of the trapezoidal and hexagonal

fuzzy number is given, and the addition, multiplication and scalar multiplication using

the prescribed definitions are also defined in chapter three. In chapter four and five

we solve fully fuzzy linear systems with new trapezoidal and hexagonal fuzzy numbers.

also, we solve the system when the coefficients matrix is square invertible, singular and

non-square. Moreover, we give the necessary and sufficient condition in order to have

a positive solution when the fully fuzzy linear system is square and non-square.
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Chapter 2

System of Linear Equations

In elementary linear algebra, many techniques can be used to discuss the solvability

of homogeneous and non-homogeneous systems of linear equations. In this chapter,a

formula of the determinant of block matrices in general case will be proved via induction

and then the solution of square system of linear equations with singular coefficients

matrix will be discussed using two methods, the Generalized and the Moore-Penrose

inverse; moreover the solution non-square system of linear equations will be discussed

using least square method.

2.1 Determinants of 2× 2 Block matrices

Theorem 2.1.1 [28] Let A,B,C and D be four matrices of sizes k × k, k × (n− k),

(n−k)×k and (n−k)×(n−k) respectively, such that D is nonsingular. The determinant

of the matrix S =

A B

C D

 is given by |S| = |A−BD−1C| |D|.

If D is singular and A is nonsingular, then |S| = |D − CA−1B| |A|. the general case is

discussed in [28]. When B or C is the zero matrix, we have the following theorem.

Corollary 2.1.1 If S is an (m+ n)× (m+ n) matrix S =

Hmm Omn

Lnm Knn

 where O is

m× n zero matrix. Then |S| = |H| |K|.
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Proof: By induction on m.

step(1) :For m = 1, H11 =

[
h11

]
and S =

h11 O1n

Ln1 Knn

. Then |S| = h11 detK =

|H| |K|.

step(2): Assume that for m = p, the statement |S| = |H| |K| is true, that is S =Hpp Opn

Lnp Knn

 . and |S| = |Hpp| |K| is true.

step(3): For m=p+1, S =

Hp+1p+1 Op+1n

Lnp+1 Knn

, then |S| =
p+1∑
i=1

(−1)i+1H1iS
i
p, where Sip

is the p × p matrix obtained by removing column i and row 1 of S. Then, from the

second step, we have |Spi | = |H
p
i | |K|, where Hp

i is p × p matrix obtained by removing

the first row and ith column of HP+1P+1. Therefore,

|S| =
p+1∑
i=1

−1i+1h1i |Hp
i | |K| =

p+1∑
i=1

−1i+1h1i |Hp
i | (|K|) = |HP+1P+1|. �

2.2 Generalized inverse method

The generalized inverse is one of the techniques that is used to solve linear systems.

The author in [3] gave an algorithm to find the generalized inverse.

Definition 2.2.1 [3] If A is an m× n matrix, and G is an n×m matrix then G is

a generalized inverse of A if it satisfies the property AGA = A.

When A is a square invertible matrix then G = A−1.

Theorem 2.2.1 [3] Let A be an m × n matrix and assume that G is a generalized

inverse of A then for any fixed b ∈ Rn :

(i) the system Ax = b, x ∈ Rn has a solution if and only if AGb = b.

(ii) if Ax = b has any solution then x is a solution if and only if x = Gb+ (I −GA)z

for some z ∈ Rn.
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The following steps describe the process of finding the Generalized inverse of a non-

square matrix A.

1. Choose any non-singular sub-matrix H of size k.

2. Calculate (H−1)T .

3. In A, replace the elements of sub-matrix H by the elements of (H−1)T and the

rest entries by zeros to get new matrix Ã.

4. The generalized inverse G = (Ã)T .

From the above algorithm, the generalized inverse is not unique since it depends

on the choice of the sub matrix H.

Example 2.2.1 Let A =


1 0 1

1 1 2

0 1 1

, take H =

1 2

1 1

, then (H−1)T =

−1 1

2 −1

.

Therefore, G = (Ã)T .


0 0 0

0 −1 2

0 1 −1



2.3 Moore-Penrose inverse

The Moore -Ponrose inverse is a generalization of the inverse of the matrix. The Moore

-Ponrose is defined to any matrix of arbitrary size.

Definition 2.3.1 [27] Let A ∈ Rm×n. A matrix G = A† satisfies the following four

equations: AGA = A,GAG = G, (AG)T = AG and (GA)T = GA is called the Moore-

Penrose inverse of the matrix A.

Theorem 2.3.1 [27] The Moore-Penrose inverse A† exists and unique for any matrix

A.

6



properties of the moore-penrose:

1-A† = (ATA)†AT = AT (ATA)†

2-(AT )† = (A†)T

3-(A†)† = A

4-ATA† = A†(AT )†

.

Theorem 2.3.2 [27] The moore-penrose inverse is a generalized inverse.

Proof: let G = A†, from defintion(2.3.1) AGA = A, then A† is generalized inverse �

Example 2.3.1 the Moore-Ponrose inverse of the matrix A =

2 3

4 6

 using the matlab

we have :

is A† =

0.0308 0.0615

0.0462 0.0923


Example 2.3.2 solve the system :

5x1 + 4x2 = 16

10x1 + 8x2 = −1

A =

 5 4

10 8

 X =

x1

x2

 b =

16

−1

 A is singular so we use the Moore-penrose inverse

to solve the system : X = A†b=

0.0244 0.0488

0.0195 0.0390


16

−1

 =

0.3416

0.273



2.4 Least Square Method

The least squares method is a technique for solving an over-determined system of linear

equations, i.e when A is a rectangular matrix of size m× n, m ≥ n. In this section, we
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give some facts related to the required method.

Consider the system:

Ax = b, where A is m× n with m ≥ n, x is an n× 1 vector and b is an m× 1 vector.

Definition 2.4.1 [25] A least square solution to a linear system of equations Ax = b,

is a vector x that minimizes the Euclidean norm ‖Ax− b‖.

Remark 2.4.1 [25] The vector x = (ATA)−1AT b is called the least squares solution

to Ax = b.

Remark 2.4.2 [25] If the system actualy has solution, then it is automatically the

least square solution. The concept of the least square is considered only when the

system does not have a solution, i.e b does not lie in the range of A.

Theorem 2.4.1 [25] The least square solution is uniqe if and only if rank(A) = n.

Example 2.4.1 Consider the following system

x1 + 2x2 = 3

2x1 − 3x2 = −8

−x1 − x2 = −3.

If A =


1 2

2 −3

−1 −1

, X =

x1

x2

 and b =


3

−8

−3

 then (ATA)−1AT =

0.2667 0.2533 −0.2267

0.2000 −0.1600 −0.1200



,so, the least square solution is X = (ATA)−1AT b =

−1.6672

1.76


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Chapter 3

Fuzzy Set and Fuzzy Number

This chapter consist of two sections. In section 1, we discuss fuzzy sets and some

important defintions, Operations on Fuzzy Sets and Fuzzy Relations, alpha cuts, fuzzy

numbers and operation on fuzzy numbesrs. In section 2, we define a new fuzzy number

and the operations on it.

3.1 Fuzzy Set

Fuzzy set theory was firstly introduced by Zadeh in 1965. Fuzzy set is considered to be

a generalization of the concept of the set. [34, 35].

3.1.1 Definitions and Notations

Definition 3.1.1 [33] A fuzzy set is a class of objects with a continuum of grades

of membership. Such a set is characterized by a membership (characteristic) function

which assigns to each object a grade of membership ranging between zero and one.

Definition 3.1.2 [18] (Membership function): Let X be a universal set and A subset
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of X. The membership function is µA : X −→ [0, 1] such that

µA(x) =

 1,

0,

x ∈ A

x /∈ A.
(3.1)

Definition 3.1.3 [18] Let X be a fuzzy set, the membership function of X is µA :

X → [0, 1], where the value of µA(x) at x shows the grade of membership of x in A.

Definition 3.1.4 [18] If X is discrete, then the membership function can be written

A = {(x, µA(x)) : x ∈ X} or A =
∑
i

µA(xi)
xi

. The symbol ‘
∑

’ does not mean addition,

but it means the usual union between sets. On the other hand, if X is continuous, then

the set A can be written A =
∫ µA(x)

x
.

Example 3.1.1 X is discrete and take the value 1, 2 for example, A = (1, 0.3), (2, 0.5)

or it can be written A = 0.3�1 + 0.5�2

Example 3.1.2 A fuzzy set A which is a real number closed to 1 can be defined by it’s

membership function A =
∫ µA(x)

x
where, µA(x) =

1

1 + (x− 1)2

Fig. 3.1: Membership function of A

10



3.1.2 Operations on Fuzzy Sets

In this section the main operations on fuzzy sets together with some formulas concerning

crisp sets are given.

Definition 3.1.5 [18] A fuzzy set A is empty if and only if µA(x) = 0,∀x ∈ X.

Definition 3.1.6 [18] Two fuzzy sets A and B are equivalent,denoted by A = B if

and only if µA(x) = µB(x),∀x ∈ X. And if µA(x) 6= µB(x),∀x ∈ X then A 6= B .

Definition 3.1.7 [18] A ⊆ B if and only if µA(x) ≤ µB(x),∀x ∈ X.

Definition 3.1.8 [18] The complement set of A is denoted by Ā and has a membership

function µĀ(x) = 1− µA(x), ∀x ∈ X.

Definition 3.1.9 [18] The union of two fuzzy sets A and B is A∪B which is a fuzzy

set whose membership function is defined by µA∪B(x) = max{µA(x), µB(x)}.∀x ∈ X.

Definition 3.1.10 [18] The intersection of two fuzzy sets A and B is A∩B which is a

fuzzy set whose membership function is defined by µA∩B(x) = min{µA(x), µB(x)},∀x ∈

X.

It so trivial to extend many of the rules which are hold in crisp set to fuzzy one by

using operations of union, complement, and intersection:

(1) Involution : ¯̄A = A.

(2) Commutatively: A ∪B = B ∪ A. and A ∩B = B ∩ A

(3) Associativity: (A ∪B) ∪ C = A ∪ (B ∪ C) and (A ∩B) ∩ C = A ∩ (B ∩ C)

(4) Distributivity: A∩(B∪C) = (A∩B)∪(A∩C) and A∪(B∩C) = (A∪B)∩(A∪C)

(5)De Morgan’s law :A ∪B = Ā ∩ B̄ , A ∩B = Ā ∪ B̄.

11



3.1.3 Alpha Cuts

Definition 3.1.11 [36] The set Aα = {x : ∀x ∈ X,µA(x) ≥ α}is called the α−cut

which is a crisp set.

Example 3.1.3 Let A = {(2, 0.5), (3, 1), (5, 0.7), (7, 0.4), (9, 0.2)} then : A0 = {2, 3, 5, 7, 9}.

A0.2 = {2, 3, 5, 7, 9}, A0.4 = {2, 3, 5, 7}, A0.5 = {2, 3, 5}, A0.7 = {3, 5}, A1 = {3}.

Definition 3.1.12 [36] A fuzzy set A is convex if

µA(λx1 + (1− λ)x2) ≥ min, {µA(x1), µA(x2)}

x1, x2 ∈ X, and λ ∈ [0, 1]

Alternatively, a fuzzy set is convex if and only if all α- cuts are convex.

3.2 Fuzzy Number

In this section, the definition and basic operations on fuzzy numbers are presented.

Also, the definitions of trapezoidal and hexagonal fuzzy numbers are stated. As in the

definition of trapezoidal fuzzy numbers we give a new definition for hexagonal fuzzy

number.

3.2.1 Definition and Notations

Definition 3.2.1 [36] A fuzzy number A is a fuzzy set satisfies the following condi-

tions:

1. A is convex fuzzy set.

2.A is normalized fuzzy set (i.e ∃x ∈ R, µA(x) = 1)

3. The membership function of A is piecewise continuous.

12



4. The membership function of A is defined on the real number.

Definition 3.2.2 [18] : A fuzzy number A is called positive (negative) denoted by

A > 0(A < 0) if it’s membership function µA(X) satisfies µA(X) = 0,∀x ≤ 0(∀x ≥ 0).

3.2.2 Operations on Fuzzy Numbers

In this section, we give some operations on fuzzy numbers(note that:∨ denotes maxi-

mum, ∧ denotes minimum )

Definition 3.2.3 [36] The maximum of two fuzzy numbers A and B is a fuzzy set and

the membership function is µA∨B(x) = ∨
z=x∨y

(µA(x) ∧ µB(x)),∀x ∈ X.

Definition 3.2.4 [36] The minimum of two fuzzy numbers A and B is a fuzzy set and

the membership function is µA∨B(x) = ∨
z=x∧y

(µA(x) ∧ µB(x)), ∀x ∈ X.

Definition 3.2.5 [36] The addition of two fuzzy numbers A and B is a fuzzy set and

the membership function is µA∨B(x) = ∨
z=x+y

(µA(x) ∧ µB(x)),∀x ∈ X.

Definition 3.2.6 [36] The subtraction of two fuzzy numbers A and B is a fuzzy set

and the membership function is µA∨B(x) = ∨
z=x−y

(µA(x) ∧ µB(x)),∀x ∈ X.

Definition 3.2.7 [36] The multiplication of two fuzzy numbers A and B is a fuzzy set

and the membership function is µA∨B(x) = ∨
z=x∗y

(µA(x) ∧ µB(x)),∀x ∈ X.

Definition 3.2.8 [36] The division of two fuzzy numbers A and B is a fuzzy set and

the membership function is µA∨B(x) = ∨
z=x/y

(µA(x) ∧ µB(x)),∀x ∈ X.

3.2.3 Trapeziodal Fuzzy Number

Definition 3.2.9 [18] Trapezoidal fuzzy number is a fuzzy number represented by four

real numbers a1 ≤ a2 ≤ a3 ≤ a4 denoted by Ã = (a1, a2, a3, a4) and whose membership

function is

13



µA(x) =



0,

x−a1
a2−a1 ,

1,

a4−x
a4−a3 ,

0,

x ≤ a1

a1 ≤ x ≤ a2

a2 ≤ x ≤ a3

a3 ≤ x ≤ a4

x ≥ a4

(3.2)

Definition 3.2.10 [18] If A = (a1, a2, a3, a4), B = (b1, b2, b3, b4) are trapezoidal fuzzy

numbers then:

1)Addition: A⊕B = (a1 + b1, a2 + b2, a3 + b3, a4 + b4)

2)Symmetric image: −A = (−a4,−a3,−a2,−a1)

3)multiplication: A⊗B = (a1b1, a2b2, a3b3, a4b4)

Definition 3.2.11 [18] A trapezoidal fuzzy number A = (a1, a2, a3, a4) is said to be a

zero trapezoidal fuzzy number if and only if a1 = 0, a2 = 0, a3 = 0, a4 = 0.

Definition 3.2.12 [18] Two fuzzy numberA = (a1, a2, a3, a4) and B = (b1, b2, b3, b4)

are equal if and only if a1 = b1, a2 = b2, a3 = b3, a4 = b4.

Definition 3.2.13 [17] Let m ≤ n be real numbers and γ, β are positive numbers. A

non-zero fuzzy number is a Trapezoidal Fuzzy Number denoted by Â = (m,n, α, β) is

a fuzzy number whose membership function is given by

µÂ(x) =



0

1− m−x
γ

1

1− x−n
β

0

x ≤ m− γ

m− γ ≤ x ≤ m

m ≤ x ≤ n

n ≤ x ≤ n+ β

x ≥ n+ β

(3.3)

Using definition (3.2.13) and α-cuts we can define the addition and multiplication of

two trapezoidal fuzzy numbers as follows: Let Â = (m,n, α1, β1) be a trapezoidal fuzzy

14



number, then for α ∈ [0, 1]

Aα = [p1(α), p2(α)] = [α1(α− 1) +m,β1(1− α) + n]. (3.4)

Now, let Â = (m,n, α1, β1) , B̂ = (p, q, α2, β2) then Aα = [α1(α−1) +m,β1(1−α) +n],

and Bα = [α2(α− 1) + p, β2(1− α) + q].

When α = 0, A0 = [m− α1, n+ β1] and B0 = [p− α2, q + β2]. So

A0 +B0 = [(m−α1)+(p−α2), (n+β1) + (q+β2)] = [m+p− (α1 +α2), n+ q+ (β1 +β2)]

When α = 1, A1 = [m,n], B1 = [p, q] and A1 +B1 = [m+ p, n+ q]. Therefore,

Â⊕ B̂ = (m+ p, n+ q, α1 + α2, β1 + β2) (3.5)

Similarly, for α = 0,

A0 ×B0 = [(m− α1)(p− α2), (n+ β1)(q + β2)]

= [(mp−mα2 − α1p+ α1α2), (nq + nβ2 + β1q + β1β2)]

' [(mp− (mα2 + α1p)), (nq + (nβ2 + β1q))]

and when α = 1, A1 × B1 = [mp, nq]. Hence, the multiplication of two fuzzy numbers

can be

Â⊗ B̂ ' (mp, nq,mα2 + α1p, nβ2 + β1q) (3.6)

Definition 3.2.14 Let Â = (m,n, α1, β1) be a trapezoidal fuzzy number, the scalar

multiplication is defined as follows

c× Â =

 (cm, cn, cα, cβ),

(cn, cm,−cβ,−cα),

c ≥ 0

c < 0
(3.7)
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for any scaler c.

Definition 3.2.15 [17] A trapezoidal fuzzy number Â = (m,n, α1, β1) is identically

zero if m = n = α1 = β1 = 0

Definition 3.2.16 [17] Â = (m,n, γ, β) is positive if and only if m− γ ≥ 0.

Definition 3.2.17 [17] Let Â = (m,n, α1, β1), B = (p, q, α2, β2) be two trapezoidal

fuzzy number if Â is identically equal to B if only if m = p, n = q, α1 = α2, β1 = β2.

Example 3.2.1 Let Â = (3, 5, 1, 2) B̂ = (6, 8, 4, 5). Then

Â⊕ B̂ = (3 + 6, 5 + 8, 1 + 4, 2 + 5) = (9, 13, 5, 7)

Â⊗ B̂ ' (3× 6, 5× 8, 3× 4 + 1× 6, 5× 5 + 2× 8) = (18, 45, 18, 41)

3.2.4 Hexagonal Fuzzy Numbers

Definition 3.2.18 [31] A hexagonal fuzzy number Â = (a1, a2, a3, a4, a5, a6),where

a1, a2, a3, a4, a5, a6 are real numbers whose membership function µÂ(x) is

µÂ(x) =



0

1
2
( x−a1
a2−a1 )

1
2

+ 1
2
( x−a2
a3−a2 )

1

1− 1
2
( x−a4
a5−a4 )

1
2
( a6−x
a6−a5 )

0

x < a1

a1 ≤ x ≤ a2

a2 ≤ x ≤ a3

a3 ≤ x ≤ a4

a4 ≤ x ≤ a5

a5 ≤ x ≤ a6

x > a6

(3.8)

Definition 3.2.19 [31] A hexagonal fuzzy number Â = (a1, a2, a3, a4, a5, a6) is positive

(negative) if ai ≥ 0 (ai < 0) for i = 1, 2, 3, 4, 5, 6.
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Definition 3.2.20 [31] Let Â = (a1, a2, a3, a4, a5, a6) ,B̂ = (b1, b2, b3, b4, b5, b6) be two

hexagonal fuzzy number, Â= B̂ if only if ai = bi for i = 1, 2, 3, 4, 5, 6.

Definition 3.2.21 [31] : IfÂ = (a1, a2, a3, a4, a5, a6) is hexagonal fuzzy number then

−Â = (−a6,−a5,−a4,−a3,−a2,−a1) which is the symmetric image ofÂ is also a hexag-

onal fuzzy number.

Definition 3.2.22 [31](Operations of Hexagonal Fuzzy numbers ) Let Â = B̂ are two

hexagonal fuzzy number then :

Addition: Â⊕ B̂ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4, a5 + b5, a6 + b6)

Multiplication: Â⊗ B̂ = (a1b1, a2b2, a3b3, a4b4, a5b5, a6b6)

Using α- cuts arithmetic and the left-right spreads, we give a new definition to hexagonal

fuzzy numbers as follows.

Definition 3.2.23 Let m ≤ n, α1, β1, α2, and β2 such that α1 ≥ α2, β1 ≥ β2. A non-

zero hexagonal fuzzy number denoted by Â = (m,n, α1, β1, α2, β2) is a fuzzy number

whose membership function is given by

µÂ(x) =



0

1
2
(x−m+α1

α1−α2
)

1 + 1
2
(x−m
α2

)

1

1− 1
2
(x−n
β2

)

−1
2
(x−n−β1
β1−β2 )

0

x < m− α1

m− α1 ≤ x ≤ m− α2

m− α2 ≤ x ≤ m

m ≤ x ≤ n

n ≤ x ≤ n+ β2

n+ β2 ≤ x ≤ n+ β1

x > n+ β1

(3.9)

Definition 3.2.24 A hexagonal fuzzy number Â = (m,n, α1, β1, α2, β2) is positive if

m− α1 ≥ 0.

Definition 3.2.25 The hexagonal fuzzy numbers Â = (m,n, α11, β11, α12, β12), and
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B̂ = (p, q, α21, β21, α22, β22) are equal if m = p, n = q, α11 = α21, β11 = β21, α12 =

α22, β12 = β22.

Remark 3.2.1 Hexagonal fuzzy number ÂH is the order quadruple P1(u), Q1(v), Q2(v),

P2(u) for u ∈ [0, 0.5] , v ∈ [0.5, 1] such that P1(u) = 1
2
u−m+α1

α1−α2
, P2(u) = −1

2
u−n−β1
β1−β2 ,

Q1(v) = 1 + 1
2
v−m
α2

and Q2(v) = 1− 1
2
(v−n
β2

). In fact, if

P1(x) = 1
2
x−m+α1

α1−α2
= α then x = 2α(α1 − α2) +m− α1,

P2(x) = −1
2
x−n−β1
β1−β2 = α then x = −2α(β1 − β2) + n+ β1,

Q1(x) = 1 + 1
2
x−m
α2

= α then x = 2α2(α− 1) +m

Q2(x) = 1− 1
2
(x−n
β2

) = α then x = 2β2(1− α) + n.

Using α-cut arithmetics and the above remark, we conclude that the α-cut of hexagonal

fuzzy numbers Â and B̂ are

Aα =

 [2α(α11 − α12) +m− α11,−2α(β11 − β12) + n+ β11]

[2α12(α− 1) +m, 2β12(1− α) + n]

α ∈ [0, 0.5)

α ∈ [0.5, 1]

Bα =

 [2α(α21 − α22) + p− α21,−2α(β21 − β22) + q + β21]

[2α22(α− 1) +m, 2β22(1− α) + n]

α ∈ [0, 0.5)

α ∈ [0.5, 1]

So, for α = 0,

A0 +B0 = [(m− α11) + (p− α21), (n+ β11) + (q + β21)]

= [(m+ p− (α11 + α21)), (n+ q + (β11 + β21))],

for α = 0.5,

A0.5 +B0.5 = [(m− α12) + (p− α22), (n+ β12) + (q + β22)]

= [(m+ p− (α12 + α22)), (n+ q + (β12 + β22))],
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and for α = 1, A1 + B1 = [m + p, n + q]. So, we get the sum of two hexagonal fuzzy

numbers

Â⊕ B̂ = [m+ p, n+ q, α11 + α21, β11 + β21, α12 + α22, β12 + β22]. (3.10)

Example 3.2.2 Let Â = (4, 6, 2, 3, 1, 2), B̂ = (8, 10, 5, 7, 3, 6). Then

Aα =

 [2α + 2,−2α + 9]

[2α + 2, 10− 4α]

α ∈ [0, 0.5)

α ∈ [0.5, 1]

Bα =

 [4α + 3,−2α + 17]

[6α + 2, 22− 12α]

α ∈ [0, 0.5)

α ∈ [0.5, 1]

Aα +Bα =

 [6α + 5,−4α + 26]

[8α + 4, 32− 16α]

α ∈ [0, 0.5)

α ∈ [0.5, 1].

Then, Â⊕ B̂ = (12, 16, 7, 10, 4, 8)

Similarly, we can define the multiplication of two hexagonal fuzzy numbers as follows:

the α- cuts for α = 0 and α = 0.5 are

A0 ×B0 = [(m− α11)× (p− α21), (n+ β11)× (q + β21)]

= [(mp−mα21 − α11p+ α11α21), (nq + nβ21 + β11q + β11β21)]

' [(mp− (mα21 + α11p)), (nq + (nβ21 + β11q))],

A0.5 ×B0.5 = [(m− α12)× (p− α22), (n+ β12)× (q + β22)]

= [(mp−mα22 − α12p+ α12α22), (nq + nβ22 + β12q + β12β22)]

' [(mp− (mα22 + α12p)), (nq + (nβ22 + β12q))],
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and for α = 1, A1 ×B1 = [mp, nq]. Therefore,

Â⊗ B̂ ' (mp, nq, (mα21 + α11p), (nβ21 + β11q), (mα22 + α12p), (nβ22 + β12q)). (3.11)

Example 3.2.3 let AH = (4, 6, 2, 3, 1, 2) ,BH = (8, 10, 5, 7, 3, 6) find AH ×BH

Â× B̂ ' (4× 8, 6× 10, 2× 8 + 4× 5, 3× 10 + 6× 7, 1× 8 + 4× 3, 2× 10 + 6× 68) =

(32, 60, 36, 72, 20, 56)
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Chapter 4

Fully Fuzzy Linear system with Trapezoidal Fuzzy

Numbers

Fuzzy square and non-square systems with trapezoidal fuzzy numbers will be considered

in the present chapter. Precisely, we deal with square invertible, singular and non-square

coefficients matrices. Also, a condition for a positive solution will be derived.

4.1 Fuzzy Square Systems

In the current section, we deal with fully fuzzy linear systems where the associated

linear systems have a square invertible matrix.

Consider the fuzzy linear system Â⊗X̂ = B̂ such that each entry of Â = (âij)4n×4n and

B̂ = (b̂1, ..., b̂n)T is a trapezoidal fuzzy number, and the unknown X = (x̂1, ..., x̂n)T .

If âij = (aij; bij, αij, βij)
T and x̂j = (xj, yj, zj, wj)

T , then from definition (3.3), the

equation

(âij ⊗ x̂j) + ...+ (âin ⊗ x̂n) = b̂i

can be written as:
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n∑
j=1

aijxj = bj

n∑
j=1

bijyj = gj

n∑
j=1

(aijzj + αijxj) = hj

n∑
j=1

(bijwj + βijyj) = kj. (4.1)

This will lead to the following algebraic systems of equations

Ax = b

By = g

Az +Mx = h

Bw +Ny = k (4.2)

where A = (aij), B = (bij),M = (αij), N = (βij), x, y, z, w, b, g, h and k are coulumn

vectors of size n.

The block representation of equation (4.2) is



A 0 0 0

0 B 0 0

M 0 A 0

0 N 0 B





x

y

z

w


=



b

g

h

k


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Definition 4.1.1 The linear system SX = C where S =



A 0 0 0

0 B 0 0

M 0 A 0

0 N 0 B


,

X = (x, y, z, w)T and C = (b, h, g, k)T is called associated linear system of the fuzzy

linear system Â⊗ X̂ = B̂.

The associated linear system SX = C and the fuzzy system Â⊗ X̂ = B̂ are equivalent.

In other words, to solve the fuzzy linear system, it is enough to solve the associated

linear system.

4.1.1 Fuzzy System with Invertible Coefficients Matrix

Theorem 4.1.1 The block matrix S is invertible if and only if the matrices A and B

in (2) are invertible.

Proof: Let S =

H 0

L H

 , where H =

A 0

0 B

 , L =

M 0

0 N

. From theorem (2.1.1)

|S| = |H| |H| , but since H =

A 0

0 B

 , |H| = |A| |B|
So, |S| = |A| |B| |A| |B| = |A|2 |B|2 ,there for |S| 6= 0 if and only if |A| 6= 0 |B| 6= 0. �

Theorem 4.1.2 If A and B are invertible matrices, then the unique solution of SX =

C is given by:

X =



A−1b

B−1g

A−1(h−MA−1b)

B−1(k −NB−1g)


(4.3)
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Proof: Since A and B are invertible, the inverse of the matrix S can be obtained by

elementary row operations as follows:

S−1 =



A−1 0 0 0

0 B−1 0 0

−A−1MA−1 0 A−1 0

0 −B−1NB−1 0 B−1


and the solution of the associated system follows directly. �

Remark 4.1.1 Let A be a vector matrix, the notation A ≥ 0 means that each entry of

A is greater than or equal to zero.

Theorem 4.1.3 A trapezoidal fuzzy linear square system in Defintion 4.1.1 has a trape-

zoidal fuzzy solution if the following conditions are satisfied

1. B−1g ≥ A−1b

2. A−1h ≥ A−1(MA−1)b

3. B−1k ≥ B−1(NB−1)g.

Moreover, if A−1(I +MA−1)b ≥ A−1h, then the solution is positive.

Proof: From equation (4.3), the entries of A−1b, B−1g, A−1(h−MA−1b) and B−1(k−

NB−1g) determine respectively the first, second, third and fourth entries of x̂i. So, from

definition (3.2.13) the result follows directly. Also, from definition (3.2.16), to have a

positive solution we must have A−1b − A−1(h −MA−1b) ≥ 0 which is equivalent to

A−1(I +MA−1)b ≥ A−1h. �

Example 4.1.1 Consider the following fuzzy linear system:

(3, 6, 2, 7)⊗ (x1, y1, z1, w1)⊕ (4, 6, 1, 8)⊗ (x2, y2, z2, w2) = (27, 66, 26, 68)

(4, 5, 1, 6)⊗ (x1, y1, z1, w1)⊕ (5, 8, 1, 9)⊗ (x2, y2, z2, w2) = (35, 70, 25, 71).
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Then A =

3 4

4 5

 , B =

6 6

5 8

, M =

2 1

1 1

 , N =

7 8

6 9

 , b =

27

35

 , g =

66

70


h =

26

25

, k =

68

71

. From theorem (4.1.2), we get x̂1 = (5, 6, 3,−2.888) which is not

a fuzzy number and x̂2 = (3, 5, 1, 0.5553).

Example 4.1.2 consider the following trapezoidal fuzzy system:

 (5, 9, 4, 3) (8, 10, 1, 5)

(8, 12, 6, 11) (7, 14, 2, 8)


(x1, y1, z1, w1)

(x2, y2, z2, w2)

 =

(14, 15, 5, 26)

(5, 18, 4, 31)

 .

From theorem (4.1.2), x =

−2

3

, y =

−1

3

, z =

0.3448

1.0345

, and w =

1

1

.

Therefore,

(x1, y1, z1, w1)

(x2, y2, z2, w2)

 =

(−2,−1, 0.3448, 1)

(3, 3, 1.0345, 1)

 .
Example 4.1.3 Consider the system:

 (4, 5, 2, 6) (2, 3, 1, 4)

(6, 8, 4, 10) (2, 4, 1, 5)


(x1, y1, z1, w1)

(x2, y2, z2, w2)

 =

 (18, 37, 15, 91)

(24, 56, 21, 138)

 .

Then :A =

4 2

6 2

 , B =

5 3

8 4

 , M =

2 1

4 1

 , N =

 6 4

10 5

 , b =

18

24

,

g =

37

56

 , h =

15

21

 , k =

 91

138

. From (4.1.2) x =

3

3

 y =

5

4

 z =

0

3

 w =

6

5


and

(x1, y1, z1, w1)

(x2, y2, z2, w2)

 =

(3, 5, 0, 6)

(3, 4, 3, 5)

.
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Example 4.1.4 Consider the system:


(10, 12, 6, 7) (8, 9, 4, 7) (8, 10, 5, 8)

(12, 1510, 11) (5, 7, 3, 3) (7, 8, 4, 6)

(9, 10, 8, 8) (14, 15, 9, 12) (11, 16, 7, 10)




(x1, y1, z1, w1)

(x2, y2, z2, w2)

(x3, y3, z3, w3)

 =


(152, 260, 123, 291)

(147, 277, 146, 294)

(189, 342, 182, 382)

 .

Using theorem (4.1.2), we get x =


8

6

3

 , y =


11

8

7

, z =


2

1

1

 and w =


4.5135

4.2703

1.1757

.

So, x̂1 = (8, 11, 2, 4.5135), x̂2 = (8, 1, 6, 4.2703), and x̂3 = (3, 7, 1, 1.1757) which are

positive trapezoidal fuzzy numbers.

4.1.2 Fuzzy System with singular Coefficients Matrix

In this subsection, we approximate the solution of singular associated linear system

using Moore -Penrose and a generalized inverse.

From equations (4.2) and the Moore-Penrose inverse of A and B, we have

x = Aub

y = Bug

z = Au(h−MAub)

w = Bu(k −NBug), (4.4)
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and by the generalized inverse technique,

x = G1b

y = G2g

z = G1(h−MG1b)

w = G2(k −NG2g), (4.5)

where G1 and G2 are the generalized inverses of A and B respectively.

Example 4.1.5 Consider the system

(2, 3, 1, 4) (3, 4, 2, 6)

(4, 6, 2, 9) (6, 7, 5, 8)


(x1, y1, z1, w1)

(x2, y2, z2, w2)

 =

(15, 39, 13, 123)

(24, 47, 21, 138)

 .

Then A =

2 3

4 6

 , B =

3 4

6 7

 , M =

1 2

2 5

 , N =

4 6

9 8

 , b =

15

24

 ,

g =

39

47

 , h =

13

21

 , k =

123

138

.

Using (4.4), the solution can be derived as follows :

x = Aub =

0.0308 0.0615

0.0462 0.0923


15

24

 =

1.9385

2.9077

, z = Au(h−Mx) =

0.3205

0.4807

,

y = Bug =

−2.3333 2

1.3333 −1


39

47

 =

3

5

 and w = Bu(k −Ny) =

6

8

 .

So,

(x1, y1, z1, w1)

(x2, y2, z2, w2)

 =

(1.9385, 3, 0.3205, 6)

(2.9077, 5, 0.4807, 8)

.

On the other hand, from(4.5), we have x = Gb =

7.5

0

 where G =

0.5 0

0 0

 is the

27



generalized inverse of A. Since B is non-singular, y =

−2.3333 2

1.3333 −1


39

47

 =

3

5

 ,

z = G(h−Mx) =

2.7

0

 and w = B−1(k −Ny) =

6

8

.

So,

(x1, y1, z1, w1)

(x2, y2, z2, w2)

 =

(7.5, 3, 2.7, 6)

(0, 5, 0, 8)

.

Example 4.1.6 Consider the system

 (8, 9, 5, 6) (10, 11, 3, 9)

(13, 18, 20, 10) (7, 22, 6, 6)


(x1, y1, z1, w1)

(x2, y2, z2, w2)

 =

 (63, 155, 15, 95)

(29, 290, 29, 133)

 .

Then x =

 8 10

13 17


−1 63

29

 =

−2.04.5

7.9324

, y =

 9 11

18 22


u 155

290

 =

6.5495

8.005

,

z =

 0.119

0.0511

 and w =

0.2015

0.2402

.

So,

(x1, y1, z1, w1)

(x2, y2, z2, w2)

 =

(−2.045, 6.5495, 0.119, 0.2015)

(7.9324, 8.005, 0.0511, 0.2402)

.

4.2 Fuzzy System with Non-square Coefficients Matrix

In this section, fuzzy linear system whose associated coefficients matrices A,B,M and

N are of size m× n where m > n will be studied.

Consider the fuzzy linear system Ã ⊗ X̂ = B̃, then similar to the case of invertible

coefficient matrix, we have the following associated system

28





A 0 0 0

0 B 0 0

M 0 A 0

0 N 0 B





x

y

z

w


=



b

g

h

k


. (4.6)

Elementary row operations reduce system (4.6) to the following system:



A 0 0 0

0 B 0 0

0 0 A 0

0 0 0 B





x

y

z

w


=



b

g

h−M(ATA)−1AT b

k −N(BTB)−1BTg


. (4.7)

Denote system (4.7) by SX = C, where S = diag(A,B,A,B).

Corollary 4.2.1 The systems SX = C and Ã⊗ X̂ = B̃ are equivalent.

Proof: If (ATA)−1 and (BTB)−1 exist, then the least square solution is given by



x

y

z

w


=



(ATA)−1AT b

(BTB)−1BTg

(ATA)−1AT (h−M(ATA)−1AT b)

(BTB)−1BT (k −N(BTB)−1BTg)


. (4.8)

Otherwise, if at least one of the matrices ATA, BTB is singular, then using Moore-

Penrose method, the least square solution is give by



x

y

z

w


=



(ATA)uAT b

(BTB)uBTg

(ATA)uAT (h−M(ATA)uAT b)

(BTB)uBT (k −N(BTB)uBTg)


. (4.9)
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Corollary 4.2.2 Assume ATA and BTB are nonsingular. A trapezoidal fuzzy linear

non-square system has a trapezoidal fuzzy solution if the following conditions are satis-

fied

1. (BTB)−1BTg ≥ (ATA)−1AT b

2. (ATA)−1ATh ≥ (ATA)−1ATM(ATA)−1AT b

3. (BTB)−1BTk ≥ (BTB)−1BTN(BTB)−1BTg.

Moreover, if (ATA)−1AT (I + M(ATA)−1AT b) ≥ (ATA)−1 then the trapezoidal fuzzy

non-square system is fully.

In the following examples, we apply the above theorem to determine whether the solu-

tion of the given system is fuzzy number with or without solving the system. Further

if the system has a fuzzy solution is it positive or not.

Example 4.2.1 Consider the following system:


(6, 8, 3, 4) (7, 9, 2, 5)

(5, 8, 1, 3) (9, 11, 5, 7)

(6, 9, 2, 4) (5, 7, 1, 2)


(x1,y1, z1, w1)

(x2,y2, z2, w2)

 =


(41, 48, 30, 32)

(43, 45, 43, 42)

(59, 60, 50, 28)

 .

Then A =


6 7

5 9

6 5

 , B =


8 9

8 11

9 7

 , M =


3 2

1 5

2 1

 , N =


4 5

3 7

4 2

, b =


41

43

59

, g =


48

45

60

,

h =


30

43

50

 and k =


32

42

28

.

Since ATA and BTB are nonsingular, then using (4.8) we get:

x =

 9.6226

−1.0119

 , y =

 8.0231

−1.7615

 , z =

0.4639

3.0489

 and w =

−5.0751

6.1318

.
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Therefore, x̂1 = (9.6226, 8.0231, 0.4639,−5.0751) and x̂2 = (−1.0119,−1.7615, 3.0489, 6.1318)

which are not fuzzy since in x1 β = −5.0751 ≤ 0, in x2−1.0119 ≥ −1.7615 which mean

m ≥ n and this since the conditions 1 and 3 in corollary (4.2.2) are not satisfied .

Example 4.2.2 In the system:


(1, 5, 0.5, 1) (7, 9, 5, 3)

(2, 7, 1.25, 1) (3, 5, 2.5, 1)

(6, 10, 4, 1) (5, 11, 3, 1)


(x1,y1, z1, w1)

(x2,y2, z2, w2)

 =


(20, 200, 18, 95)

(15, 160, 14, 56)

(13, 106, 12, 166)

 .

A =


1 7

2 3

6 5

 , B =


5 9

7 5

10 11

 , M =


0.5 5

1.25 2.5

4 3

 , N =


1 3

1 1

1 1

, b =


20

15

13

,

g =


200

160

106

, h =


18

14

12

 and k =


95

56

66

. Since the matrices ATA and BTB are

invertible, from corollary (4.2.1) we have x̂1 = (−0.0811, 5.0383, 0.2001, 1.6639) and

x̂2 = (3.0541, 15.2808, 0.3111, 3.3561) which are trapezoidal fuzzy numbers since the

first three conditions in corollary (4.2.2) are satisfy.

Example 4.2.3 If we consider the following matrices: A =


2 2

2 2

2 2

 , B =


4 4

4 4

4 4

 ,

M =


1 0.3

0.25 0.75

0.5 1

 , N =


3

43 2

1 8

, b =


12

18

14

, g =


20

32

44

, h =


11

17

13

 and k =


23

26

44

.

Then the solution is

x̂1

x̂2

 =

(3.6667, 4, 2.2556, 0.0417)

(3.6667, 4, 2.2556, 0.0417)

, which is a positive solution.
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Chapter 5

Fully Fuzzy Linear System with Hexagonal Fuzzy

Numbers

The aim of the current chapter is to extend the theory introduced in the previous

chapter to fuzzy linear systems with hexagonal Fuzzy numbers defined by (3.9).

5.1 Fuzzy System with Square Coefficients Matrix

Consider the fully fuzzy linear system Â⊗X̂ = B̂ such that each entry of Â = (âij), B̂ =

(b̂j) are hexagonal, where âij = (aij; bij, αij, βijγij, ζij)
T , x̂j = (xj, yj, zj, wj, uj, vj)

T , and

b̂j = (bj, gj, hj, kj, lj, tj)
T . Then, using equation (3.11) leads to:

âij ⊗ x̂j = (aijxj, bijyj, aijzj + αijxj, bijwj + βijyj, aijuj + γijxj, bijvj + ζijyj)

So, the ith row of the system Â ⊗ X̂ = B̂ is (âij ⊗ x̂j) + ... + (âin ⊗ x̂n) = b̂i can be

written as :
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n∑
j=1

aijxj = bj

n∑
j=1

bijyj = gj

n∑
j=1

(aijzj + αijxj) = hj

n∑
j=1

(bijwj + βyj) = kj

n∑
j=1

(aijuj + γxj) = lj

n∑
j=1

(bijvj + ζyj) = tj (5.1)

Hence, we get the following algebraic linear systems:

Ax = b

By = g

Az +Mx = h

Bw +Ny = k

Au+ Tx = l

Bv + Uy = t (5.2)

where A = (aij), B = (bij),M = (αij), N = (βij), T = (γij), U = (ζij), b, g, h, k, l, t are

vector of size n. The matrices A,B,M,N, T and U are of size n × n. The associated

linear system of the hexagonal fuzzy linear system is

SX = C (5.3)
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where S =



A 0 0 0 0 0

0 B 0 0 0 0

M 0 A 0 0 0

0 N 0 B 0 0

T 0 0 0 A 0

0 U 0 0 0 B


, X =



x

y

z

w

u

v


and C =



b

g

h

k

l

t


.

5.1.1 Fuzzy System with Invertible Coefficients Matrix

In the following theorems, we prove that the solution of the fuzzy and associated systems

are equivalent, and then, some applications will be introduced.

Theorem 5.1.1 The matrix S is invertible if and only if A and B are invertible.

Proof: let S =

H O

L K

 , where H =


A 0 0

0 B 0

M 0 A

L=


0 B 0

T 0 0

0 U 0

K =


B 0 0

0 A 0

0 0 B

.

Then, from theorem (2.1.1), we have |S| = |H| |k| , Also, H and K can be partitioned

as H =

A O

L1 K1

 , and K =

H O

0 K2

 hence , |S| = |H| |k| |A| |K1| |B| |K2| , Thus

|S| = |A|3 |B|3. Therefore, S is invertible if and only if A and B are invertible. �

Theorem 5.1.2 If S is invertible, then the uniqe solution of SX=C is given by

X =



A−1b

B−1g

A−1(h−MA−1b)

B−1(k −NB−1g)

A−1(l − TA−1b)

B−1(t− UB−1g)


(5.4)
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Proof: Apply elementary row operations on the augmented matrix



A 0 0 0 0 0 I 0 0 0 0 0

0 B 0 0 0 0 0 I 0 0 0 0

M 0 A 0 0 0 0 0 I 0 0 0

0 N 0 B 0 0 0 0 0 I 0 0

T 0 0 0 A 0 0 0 0 0 I 0

0 U 0 0 0 B 0 0 0 0 0 I


to get the inverse of S:

S−1 =



A−1 0 0 0 0 0

0 B−1 0 0 0 0

−A−1MA−1 0 A−1 0 0 0

0 −B−1NB−1 0 B−1 0 0

−A−1TA−1 0 0 0 A−1 0

0 B−1UB−1 0 0 0 B−1


�

Example 5.1.1 Consider the system:

 (8, 12, 5, 4, 3, 1) (9, 10, 7, 5, 5, 3)

(12, 16, 10, 9, 6, 4) (13, 15, 10, 7, 8, 4)


x̂1

x̂2

 =

 (22, 56, 65, 139, 35, 88)

(30, 88, 83, 197, 49, 117)

 .

Then A =

 8 9

12 13

 , B =

12 10

16 15

 , M =

 5 7

10 10

 , N =

4 5

9 7

 , T =

1 3

4 4


and U =

3 5

6 4

. The constant matrices are b =

22

30

 , g =

56

88

 , h =

65

83

 ,
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k =

139

197

 , l =

35

49

 and t =

 88

117

 . Apply theorem (5.1.2) on the associated system

to get

x̂1

x̂2

 =

(−4,−2, 2, 5, 1, 3)

(6, 8, 3, 6.25, 1, 3)

.

Corollary 5.1.1 A hexagonal fuzzy linear system (5.3) has a hexagonal fuzzy solution

if the following conditions are satisfied

1. B−1g ≥ A−1b

2. A−1l ≥ A−1TA−1b

3. B−1t ≥ B−1UB−1h

4. A−1(h− l) ≥ A−1(M − T )A−1b

5. B−1(k − t) ≥ B−1(N − U)B−1g.

Moreover, if A−1(I +MA−1)b ≥ A−1h then the solution is positive.

Proof: The proof of the corollary followed directly from definition (3.2.23), equation

(5.3) and the fact that the solution of subsystems (5.2) are exactly the components of

the desired solution. �

Example 5.1.2 If

(8, 9, 6, 7, 5, 6)⊗ x̂1 ⊕ (4, 7, 3, 2, 2, 1)⊗ x̂2 = (56, 102, 45, 137, 33.5, 36)

(5, 10, 4, 3, 3, 2)⊗ x̂1 ⊕ (3, 4, 2, 4, 1, 3)⊗ x̂2 = (38, 78, 30, 83, 19, 70).

Then, A =

8 4

5 3

 , B =

 9 7

10 4

 , M =

6 3

4 2

 , N =

7 2

3 4

 , T =

6 1

2 3

 and

U =

5 2

3 1

. The constant matrices are b =

56

38

 , g =

102

78

 , h =

45

30

 ,
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k =

137

83

 , l =

33.5

19

 and t =

36

70

 . Apply theorem (5.1.2) on the associated system

to get

x̂1

x̂2

 =

(4, 8, 0.25, 5, 0.125, 1)

(6, 3, 0.25, 3, 0.125, 1)

. Note that x̂2 is non-fuzzy since and B−1g =

8

3


which is not greater or equal to A−1b =

4

6

.

Example 5.1.3 Consider the following system

(10, 12, 5, 4, 4, 3) (7, 8, 3, 5, 2, 1)

(6, 9, 3, 3, 1, 2) (9, 10, 4, 3, 3, 2)


(x1, y1, z1, w1, u1, v1)

(x2, y2, z2, w2, u2, v2)

 =

(122, 180, 112, 189, 71, 116)

(102, 171, 90, 159, 47, 112)

 .

Then A =

10 7

6 9

 , B =

12 8

9 10

 , M =

5 3

3 4

 , N =

4 5

3 3

 , T =

4 2

1 3

 and

U =

3 1

2 2

. The constant matrices are b =

122

102

 , g =

180

171

 , h =

112

90

 ,

k =

189

159

 , l =

71

47

 and t =

116

112

 . Apply theorem (5.1.2) on the associated system

to get

(x1, y1, z1, w1, u1, v1)

(x2, y2, z2, w2, u2, v2)

 =

(8, 9, 4, 5, 2, 4)

(6, 9, 2, 6, 1, 4)

 which are two positive fuzzy numbers

.

Example 5.1.4 The solution of the following system

(5, 8, 0, 0, 0, 0) (0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0) (7, 10, 0, 0, 0, 0)


(x1, y1, z1, w1, α1, β1)

(x2, y2, z2, w2, α2, β2)

 =

 (45, 64, 36, 49, 35, 27)

(77, 130, 63, 65, 56, 54)



is

(x1, y1, z1, w1, α1, β1)

(x2, y2, z2, w2, α2, β2)

 =

(9, 10, 7.25, 6.225, 7, 3.375)

(11, 13, 9, 6.5, 8, 5.4)

.
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Example 5.1.5 The solution of the following system

 (8, 12, 5, 4, 3, 1) (9, 10, 7, 5, 5, 3)

(12, 16, 10, 9, 6, 4) (13, 15, 10, 7, 8, 4)


(x1, y1, z1, w1, α1, β1)

(x2, y2, z2, w2, α2, β2)

 =

 (22, 56, 65, 139, 35, 88)

(30, 88, 83, 197, 49, 117)



is

(x1, y1, z1, w1, α1, β1)

(x2, y2, z2, w2, α2, β2)

 =

(−4,−2, 2, 6.25, 1, 3)

(6, 8, 3, 3, 1, 3)

.

5.1.2 Fuzzy System with Singular Coefficients Matrix

The previous section dealt with invertible matrices. Using either the generalized or the

Moore-Penrose inverse, the solution of associated system will be investigated, namely,

when at least one of the matrices A and B is singular.

Remark 5.1.1 For the algebraic linear systems (5.2) when A or B is singular, the

approximate solution can be found by both Moore -Penrose and General inverses.

1. Moore -Penrose inverse using the following equations

x = A†b

y = B†g

z = A†(h−MA†b)

w = B†(k −NB†g)

u = A†(l − TA†b)

v = B†(t− UB†g).
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2. The generalized inverse using the following equations:

x = G1b

y = G2g

z = G1(h−MG1b)

w = G2(k −NG2g)

u = G1(l − TG1b)

v = G2(t− UG2g).

Corollary 5.1.2 A hexagonal fuzzy linear system 5.3 when A or B is singular,has a

hexagonal fuzzy solution if the following conditions are satisfied

1. B†g ≥ A†b

2. A†l ≥ A†TA†b

3. B†t ≥ B†UB†h

4. A†(h− l) ≥ A†(M − T )A†b

5. B†(k − t) ≥ B†(N − U)B†g.

Moreover, if A†(I +MA†)b ≥ A†h, then the solution is positive.

Example 5.1.6 Consider the following system (2, 5, 1, 3, 1, 2) (2, 3, 0, 0, 0, 0)

(6, 10, 3, 4, 2, 3) (6, 8, 5, 5, 3, 3)


(x1, y1, z1, w1, α1, β1)

(x2, y2, z2, w2, α2, β2)

 =

(24, 40, 20, 30, 18, 26)

(36, 40, 25, 35, 23, 30)

.

Then A =

2 2

6 6

 , B =

 5 4

10 8

 , M=

1 0

3 5

 , N=

3 0

4 5

, T =

1 0

2 3

,

U =

2 0

3 3

 , b=

24

36

, g =

40

40

, h =

20

25

, k =

30

35

, l =

18

23

 and t =

26

30

.

Note that the matrices A and B is singular, then

x = A†b =

0.0250 0.0750

0, 0250 0, 0750


24

36

 =

3.3000

3.3000

,
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y = B†g =

0.0244 0.0488

0.0195 0.0390


40

40

 =

2.9268

2.3415


z = A†(g −MA†b) =

0.3125

0.3125

w = B†(k −NB†h) =

1.0827

0.8662


α = A†(l − TA†b) =

0.8550

0.8550

 β = B†(O − UB†h) =

1.1838

0.9471

.

So, we get the two non-fuzzy numbers

x̂1 = (3.3000, 2.9268, 0.3125, 1, 0872, 0.8550, 1, 1838)

x̂2 = (3.3000, 2.3415, 0.3125, 0.8662, 0.8550, 0.9471).

Secondly, by the generalized inverse

x = G1b =

0.5 0

0 0


24

36

 =

12

0

, y = G2g =

.2 0

0 0


40

40

 =

8

0

,

z = G1(h− nG1b) =

4

0

 , w = G2(k −NG2g) =

1.2000

0

 , α = G1(l − TG1b) =

3

0


and β = G2(o− TG2g) =

2

0

.

SO, x̂1 = (12, 8, 4, 1.2, 3, 2), and x̂2 = (0, 0, 0, 0, 0, 0). Note that the solution using Moore

-Penrose general inverse is more sufficient than the Generalized inverse of Matrix

Example 5.1.7 By the Moore-Penrose inverse, the solution of the following system

 (4, 5, 3, 5, 2, 4) (6, 7, 4, 5, 3, 3)

(8, 10, 5, 3, 2, 2) (9, 14, 7, 8, 5, 5)


(x1, y1, z1, w1, α1, β1)

(x2, y2, z2, w2, α2, β2)

 =

 (35, 65, 33, 60, 24.1, 32)

(60, 115, 53, 54, 34.6, 39)



is

x̂1

x̂2

 =

 (3.75, 3.9865, 0.3542, 0, 0995, 0.2667, 0.0751)

(3.3333, 5.5811, 1.0278, 0.1393, 0.9222, 0.1051)

 which is a hexagonal fuzzy

solution.
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5.2 Fuzzy System with Non-Square Coefficients Matrix

let Ã = (âij) and B̃ = (b̂j)
n
j=1 be two fuzzy matrices with hexagonal fuzzy numbers

entries. Following the same procedure in section 5.1, we get a system similar to the

system (5.2) where A,B,M,N,U, T are m × n matrices and such that (ATA)−1 and

(BTB)−1 are exist. Then the associated system SX = C is of size 6m× 6n and has the

following form:



A 0 0 0 0 0

0 B 0 0 0 0

M 0 A 0 0 0

0 N 0 B 0 0

T 0 0 0 A 0

0 U 0 0 0 B





x

y

z

w

α

β


=



b

g

h

k

l

o


The above system can be reduced by elementary row operations to



A 0 0 0 0 0

0 B 0 0 0 0

0 0 A 0 0 0

0 0 0 B 0 0

0 0 0 0 A 0

0 0 0 0 0 B





x

y

z

w

u

v


=



b

g

h−M(ATA)−1AT b

k −N(BTB)−1BTg

l − T (ATA)−1AT b

t− U(BTB)−1BTg


(5.5)
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Remark 5.2.1 The solution of SX = C is of the form:



x

y

z

w

u

v


=



(ATA)−1AT b

(BTB)−1BTg

(ATA)−1AT (h−M(ATA)−1AT b)

(BTB)−1BT (i−N(BTB)−1BTg)

(ATA)−1AT (j − T (ATA)−1AT b)

(BTB)−1BT (k − U(BTB)−1BTg)


(5.6)

Proof: Since ATA and BTB are invertible the solution SX = C, is X = (ST )−1C.

�

Corollary 5.2.1 A hexagonal fuzzy linear non-square system has a positive solution if

the following conditions are satisfied:

1. (BTB)−1BTg ≥ (ATA)−1AT b,

2. (ATA)−1AT j ≥ (ATA)−1ATT (ATA)−1AT b),

3. (BTB)−1BT t ≥ (BTB)−1BTU(BTB)−1BTg),

4. (ATA)−1AT (h− l) ≥ (ATA)−1AT (M − T )(ATA)−1AT b,

5. (BTB)−1BT (k − t) ≥ (BTB)−1BT (N − U)(BTB)−1BTg,

6. (ATA)−1AT [I +M(ATA)−1AT ]b ≥ (ATA)−1ATh

Proof: From (1), we can see y ≥ x from (ii) and (iii) we see α andβ ≥ 0, and when

we Rearrange equations (iv), (v) we have z − α ≥ 0, w − β ≥ 0. �

Example 5.2.1 Condiser the system


(6, 9, 3, 5, 2, 3) (5, 7, 4, 6, 3, 4)

(7, 8, 5, 8, 4, 5) (9, 10, 7, 7, 6, 5)

(4, 6, 2, 3, 1, 2) (8, 11, 6, 4, 5, 1)


(x1, y1, z1, w1, α1, β1)

(x2, y2, z2, w2, α2, β2)

 =


(25, 51, 23, 96, 15, 50)

(33, 68, 32, 144, 30, 61)

(45, 72, 36, 189, 28, 31)


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The coefficients matrices are:

A =


6 5

7 9

4 8

, B=


9 7

8 10

6 11

, M=


3 4

5 7

2 6

, N=


5 6

8 7

3 4

, T =


3 4

5 5

2 1

 U =


2 3

4 6

1 5

, and the

constant matrices b=


25

33

45

 h=


23

32

36

, g=


51

68

72

, k =


96

144

189

, l =


15

30

28

 t =


50

61

31

.

Therefore,

(x1, y1, z1, w1, α1, β1) = (−1.5405, 0.210, 3, 0.1183, 1.6273)

(x2, y2, z2, w2, α2, β2) = (5.7325, 6, 0.1807, 4, 0.0737, 1.2367).

Example 5.2.2 Consider the system

(4, 8, 2, 6, 1, 1)⊗ x̂1 ⊕ (8, 10, 6, 7, 4, 5)⊗ x̂2 = (47, 70, 46, 60, 28, 35)

(5, 6, 4, 3, 3, 2)⊗ x̂1 = (25, 50, 24, 50, 18, 28)

(7, 9, 5, 5, 3, 3)⊗ x̂2 = (36, 66, 35, 55, 20, 30)

Solution: A =


5 0

0 7

4 8

, B =


6 0

0 9

8 10

, M =


4 0

0 5

2 6

, N =


3 0

0 5

6 7

, T =


3 0

0 3

1 4

,

U =


2 0

0 3

1 5

, b =


25

36

47

, g =


50

66

70

, h =


24

35

46

, k =


50

55

60

, l =


18

20

28

, t =


28

30

35

,

x = (ATA)−1AT b =

4.2319

4.3591

, y = (BTB)−1BTg =

4.4564

5.1795

,

43



z = (ATA)−1AT (h−M(ATA)−1AT b) =

0.8514

1.3118

,

w = (BTB)−1BT (i−N(BTB)−1BTg) =

1.4433

0.6437

,

α = (ATA)−1AT (j − T (ATA)−1AT b) =

0.7446

0.6662

,

β = (BTB)−1BT (k − U(BTB)−1BTg) =

1.1391

0.4723


so, x̂1 = (4.2319, 4.4564, 0.8514, 1.4433, 0.7446, 1.1391)

x̂2 = (4.3591, 5.1795, 1.3118, 0.6437, 0.6662, 0.4723)which are two positive fuzzy number

since all conditions of corollary (5.2.1) are satisfied .

Example 5.2.3 Consider the system



(3, 4, 0, 0, 0, 0) (6, 8, 1, 3, 2, 2)

(2, 5, 1, 1, 1, 1) (4, 6, 3, 2, 2, 1)

(5, 7, 4, 4, 3, 2) (0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0) (9, 10, 6, 7, 5, 4)


(x1, y1, z1, w1, α1, β1)

(x2, y2, z2, w2, α2, β2)

 =



(51, 92, 49, 80, 40, 70)

(34, 87, 33, 80, 27, 60)

(35, 63, 33, 60, 29, 50)

(45, 70, 40, 70, 31, 60)



The coefficients matrices are:

A =



3 6

2 4

5 0

0 9


, B=



4 8

5 6

7 0

0 10


, M=



0 1

1 3

4 0

0 6


, N=



0 3

1 2

4 0

0 7


, T =



0 2

1 2

3 0

0 5


U =



0 2

1 1

2 0

0 4


, and the

constant matrices b=



51

34

35

45


h=



92

87

63

70


, g=



49

33

33

4


, k =



90

80

60

70


, l =



40

27

29

31


t =



70

60

50

60


.
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Therefore,

(x1, y1, z1, w1, α1, β1) = (7, 9, 3.0742, 5.4643, 2.9296, 4, 9178)

(x2, y2, z2, w2, α2, β2) = (5, 7, 2.3915, 3.8261, 1.4874, 3, 6355)which are two positive fuzzy

number since all conditions of corollary (5.2.1) are satisfied .
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Conclusions

In the present work, the solution of fully fuzzy linear systems with trapezoidal and

hexagonal fuzzy numbers are derived by transforming the given system into a crisp

system with block coefficients matrix. Different methodologies have been used to reach

the solution according to the core matrices whether they are square, non-square, in-

vertible and singular. After that we study the conditions to have positive solutions in

each states. In literature, almost all researchers approximated the multiplication of two

Trapezoidal fuzzy numbers when the arithmetic alpha-cuts are used . As a future work,

we will discuss the developed theory presented in the current work with no restriction

on the multiplication.
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