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Abstract

The Bivariate Shifted Legendre Functions for Nonlinear
Volterra Integral Equation

By

Mahmoud Taher Ibraheem

In this thesis, the Bivariate Shifted Legendre Method for solving one, two and three-

dimensional nonlinear Volterra Integral Equation are introduced and analyzed. More

specific, three-dimensional Bivariate Shifted Legendre has been investigated in details

and some formulas related to three-dimensional Volterra integral equation are deduced.

Further, in order to find the approximated solution, the Volterra integral Equation

of the first kind is converted to a second kind by using Leibniz integral formula and

then the obtained integral equation is reduced to a system of linear algebraic equations

using the bivariate shifted Legendre functions operational matrices. Finally, many

numerical examples were provided to demonstrate the applicability and the accuracy

of the presented method.
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Chapter 1

Introduction

An integral equation is the equation in which the unknown function u(x) appears under

an integral sign . In 1884, Volterra started working on integral equations, but his serious

study began in 1896. The name ”integral equation” was given by Du Bios Reymond

in 1888. However, the name Volterra integral equation was first coined by Lalesco in

1908 [53].

Volterra integral equations arise in many scientific areas such as population dynamics,

biology, engineering, spread of epdemics, and semi- conductor devices.

The destinction between Fredhom and Volterra integral equations is analogous to the

distinction between boundary and initial value problems in ordinary differential equa-

tions [29].

Volterra integral equations can be considered as a generalization of initial value prob-

lems. In practice, Volterra equations frequently occur in connection with time- depen-

dent or evolutionary systems [11], [26].

The most well known formula of integral equations is given by:

h(x)u(x) = g(x)f(x) + λ

∫ β(x)

α(x)

k(x, t)u(t)dt (1.1)
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where α(x) and β(x) are the limits of integration such that either both of them are

functions or both of them constants or at least one of them is constant , λ is a constant,

K(x, t) is a known function of two variables x, and t which is called the kernel of the

integral equation, while the function u(x) is the solution of integral equation. [28].

Basing on the limits of integrations, equation (1.1) can be classified into two known

types as follows

1. If at least one limit of integration in eqation (1.1) is variable, then it is called a

Volterra integral equation given and it has the form:

h(x)u(x) = g(x)f(x) + λ

∫ x

a

k(x, t)u(t)dt (1.2)

If h(x) = 0, eqation (1.1) is called a Volterra integral equation of the first kind.

If h(x) = 1, eqation (1.1) is called a Volterra integral equation of the second kind.

The function g(x) determines the homogeneity of the equation.

2. If the limits of integration in equation 1.1 are constants, eqation (1.1) is called

Fredholm integral equation and given by the formula:

h(x)u(x) = g(x)f(x) + λ

∫ b

a

k(x, t)u(t)dt. (1.3)

Where a and b are constants.

Also, it can be characterized in a similar manner as in Volterra integral equation.

It is interesting to mention that any equation includes both derivatives and integrals of

the unknown function is called integro-differential equation, as for example the following

equation
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h(x)
dku

dxk
(x) = f(x) + λ

∫ β(x)

α(x)

k(x, t)u(t)dt (1.4)

Moreover, [46] the integral equation is called nonlinear if the kernel function is a non-

linear function in u(x)

h(x)u(x) = f(x) + λ

∫ β(x)

α(x)

k(x, t, u(t))dt (1.5)

or it has other form which is :

h(x)u(x) = f(x) + λ

∫ β(x)

α(x)

k(x, t)F (u(t))dt (1.6)

where F is a nonlinear function of u

For the n-independent variables x = (x1, x2, ..., xn), the n-dimensional integral equation

is:

h(x)u(x) = f(x) +

∫
G

K(x, y)u(y)dy (1.7)

where x, y ∈ Rn, G ⊆ Rn.

Many analytical and numerical methods has been used to solve integral equations.

In [5,6,12,20–22,48,51,53] the author gathered many analytical and numerical methods

to solve different types of one and two-dimensional integral equations like the Adomian

decomposition method, modified Adomian decomposition method, Variational iteration

method, Laplace transform method, successive approximations method, series solution

method, rationalized haar functions, triangular functions, collocation and iterated col-

location, and differential transform method . It was noted that little has been done to

solve the first kind cases. The numerical solution of the equation of the first kind has

been considered in [8, 9, 34]. Malik Negad et.al [34] studied the numerical solution of

the first kind using block- pulse functions.
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In this thesis, the method that introduced in [40] was extended to solve the nonlin-

ear Volterra integral equation of the first kind with some conditions. The considered

problem is solved using the Bivariate shifted Legendre orthogonal functions. The main

idea of this technique is to reduce the equation to a systems of nonlinear algebraic

equations [40]. In addition to the current chapter, the thesis is arranged as follows:

in chapter two, general concepts like inner product, and Newton’s method have been

introduced. In chapters three four and five, the method of the Bivariate shifted Leg-

endre functions, operational matrices of integration, and the product of operational

matrices are introduced in details and the approximated solution of the one, two, and

three dimensional Volterra integral equations discussed. Numerical examples as will as

figures obtained from the simulation that done using Matlab to illustrate the accuracy

of the presented method.
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Chapter 2

Preliminaries

In this chapter, and to be familiar with the notations that will be used throughout

this work, some basic terminologies are needed. Mainly, the chapter consists of the

definition of inner product spaces and the method of Newton for systems of nonlinear

equations.

2.1 Inner Product

Recall that if u, and v are two vectors in 3-space, then the inner product < u, v > is a

function satisfying the following conditions: [1, 56]:

1. < u, v >=< v, u >

2. < Ku, v >= K < u, v >, K is scaler

3. < u, u >= 0 if u = 0, and < u, u >> 0 if u 6= 0

4. < u+ v, w >=< u,w > + < v,w >, where w is a vector.

Throughout this work, we will deal with real valued functions defined on a finite interval

[a, b].
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Definition 2.1 [56](Inner product of function) The inner product of two functions f

and g on an interval [a, b] is the number < f, g >.

< f, g >=

∫ b

a

f(x)g(x)dx

2.2 Orthogonal Functions

Motivated by the fact that two geometric vectors u and v are orthogonal whenever their

inner product is zero. Define orthogonal functions in the same manner.

Definition 2.2 [38, 56](Orthogonal Functions) Two fnctions f and g are orthogonal

on an interval [a, b] if

< f, g >=

∫ b

a

f(x)g(x)dx = 0 (2.1)

2.2.1 Orthogonal sets

We are primarily interested in infinite sets of orthogonal functions.

Definition 2.3 [56](Weight Function) A set of real- valued functions {ψ0(x), ψ1(x), ...}

is said to be orthogonal with respect to a nonnegative function w(x) on an interval [a, b]

if

< ψm(x), ψn(x) >=

∫ b

a

w(x)ψm(x), ψm(x)dx = 0,m 6= n

where w(x) is called the weight function. The norm of ψm(x) is defined as

< ψm(x), ψm(x) >= ||ψm(x)||2 =

∫ b

a

w(x)|ψm(x)|2dx

The inner product space of all continuous real valued functions on the interval[−1, 1]

with the inner product defined in (2.1) can be completed to give a Hilbert space. This

space consists of a special type of polynomials which are called Legendre’s Polynomials.
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Definition 2.4 [27](Legendre Functions) The Legendre polynomials are defined by

Rodrigues formula

Ln(x) =
1

2nn!

dn

dxn
(x2 − 1)n , n = 0, 1, 2, ... (2.2)

For arbitrary real or complex values of the variable x.

The first three Legendre polynomials are: L0(x) = 1, L1(x) = x, L2(x) = 1
2
(3x2 − 1).

The general expression for the nth Legendre polynomials is obtined from 2.2 using

Binomial expansion

(x2 − 1)n =
n∑
k=0

(−1)kn!

k!(n− k)!
x2n−2k

which implies that:

Ln(x) =

[n
2
]∑

k=0

(−1)k(2n− 2k)!

2kk!(n− k)!(n− 2k)!
xn−2k

where the symbol [n
2
] denotes the largest integer less than or equal [n

2
] .

These specific nth degree polynomials are called Legendre polynomials and are denoted

Ln(x) . [4]

Recurrence relations that relate Legendre polynomials of different degrees are also im-

portant in some aspects of their applications.

We state, without proof, the three-term recurrence relation.

The well known Legendre polynomials of degree n are defined on the interval [−1, 1] as

follows:

Ln+1(x) =
2n+ 1

n+ 1
xLn(x)− n

n+ 1
Ln−1(x), n = 1, 2, 3, ...,

where L0(x) = 1, L1(x) = x.

Although, we have assumed that the parameter n in Legendre’s differential equation:
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d

dx

[
(1− x2)dLn(x)

dx

]
+ n(n+ 1)Ln(x) = 0,

n = 0, 1, 2, ... Represent a non negative integer. for more general settings n can be any

real number. Any solution of legendre’s equation is called a Legendre function.

The orthogonality condition is:

∫ 1

−1
Ln(x)Lm(x)dx =


2

2n+1
if m = n

0 otherwise

For one to use these polynomials on the interval [0, l], we defined the so called Shifted

Legendre polynomials using the change of variables x = 2
l
t−1. Let the Shifted Legendre

polynomials denoted by Pn(t), which can be obtained as follows:

Pn+1(t) =
(2n+ 1)

(n+ 1)
(
2

l
t− 1)Pn(t)− n

n+ 1
Pn−1(t), n = 1, 2, ...

where P0(t) = 1, P1(t) = 2
l
t− 1.

The analytical form [13] of the Shifted Legendre polynomials Pn(t) of degree n is given

by:

Pn(t) =
n∑
k=0

(−1)n+k
(n+ k)!tk

(n− k)!(k!)2

The orthogonality condition is:

∫ l

0

Pn(t)Pm(t)dt =


l

2n+1
if m = n

0 otherwise

8



2.2.2 The Kronecker Product

Definition 2.5 [50, 54] Let A = [aij] be an m× n matrix, and let B be a p× q, then

the Kronecker product of A and B is that (mp)× (nq) matrix defined by:

A⊗B =



a11B a12B ... a1nB

a21B a22B ... a2nB

...
...

. . .
...

am1B am2B ... amnB



Remarks:

1. Sometimes the kronecker product is also called direct product or tensor product.

2. Let In be the n × n identity matrix, and let Im be the m × m identity matrix.

Then In⊗Im is the nm×mn identity matrix. Obviously Im⊗In = In⊗Im = Imn.

3. Let An be an arbitrary n×n matrix, and let Om be the m×m zero matrix. Then

An ⊗Om = Omn.

4. The kronecker product is satisfying the Distributivity and the Associativity prop-

erties, i.e:

A⊗ (B + C) = A⊗B + A⊗ C, (Distributivity),

(A⊗B)⊗ C = A⊗ (B ⊗ C), (Associativity).

2.3 Newton’s Method for System of nonlinear equations

Newton Raphson method is an iterative method for solving nonlinear system of alge-

braic equations. [55]
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The system of n- nonlinear equations in n unknowns is given by:

f1(x1, x2, ..., xn) = 0

f2(x1, x2, ..., xn) = 0

...

fn(x1, x2, ..., xn) = 0

This system can be written using a single form as:

F (X) = O

where the vector X contains the variabls (x1, x2, ..., xn), the vector F is the vector of

functions fi, and O is the zero vecor.

X =



x1

x2
...

xn


, F =



f1

f2
...

fn


. (2.3)

As in newton method of one variable, we need to start with an initial guess X0. In

theory, the more variables one has, the harder it is to find the initial guess. In practice,

that must be overcome by reasonable assumptions about the possible values of the

solution. Once X0 is chosen, let ∆X = X1 −X0, then it can be approximated around

the vector X0 using Taylor expansion as follows [49,52]:

F (X0 + ∆X) ≈ F (X0) + J(F (X0))∆X, (2.4)

10



where

J(F (X0)) =
∂(f1, f2, ..., fn)

∂(x1, x2, ..., xn)
(X0)

J(F (X0) =



∂f1
∂x1

(X0)
∂f1
∂x2

(X0) ... ∂f1
∂xn

(X0)

∂f2
∂x1

(X0)
∂f2
∂x2

(X0) ... ∂f2
∂xn

(X0)

...
...

. . .
...

∂fn
∂x1

(X0)
∂fn
∂x2

(X0) ... ∂fn
∂xn

(X0)


,

J is called the Jacobian.

Newton’s method is based on constructing of a sequence of vectors that converges to

X, such that F (X) = 0. Let F be a continuously differentiable function at X0, and the

target is to find X that makes F (X) equal to the zero vector. For that purpose, choose

X1 as follows [16]:

F (X0) = J(F (X0))(X1 −X0) = 0

Since J(F (X0)) is a a square matrix, we can solve this equation by:

X1 = X0 − J−1(F (X0))F (X0)

In general

Xn+1 = Xn − J−1(F (Xn))F (Xn)

provided that the inverse of the Jacobian matrix is exist. However, in practice, we never

use the inverse of matrix for computations. Rather, we can do the following. First,

solve the equation

J(F (X0))∆X = −F (X0)

J(F (X0)), F (X0) are knows, so it is a linear system of equations, which can be solved

efficiently and accurately. Once we have the solution of the vector ∆X, we can obtain
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the improved estimate X1 which is

X1 = X0 + ∆X

For subsequent steps, we have the following process:

J(F (Xn))∆X = −F (Xn)

where Xn+1 = ∆X +Xn.

A convergence criterion of the solution of the system of nonlinear equations could be

,for example, that the maximum of the absolute values of the function fi(Xn) is smaller

that a certain tolerance ε,

Maxi|fi(Xn)| < ε

Another possibility for convergence is that the magnitude of the vector F (Xn) be smaller

than the tolerance

|F (Xn)| < ε

We can also use the difference consecutive values of the solution

Maxi|(Xi)n+1 − (Xi)n| < ε

or ∆X = Xn+1 −Xn < ε.

12



Chapter 3

One-Dimensional Nonlinear Volterra Integral

Equation

In this chapter, we present a numerical methods for the solution of nonlinear one-

dimensional Volterra integral equation 1D-VIE of the form

∫ x

0

K(x, t)up(t)dt = f(x), x ∈ [0, l], t ∈ [0, l]. (3.1)

where u(x) is an unknown function called the solution of the integral equation, p is a

positive integer number, K is the kernel function and f is a smooth function. Also,

the functions f and K are required to satisfy the conditions f(0) = 0 and K(x, x) 6=

0,∀x ∈ [0, l]. Many problems in mathematics, physics and engineering could be reduced

to integral equations of the first kind are inherently ill-posed problems meaning that

the solution is generally unstable, and small changes to the problem can make very

large changes to the solutions. [47]

As a result of this type of problems, the numerical solution becoms very difficult to

reach. In deed, a small error could lead to an unbounded error. To overcome the

ill-posdenss, we transform nonlinear 1D-VIE of the first kind with the conditions

f(0) = 0, K(x, x) 6= 0, ∀x ∈ [0, l] to a nonlinear 1D- VIE of the second kind. [43] The

nonlinear 1D-VIE of the second kind can be obtained by differentiating equation (3.1)

13



with respect to x using Leibniz’s Integral Rule.

Theorem 3.1 [23][Leibniz’s Integral Rule] Suppose that the function g has a uniformly

continuous partial derivative ∂g
∂x

and let

f(x) =

∫ b(x)

a(x)

g(x, y) dy

Where a and b are continuously differentiable funtions defined on(x0, x1). Then, for

x ∈ (x0, x1) we have

∂f

∂x
=

∫ b(x)

a(x)

∂g(x, y)

∂x
dy + b′(x)g(x, b(x))− a′(x)g(x, a(x)) (3.2)

Thus, using (3.2), the integral equation( 3.1) can be reduced to :

∂f

∂x
=

∫ x

0

∂K(x, t)

∂x
up(t)dt+K(x, x)up(x) (3.3)

Equation (3.3) then will have the following shape:

up(x) =

∫ x

0

K1(x, t)u
p(t)dt+ F (x) (3.4)

where K1(x, t) = −∂K(x,t)
∂x

/K(x, x), and F (x) = ∂f(x)
∂x

/K(x, x)

As a conclusion, in order to solve equation (3.1), it is enough to solve equation (3.4).

Let us first intorduce the shifted lengedre polynomial as follows

Definition 3.1 [2, 15] The well-known Legendre polynomials of degree n = 0, 1, . . .

are defined on the interval [-1,1] and can be determined with the aid of the following
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recurrence formula

Ln+1(t) =

(
2n+ 1

n+ 1

)
tLn(t)−

(
n

n+ 1

)
Ln−1(t), n = 1, 2, . . . (3.5)

where L0(t) = 1 and L1(t) = t.

For one to use these shifted polynomials on the interval [a, b] = [0, l], we define the so

called shifted legnedre polynomials by using the change of variable

t =
2

b− a
[x− b+ a

2
] =⇒ t =

2

l
(x− l

2
) =

2

l
x− 1.

Now, let the shifted legendre polynomials Ln(2
l
x− 1) be deonted by Pn(x), then Pn(x)

can be obtained as follows

Pn+1(x) =

(
2n+ 1

n+ 1

)(
2

l
x− 1

)
Pn(x)−

(
n

n+ 1

)
Pn−1(x), n = 1, 2, . . . (3.6)

where P0(x) = 1 and P1(x) = 2
l
x − 1. Let Pn(x) and Pm(x) be two functions defined

on some interval [0, l]. These functions are called with respect to a weight function

w(x) = 1 on [0, l] s.t.

∫ l

0

w(x)Pn(x)Pm(x)dx =


l

2n+1
if m = n

0 otherwise

The bivariate shifted Legendre functions are defined on x ∈ [0, l] as follows

ψn(x) = Pn(x) = Ln(
2

l
x− 1), n = 0, 1, 2, . . . (3.7)
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and are orthgonal with respect to the weight function w(x) = 1 such that

∫ l

0

w(x)ψn(x)ψm(x)dx =


l

2n+1
if m = n

0 o.w

(3.8)

3.1 Approximation with shifted legendre polynomials

A function f(x) ∈ L2[0, l] may be expanded by in terms of Legendre polynomials as

follows

f(x) =
∞∑
n=0

Cnψn(x) (3.9)

where Cn is constant given by

Cn =
〈f(x), ψn(x)〉
〈ψn(x), ψn(x)〉

. (3.10)

If the infinite series in equation(3.9) is truncated up to term N , [30, 47] then

f(x) '
N∑
n=0

Cnψn(x) = CTψ(x) (3.11)

Where C and ψ are (N + 1)× 1 vectors given by

C =

[
C0 C1 · · ·CN

]T
and ψ =

[
ψ0 ψ1 · · ·ψN

]T
Now,

〈f(x), ψn(x)〉 =

〈
∞∑
j=0

Cjψj(x), ψn(x)

〉
(3.12)

= 〈Cnψn(x), ψn(x)〉

= Cn〈ψn(x), ψn(x)〉
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Therefore, from equation(3.8) the constant Cn can be computed by the following

formula [10,32]

Cn =
〈f(x), ψn(x)〉
‖ ψn ‖22

=
2n+ 1

l

∫ l

0

f(x)ψn(x)dx (3.13)

3.2 Approximating the kernel function

Let K(x, t) ∈ L2
(
[0, l]× [0, l]

)
, we have

K(x, t) =
∞∑
r=0

∞∑
s=0

ψr(x)Krsψs(t) (3.14)

where

Krs =
〈ψr(x), 〈K(x, t), ψs(t)〉〉
〈ψr(x), ψr(x)〉〈ψs(t), ψs(t)〉

(3.15)

And can be accessed through the previous equation [45]

〈ψr(x), 〈K(x, t), ψs(t)〉〉 =

〈
ψr(x), 〈

∞∑
r,s=0

ψr(x)Krsψs(t), ψs(t)〉

〉

= 〈ψr(x), Krs‖ ψs(t) ‖22ψr(x)〉= Krs‖ ψr(x) ‖22‖ ψs(t) ‖
2
2

Krs =
〈ψr(x), 〈K(x, t), ψs(t)〉〉
‖ ψr(x) ‖22‖ ψs(t) ‖

2
2

Therefore,

Krs =
(2r + 1)

l

(2s+ 1)

l

∫ l

0

∫ l

0

ψr(x)K(x, t)ψs(t) dt dx (3.16)

If the infinite series in equation(3.14) is truncated, then it can be written as

K(x, t) '
N∑
r=0

N∑
s=0

ψr(x)Krsψs(t) = ψT (x)Kψ(t) (3.17)

K(x, t) ' ψT (x)Kψ(t), r = s = 0, 1, · · · , N (3.18)

17



Similarly, any function K1(x, t) ∈ L2
(
[0, l]×[0, l]

)
can be expanded in terms of bivariate

shifted legendre functions as [32,44]

K1(x, t) ' ψT (x)K1ψ(t) (3.19)

where K1 is a (N + 1)× (N + 1) block matrix has the form

K1 = [kr]
N
r=0 =



k0

k1

k2
...

kN



and ki =

[
ki0 ki1 · · · kiN

]
, i = 0, 1, . . . , N

Therefore, K1 =



k00 k01 · · · k0N

k10 k11 · · · k1N
...

...
. . .

...

kN0 kN1 · · · kNN


.

3.3 Integration opertational matrix

The ordinary differential recurrence relations of the orthogonal Legendre polynomials

with respect to x is given by

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (3.20)

After differentiating with respect to x and rearranging the terms we get the following

(2n+ 1)Pn(x) = (n+ 1)Ṗn+1(x)− (2n+ 1)xṖn(x) + nṖn−1(x) (3.21)
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On the other hand, we have [3]

xṖn(x) = nPn(x) + Ṗn−1(x) (3.22)

Now, [15] Substitute equation(3.22) in equation(3.21) to get

Pn(x) =
(n+ 1)

(2n+ 1)
Ṗn+1(x)− (2n+ 1)

(2n+ 1)

[
nPn(x) + Ṗn−1(x)

]
+

n

(2n+ 1)
Ṗn−1(x)

Pn(x) + nPn(x) =
(n+ 1)

(2n+ 1)
Ṗn+1(x)− Ṗn−1(x) +

n

(2n+ 1)
Ṗn−1(x)

(2n+ 1)Pn = Ṗn+1(x)− Ṗn−1(x) (3.23)

Equation(3.23) can be written in the form

ψn(x) = Anψ̇n+1(x) +Bnψ̇n(x) + Cnψ̇n−1(x) (3.24)

Where ψn(x) are the shifted legendre polynomials on [0, l] and the coefficients An, Bn

and Cn, n = 0, 1, 2, · · · are constants. The coeficients An, Bn and Cn can be evaluated

by integraing the recurrence relation(3.24) from 0 to x as follows

∫ x

0

ψn(x) dx = Anψn+1(x) +Bnψn(x) + Cnψn−1(x) +Dnψ0(x) (3.25)

Then Substitute n = 0, 1, . . . in equation(3.25)to get

A0 =
l

2
, B0 =

l

2
, C0 = 0, D0 = 0

A1 =
l

6
, B1 = 0, C1 =

−l
6
, D1 = 0

A2 =
l

10
, B2 = 0, C2 =

−l
10
, D2 = 0

An =
l

2(2n+ 1)
, Bn = 0, Cn =

−l
2(2n+ 1)

, Dn = 0, n ≥ 1
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For simplicity, we may write equation(3.25) in the form [17,44]

∫ x

0

ψ(t) dt ' Pψ(x) (3.26)

Where ψ has the form

ψ(x) =

[
ψ0, ψ1, ψ2, · · · , ψN

]T
. (3.27)

The matrix P is an (N +1)× (N +1) matrix which is called the integration operational

matrix of one-dimensional shifted Legendre polynomials and has the following form

[38,44,45]

P =



Bo Ao 0 0 ... 0 0 0

D1 + C1 B1 A1 0 ... 0 0 0

D2 C2 B2 A2 ... 0 0 0

...
...

. . . . . . . . .
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...
...

. . . . . . . . .
...

Dn−2 0 0 0 ... Cn−2 Bn−2 An−2

Dn−1 0 0 0 ... 0 Cn−1 Bn−1



=
l

2



1 1 0 0 ... 0 0 0

−1
3

0 1
3

0 ... 0 0 0

0 −1
5

0 1
5

... 0 0 0

...
...

. . . . . . . . .
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...
...

. . . . . . . . .
...

0 0 0 0 ... −1
2N−1 0 1

2N−1

0 0 0 0 ... 0 −1
2N+1

0



Thus, it is shown that any arbitrary signal can be approximated as a series of
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orhogonal functions. If the number of terms in the series is finite, then the integral

of the square of the error is a minimum in the approximation. The polynomial ψn(x)

of degree n in any system of orthogonal polynomials can be generated by solving a

differential equation of order (2m+ 1). Fortunately, a three-term recurrence formula is

available by menas of which the orthogonal polynomials in any system can be gener-

ated recursively, or consequently, one should not go for the solution of the differential

equation. By choosing the weighting-function w(x) and the interval [0, l], any syestem

of orthogonal polynomials, e.g, Legendre, Laguerre, Hermite can be generated. Each of

these orthgonoal polynomials is shown to satisfy a differential equation and an ordinary

differential recurrence relation, the latter is found to be useful in the derivation of the

integration operational matrix. [14]

3.4 The product operational matrix

The aim of this section is to compute the product of ψ(x) and ψT (x), and put the result

in a compact form. This result will be needed for further computations in this work.

Now, let C =

[
C0, C1, C2, · · · , CN

]T
and from equation (3.27) we have [24,42]

ψ(x)ψT (x)C =



ψ0

ψ1

...

ψN


[
ψ0 ψ1 · · · ψN

]


C0

C1

...

CN



=



ψ0ψ0 ψ0ψ1 · · · ψ0ψN

ψ1ψ0 ψ1ψ1 · · · ψ1ψN
...

...
. . .

...

ψNψ0 ψNψ1 · · · ψNψN





C0

C1

...

CN


.

Simply, the last matrix can be written as follows:
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ψ(x)ψT (x)C =



∑N
j=0Cjψjψ0∑N
j=0Cjψjψ1

...∑N
j=0CjψjψN


(3.28)

Now, let

ψi(x)ψj(x) =

i+j∑
k=0

aijkψk(x). (3.29)

From the orthogonality property, the coefficients aijk can be computed using the formula

below.

aijn =

(
2n+ 1

l

)∫ l

0

ψi(x)ψj(x)ψn(x) dx, i, j, n = 0, 1, · · · , N (3.30)

Also, we let wijn =
∫ l
0
ψi(x)ψj(x)ψn(x) dx, then aijn = 2n+1

l
wijn Therefore, equa-

tion(3.29) becomes [38]

ψi(x)ψj(x) '
N∑
n=0

(
2n+ 1

l

)
wijnψn(x) (3.31)

Now, plug equation(3.31) into equation(3.28) to get:

ψ(x)ψT (x)C '



∑N
j=0

∑N
n=0Cj

(
2n+1
l

)
wojnψn(x)∑N

j=0

∑N
n=0Cj

(
2n+1
l

)
w1jnψn(x)

...∑N
j=0

∑N
n=0Cj

(
2n+1
l

)
wNjnψn(x)


Note that winj = wijn. Replace n by j, and j by n and gathering similar terms to reach

the desired form:

ψ(x)ψT (x)C ' C̃ψ(x) (3.32)

, where C̃ is a (N + 1)× (N + 1) product operational matrix
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C̃ =



C̃00 C̃01 C̃02 · · · C̃0N

C̃10 C̃11 C̃12 · · · C̃1N

...
...

. . .
...

C̃N0 C̃N1 C̃N2 · · · C̃NN


And, each element in C̃ can be obtained as follows [32]

C̃i,j =

(
2j + 1

l

) N∑
n=0

wijnCn, i, j, n = 0, 1, · · · , N (3.33)

Finally, before moving to the method of solution, let us introduce the following result.

Lemma 3.2 For an (N + 1)× (N + 1) matrix B, we have

ψT (x)Bψ(x) ' B̂ψ(x), (3.34)

where

B =



b00 b01 b02 · · · b0N

b10 b11 b12 · · · b1N
...

...
... · · · ...

bN0 bN1 bN2 · · · bNN


And B̂ is a 1× (N + 1) vector defined as [42, 45] B̂ =

[
B0 B1 · · · BN

]
with

Bn =
2n+ 1

l

N∑
i=0

N∑
r=0

wirnbir
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Proof:

ψT (x)Bψ(x) =
N∑
j=0

b0jψ0ψj +
N∑
j=0

b1jψ1ψj + ...+
N∑
j=0

bNjψNψj

According to equation (3.31), we get:

ψT (x)Bψ(x) '
N∑
n=0

N∑
j=0

(2n+ 1

l

)
b0jw0jnψn(x) +

N∑
n=0

N∑
j=0

(2n+ 1

l

)
b1jw1jnψn(x)

+ ...+
N∑
n=0

N∑
j=0

(2n+ 1

l

)
bNjwNjnψn(x)

When removing these totals and gathering some similar terms to some properties, we

get the following figure:

ψT (x)Bψ(x) '
N∑
j=0

(2(0) + 1

l

)
b0jw0j0ψ0(x) +

N∑
j=0

(2(1) + 1

l

)
b0jw0j1ψ1(x)

+ ...+
N∑
j=0

(2(N) + 1

l

)
b0jw0jNψN(x) +

N∑
j=0

(2(0) + 1

l

)
b1jw1j0ψ0(x)

+
N∑
j=0

(2(1) + 1

l

)
b1jw1j1ψ1(x) + ...+

N∑
j=0

(2(N) + 1

l

)
b1jw1jNψN(x)

+ ...+
N∑
j=0

(2(0) + 1

l

)
bNjwNj0ψ0(x) +

N∑
j=0

(2(1) + 1

l

)
bNjwNj1ψ1(x)

+ ...+
N∑
j=0

(2(N) + 1

l

)
bNjwNjNψN(x)

ψT (x)Bψ(x) '
N∑
i=0

N∑
j=0

(2(0) + 1

l

)
bijwij0ψ0(x) +

N∑
i=0

N∑
j=0

(2(1) + 1

l

)
bijwij1ψ1(x)

+ ...+
N∑
i=0

N∑
j=0

(2(N) + 1

l

)
bijwijNψN(x)

= B0ψ0(x) +B1ψ1(x) + ...+BNψN(x)
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Therefore, [40]

ψT (x)Bψ(x) '
[
B0 B1 · · · BN

]


ψ0

ψ1

...

ψN


= B̂ψ(x) (3.35)

where Bn =
(
2n+1
l

)∑N
i=0

∑N
j=0 bijwijn. �

3.5 Method of solution

In this section, we present a numerical method to find an approximate solution to

the general problem(3.1) and conditions f(0) = 0, K(x, x) 6= 0, ∀x ∈ [0, l] which

corresponds with equation(3.4). We assume that the known functions in equation (3.1)

satisfy the conditions that this equation has a unique solution. [43] Now, using the way

mentioned previously, the functions up(x), F (x), and K1(x, t) can be approximated by

the bivariate shifted legendre polynomials as

up(x) ' CTψ(x) = ψT (x)C (3.36)

F (x) ' F Tψ(x) (3.37)

Where F T is an 1× (N + 1) matrix of constants

F T =

[
F0 F1 . . . FN

]
such that,

Fn =
< F (x), ψn(x) >

< ψn(x), ψn(x) >
=
(2n+ 1

l

) ∫ l

0

F (x)ψn(x)dx

K1(x, t) ' ψT (x)K1ψ(t) (3.38)
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Now, substituting equations(3.36),(3.37) and (3.38) in equation(3.4), this yiels to:

CTψ(x) =

∫ x

0

ψT (x)K1ψ(t)ψT (t)C dt+ F Tψ(x)

Using equation (3.32) to get:

CTψ(x) = ψT (x)K1

∫ x

0

C̃ψ(t) dt+ F Tψ(x)

= ψT (x)K1C̃

∫ x

0

ψ(t) dt+ F Tψ(x)

Depending on equation (3.26) to have:

CTψ(x) = ψT (x)K1C̃Pψ(x) + F Tψ(x)

= ψT (x)Bψ(x) + F Tψ(x), sinceB = K1C̃P

(3.39)

Then, by applying result(3.35) we may have

CTψ(x) =

(
B̂ + F T

)
ψ(x) (3.40)

Hence we have:

CT = B̂ + F T (3.41)

Which corresponds with a system of linear algebriac equations in terms of the unknown

elements of the vector C and can be solved easily using direct methods. The unknown

function u(x) can be approximated in terms of the bivariate shifted legendre polynomials

as

u(x) ' ATψ(x) (3.42)

Such that, the entries of the vector A are unknown. Using equation(3.32) and (3.42) it
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is easily obtained such that

up(x) ' AT Ãp−1ψ(x) (3.43)

Finally, using up(x) ' CTψ(x) and the result(3.43) we get

CT = AT Ãp−1 (3.44)

Equation(3.44) forms a system of (N + 1) nonlinear equations which can be solved for

elements of A using numerical methods such as Newton’s iterative method.

The result(3.43) can be proved by induction that, ∀k ∈ Z+,

By using the result(3.32) and replace C by A we get

ψ(x)ψT (x)A ' Ãψ(x) (3.45)

Take the transpose of both sides of equation(3.45) this yields to

ATψ(x)ψT (x) ' ψT (x)ÃT

Now, [44] apply result(3.42) with p = 1 we get

u1(x) ' AT Ã0ψ(x)

for p = 2,

u2(x) = u1(x)u1(x) ' ATψ(x)ψT (x)A

u2(x) ' AT Ã1ψ(x)
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for p = 3,

u3(x) = u2(x)u1(x) ' AT Ãψ(x)(ψT (x)A) ' AT ÃÃψ(x)

u3(x) ' AT Ã2ψ(x)

for p = 4,

u4(x) = u3(x)u1(x) ' AT Ã2ψ(x)ψT (x)A ' AT Ã2Ãψ(x)

u4(x) ' AT Ã3ψ(x)

Let k ∈ Z+ be given and suppose equation(3.43) is true for p = k. Then

uk+1(x) = uk(x)u1(x) ' AT Ãk−1ψ(x)ψT (x)A ' AT Ãk−1Ãψ(x)

uk+1(x) ' AT Ãkψ(x)

Thus, equation(3.43) holds for p = k+1, and the proof of the induction step is complete.

3.6 Numerical Examples

In this section, some examples are presented to show the reliability of this method. In

order to show the error of the method, the following notation is introduced:

eN(x) = |u(x)− uN(x)|, x ∈ [0, l]

where u(x) is the exact solution, and uN(x) is the computed result with N .

To solve the examples, we consider N or and Newton’s method is used for solving

the nonlinear system. The initial guess in Newton’s method is for these examples is

considered to be Ao = C, but the number of iterations can be reduced by choosing a

more closed Ao to the exact solution.
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Example 3.1 [53] Consider the following Volterra integral equation of the first kind:

1

12
x4 +

1

3
x3 =

∫ x

0

(x− t+ 1)u2(t)dt, x ∈ [0, 1]

With the exact solution u(x) = ±x.

The following tables show the exact solution, the approximate solution, and the absolute

error at N = 1, 3, 5 at some selected grid points.

Tab. 3.1: Exact and numerical solutions at N = 1

x Exact Approximation Error

0 0 0.025419692516970 2.541969251697000× 10−2

0.1 0.1 0.121318940774885 2.131894077488500× 10−2

0.2 0.2 0.217218189032801 1.721818903280100× 10−2

0.3 0.3 0.313117443729071 1.311744372907100× 10−2

0.4 0.4 0.409016685548632 9.016685548632000× 10−3

0.5 0.5 0.504915933806547 4.915933806546980× 10−3

0.6 0.6 0.600815182064462 8.151820644620720× 10−4

0.7 0.7 0.696714430322378 3.285569677621950× 10−3

0.8 0.8 0.792613678580294 7.386321419706080× 10−3

0.9 0.9 0.888512926838209 1.148707316179100× 10−2

1 1 0.984412175096124 1.558782490387600× 10−2
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Tab. 3.2: Exact and numerical solutions at N = 3

x Exact Approximation Error

0 0 1.524833089100301× 10−2 1.524833× 10−4

0.1 0.1 0.100120404160429 1.204042× 10−4

0.2 0.2 0.200085631630599 8.563163× 10−5

0.3 0.3 0.300051530302498 5.153030× 10−5

0.4 0.4 0.400021464759206 2.146476× 10−5

0.5 0.5 0.499998799583798 1.200416× 10−6

0.6 0.6 0.599986899359354 1.310064× 10−5

0.7 0.7 0.699989128668951 1.087133× 10−5

0.8 0.8 0.800008852095667 8.852096× 10−6

0.9 0.9 0.900049434222581 4.943422× 10−5

1 1 1.000114239632770 1.142396× 10−4

Tab. 3.3: Exact and numerical solutions at N = 5

x Exact Approximation Error

0 0 1.977581646955672× 10−12 1.98× 10−12

0.1 0.1 0.100000000000369 3.68997× 10−13

0.2 0.2 0.199999999999915 8.50153× 10−14

0.3 0.3 0.299999999999992 7.99361× 10−15

0.4 0.4 0.400000000000021 2.09832× 10−14

0.5 0.5 0.500000000000049 4.89608× 10−14

0.6 0.6 0.600000000000008 7.99361× 10−15

0.7 0.7 0.699999999999966 3.39728× 10−14

0.8 0.8 0.799999999999984 1.60982× 10−14

0.9 0.9 0.900000000000034 3.39728× 10−14

1 1 0.999999999999922 7.80487× 10−14
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(a) N =1 (b) N=3

(c) N =5

Fig. 3.1: The values of N versus absolute error at different x values

Example 3.2

1

2
e3x − 1

2
e2x =

∫ x

0

ex−tu3(t)dt, x ∈ [0, 2]

The exact solution is u(x) = ex.

The Numerical results are given in the following tables and graphs.

The following tables show the exact solution, the approximate solution, and the absolute

error at M,N = 4, 6, 8 at some selected grid points.
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Tab. 3.4: Exact and numerical solutions at N = 4

x Exact Approximation Error

0 1 1.00358953 3.589530× 10−3

0.2 1.22140276 1.21014893 1.125383× 10−2

0.4 1.49182470 1.48448371 7.340990× 10−3

0.6 1.82211880 1.82422027 2.101470× 10−3

0.8 2.22554093 2.23446707 8.926140× 10−3

1 2.71828183 2.72781471 9.532880× 10−3

1.2 3.32011692 3.32433586 4.218940× 10−3

1.4 4.05519997 4.05158527 3.614700× 10−3

1.6 4.95303242 4.94459981 8.432610× 10−3

1.8 6.04964746 6.04589843 3.749030× 10−3

2 7.38905610 7.40548216 1.642606× 10−2

Tab. 3.5: Exact and numerical solutions at N = 6

x Exact Approximation Error

0 1 0.99936305 6.3695× 10−4

0.2 1.22140276 1.22149906 9.6300× 10−5

0.4 1.49182470 1.49217374 3.4904× 10−4

0.6 1.82211880 1.82221005 9.1250× 10−5

0.8 2.22554093 2.22531469 2.2624× 10−4

1 2.71828183 2.71803051 2.5132× 10−4

1.2 3.32011692 3.32012861 1.1690× 10−5

1.4 4.05519997 4.05544002 2.4005× 10−4

1.6 4.95303242 4.95312701 9.4590× 10−5

1.8 6.04964746 6.04939404 2.5342× 10−4

2 7.38905610 7.38963828 5.8218× 10−4
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Tab. 3.6: Exact and numerical solutions at N = 8

x Exact Approximation Error

0 1 0.99996857 3.1430× 10−5

0.2 1.22140276 1.22141358 1.0820× 10−5

0.4 1.49182470 1.49181892 5.7800× 10−6

0.6 1.82211880 1.82211355 5.2500× 10−6

0.8 2.22554093 2.22554537 4.4400× 10−6

1 2.71828183 2.71828625 4.4200× 10−6

1.2 3.32011692 3.32011371 3.2100× 10−6

1.4 4.05519997 4.05519641 3.5600× 10−6

1.6 4.95303242 4.95303637 3.9500× 10−6

1.8 6.04964746 6.04964654 9.2000× 10−7

2 7.38905610 7.38906814 1.2040× 10−6

(a) N =4 (b) N=6

(c) N =8

Fig. 3.2: The values of N versus absolute error at different x values
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Chapter 4

Two-Dimensional Nonlinear Volterra Integral

Equation

In this chapter, a numerical method for the solution of nonlinear two- dimensional

Volterra integral equation of the first kind (4.1)is presented.

∫ t

0

∫ x

0

K(x, t, y, z)up(y, z)dydz = f(x, t), x, y ∈ [0, l], t, z ∈ [0, T ] (4.1)

(x, t) ∈ Ω, and Ω = [0, l]× [0, T ].

where u(x, t) is an unlnown function called the solution of the integral equation, p is a

positive integer number, K is the Kernel function, and f is a smooth function.

such that the following conditions are satisfied [40,42]:

f(x, 0) = 0,∀x ∈ [0, l] (4.2)

f(0, t) = 0,∀t ∈ [0, T ] (4.3)

K(x, t, x, t) 6= 0, ∀(x, t) ∈ Ω. (4.4)

Integral equations of the first kind are in herently ill-posed problems. To overcome the

ill-posedness, we transform nonlinear of the first kind with conditions to a nonlinear of
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the second kind by differentiating equation 4.1 with respect to t and x :

d

dx

[
d

dt

[ ∫ t

0

∫ x

0

K(x, t, y, z)up(y, z)dydz = f(x, t)
]]
.

Using Leibniz integral rule:

d2f(x, t)

dxdt
=

d

dx

[
d

dt

∫ t

0

( ∫ x

0

K(x, t, y, z)up(y, z)dy
)
dz

]
=

∫ t

0

∫ x

0

d2

dxdt
K(x, t, y, z)up(y, z)dydz +

∫ x

0

d

dx
K(x, t, y, t)up(y, t)dy

+

∫ t

0

d

dt
K(x, t, x, z)up(x, z)dz +K(x, t, x, t)up(x, t) (4.5)

From equation 4.5 the function up(x, t) has the form:

up(x, t) =

∫ t

0

∫ x

0

K1(x, t, y, z)up(y, z)dydz +

∫ x

0

K2(x, t, y)up(y, t)dy

+

∫ t

0

K3(x, t, z)up(x, z)dz + F (x, t) (4.6)

where:

K1(x, t, y, z) = −
[ d2

dxdt
K(x, t, y, z)

]
/K(x, t, x, t)

K2(x, t, y) = −
[ d
dx
K(x, t, y, t)

]
/K(x, t, x, t)

K3(x, t, z) = −
[ d
dt
K(x, t, x, z)

]
/K(x, t, x, t)

F (x, t) =
[ d2

dxdt
f(x, t)

]
/K(x, t, x, t)

The nonlinear of the second kind will be solved using the bivariate shifted Legendre

functions. The obtained solution will be the solution of the nonlinear 2D- VIE of the

first kind. Therefore, we need first to introduce the shifted Legendre functions.

Definition 4.1 [39,40,42] (Two- dimensional Shifted Legendre Functions) The shifted
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Legendre function are defined on Ω as:

ψmn(x, t) = Lm(
2

l
x− 1)Ln(

2

T
t− 1)

ψmn(x, t) = Pm(x)Pn(t) = ψm(x)ψn(t)

where m = 0, 1, ...,M , n = 0, 1, ..., N .

The two-dimensional shifted Legendre polynomials are orthogonal with respect to the

weight function w(x, t) = 1 such that:

∫ T

0

∫ l

0

w(x, t)ψmn(x, t)ψij(x, t)dxdt =


(

l
2m+1

) (
T

2n+1

)
if i = m, j = n

0 otherwise

Here Lm and Ln are the well- known Legendre polynomials respectively of order m, and

n which are defined on the interval [-1, 1] and satisfy the following recursive formula:

Ln+1(t) =
2n+ 1

n+ 1
tLn(t)− n

n+ 1
Ln−1(t), n = 1, 2, ...

where Lo(t) = 1, and L1(t) = t.

The shifted Legendre polynomials are defined on the interval [0, s] as [15]:

Pm+1(x) =

(
2m+ 1

m+ 1

)(
2

s
x− 1

)
Pm(x)−

(
m

m+ 1

)
Pm−1(x)

where P0(x) = 1, P1(x) = 2
s
x− 1, Pm(x) = Lm

(
2
s
x− 1

)
, and m = 1, 2, ....
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4.1 Function Approximation with Shifted Legendre Function

A function f(x, t) ∈ L2(Ω) can be expanded by the shifted Legendre functions series as

follows [33,39,41]:

f(x, t) =
∞∑
m=0

∞∑
n=0

Cmnψmn(x, t) (4.7)

where Cmn are constants given by:

Cmn =
< f(x, t), ψmn(x, t) >

< ψmn(x, t), ψmn(x, t) >

The inner product in the space L2(Ω) is defined by:

< f(x, t), ψmn(x, t) >=

∫ T

0

∫ l

0

f(x, t)ψmn(x, t)dxdt

and the norm is defined as follows:

||ψmn(x, t)||2 =

(
< ψmn(x, t), ψmn(x, t) >

) 1
2

=

(∫ T

0

∫ l

0

|ψmn(x, t)|2dxdt
) 1

2

, ∀ ψmn(x, t) ∈ L2(Ω)

If the infinite series in equation 4.7 is truncated up to terms N and M , then we may

approximate f(x, t) in 4.7 as follows [39]:

fMN(x, t) =
M∑
m=0

N∑
n=0

Cmnψmn(x, t) = CTψ(x, t)

f(x, t) ' CTψ(x, t) (4.8)

where C and ψ(x, t) are (M + 1)(N + 1)× 1 vectors given by:

C =

[
C00 C01 ... C0N , C10 C11 ... C1N , ...., CM0 CM1 ...CMN

]T
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ψ(x, t) =

[
ψ00 ψ01 ... ψ0N , ψ10 ψ11 ... ψ1N , ...., ψM0 ψM1 ...ψMN

]T
(4.9)

Now,

< f(x, t), ψmn(x, t) > = <
∞∑
i=0

∞∑
j=0

Cijψij(x, t), ψmn(x, t) >

= Cmn < ψmn(x, t), ψmn(x, t) >

Therefore:

Cmn =
(2m+ 1

l

)(2n+ 1

T

) ∫ T

0

∫ l

0

f(x, t)ψmn(x, t)dxdt

4.2 approximating the Kernel Function with Shifted

Legendre functions

The Kernel K(x, t, y, z) [41, 42] can be approximated as:

K(x, t, y, z) ' ψT (x, t)Kψ(y, z)

where K(x, t, y, z) is an L2(Ω× Ω) function, and K is

an (M + 1)(N + 1)× (M + 1)(N + 1) block matrices of the form K = [K(i,m)]Mi,m=0, and

K(i,m) = [Kijmn]Nj,n=0, i,m = 0, 1, ...,M

Kijmn = H

∫ T

0

∫ l

0

[ ∫ T

0

∫ l

0

K(x, t, y, z)ψmn(y, z)dydz

]
ψij(x, t)dxdt

H =
(2i+ 1)(2j + 1)(2m+ 1)(2n+ 1)

l2T 2
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The derivation of Kijmn can be obtained for every K(x, t, y, z) ∈ L2(Ω×Ω) as follows:

K(x, t, y, z) =
∞∑
i=0

∞∑
j=0

∞∑
m=0

∞∑
n=0

ψij(x, t)Kijmnψmn(y, z) (4.10)

where

Kijmn =
<< K(x, t, y, z), ψmn(y, z) >,ψij(x, t) >

< ψij(x, t), ψij(x, t) >< ψmn(y, z), ψmn(y, z) >

Kijmn can be calculated through the following expansions [24,45] .

<< K(x, t, y, z), ψmn(y, z) >,ψij(x, t) >

= <<
∞∑
a=0

∞∑
b=0

∞∑
r=0

∞∑
s=0

ψab(x, t)Kabrsψrs(y, z), ψmn(y, z) >,ψij(x, t) >

= <
∞∑
a=0

∞∑
b=0

ψab(x, t)Kabmn < ψmn(y, z), ψmn(y, z) >,ψij(x, t) >

= <
∞∑
a=0

∞∑
b=0

ψab(x, t)Kabmn||ψmn(y, x)||22, ψij(x, t) >

= Kijmn||ψmn(y, z)||22 < ψij(x, t), ψij(x, t) >

= Kijmn||ψmn(y, z)||22||ψij(x, t)||22

Solving the previous equation for Kijmn to get [39]:

Kijmn =
<< K(x, t, y, z), ψmn(y, z) >,ψij(x, t) >

||ψmn(y, z)||22||ψij(x, t)||22

Therefore:

Kijmn = H

∫ T

0

∫ l

0

[ ∫ T

0

∫ l

0

K(x, t, y, z)ψmn(y, z)dydz

]
ψij(x, t)dxdt

H =
(2i+ 1)(2j + 1)(2m+ 1)(2n+ 1)

l2T 2
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If the infinite series 4.10 is truncated, then it can be written as:

K(x, t, y, z) '
M∑
i=0

N∑
j=0

M∑
m=0

N∑
n=0

ψij(x, t)Kijmnψmn(y, z) = ψT (x, t)Kψ(y, z)

where i,m = 0, 1, ..., N , and j, n = 0, 1, ..., N .

Similarly, any function K1 in L2(Ω×Ω), K2 in L2(Ω× [0, l]), and K3 in L2(Ω× [0, T ])

can be expanded in terms of bivariate shifted Legendre functions respectively as:

K1(x, t, y, z) ' ψT( x, t)K1ψ(y, z)

K2(x, t, y) ' ψT( x, t)K2ψ(y, t)

K3(x, t, z) ' ψT( x, t)K3ψ(x, z)

where K1, K2, and K3 are (M + 1)(N + 1)× (M + 1)(N + 1) of the form

Kq = [K
(i,m)
q ]Mi,m=0, K

(i,m)
q = [Kq

ijmn]Nj,n=0, i,m = 0, 1, ...,M , and q = 1, 2, 3.

Legendre coefficients Kq
ijmn, q = 1, 2, 3 are given by:

K1
ijmn =

<< K1(x, t, y, z), ψmn(y, z) >,ψij(x, t) >

||ψmn(y, z)||22||ψij(x, t)||22

= H

∫ T

0

∫ l

0

[ ∫ T

0

∫ l

0

K1(x, t, y, z)ψmn(y, z)dydz

]
ψij(x, t)dxdt

K2
ijmn =

<< K2(x, t, y), ψmn(y, t) >,ψij(x, t) >

||ψmn(y, t)||22||ψij(x, t)||22

= H

∫ T

0

∫ l

0

[ ∫ T

0

∫ l

0

K2(x, t, y)ψmn(y, t)dydt

]
ψij(x, t)dxdt

K3
ijmn =

<< K3(x, t, z), ψmn(x, z) >,ψij(x, t) >

||ψmn(x, z)||22||ψij(x, t)||22

= H

∫ T

0

∫ l

0

[ ∫ T

0

∫ l

0

K3(x, t, z)ψmn(x, z)dxdz

]
ψij(x, t)dxdt
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where i,m = 0, 1, ...,M , j, n = 0, 1, ..., N .

K =



K0000 K0001 ... K000N K00M0 K00M1 ... K00MN

K0100 K0101 ... K010N , ..., K01M0 K01M1 ... K01MN

...
...

. . .
...

...
...

. . .
...

K0N00 K0N01 ... K0N0N K0NM0 K0NM1 ... K0NMN

...
. . .

...

KM000 KM001 ... KM00N KM0M0 KM0M1 ... KM0MN

KM100 KM101 ... KM10N , ..., KM1M0 KM1M1 ... KM1MN

...
...

. . .
...

...
...

. . .
...

KMN00 KMN01 ... KMN0N KMNM0 KMNM1 ... KMNMN


The matrices Kq, q = 1, 2, 3 can be derived by Replacing the coefficients Kijmn by

Kq
ijmn,

4.3 Integration Operational Matrix

The integration of the vector ψ(x, t) defined by 4.9 approximately obtained as:

∫ t

0

∫ x

0

ψ(y, z)dydz ' Q1ψ(x, t) (4.11)∫ x

0

ψ(y, t)dy ' Q2ψ(x, t) (4.12)∫ t

0

ψ(x, z)dz ' Q3ψ(x, t) (4.13)

where x ∈ [0, l], t ∈ [0, T ], Q1, Q2, and Q3 are (M + 1)(N + 1) × (M + 1)(N + 1)

operational matrices of integration [18] which are introduced respectively as:

Q1 = P1 ⊗ P2

Q2 = P1 ⊗ I2

Q3 = I1 ⊗ P2
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where I1, I2 are identity matrices of size M + 1, N + 1 respectively. P1, and P2

are the operational matrices of one dimension shifted Legendre polynomials defined

respectively on [0, l], [0, T ] as follows [15,17,45]:

Pq =
z

2



1 1 0 0 ... 0 0 0

−1
3

0 1
3

0 ... 0 0 0

0 −1
5

0 1
5

... 0 0 0

...
...

. . . . . . . . .
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...
...

. . . . . . . . .
...

0 0 0 0 ... −1
2h−1 0 1

2h−1

0 0 0 0 ... 0 −1
2h+1

0


Where q = 1, 2

and z = l, T

and h = M,N

P1 =



B0 A0 0 0 ... 0 0 0

D1 + C1 B1 A1 0 ... 0 0 0

D2 C2 B2 A2 ... 0 0 0

...
...

. . . . . . . . .
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...
...

. . . . . . . . .
...

Dm−2 0 0 0 ... Cm−2 Bm−2 Am−2

Dm−1 0 0 0 ... 0 Cm−1 Bm−1


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where,

A0 =
l

2
, B0 =

l

2
, C0 = 0, D0 = 0

A1 =
l

6
, B1 = 0, C1 =

−l
6
, D1 = 0

A2 =
l

10
, B2 = 0, C2 =

−l
10
, D2 = 0

...

Am =
l

2(2m+ 1)
, Bm = 0, Cm =

−l
2(2m+ 1)

, Dm = 0, m ≥ 1

P2 =



b0 a0 0 0 ... 0 0 0

d1 + c1 b1 a1 0 ... 0 0 0

d2 c2 b2 a2 ... 0 0 0

...
...

. . . . . . . . .
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...
...

. . . . . . . . .
...

dn−2 0 0 0 ... cn−2 bn−2 an−2

dn−1 0 0 0 ... 0 cn−1 bn−1


where,

a0 =
T

2
, b0 =

T

2
, c0 = 0, d0 = 0

a1 =
T

6
, b1 = 0, c1 =

−T
6
, d1 = 0

a2 =
T

10
, b2 = 0, c2 =

−T
10

, d2 = 0

...

an =
T

2(2n+ 1)
, bn = 0, Cn =

−T
2(2n+ 1)

, dn = 0, n ≥ 1

Now, we are going to prove equations 4.11-4.13
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Proof: Using the equations 3.24 that we reached previously in chapter three

ψm(y) = Amψ̇m+1(y) +Bmψ̇m(y) + Cmψ̇m−1(y) (4.14)

Multiply both sides of the equation 4.14 by ψn(t) then we get:

ψmn(y, t) = Amnψ̇m+1,n(y, t) +Bmnψ̇m,n(y, t) + Cmnψ̇m−1,n(y, t) (4.15)

The coefficients Amn, Bmn, and Cmn can be evaluated by integrating the recurrence

relation 4.15 with respect to y from 0 to x

∫ x

0

ψmn(y, t)dy = Amnψm+1,n(x, t) +Bmnψm,n(x, t) + Cmnψm−1,n(x, t)

+ Dmnψ00(x, t) (4.16)

Then, substitute m = 0, 1...,M , and n = 0, 1, ..., N in equation 4.16 to get:

A0n =
l

2
, B0n =

l

2
, C0n = 0, D0n = 0, n = 0, 1, ..., N

A1n =
l

6
, B1n = 0, C1n =

−l
6
, D1n = 0, n = 0, 1, ..., N

...

Amn =
l

2(2m+ 1)
, Bmn = 0, Cmn =

−l
2(2m+ 1)

, Dmn = 0, n = 0, 1, ..., N, m ≥ 1

For simplicity, we may write eqution 4.16 in the form:

∫ x

0

ψ(y, t)dy ' Q2ψ(x, t)

Where

ψ(x, t) =

[
ψ00 ψ01 ... ψ0N , ψ10 ψ11 ... ψ1N , ...., ψM0 ψM1 ...ψMN

]T
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and Q2 is an (M + 1)(N + 1)× (M + 1)(N + 1) integration operational matrix of 2D

shifted Legendre functions having the form:

Q2 =



B̄0 Ā0 O O . . . O O O

D̄1 + C̄1 B̄1 Ā1 O . . . O O O

D̄2 C̄2 B̄2 Ā2 . . . O O O

D̄3 O C̄3 B̄3 Ā3 . . . O O

D̄4 O O C̄4 B̄4 Ā4 . . . O

...
...

...
...

. . . . . . . . .
...

D̄m−2 O O O . . . C̄m−2 B̄m−2 Ām−2

D̄m−1 O O O . . . O C̄m−1 B̄m−1


where,

Āk = diag(Ak0, ..., Ak,n−1), k = 0, 1, ...,m− 2

B̄k = diag(Bk0, ..., Bk,n−1), k = 0, 1, ...,m− 1

C̄k = diag(Ck0, ..., Ck,n−1), k = 1, 2, ...,m− 1

D̄k = diag(Dk0, ..., Ck,n−1), k = 1, 2, ...,m− 1

Note that the matrix Q2 has the following form:

Q2 =



B0I2 A0I2 O O . . . O O O

(D1 + C1)I2 B1I2 A1I2 O . . . O O O

D2I2 C2I2 B2I2 A2I2 . . . O O O

D3I2 O C3I2 B3I2 A3I2 . . . O O

D4I2 O O C4I2 B4I2 A4I2 . . . O

...
...

...
...

. . . . . . . . .
...

Dm−2I2 O O O . . . Cm−2I2 Bm−2I2 Am−2I2

Dm−1I2 O O O . . . O Cm−1I2 Bm−1I2


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Finally, Q2 can be written as:

Q2 = P1 ⊗ I2

where I2 is the identity matrix of order N + 1, and O is a square zero matrix of order

N + 1.

it is clear that:

A0n = A0 =
l

2
, B0n = B0 =

l

2
, C0n = C0 = 0, D0n = D0 = 0, n = 0, 1, ..., N

A1n = A1 =
l

6
, B1nB1 = 0, C1n = C1 =

−l
6
, D1n = D1 = 0, n = 0, 1, ..., N

...

Amn = Am =
l

2(2m+ 1)
, Bmn = Bm = 0, Cmn = Cm =

−l
2(2m+ 1)

,

Dmn = Dm = 0, n = 0, 1, ..., N, m ≥ 1

to prove that Q3 = I1 ⊗ P2, use the equation 3.24 that we reached previously in

chapter three, which is as follows:

ψn(z) = anψ̇n+1(z) + bnψ̇n(z) + cnψ̇n−1(z) (4.17)

Multiply both sides of the previous equation by ψm(x) to get:

ψmn(x, z) = amnψ̇m,n+1(x, z) + bmnψ̇m,n(x, z) + cmnψ̇m,n−1(x, z) (4.18)

The coefficients amn, bmn, and cmn can be evaluated by integrating the recurence the

relation 4.18 with respect to z from 0 to t as follows:

∫ t

0

ψmn(x, z)dz = amnψm,n+1(x, t) + bmnψm,n(x, t) + cmnψm,n−1(x, t)

+ dmnψ0,0(x, t) (4.19)
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Then, after substituting m = 0, 1...,M , and n = 0, 1, ..., N in equation 4.19 we can get:

am0 =
T

2
, bm0 =

T

2
, cm0 = 0, dm0 = 0, m = 0, 1, ...,M

am1 =
T

6
, bm1 = 0, cm1 =

−T
6
, dm1 = 0, m = 0, 1, ...,M

...

amn =
T

2(2n+ 1)
, bmn = 0, cmn =

−T
2(2n+ 1)

, dmn = 0, m = 0, 1, ...,M, n ≥ 1

For simplicity, we may write eqution 4.19 in the form:

∫ t

0

ψ(x, z)dz ' Q3ψ(x, t)

where

ψ(x, t) =

[
ψ00 ψ01 ... ψ0N , ψ10 ψ11 ... ψ1N , ...., ψM0 ψM1 ...ψMN

]T

and Q3 is an (M + 1)(N + 1) × (M + 1)(N + 1) operational matrix of integration for

two-dimensional shifted Legendre functions, such a matrix have the following form:

Q3 =



S0 0 . . . 0

0 S1 . . . 0

...
...

. . .
...

0 . . . 0 Sm−1


, Sk =



bk0 ak0 0 0 . . . 0 0 0

dk1 + ck1 bk1 ak1 0 . . . 0 0 0

dk2 ck2 bk2 ak2 . . . 0 0 0

dk3 0 ck3 bk3 ak3 . . . 0 0

dk4 0 0 ck4 bk4 ak4 . . . 0

...
...

...
...

. . . . . . . . .
...

dk,n−2 0 0 0 . . . ck,n−2 bk,n−2 ak,n−2

dk,n−1 0 0 0 . . . 0 ck,n−1 bk,n−1



,

k = 0, 1, ...,m− 1.
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We note that the entries of Sk are the same as the entries of the one dimensional

operational matrix. Therefore,

Q3 = diag(P2, ..., P2) = I1 ⊗ P2

Where I1 is the identity matrix of the order M + 1, and O is a zero square matrix of

order N + 1.

To prove that Q1 = P1 ⊗ P2, multiply equation 4.14by with Equation 4.17 to have

the following formula:

ψm(y)ψn(z) = (Amψ̇m+1(y)+Bmψ̇m(y)+Cmψ̇m−1(y))(anψ̇n+1(z)+bnψ̇n(z)+cnψ̇n−1(z))

(4.20)

After simplifying 4.20 and using the fact that ψn(z)ψm(y) = ψmn(y, z), and inte-

grating the resultant equation with respect to the variables z and y, the coefficients

Aamn, Abmn, Acmn, Bamn, Bbmn, Bcmn, Camn, Cbmn, and Ccmn can be calculated

using the equation:

∫ t

0

∫ x

0

ψmn(y, z)dydz = Aamnψm+1,n+1(x, t) + Abmnψm+1,n(x, t) + Acmnψm+1,n−1(x, t)

+ Bamnψm,n+1(x, t) +Bbmnψm,n(x, t) +Bcm,nψm,n−1(x, t)

+ Camnψm−1,n+1(x, t) + Cbmnψm−1,n(x, t) + Ccmnψm−1,n−1(x, t)

+ (Admn +Bdmn + Cdmn +Damn +Dbmn +Dcmn +Ddmn)ψ00(x, t)

(4.21)

Then, substitute m = 0, 1, ...M, and n = 0, 1, ..., N in equation 4.21 to get:

Aamn =
lT

4(2m+ 1)(2n+ 1)
,m = 0, 1, ...,M, n = 0, 1, ..., N,
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Abmn =


lT

4(2m+1)(2n+1)
if n = 0, m = 0, 1, ...,M

0 if n = 1, 2, ..., N m = 0, 1, ...,M

Acmn =


−lT

4(2m+1)(2n+1)
if n = 1, 2, ..., N, m = 0, 1, ...,M

0 if n = 0, m = 0, 1, ...,M

Bamn =


lT

4(2m+1)(2n+1)
if m = 0, n = 0, 1, ...N

0 if m = 1, 2, ...,M, n = 0, 1, ..., N

Bbmn =


lT

4(2m+1)(2n+1)
if m = 0, n = 0

0 if m = 1, 2, ...,M, or n = 1, 2, ..., N

Bcmn =



−lT
4(2m+1)(2n+1)

if m = 0, n = 1, 2, ..., N

0 if m = 1, 2, ...,M, n = 0, 1, ..., N

0 if m = 0, n = 0

Camn =


−lT

4(2m+1)(2n+1)
if m = 1, 2, ...,M, n = 0, 1, ..., N

0 if m = 0, n = 0, 1, ..., N

Cbmn =



−lT
4(2m+1)(2n+1)

if n = 0, m = 1, 2, ...,M

0 if n = 1, 2, ..., N, m = 0, 1, ...,M

0 if n = 0, m = 0

Ccmn =


lT

4(2m+1)(2n+1)
if m = 1, 2, ...,M, n = 1, 2, ..., N

0 if m = 0, or n = 0

Admn = Bdmn = Cdmn = Damn = Dbmn = Dcmn = Ddmn = 0 for

m = 0, 1, ...,M , n = 0, 1, ..., N .
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For simplicity, equation 4.21 can be written as follows:

∫ t

0

∫ x

0

ψ(y, z)dydz ' Q1ψ(x, t)

Where

ψ(x, t) =

[
ψ00 ψ01 ... ψ0N , ψ10 ψ11 ... ψ1N , ...., ψM0 ψM1 ...ψMN

]T

and Q1 is an (M + 1)(N + 1)× (M + 1)(N + 1) integration operational matrix of 2D

shifted Legendre functions having the form:

Q1 =



Bb0 Ab0 O O . . . O O O

Db1 + Cb1 Bb1 Ab1 O . . . O O O

Db2 Cb2 Bb2 Ab2 . . . O O O

Db3 O Cb3 Bb3 Ab3 . . . O O

Db4 O O Cb4 Bb4 Ab4 . . . O

...
...

...
...

. . . . . . . . .
...

Dbm−2 O O O . . . Cbm−2 Bbm−2 Abm−2

Dbm−1 O O O . . . O Cbm−1 Bbm−1


where,

Bbk =



Bbk0 Bak0 0 0 . . . 0 0 0

Bdk1 +Bck1 Bbk1 Bak1 0 . . . 0 0 0

Bdk2 Bck2 Bbk2 Bak2 . . . 0 0 0

Bdk3 0 Bck3 Bbk3 Bak3 . . . 0 0

Bdk4 0 0 Bck4 Bbk4 Bak4 . . . 0

...
...

...
...

. . . . . . . . .
...

Bdk,n−2 0 0 0 . . . Bck,n−2 Bbk,n−2 Bak,n−2

Bdk,n−1 0 0 0 . . . 0 Bck,n−1 Bbk,n−1



,
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k = 0, 1, ...,m− 1.

Bb0 =



lT
4

lT
4

0 0 . . . 0 0 0

−lT
12

0 lT
12

0 . . . 0 0 0

0 −lT
20

0 lT
20

. . . 0 0 0

0 0 −lT
28

0 lT
28

. . . 0 0

0 0 0 −lT
36

0 lT
36

. . . 0

...
...

...
...

. . . . . . . . .
...

0 0 0 0 . . . −lT
4(2(n−2)+1)

0 lT
4(2(n−2)+1)

0 0 0 0 . . . 0 −lT
4(2(n−1)+1)

0



,

Bbk = [O](N+1)(N+1), ∀k = 1, 2, ...,m− 1, and n = 0, 1, ..., N

Abk =



Abk0 Aak0 0 0 . . . 0 0 0

Adk1 + Ack1 Abk1 Aak1 0 . . . 0 0 0

Adk2 Ack2 Abk2 Aak2 . . . 0 0 0

Adk3 0 Ack3 Abk3 Aak3 . . . 0 0

Adk4 0 0 Ack4 Abk4 Aak4 . . . 0

...
...

...
...

. . . . . . . . .
...

Adk,n−2 0 0 0 . . . Ack,n−2 Abk,n−2 Aak,n−2

Adk,n−1 0 0 0 . . . 0 Ack,n−1 Abk,n−1



,

k = 0, 1, ...,m− 2.
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Abk =
1

2k + 1



lT
4

lT
4

0 0 . . . 0 0 0

−lT
12

0 lT
12

0 . . . 0 0 0

0 −lT
20

0 lT
20

. . . 0 0 0

0 0 −lT
28

0 lT
28

. . . 0 0

0 0 0 −lT
36

0 lT
36

. . . 0

...
...

...
...

. . . . . . . . .
...

0 0 0 0 . . . −lT
4(2(n−2)+1)

0 lT
4(2(n−2)+1)

0 0 0 0 . . . 0 −lT
4(2(n−1)+1)

0



,

k = 0, 1, ...,m− 2, and n = 0, 1, ..., N

Cbk =



Cbk0 Cak0 0 0 . . . 0 0 0

Cdk1 + Cck1 Cbk1 Cak1 0 . . . 0 0 0

Cdk2 Cck2 Cbk2 Cak2 . . . 0 0 0

Cdk3 0 Cck3 Cbk3 Cak3 . . . 0 0

Cdk4 0 0 Cck4 Cbk4 Cak4 . . . 0

...
...

...
...

. . . . . . . . .
...

Cdk,n−2 0 0 0 . . . Cck,n−2 Cbk,n−2 Cak,n−2

Cdk,n−1 0 0 0 . . . 0 Cck,n−1 Cbk,n−1



,
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Cbk =
1

2k + 1



−lT
4

−lT
4

0 0 . . . 0 0 0

lT
12

0 −lT
12

0 . . . 0 0 0

0 lT
20

0 −lT
20

. . . 0 0 0

0 0 lT
28

0 −lT
28

. . . 0 0

0 0 0 lT
36

0 −lT
36

. . . 0

...
...

...
...

. . . . . . . . .
...

0 0 0 0 . . . lT
4(2(n−2)+1)

0 −lT
4(2(n−2)+1)

0 0 0 0 . . . 0 lT
4(2(n−1)+1)

0



,

where k = 1, 2, ...,m− 1, and n = 0, 1, ..., N .

Dbk =



Dbk0 Dak0 0 0 . . . 0 0 0

Ddk1 +Dck1 Dbk1 Dak1 0 . . . 0 0 0

Ddk2 Dck2 Dbk2 Dak2 . . . 0 0 0

Ddk3 0 Dck3 Dbk3 Dak3 . . . 0 0

Ddk4 0 0 Bck4 Dbk4 Dak4 . . . 0

...
...

...
...

. . . . . . . . .
...

Ddk,n−2 0 0 0 . . . Dck,n−2 Dbk,n−2 Dak,n−2

Ddk,n−1 0 0 0 . . . 0 Dck,n−1 Dbk,n−1



,

k = 1, ...,m− 1, n = 0, 1, ..., N and Dbk = [O](N+1)(N+1).

�

4.4 The Product Operational Matrix

Let

C =

[
C00 C01 ... C0N , C10 C11 ... C1N , ...., CM0 CM1 ...CMN

]T
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, and

ψ(x, t) =

[
ψ00 ψ01 ... ψ0N , ψ10 ψ11 ... ψ1N , ...., ψM0 ψM1 ...ψMN

]T

Then,

ψ(x, t)ψT (x, t)C =



∑M
k=0

∑N
q=0Ckqψkqψ00∑M

k=0

∑N
q=0Ckqψkqψ01

...∑M
k=0

∑N
q=0Ckqψkqψ0N∑M

k=0

∑N
q=0Ckqψkqψ10∑M

k=0

∑N
q=0Ckqψkqψ11

...∑M
k=0

∑N
q=0Ckqψkqψ1N

...∑M
k=0

∑N
q=0CkqψkqψM0∑M

k=0

∑N
q=0CkqψkqψM1

...∑M
k=0

∑N
q=0CkqψkqψMN



(4.22)

Also, [38] ψij(x, t)ψkq(x, t) can be written as a linear combination of the two dimensional

shifted Legendre functions as follows:

ψij(x, t)ψkq(x, t) =
i+k∑
r=0

j+q∑
s=0

arsψrs(x, t) (4.23)

and from the orthogonality property, the coefficients amn can be evaluated as follows
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amn =
(2m+ 1)(2n+ 1)

lT

∫ T

0

∫ l

0

ψij(x, t)ψkq(x, t)ψmn(x, t)dxdt (4.24)

=
(2m+ 1)(2n+ 1)

lT

∫ l

0

ψi(x)ψk(x)ψm(x)dx

∫ T

0

ψj(t)ψq(t)ψn(t)dt.

Now let

wikm =

∫ l

0

ψi(x)ψk(x)ψm(x)dx

and

w′jqn =

∫ T

0

ψj(t)ψq(t)ψn(t)dt

, then from equations 4.23 and 4.24

ψij(x, t)ψkq(x, t) =
i+k∑
m=0

j+q∑
n=0

(2m+ 1)(2n+ 1)

lT
wikmw

′
jqnψmn(x, t). (4.25)

Hence from equations (4.22,4.23),and replacing the indices m by k and vice versa as

well as for q and n, [24, 38,39] we have

ψ(x, t)ψT (x, t)C '



∑M
m=0

∑N
n=0

∑M
k=0

∑N
q=0Cmn

(2k+1)(2q+1)
lT

w0kmw
′
0qnψkq(x, t)

...∑M
m=0

∑N
n=0

∑M
k=0

∑N
q=0Cmn

(2k+1)(2q+1)
lT

w0kmw
′
Nqnψkq(x, t)∑M

m=0

∑N
n=0

∑M
k=0

∑N
q=0Cmn

(2k+1)(2q+1)
lT

w1kmw
′
0qnψkq(x, t)

...∑M
m=0

∑N
n=0

∑M
k=0

∑N
q=0Cmn

(2k+1)(2q+1)
lT

w1kmw
′
Nqnψkq(x, t)

...∑M
m=0

∑N
n=0

∑M
k=0

∑N
q=0Cmn

(2k+1)(2q+1)
lT

wMkmw
′
0qnψkq(x, t)

...∑M
m=0

∑N
n=0

∑M
k=0

∑N
q=0Cmn

(2k+1)(2q+1)
lT

wMkmw
′
Nqnψkq(x, t)


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=



C(0,0) C(0,1) ... C(0,M)

C(1,0) C(1,1) ... C(1,M)

...
. . .

...
...

C(M,0) C(M,1) ... C(M,M)


ψ(x, t) = C̃ψ(x, t)

Note that wikm = wimk,and w′jqn = w′jnq. So, for m = 0, 1, ...M , let Am be a square

matrix whose entries are [Am]Nj,q=0 = 2q+1
T

∑N
n=0w

′
jqnCmn and for i, k = 0, 1, ...,M , let

C̃ = [C(i,k)], where

C(i,k) =
2k + 1

l

M∑
m=0

wikmAm.

The matrix C̃ is a square matrix of size (M + 1)(N + 1) and called product operational

matrix. [40–42], Therefore,

ψ(x, t)ψT (x, t)C ' C̃ψ(x, t) (4.26)

Lemma 4.1 Let B = [B(i,k)], i, k = 0, 1, ...,M, such that B(i,k) = [bijkq]
N
j,q=0, j, q =

0, 1, ..., N , then

ψT (x, t)Bψ(x, t) ' B̂ψ(x, t),

where

B̂ =

[
B00 B01 ... B0N , B10 B11 ... B1N , ...., BM0 BM1 ...BMN

]

[42]Such that Bmn = (2m+1)(2n+1)
lT

∑M
i=0

∑N
j=0

∑M
k=0

∑N
q=0wikmw

′
jqnbijkq

m = 0, 1, ...,M, n = 0, 1, ..., N
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Proof:

ψT (x, t)Bψ(x, t) = ψT (x, t)



∑M
k=0

∑N
q=0 b00kqψkq(x, t)

...∑M
k=0

∑N
q=0 b0Nkqψkq(x, t)∑M

k=0

∑N
q=0 b10kqψkq(x, t)

...∑M
k=0

∑N
q=0 b1Nkqψkq(x, t)

...∑M
k=0

∑N
q=0 bM0kqψkq(x, t)

...∑M
k=0

∑N
q=0 bMNkqψkq(x, t)



=
M∑
k=0

N∑
q=0

b00kqψkq(x, t)ψ00(x, t) + ...+
M∑
k=0

N∑
q=0

b0Nkqψkq(x, t)ψ0N(x, t)

+
M∑
k=0

N∑
q=0

b10kqψkq(x, t)ψ10(x, t) + ...+
M∑
k=0

N∑
q=0

b1Nkqψkq(x, t)ψ1N(x, t)

+ ...+
M∑
k=0

N∑
q=0

bM0kqψkq(x, t)ψM0(x, t) + ...+
M∑
k=0

N∑
q=0

bMNkqψkq(x, t)ψMN(x, t)

Now, [38] according to the equation 4.25, we have:

ψij(x, t)ψkq(x, t) '
M∑
m=0

N∑
n=0

(2m+ 1)(2n+ 1)

lT
wikmw′jqnψmn(x, t)

which implies that:
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ψT (x, t)Bψ(x, t) '
M∑
m=0

N∑
n=0

M∑
k=0

N∑
q=0

b00kq
(2m+ 1)(2n+ 1)

lT
w0kmw

′
0qnψmn(x, t)

+ ...+
M∑
m=0

N∑
n=0

M∑
k=0

N∑
q=0

b0Nkq
(2m+ 1)(2n+ 1)

lT
w0kmw

′
Nqnψmn(x, t)

+
M∑
m=0

N∑
n=0

M∑
k=0

N∑
q=0

b10kq
(2m+ 1)(2n+ 1)

lT
w1kmw

′
0qnψmn(x, t)

+ ...+
M∑
m=0

N∑
n=0

M∑
k=0

N∑
q=0

b1Nkq
(2m+ 1)(2n+ 1)

lT
w1kmw

′
Nqnψmn(x, t)

+ ...+
M∑
m=0

N∑
n=0

M∑
k=0

N∑
q=0

bM0kq
(2m+ 1)(2n+ 1)

lT
wMkmw

′
0qnψmn(x, t)

+ ...+
M∑
m=0

N∑
n=0

M∑
k=0

N∑
q=0

bMNkq
(2m+ 1)(2n+ 1)

lT
wMkmw

′
Nqnψmn(x, t)

Expanding the previous summations, and gathering the similar terms. Also, depending
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on some properties, the following form is obtained:

ψT (x, t)Bψ(x, t) ' (2(0) + 1)(2(0) + 1)

lT

M∑
i=0

N∑
j=0

M∑
k=0

N∑
q=0

bijkqwik0w
′
jqoψ00(x, t)

+ ...+
(2(0) + 1)(2(N) + 1)

lT

M∑
i=0

N∑
j=0

M∑
k=0

N∑
q=0

bijkqwik0w
′
jqNψ0N(x, t)

+
(2(1) + 1)(2(0) + 1)

lT

M∑
i=0

N∑
j=0

M∑
k=0

N∑
q=0

bijkqwik1w
′
jq0ψ10(x, t)

+ ...+
(2(1) + 1)(2(N) + 1)

lT

M∑
i=0

N∑
j=0

M∑
k=0

N∑
q=0

bijkqwik1w
′
jqNψ1N(x, t)

+ ...+
(2(M) + 1)(2(0) + 1)

lT

M∑
i=0

N∑
j=0

M∑
k=0

N∑
q=0

bijkqwikMw
′
jq0ψMo(x, t)

+
(2(M) + 1)(2(1) + 1)

lT

M∑
i=0

N∑
j=0

M∑
k=0

N∑
q=0

bijkqwikMw
′
jq1ψM1(x, t)

= B00ψ00 + ...+B0Nψ0N +B10ψ10 + ...+B1Nψ1N

+ ...+BM0ψM0 + ...+BMNψMN

ψT (x, t)Bψ(x, t) ' B̂ψ(x, t)

where

B̂ =

[
B00 B01 ... B0N , B10 B11 ... B1N , ...., BM0 BM1 ...BMN

]

ψ(x, t) =

[
ψ00 ψ01 ... ψ0N , ψ10 ψ11 ... ψ1N , ...., ψM0 ψM1 ...ψMN

]T
and

Bmn =
(2m+ 1)(2n+ 1)

lT

M∑
i=0

N∑
j=0

M∑
k=0

N∑
q=0

bijkqwikmw
′
jqn
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� Similarly, any matrix B1, B2, and B3 of size (M + 1)(N + 1)× (M + 1)(N + 1), we

get:

ψT (x, t)B1ψ(x, t) ' B̂1ψ(x, t) (4.27)

ψT (x, t)B2ψ(x, t) ' B̂2ψ(x, t) (4.28)

ψT (x, t)B3ψ(x, t) ' B̂3ψ(x, t) (4.29)

4.5 Method Of Solution

In this section, we present a numerical method to find an approximate solution to the

problem 4.1 - 4.4 which corresponds with equation 4.6. Also, we assume that the known

functions in equation 4.1 satisfy the conditions 4.2 - 4.4 that this equation has a unique

solution.

Using the way mentioned previously, [42–44] the functions up(x, t), F (x, t), K1(x, t, y, z),

K2(x, t, y), and K3(x, t, z) can be approximated depending on the bivatiate shifted Leg-

endre functions as:

up(x, t) ' CTψ(x, t) = ψT (x, t)C (4.30)

F (x, t) ' F Tψ(x, t) (4.31)

K1(x, t, y, z) ' ψT (x, t)K1ψ(y, z) (4.32)

K2(x, t, y) ' ψT (x, t)K2ψ(y, t) (4.33)

K3(x, t, z) ' ψT (x, t)K3ψ(x, z) (4.34)

where F T is 1× (M + 1)(N + 1) vectors.
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F T =

[
F00 F01 ... F0N , F10 F11 ... F1N , ...., FM0 FM1 ...FMN

]

and Fmn is given by the formula:

Fmn =
(2m+ 1)(2n+ 1)

lT

∫ T

0

∫ l

0

F (x, t)ψmn(x, t)dxdt

Substituting equations 4.30- 4.34 into equation 4.6 to yield:

CTψ(x, t) =

∫ t

0

∫ x

0

ψT (x, t)K1ψ(y, z)ψT (y, z)Cdydz +

∫ x

0

ψT (x, t)K2ψ(y, t)ψT (y, t)Cdy

+

∫ t

0

ψT (x, t)K3ψ(x, z)ψT (x, z)Cdz + F Tψ(x, t)

From equation (4.26) the last equation becomes

CTψ(x, t) = ψT (x, t)K1C̃

∫ t

0

∫ x

0

ψ(y, z)dydz + ψT (x, t)K2C̃

∫ x

0

ψ(y, t)dy

+ ψT (x, t)K3C̃

∫ t

0

ψ(x, z)dz + F Tψ(x, t)

Applying equations(4.11-4.13) to obtain:

CTψ(x, t) = ψT (x, t)K1C̄Q1ψ(x, t) + ψT (x, t)K2C̃Q2ψ(x, t) + ψT (x, t)K3C̃Q3ψ(x, t)

+ F Tψ(x, t)

= ψT (x, t)B1ψ(x, t) + ψT (x, t)B2ψ(x, t) + ψT (x, t)B3ψ(x, t) + F Tψ(x, t)

On the other hand, from equations 4.27, 4.28,and 4.29 we have:

CTψ(x, t) = B̂1ψ(x, t) + B̂2ψ(x, t) + B̂3ψ(x, t) + F T (x, t)ψ(x, t). (4.35)
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Hence CT = B̂1 + B̂2 + B̂3 + F T which corresponds with a system of linear algebraic

equations in terms of the unknown element of the vector C, and can be solved easily

using direct methods.

The unkonwn function u(x, t) can be approximated in terms of the bivariate shifted

Legendre functions as:

u(x, t) = ATψ(x, t) (4.36)

such that, the entries of the vector A are unknowns. Depending on equations 4.26, and

4.36

up(x, t) = AT Ãp−1ψ(x, t) (4.37)

Finally, using equation 4.37, and 4.30, we get:

AT Ãp−1 = CT (4.38)

Equation 4.38 forms a system of (M+1)(N+1) nonlinear system of algebraic equations,

which can be used be solved easily for the elements of A using numerical methods such

as Newton’s iterative method.

The result in equation 4.37 can be proved by induction, ie: ∀k ∈ Z+.

By using result 4.26 and replace C by A, we get:

ψ(x, t)ψT (x, t)A ' Ãψ(x, t) (4.39)

Take the transpose of both sides of equation 4.39, to yield:

ATψ(x, t)ψT (x, t) ' ψT (x, t)ÃT

If the result 4.36 is applied with p = 1, [44] then we get:

u1(x, t) ' AT Ã0ψ(x, t)
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For p = 2,

u2(x, t) = u(x, t)u(x, t)

' ATψ(x, t)ψT (x, t)A

u2(x, t) ' AT Ã1ψ(x, t)

If p = 3, then,

u3(x, t) = u2(x, t)u(x, t)

' AT Ã1ψ(x, t)ψT (x, t)A

' AT ÃÃψ(x, t)

u3(x, t) ' AT Ã2ψ(x, t)

For p = 4,

u4(x, t) = u3(x, t)u(x, t)

' AT Ã2ψ(x, t)ψT (x, t)A

' AT Ã2Ãψ(x, t)

u4(x, t) ' AT Ã3ψ(x, t)

Suppose that k ∈ Z+, and let equation 4.37 be true for k, then,

uk+1(x, t) = uk(x, t)u1(x, t)

' AT Ãkψ(x, t)ψT (x, t)A

' AT Ãk−1Ãψ(x, t)

uk+1(x, t) ' AT Ãkψ(x, t)

Thus equation 4.37 is true for p = k+1, and the proof of the induction step is completed.
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4.6 Numerical Examples

In this section, some examples are presented to show the reliability of this method. In

order to show the error of the method, the following notation is introduced:

eM,N(x, t) = |u(x, t)− uM,N(x, t)|, (x, t) ∈ Ω

where u(x, t) is the exact solution, and uM,N(x, t) is the computed result with M , and

N .

To solve the examples, we consider M 6= N or M = N and Newton’s method is used

for solving the nonlinear system. The initial guess in Newton’s method is for these

examples is considered to be A0 = C, but the number of iterations can be reduced by

choosing a more closed A0 to the exact solution.

Example 4.1 [42] Consider the following (2D) nonlinear Volterra integal equation of

the second kind:

∫ t

0

∫ x

0

2ex+tu3(y, z)dydz =
1

9
(ex+t − ex+7t − e4x+t + e4x+7t), (x, t) ∈ [0, 1]× [0, 1]

The exact solution is u(x, t) = ex+2t.

Applying Bivariate Shifted Legende Functions when M = N = 2, 4, 6, we have the fol-

lowing tables which show the exact solution, approximate solution, and absolute error

at some particular points.
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Tab. 4.1: Exact and numerical solutions at M = N = 2

(x, t) Exact Approximation Error

(0.5,0.5) 4.48168910 4.29143960 1.9024950× 10−1

(0.25,0.25) 2.11700002 1.97827371 1.3872631× 10−1

(0.125,0.125) 1.45499141 1.52152785 6.6536440× 10−2

(0.0625,0.0625) 1.20623025 1.41439968 2.0816943× 10−1

(0.03125,0.03125) 1.09828514 1.38620515 2.8792001× 10−1

(0.015625,0.015625) 1.04799100 1.37794336 3.2995236× 10−1

Tab. 4.2: Exact and numerical solutions at M = N = 4

(x, t) Exact Approximation Error

(0.5,0.5) 4.48168910 4.48464226 2.95316× 10−3

(0.25,0.25) 2.11700002 2.11638025 6.19770× 10−4

(0.125,0.125) 1.45499141 1.45143591 3.55550× 10−3

(0.0625,0.0625) 1.20623025 1.20415010 2.08015× 10−3

(0.03125,0.03125) 1.09828514 1.09825413 3.10100× 10−5

(0.015625,0.015625) 1.04799100 1.04939061 1.39961× 10−3

Tab. 4.3: Exact and numerical solutions at M = N = 6

(x, t) Exact Approximation Error

(0.5,0.5) 4.48168910 4.48171956 3.0460× 10−5

(0.25,0.25) 2.11700002 2.11696376 3.6260× 10−5

(0.125,0.125) 1.45499141 1.45524307 2.5166× 10−4

(0.0625,0.0625) 1.20623025 1.20631829 8.8040× 10−5

(0.03125,0.03125) 1.09828514 1.09829225 7.1100× 10−6

(0.015625,0.015625) 1.04799100 1.04758734 4.0366× 10−4

(a) M = N =2 (b) M = N=4
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(c) M = N =6

Fig. 4.1: The values of M=N versus absolute error at different x,t values

Example 4.2 [41] Consider the following nonlinear (2D) nonlinear Volterra integral

equation of the first kind:

∫ t

0

∫ x

0

(y2 + e−2z)u2(y, z)dydz =
1

14
x7(e2t − 1) +

1

5
x5t, (x, t) ∈ [0, 2]× [0, 2]

The exact solution is u(x, t) = x2et. Applying Bivariate Shifted Legende Functions

when M = N = 2, 4, 6, we have the following tables which show the exact solution,

approximate solution, and absolute error at some particular points.

Tab. 4.4: Exact and numerical solutions at M = N = 2

(x, t) Exact Approximation Error

(0.4,0.4) 0.23869195 0.23113903 7.55292× 10−3

(0.55,0.55) 0.52430904 0.49716773 2.71413× 10−2

(0.75,0.75) 1.19081251 1.13593660 5.48759× 10−2

(0.85,0.85) 1.69039485 1.62912321 6.12716× 10−2

(1,1) 2.71828183 2.66724324 5.10386× 10−2

(1.2,1.2) 4.78096337 4.79204739 1.10840× 10−2

(1.45,1.45) 8.96319827 9.10682932 1.43631× 10−1

(1.6,1.6) 12.67976301 12.87292664 1.93164× 10−1

(1.8,1.8) 19.60085778 19.66223519 6.13774× 10−2

(1.95,1.95) 26.72658453 26.35777075 3.68814× 10−1
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Tab. 4.5: Exact and numerical solutions at M = N = 4

(x, t) Exact Approximation Error

(0.4,0.4) 0.23869195 0.23474157 3.95038× 10−3

(0.55,0.55) 0.52430904 0.52432946 2.04200× 10−5

(0.75,0.75) 1.19081251 1.18996471 8.47800× 10−4

(0.85,0.85) 1.69039485 1.68974573 6.49120× 10−4

(1,1) 2.71828183 2.71848067 1.98840× 10−4

(1.2,1.2) 4.78096337 4.77980226 1.16111× 10−3

(1.45,1.45) 8.96319827 8.95923187 3.96640× 10−3

(1.6,1.6) 12.67976301 12.68000806 2.45050× 10−4

(1.8,1.8) 19.60085778 19.60873970 7.88192× 10−3

(1.95,1.95) 26.72658453 26.72136172 5.22281× 10−3

Tab. 4.6: Exact and numerical solutions at M = N = 6

(x, t) Exact Approximation Error

(0.4,0.4) 0.23869195 0.23869316 1.210× 10−6

(0.55,0.55) 0.52430904 0.52431089 1.850× 10−6

(0.75,0.75) 1.19081251 1.19081000 2.510× 10−6

(0.85,0.85) 1.69039485 1.69039006 4.790× 10−6

(1,1) 2.71828183 2.71827851 3.320× 10−6

(1.2,1.2) 4.78096337 4.78097515 1.178× 10−5

(1.45,1.45) 8.96319827 8.96319982 1.550× 10−6

(1.6,1.6) 12.67976301 12.67975010 1.291× 10−5

(1.8,1.8) 19.60085778 19.60086411 6.330× 10−6

(1.95,1.95) 26.72658453 26.72658890 4.370× 10−6
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(a) M = N =2

(b) M = N=4

(c) M = N =6

Fig. 4.2: The values of N=M versus absolute error at different x,t values
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Chapter 5

Three- dimensional Nonlinear Volterra Integral

Equation

In this chapter, we present a numerical method for the solution of nonlinear three-

dimensional Volterra integral equations 3D- VIE of the first kind of the form:

f(x, t, w) =

∫ w

0

∫ t

0

∫ x

0

K(x, t, w, y, z, s)up(y, z, s)dydzds (5.1)

where x, y ∈ [0, l], t, z ∈ [0, T ], w, s ∈ [0,W ], and (x, t, w) ∈ D := [0, l]× [0, T ]× [0,W ].

u(x, t, w) is an unknown function called the solution of the integral equation, p is a

positive integer number, K is the kernel function and f is a smooth function.

Also, we assume that the following conditions are satisfied :

f(x, t, 0) = 0, ∀x ∈ [0, l],∀t ∈ [0, T ]

f(x, 0, w) = 0 , ∀x ∈ [0, l],∀w ∈ [0,W ]

f(0, t, w) = 0 , ∀t ∈ [0, T ],∀w ∈ [0,W ]

f(x, 0, 0) = 0 , ∀x ∈ [0, l]

f(0, t, 0) = 0 , ∀t ∈ [0, T ]

f(0, 0, w) = 0 , ∀w ∈ [0,W ]

K(x, t, w, x, t, w) 6= 0,∀(x, t, w) ∈ D (5.2)

69



Various problems in physics, mechanics, and biology arise to a nonlinear Volterra inte-

gral equations. Such equations also appear in modeling of the spatio- temporal develop-

ment of an epidemic, theory of parabolic initial, boundary value problems. Population

dynamics and Fourier problems.

The analytical solution of the thre-dimensional integral equations is usually difficult,

and in many cases it is required to approximate the solution. [7, 35] Although several

numerical methods for approximating the solutions of two dimensional Volterra integral

equations were presented for the three dimensional ones, only a few methods have been

discussed in the literature. The analysis of copmutational methods for several dimen-

sional integral equations specially in the nonlinear case, has started more recently and

is not so well developed.

The nonlinear 3D- VIE of the first kind with conditions 5.2 to a nonlinear 3D-VIE of

the second kind. the nonlinear 3D- VIE of the second kind can be obtained by making

the derivative of 5.1 with respect to w, t and x.

Using Leibniz integral rule,

∂3f(x, t, w)

∂x∂t∂w
=

∂

∂x

[
∂

∂t

[
∂

∂w

∫ w

0

(∫ t

0

∫ x

0

K(x, t, w, y, z, s)up(y, z, s)dydz

)
ds

]]
=

∂

∂x

[
∂

∂t

[ ∫ w

0

∫ t

0

∫ x

0

∂K(x, t, w, y, z, s)

∂w
up(y, z, s)dydzds

+

∫ t

0

∫ x

0

K(x, t, w, y, z, w)up(y, z, w)dydz

]]
=

∂

∂x

[
∂

∂t

∫ t

0

(∫ w

0

∫ x

0

∂K(x, t, w, y, z, s)

∂w
up(y, z, s)dyds

)
dz

+
∂

∂t

∫ t

0

(∫ x

0

K(x, t, w, y, z, w)up((y, z, w)dy

)
dz

]
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=
∂

∂x

[ ∫ w

0

∫ t

0

∫ x

0

∂2K(x, t, w, y, z, s)

∂t∂w
up(y, z, s)dydzds

+

∫ w

0

∫ x

0

∂K(x, t, w, y, t, s)

∂w
up(y, t, s)dyds

+

∫ t

0

∫ x

0

∂K(x, t, w, y, z, w)

∂t
up(y, z, w)dydz

+

∫ x

0

K(x, t, w, y, t, w)up(y, t, w)dy

]

=
∂

∂x

∫ x

0

(∫ w

0

∫ t

0

∂2K(x, t, w, y, z, s)

∂t∂w
up(y, z, s)dzds

)
dy

+
∂

∂x

∫ x

0

(∫ w

0

∂K(x, t, w, y, t, s)

∂w
up(y, t, s)ds

)
dy

+
∂

∂x

∫ x

0

(∫ t

0

∂K(x, t, w, y, z, w)

∂t
up(y, z, w)dz

)
dy

+
∂

∂x

∫ x

0

K(x, t, w, y, t, w)up(y, t, w)dy

∂3f(x, t, w)

∂x∂t∂w
=

∫ w

0

∫ t

0

∫ x

0

∂3K(x, t, w, y, z, s)

∂x∂t∂w
up(y, z, s)dydzds

+

∫ w

0

∫ t

0

∂2K(x, t, w, x, z, s)

∂t∂w
up(x, z, s)dzds

+

∫ w

0

∫ x

0

∂2K(x, t, w, y, t, s)

∂x∂w
up(y, t, s)dyds+

∫ w

0

∂K(x, t, w, x, t, s)

∂w
up(x, t, s)ds

+

∫ t

0

∫ x

0

∂2K(x, t, w, y, z, w)

∂x∂t
up(y, z, w)dydz +

∫ t

0

∂K(x, t, w, x, z, w)

∂t
up(x, z, w)dz

+

∫ x

0

∂K(x, t, w, y, t, w)

∂x
up(y, t, w)dy +K(x, t, w, x, t, w)up(x, t, w) (5.3)
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Solving equation 5.3 for up(x, t, w) to get the following form:

up(x, t, w) =

∫ w

0

∫ t

0

∫ x

0

K1(x, t, w, y, z, s)up(y, z, s)dydzds

+

∫ t

0

∫ x

0

K2(x, t, w, y, z)up(y, z, w)dydz +

∫ w

0

∫ x

0

K3(x, t, w, y, s)up(y, t, s)dyds

+

∫ w

0

∫ t

0

K4(x, t, w, z, s)up(x, z, s)dzds+

∫ x

0

K5(x, t, w, y)up(y, t, w)dy

+

∫ t

0

K6(x, t, w, z)up(x, z, w)dz +

∫ w

0

K7(x, t, w, s)up(x, t, s)ds+ F (x, t, w)

(5.4)

where

K1(x, t, w, y, z, s) = −∂
3K(x, t, w, y, z, s)

∂x∂t∂w
/K(x, t, w, x, t, w)

K2(x, t, w, y, z) = −∂
2K(x, t, w, y, z, w)

∂x∂t
/K(x, t, w, x, t, w)

K3(x, t, w, y, s) = −∂
2K(x, t, w, y, t, s)

∂x∂w
/K(x, t, w, x, t, w)

K4(x, t, w, z, s) = −∂
2K(x, t, w, x, z, s)

∂t∂w
/K(x, t, w, x, t, w)

K5(x, t, w, y) = −∂K(x, t, w, y, t, w)

∂x
/K(x, t, w, x, t, w)

K6(x, t, w, z) = −∂K(x, t, w, x, z, w)

∂t
/K(x, t, w, x, t, w)

K7(x, t, w, s) = −∂K(x, t, w, x, t, s)

∂w
/K(x, t, w, x, t, w)

F (x, t, w) =
∂3f(x, t, w)

∂x∂t∂w
/K(x, t, w, x, t, w)

such that K1 ∈ L2(D ×D), K2 ∈ L2(D × [0, l] × [0, T ]), K3 ∈ L2(D × [0, l] × [0,W ]),

K4 ∈ L2(D × [0, T ] × [0,W ]), K5 ∈ L2(D × [0, l]), K6 ∈ L2(D × [0, T ]), and K7 ∈

L2(D × [0,W ]).

Now, the aim is to solve the nonlinear 3D- VIE of the second kind using the bivariate

shifted Legendre functions, and the obtained solution will be also the solution of the

nonlinear 3D VIE of the first kind. For that purpose, we introduce first the definition

of three-dimensional shifted Legendre functions.
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Definition 5.1 (Three -dimensional Shifted Legendre Functions)

The three -dimensional shifted Legendre functions are defined on the domain D as

follows:

ψmnr(x, t, w) = Lm

(
2

l
x− 1

)
Ln

(
2

T
t− 1

)
Lr

(
2

W
w − 1

)
= Pm(x)Pn(t)Pr(w) = ψm(x)ψn(t)ψr(w)

where m = 0, 1, ...,M, n = 0, 1, ..., N , and r = 0, 1, ..., R.

These functions are orthogonal with respect to the weight function ω(x, t, w) = 1 such

that:

∫ W

0

∫ T

0

∫ l

0

ω(x, t, w)ψmnr(x, t, w)ψijk(x, t, w)dxdtdw =


Ḩ, if i=m, j=n, k=r

0, otherwise

where Ḩ = lTW
(2m+1)(2n+1)(2r+1)

Here Lm, Ln and Lr are the well known Legendre polynomials respectively of order

m, n and r which are defined on the interval [-1,1] and satisfy the following recursive

formla:

Ln+1(t) =

(
2n+ 1

n+ 1

)
tLn(t)−

(
n

n+ 1

)
Ln−1(t), n = 1, 2, ....

where L0(t) = 1, L1(t) = t.

The shifted Legendre polynomials are defined on the interval [0, s] as:

Pm+1(x) =

(
2m+ 1

m+ 1

)(
2

s
x− 1

)
Pm(x)−

(
m

m+ 1

)
Pm−1(x)
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where P0(x) = 1, P1(x) = 2
s
x− 1, Pm(x) = Lm

(
2
s
x− 1

)
, and m = 1, 2, ....

5.1 Function Approximation with Shifted Legendre

Functions

A function f(x, t, w) ∈ L2(D) can be expanded in terms of Shifted Legendre series as

follows [36]:

f(x, t, w) =
∞∑
m=0

∞∑
n=0

∞∑
r=0

Cmnrψmnr(x, t, w) (5.5)

where Cmnr are constans given by:

Cmnr =
< f(x, t, w), ψmnr(x, t, w) >

< ψmnr, ψmnr >

The inner product in space L2(D) is defined by:

< f(x, t, w), ψmnr(x, t, w) >=

∫ W

0

∫ T

0

∫ l

0

f(x, t, w)ψmnr(x, t, w)dxdtdw

and the norm, is defined as:

||ψmnr(x, t, w)||2 =

(
< ψmnr(x, t, w), ψmnr(x, t, w) >

) 1
2

=

(∫ W

0

∫ T

0

∫ l

0

|ψmnr(x, t, w)|2dxdtdw
) 1

2

.
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If the infinite series in the equation 5.5 is truncated up to terms R, N , and M , then

the function f(x, t, w) may be written as:

f(x, t, w) '
M∑
m=0

N∑
n=0

R∑
r=0

Cmnrψmnr(x, t, w) = fMNR(x, t, w)

f(x, t, w) ' CTψ(x, t, w)

where C, and ψ(x, t, w) are (M + 1)(N + 1)(R + 1)× 1 vectors given by:

C = [C000, ..., C00R, C010, ..., C01R, ..., C0N0, ..., C0NR, C100, ..., C10R, C110, ..., C11R,

..., C1N0, ..., C1NR, ..., CM00, ..., CM0R, CM10, ..., CM1R, ..., CMN0, ..., CMNR]T

ψ(x, t, w) = [ψ000, ..., ψ00R, ψ010, ..., ψ01R, ..., ψ0N0, ..., ψ0NR, ψ100, ψ101, ..., ψ10R, ψ110, ...,

ψ11R, ..., ψ1N0, ..., ψ1NR, ..., ψM00, ..., ψM0R, ψM10, ..., ψM1R, ..., ψMN0, ..., ψMNR]T

Now,

< f(x, t, w), ψmnr(x,t,w) > = <
∞∑
i=0

∞∑
j=0

∞∑
k=0

Cijkψijk(x, t, w), ψmnr(x, t, w) >

= < Cmnrψmnr(x, t, w), ψmnr(x, t, w) >

= Cmnr < ψmnr(x, t, w), ψmnr(x, t, w) >

< f(x, t, w), ψmnr(x,t,w) > = Cmnr||ψmnr||22

Solving the previous equation for the constants Cmnr to get:

Cmnr =
< f(x, t, w), ψmnr(x, t, w) >

||ψmnr||22
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Depending on the definition of the inner product in space L2(D), the constants Cmnr

can be expressed as:

Cmnr =
(2m+ 1)(2n+ 1)(2r + 1)

lTW

∫ W

0

∫ T

0

∫ l

0

f(x, t, w)ψmnr(x, t, w)dxdtdw

5.2 Approximating the Kernel Function with Shifted

Legendre Functions

The aim of the current section is to express the kernel function K(x, t, w, y, z, s) in

terms of the shifted Legendre functions.

Lemma 5.1 Let K(x, t, w, y, z, s) is any function ∈ L2(D ×D), then

K(x, t, w, y, z, s) ' ψT (x, t, w)Kψ(y, z, s) (5.6)

where K is a block matrices of size (M + 1)(N + 1)(R + 1) × (M + 1)(N + 1)(R + 1)

of the form K = [Kim]Mi,m=0, K
im = [Kijmn]Nj,n=0, Kijmn = [Kijkmnr]

R
k,r=0,

Kijkmnr = G

∫ W

0

∫ T

0

∫ l

0

[ ∫ W

0

∫ T

0

∫ l

0

K(x, t, w, y, z, s)ψmnr(y, z, s)dydzds

]
ψijk(x, t, w)dxdtdw

and G = (2i+1)(2j+1)(2k+1)(2m+1)(2n+1)(2r+1)
l2T 2W 2 .

Proof: Using the shifted Legendre functions, the kernelK(x, t, w, y, z, s) can be ex-

pressed:

K(x, t, w, y, z, s) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

∞∑
m=0

∞∑
n=0

∞∑
r=0

ψijk(x, t, w)Kijkmnrψmnr(y, z, s) (5.7)

Also, since the sequence ψijk(x, t, w) is orthonormal, the inner product of the func-

tion K(x, t, w, y, z, s) together with the functions ψmnr(y, z, s) and ψijk(x, t, w) can be

76



reduced as follows:

= <<
∞∑
a=0

∞∑
b=0

∞∑
c=0

∞∑
d=0

∞∑
e=0

∞∑
f=0

ψabc(x, t, w)Kabcdefψdef (y, z, s), ψmnr(y, z, s) >,ψijk(x, t, w) >

= <

∞∑
a=0

∞∑
b=0

∞∑
c=0

ψabc(x, t, w)Kabcmnr < ψmnr(y, z, s), ψmnr(y, z, s) >,ψijk(x, t, w) >

= <
∞∑
a=0

∞∑
b=0

∞∑
c=0

ψabc(x, t, w)Kabcmnr||ψmnr(y, z, s)||22, ψijk(x, t, w) >

= Kijkmnr||ψmnr(y, z, s)||22 < ψikj(x, t, w), ψikj(x, t, w) >

= Kijkmnr||ψmnr(y, z, s)||22||ψijk(x, t, w)||22.

Therefore, the coefficients Kijkmnr can be evaluated by

Kijkmnr =
<< K(x, t, w, y, z, s), ψmnr(y, z, s) >,ψijk(x, t, w) >

||ψmnr(y, z, s)||22||ψijk(x, t, w)||22

and using the integral notations these coefficients can be calculated by the following

formula:

Kijkmnr = G

∫ W

0

∫ T

0

∫ l

0

[ ∫ W

0

∫ T

0

∫ l

0

K(x, t, w, y, z, s)ψmnr(y, z, s)dydzds

]
ψijk(x, t, w)dxdtdw

where G = (2i+1)(2j+1)(2k+1)(2m+1)(2n+1)(2r+1)
l2T 2W 2 . If the infinite series in 5.7 is truncated,

then it can be written as:

K(x, t, w, y, z, s) '
M∑
i=0

N∑
j=0

R∑
k=0

M∑
m=0

N∑
n=0

R∑
r=0

ψijk(x, t, w)Kijkmnrψmnr(y, z, s). (5.8)

The matrix form of the last equation is:

K(x, t, w, y, z, s) ' ψT (x, t, w)Kψ(y, z, s).
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Similarly the functions Ki and i = 1, 2, ..., 7 can be expanded in terms of bivariate

shifted Legendre functions respectively as:

K1(x, t, w, y, z, s) ' ψT (x, t, w)K1ψ(y, z, s)

K2(x, t, w, y, z) ' ψT (x, t, w)K2ψ(y, z, w)

K3(x, t, w, y, s) ' ψT (x, t, w)K3ψ(y, t, s)

K4(x, t, w, z, s) ' ψT (x, t, w)K4ψ(x, z, s)

K5(x, t, w, y) ' ψT (x, t, w)K5ψ(y, t, w)

K6(x, t, w, z) ' ψT (x, t, w)K6ψ(x, z, w)

K7(x, t, w, s) ' ψT (x, t, w)K7ψ(x, t, s)

where K1, K2, K3, K4, K5, K6, and K7 are matrices of size (M + 1)(N + 1)(R+ 1)×

(M + 1)(N + 1)(R + 1) of the form:

Kq = [K
(i,m)
q ]Mi,m=0, q = 1, 2, ..., 7

K
(i,m)
q = [Kijmn

q ]Nj,n=0, i,m = 0, 1, ...,M, q = 1, 2, ..., 7

Kijmn
q = [K

(q)
ijkmnr]

R
k,r = 0, j, n = 0, 1, ..., N, q = 1, 2, ..., 7

and Legendre coefficients K
(q)
ijkmnr, q = 1, 2, ..., 7 are given by:

K
(1)
ijkmnr =

<< K1(x, t, w, y, z, s), ψmnr(y, z, s) >,ψijk(x, t, w)

||ψmnr(y, z, s)||22||ψijk(x, t, w)||22

= G

∫ W

0

∫ T

0

∫ l

0

[ ∫ W

0

∫ T

0

∫ l

0

K1(x, t, w, y, z, s)ψmnr(y, z, s)dydzds

]
ψijk(x, t, w)dxdtdw

K
(2)
ijkmnr =

<< K2(x, t, w, y, z), ψmnr(y, z, w) >,ψijk(x, t, w)

||ψmnr(y, z, w)||22||ψijk(x, t, w)||22

= G

∫ W

0

∫ T

0

∫ l

0

[ ∫ W

0

∫ T

0

∫ l

0

K2(x, t, w, y, z)ψmnr(y, z, w)dydzdw

]
ψijk(x, t, w)dxdtdw
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K
(3)
ijkmnr =

<< K3(x, t, w, y, s), ψmnr(y, t, s) >,ψijk(x, t, w)

||ψmnr(y, t, s)||22||ψijk(x, t, w)||22

= G

∫ W

0

∫ T

0

∫ l

0

[ ∫ W

0

∫ T

0

∫ l

0

K3(x, t, w, y, s)ψmnr(y, t, s)dydtds

]
ψijk(x, t, w)dxdtdw

K
(4)
ijkmnr =

<< K4(x, t, w, z, s), ψmnr(x, z, s) >,ψijk(x, t, w)

||ψmnr(x, z, s)||22||ψijk(x, t, w)||22

= G

∫ W

0

∫ T

0

∫ l

0

[ ∫ W

0

∫ T

0

∫ l

0

K4(x, t, w, z, s)ψmnr(x, z, s)dxdzds

]
ψijk(x, t, w)dxdtdw

K
(5)
ijkmnr =

<< K5(x, t, w, y), ψmnr(y, t, w) >,ψijk(x, t, w)

||ψmnr(y, t, w)||22||ψijk(x, t, w)||22

= G

∫ W

0

∫ T

0

∫ l

0

[ ∫ W

0

∫ T

0

∫ l

0

K5(x, t, w, y)ψmnr(y, t, w)dydtdw

]
ψijk(x, t, w)dxdtdw

K
(6)
ijkmnr =

<< K6(x, t, w, z), ψmnr(x, z, w) >,ψijk(x, t, w)

||ψmnr(x, z, w)||22||ψijk(x, t, w)||22

= G

∫ W

0

∫ T

0

∫ l

0

[ ∫ W

0

∫ T

0

∫ l

0

K6(x, t, w, z)ψmnr(x, z, w)dxdzdw

]
ψijk(x, t, w)dxdtdw

K
(7)
ijkmnr =

<< K7(x, t, w, s), ψmnr(x, t, s) >,ψijk(x, t, w)

||ψmnr(x, t, s)||22||ψijk(x, t, w)||22

= G

∫ W

0

∫ T

0

∫ l

0

[ ∫ W

0

∫ T

0

∫ l

0

K7(x, t, w, s)ψmnr(x, t, s)dxdtds

]
ψijk(x, t, w)dxdtdw,

where G = (2i+1)(2j+1)(2k+1)(2m+1)(2n+1)(2r+1)
l2T 2W 2 . �

The matrix K in equation (5.6) will be in the form

K =



K(0,0) K(0,1) ... K(0,M)

K(1,0) K(1,1) ... K(1,M)

...
. . .

...
...

K(M,0) K(M,1) ... K(M,M)


,
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=



K0000 K0001 ... K000N K00M0 K00M1 ... K00MN

K0100 K0101 ... K010N , ..., K01M0 K01M1 ... K01MN

...
...

. . .
...

...
...

. . .
...

K0N00 K0N01 ... K0N0N K0NM0 K0NM1 ... K0NMN

...
. . .

...

KM000 KM001 ... KM00N KM0M0 KM0M1 ... KM0MN

KM100 KM101 ... KM10N , ..., KM1M0 KM1M1 ... KM1MN

...
...

. . .
...

...
...

. . .
...

KMN00 KMN01 ... KMN0N KMNM0 KMNM1 ... KMNMN


Note that Kijmn = [Kijkmnr](R+1)×(R+1), i,m = 0, 1, ...,M, j, n = 0, 1, ..., N and k, r =

0, 1, ..., R.

the matrices Kq, q = 1, 2, ..., 7 can be obtained using the same manner as the matrix

K.
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5.3 Operational Matrices of Integration

The integration of the vector ψ(x, t, w) can be approximately obtained by the following

formulas [18]:

∫ w

0

∫ t

0

∫ x

0

ψ(y, z, s)dydzds ' Q1ψ(x, t, w) (5.9)∫ t

0

∫ x

0

ψ(y, z, w)dydz ' Q2ψ(x, t, w) (5.10)∫ w

0

∫ x

0

ψ(y, t, s)dyds ' Q3ψ(x, t, w) (5.11)∫ w

0

∫ t

0

ψ(x, z, s)dzds ' Q4ψ(x, t, w) (5.12)∫ x

0

ψ(y, t, w)dy ' Q5ψ(x, t, w) (5.13)∫ t

0

ψ(x, z, w)dz ' Q6ψ(x, t, w) (5.14)∫ w

0

ψ(x, t, s)ds ' Q7ψ(x, t, w) (5.15)

where x ∈ [0, l], t ∈ [0, T ], and w ∈ [0,W ]. Q1, Q2, Q3, Q4, Q5, Q6 and Q7 are the

(M + 1)(N + 1)(R + 1) × (M + 1)(N + 1)(R + 1) operational matrices of integration

and have shapes:
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Q1 = (P1 ⊗ P2)⊗ P3

Q2 = (P1 ⊗ P2)⊗ IR+1

Q3 = (P1 ⊗ IN+1)⊗ P3

Q4 = (IM+1 ⊗ P2)⊗ P3

Q5 = (P1 ⊗ IN+1)⊗ IR+1

Q6 = (IM+1 ⊗ P2)⊗ IR+1

Q7 = (IM+1 ⊗ IN+1)⊗ P3

where IN+1, IM+1 and IR+1 are the identity matrices of size M + 1, N + 1 and R + 1.

P1, P2 , and P3 are the operational matrices of one dimensional Shifted Legendre

polynomials defined respectively in [0, l], [0, T ] and [0,W ] as follows:

Pq =
z

2



1 1 0 0 ... 0 0 0

−1
3

0 1
3

0 ... 0 0 0

0 −1
5

0 1
5

... 0 0 0

...
...

. . . . . . . . .
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...
...

. . . . . . . . .
...

0 0 0 0 ... −1
2h−1 0 1

2h−1

0 0 0 0 ... 0 −1
2h+1

0


for z = l, Tand W , h = M,N and R, q = 1, 2, 3. For more details see reference....
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5.4 The Product of Operational Matrices

The following property of the product of two vectors ψ(x, t, w) and ψT (x, t, w) is very

helpful

ψ(x, t, w)ψT (x, t, w)C ' C̃ψ(x, t, w) (5.16)

where

C = [C000, ..., C00R, C010, ..., C01R, ..., C0N0, ..., C0NR, C100, ..., C10R, C110, ...C11R, ..., C1N0,

..., CM10, ..., CM1R, ..., CMN0 CMN1 ... CMNR]T

To explain the the above result, first notice that ψ(x, t, w)ψT (x, t, w)C = [ψijk][ψhqv]
TC

is a column matrix and by elementary calculations the entries can be written as∑M
h=0

∑N
q=0

∑R
v=0Chqvψhqvψijk where i = 0, ...,M , j = 0, ..., N , and k = 0, ..., R.

On the other hand, the product ψijk(x, t, w)ψhqv(x, t, w) can be written as a linear com-

binations of three-dimensional shifted Legendre function. In fact, it can be expressed

as follows

ψijk(x, t, w)ψhqv(x, t, w) =
i+h∑
u=0

j+q∑
s=0

k+v∑
p=0

auspψusp(x, t, w) (5.17)

.

To compute the coefficients ausp, multiply both sides of equation 5.17 by ψmnr(x, t, w), m =

0, 1, ...,M, n = 0, 1, ..., N, r = 0, 1, ..., R and integrate from 0 to l, 0 to T , and 0 to

W and taking in account the orthogonality property

amnr =
(2m+ 1)(2n+ 1)(2r + 1)

lTW

∫ W

0

∫ T

0

∫ l

0

ψijkψhqvψmnrdxdtdw

=
(2m+ 1)(2n+ 1)(2r + 1)

lTW
wihmw

′
jqnw

′′
kvr
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where

wihm =

∫ l

0

ψi(x)ψh(x)ψm(x)dx, i, h,m = 0, 1, ...,M

w′jqn =

∫ l

0

ψj(t)ψq(t)ψn(t)dt, j, q, n = 0, 1, ..., N

w′′kvr =

∫ l

0

ψk(w)ψv(w)ψr(w)dw, k, v, r = 0, 1, ..., R

So, equation 5.17 becomes

ψijkψhqv =
i+h∑
m=0

j+q∑
n=0

k+v∑
r=0

(2m+ 1)(2n+ 1)(2r + 1)

lTW
wihmw

′
jqnw

′′
kvrψmnr(x, t, w)

Which implying to :

ψijkψhqv '
M∑
m=0

N∑
n=0

R∑
r=0

(2m+ 1)(2n+ 1)(2r + 1)

lTW
wihmw

′
jqnw

′′
kvrψmnr(x, t, w) (5.18)

If we substuted equation 5.18 in ψ(x, t, w)ψT (x, t, w)C , we get the approximated
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

∑M
h=0

∑N
q=0

∑R
v=0

∑M
m=0

∑N
n=0

∑R
r=0Chqv

(2m+1)(2n+1)(2r+1)
lTW

w0hmw
′
0qnw

′′
0vrψmnr(x, t, w)

...∑M
h=0

∑N
q=0

∑R
v=0

∑M
m=0

∑N
n=0

∑R
r=0Chqv

(2m+1)(2n+1)(2r+1)
lTW

w0hmw
′
0qnw

′′
Rvrψmnr(x, t, w)

...∑M
h=0

∑N
q=0

∑R
v=0

∑M
m=0

∑N
n=0

∑R
r=0Chqv

(2m+1)(2n+1)(2r+1)
lTW

w0hmw
′
Nqnw

′′
0vrψmnr(x, t, w)

...∑M
h=0

∑N
q=0

∑R
v=0

∑M
m=0

∑N
n=0

∑R
r=0Chqv

(2m+1)(2n+1)(2r+1)
lTW

w0hmw
′
Nqnw

′′
Rvrψmnr(x, t, w)

...∑M
h=0

∑N
q=0

∑R
v=0

∑M
m=0

∑N
n=0

∑R
r=0Chqv

(2m+1)(2n+1)(2r+1)
lTW

wMhmw
′
0qnw

′′
0vrψmnr(x, t, w)

...∑M
h=0

∑N
q=0

∑R
v=0

∑M
m=0

∑N
n=0

∑R
r=0Chqv

(2m+1)(2n+1)(2r+1)
lTW

wMhmw
′
0qnw

′′
Rvrψmnr(x, t, w)

...∑M
h=0

∑N
q=0

∑R
v=0

∑M
m=0

∑N
n=0

∑R
r=0Chqv

(2m+1)(2n+1)(2r+1)
lTW

wMhmw
′
Nqnw

′′
0vrψmnr(x, t, w)

...∑M
h=0

∑N
q=0

∑R
v=0

∑M
m=0

∑N
n=0

∑R
r=0Chqv

(2m+1)(2n+1)(2r+1)
lTW

wMhmw
′
Nqnw

′′
Rvrψmnr(x, t, w)


It is clear that wihm = wimh, w

′
jqn = w′jnq, and w′′kvr = w′′krv and after a suitable

reordering of lower indices, the last column matrix could be written as
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

∑M
m=0

∑N
n=0

∑R
r=0

∑M
h=0

∑N
q=0

∑R
v=0Cmnr

(2h+1)(2q+1)(2v+1)
lTW

w0hmw
′
0qnw

′′
0vrψhqv(x, t, w)

...∑M
m=0

∑N
n=0

∑R
r=0

∑M
h=0

∑N
q=0

∑R
v=0Cmnr

(2h+1)(2q+1)(2v+1)
lTW

w0hmw
′
0qnw

′′
Rvrψhqv(x, t, w)

...∑M
m=0

∑N
n=0

∑R
r=0

∑M
h=0

∑N
q=0

∑R
v=0Cmnr

(2h+1)(2q+1)(2v+1)
lTW

w0hmw
′
Nqnw

′′
0vrψhqv(x, t, w)

...∑M
m=0

∑N
n=0

∑R
r=0

∑M
h=0

∑N
q=0

∑R
v=0Cmnr

(2h+1)(2q+1)(2v+1)
lTW

w0hmw
′
Nqnw

′′
Rvrψhqv(x, t, w)

...∑M
m=0

∑N
n=0

∑R
r=0

∑M
h=0

∑N
q=0

∑R
v=0Cmnr

(2h+1)(2q+1)(2v+1)
lTW

wMhmw
′
0qnw

′′
0vrψhqv(x, t, w)

...∑M
m=0

∑N
n=0

∑R
r=0

∑M
h=0

∑N
q=0

∑R
v=0Cmnr

(2h+1)(2q+1)(2v+1)
lTW

wMhmw
′
0qnw

′′
Rvrψhqv(x, t, w)

...∑M
m=0

∑N
n=0

∑R
r=0

∑M
h=0

∑N
q=0

∑R
v=0Cmnr

(2h+1)(2q+1)(2v+1)
lTW

wMhmw
′
Nqnw

′′
0vrψhqv(x, t, w)

...∑M
m=0

∑N
n=0

∑R
r=0

∑M
h=0

∑N
q=0

∑R
v=0Cmnr

(2h+1)(2q+1)(2v+1)
lTW

wMhmw
′
Nqnw

′′
Rvrψhqv(x, t, w)


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Hence we have:



C̃00 C̃01 ... C̃0M

C̃10 C̃11 ... C̃1M

...
. . .

...
...

C̃M0 C̃M1 ... C̃MM





ψ000

. . .

ψ00R

...

ψ0N0

...

ψ0NR

...

ψM00

...

ψM0R

...

ψMN0

...

ψMNR



= C̃ψ(x, t, w)

Finally

ψ(x, t, w)ψT (x, t, w)C ' C̃ψ(x, t, w) (5.19)

where C̃ is a (M+1)(N+1)(R+1)×(M+1)(N+1)(R+1) product operational matrix.

C̃ = [C̃ih], i, h = 0, 1, ...,M (5.20)

such that C̃ih is given by:

C̃ih =
2h+ 1

l

M∑
m=0

wihmAm
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where Am is a square matrix of size (N + 1) whose entries are of the form:

[Am]Nj,q=0 =
2q + 1

T

N∑
n=0

w′jqnBmn

and Bmn is a square matrix of size (R + 1) with entries of the form:

[Bmn]Rk,v=0 =
2v + 1

W

R∑
r=0

w′′kvrCmnr

Lemma 5.2 For an (M + 1)(N + 1)(R + 1)× (M + 1)(N + 1)(R + 1) matrix B , we

have:

ψT (x, t, w)Bψ(x, t, w) ' B̂ψ(x, t, w)

where B = [Bih]Mi,h=0, i, h = 0, 1, ...,M , Bih = [Bijhq]Nj,q=0, j, q = 0, 1, ..., N ,

Bijhq = [bijkhqv]
R
k,v=0, k, v = 0, 1, ..., R

B =



B00 B01 ... B0M

B10 B11 ... B1M

...
. . .

...
...

BM0 BM1 ... BMM


,

B =



B0000 B0001 ... B000N B00M0 B00M1 ... B00MN

B0100 B0101 ... B010N , ..., B01M0 B01M1 ... B01MN

...
...

. . .
...

...
...

. . .
...

B0N00 B0N01 ... B0N0N B0NM0 B0NM1 ... B0NMN

...
. . .

...

BM000 BM001 ... BM00N BM0M0 BM0M1 ... BM0MN

BM100 BM101 ... BM10N , ..., BM1M0 BM1M1 ... BM1MN

...
...

. . .
...

...
...

. . .
...

BMN00 BMN01 ... BMN0N . . . BMNM0 BMNM1 ... BMNMN



88



Note that Bijhq = [bijkhqv](R+1)×(R+1), i, h = 0, 1, ...,M, j, q = 0, 1, ..., N and k, v =

0, 1, ..., R.

B̂ is a 1× (M + 1)(N + 1)(R + 1) vector defined as:

B̂ = [B000 B001 ... B00R, ..., B0N0 B0N1 ... B0NR, B100 B101... B10R, ...,

B1N0 B1N1 ... B1NR, ..., BM00 BM01 ... BM0R , ..., BMN0 BMN1 ... BMNR]

with

Bmnr =
(2m+ 1)(2n+ 1)(2r + 1)

lTW

M∑
i=0

N∑
j=0

R∑
k=0

M∑
h=0

N∑
q=0

R∑
v=0

wihmw
′
jqnw

′′
kvrbijkhqv

m = 0, 1, ...,M, n = 0, 1, ..., N, r = 0, 1, ..., R
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Proof:

ψT (x, t, w)Bψ(x, t, w) =



ψ000

...

ψ00R

...

ψ0N0

...

ψ0NR

...

ψM00

...

ψM0R

...

ψMN0

...

ψMNR



T

B



ψ000

...

ψ00R

...

ψ0N0

...

ψ0NR

...

ψM00

...

ψM0R

...

ψMN0

...

ψMNR


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ψT (x, t, w)Bψ(x, t, w) = ψT (x, t, w)



∑M
h=0

∑N
q=0

∑R
v=0 b000hqvψhqv
...∑M

h=0

∑N
q=0

∑R
v=0 b00Rhqvψhqv
...∑M

h=0

∑N
q=0

∑R
v=0 b0N0hqvψhqv
...∑M

h=0

∑N
q=0

∑R
v=0 b0NRhqvψhqv
...∑M

h=0

∑N
q=0

∑R
v=0 bM00hqvψhqv
...∑M

h=0

∑N
q=0

∑R
v=0 bM0Rhqvψhqv
...∑M

h=0

∑N
q=0

∑R
v=0 bMN0hqvψhqv
...∑M

h=0

∑N
q=0

∑R
v=0 bMNRhqvψhqv


and the above product has the following form

ψT (x, t, w)Bψ(x, t, w) =
M∑
h=0

N∑
q=0

R∑
v=0

b000hqvψ000ψhqv

+ . . .+
M∑
h=0

N∑
q=0

R∑
v=0

b00Rhqvψ00Rψhqv

+ . . .+
M∑
h=0

N∑
q=0

R∑
v=0

b0N0hqvψ0N0ψhqv
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+ . . .+
M∑
h=0

N∑
q=0

R∑
v=0

b0NRhqvψ0NRψhqv

+ . . .+
M∑
h=0

N∑
q=0

R∑
v=0

bM00hqvψM00ψhqv

+ . . .+
M∑
h=0

N∑
q=0

R∑
v=0

bM0RhqvψM0Rψhqv

+ . . .+
M∑
h=0

N∑
q=0

R∑
v=0

bMN0hqvψMN0ψhqv

+ . . .+
M∑
h=0

N∑
q=0

R∑
v=0

bMNRhqvψMNRψhqv

According to equation 5.18, we have:

ψT (x, t, w)Bψ(x, t, w) '
M∑
m=0

N∑
n=0

R∑
r=0

M∑
h=0

N∑
q=0

R∑
v=0

b000hqv
(2m+ 1)(2n+ 1)(2r + 1)

lTW
w0hmw

′
0qnw

′′
0vrψmnr(x, t, w)

+ . . .+
M∑
m=0

N∑
n=0

R∑
r=0

M∑
h=0

N∑
q=0

R∑
v=0

b00Rhqv
(2m+ 1)(2n+ 1)(2r + 1)

lTW
w0hmw

′
0qnw

′′
Rvrψmnr(x, t, w)

+ . . .+
M∑
m=0

N∑
n=0

R∑
r=0

M∑
h=0

N∑
q=0

R∑
v=0

b0N0hqv
(2m+ 1)(2n+ 1)(2r + 1)

lTW
w0hmw

′
Nqnw

′′
0vrψmnr(x, t, w)

+ . . .+
M∑
m=0

N∑
n=0

R∑
r=0

M∑
h=0

N∑
q=0

R∑
v=0

b0NRhqv
(2m+ 1)(2n+ 1)(2r + 1)

lTW
w0hmw

′
Nqnw

′′
Rvrψmnr(x, t, w)

+ . . .+
M∑
m=0

N∑
n=0

R∑
r=0

M∑
h=0

N∑
q=0

R∑
v=0

bM00hqv
(2m+ 1)(2n+ 1)(2r + 1)

lTW
wMhmw

′
0qnw

′′
0vrψmnr(x, t, w)

+ . . .+
M∑
m=0

N∑
n=0

R∑
r=0

M∑
h=0

N∑
q=0

R∑
v=0

bM0Rhqv
(2m+ 1)(2n+ 1)(2r + 1)

lTW
wMhmw

′
0qnw

′′
Rvrψmnr(x, t, w)

+ . . .+
M∑
m=0

N∑
n=0

R∑
r=0

M∑
h=0

N∑
q=0

R∑
v=0

bMN0hqv
(2m+ 1)(2n+ 1)(2r + 1)

lTW
wMhmw

′
Nqnw

′′
0vrψmnr(x, t, w)

+ . . .+
M∑
m=0

N∑
n=0

R∑
r=0

M∑
h=0

N∑
q=0

R∑
v=0

bMNRhqv
(2m+ 1)(2n+ 1)(2r + 1)

lTW
wMhmw

′
Nqnw

′′
Rvrψmnr(x, t, w)
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=
(2(0) + 1)(2(0) + 1)(2(0) + 1)

lTW

M∑
i=0

N∑
j=0

R∑
k=0

M∑
h=0

N∑
q=0

R∑
v=0

bijkhqvwik0w
′
jq0w

′′
kv0ψ000(x, t, w)

+ . . .+
(2(0) + 1)(2(0) + 1)(2R + 1)

lTW

M∑
i=0

N∑
j=0

R∑
k=0

M∑
h=0

N∑
q=0

R∑
v=0

bijkhqvwik0w
′
jq0w

′′
kvRψ00R(x, t, w)

+ . . .+
(2(0) + 1)(2N + 1)(2(0) + 1)

lTW

M∑
i=0

N∑
j=0

R∑
k=0

M∑
h=0

N∑
q=0

R∑
v=0

bijkhqvwik0w
′
jqNw

′′
kv0ψ0N0(x, t, w)

+ . . .+
(2(0) + 1)(2N + 1)(2R + 1)

lTW

M∑
i=0

N∑
j=0

R∑
k=0

M∑
h=0

N∑
q=0

R∑
v=0

bijkhqvwik0w
′
jqNw

′′
kvRψ0NR(x, t, w)

+ . . .+
(2M + 1)(2(0) + 1)(2(0) + 1)

lTW

M∑
i=0

N∑
j=0

R∑
k=0

M∑
h=0

N∑
q=0

R∑
v=0

bijkhqvwikMw
′
jq0w

′′
kv0ψM00(x, t, w)

+ . . .+
(2M + 1)(2(0) + 1)(2(N) + 1)

lTW

M∑
i=0

N∑
j=0

R∑
k=0

M∑
h=0

N∑
q=0

R∑
v=0

bijkhqvwikMw
′
jq0w

′′
kvRψM0R(x, t, w)

+ . . .+
(2M + 1)(2N + 1)(2(0) + 1)

lTW

M∑
i=0

N∑
j=0

R∑
k=0

M∑
h=0

N∑
q=0

R∑
v=0

bijkhqvwikMw
′
jqNw

′′
kv0ψMN0(x, t, w)

+ . . .+
(2M + 1)(2N + 1)(2R + 1)

lTW

M∑
i=0

N∑
j=0

R∑
k=0

M∑
h=0

N∑
q=0

R∑
v=0

bijkhqvwikMw
′
jqNw

′′
kvRψMNR(x, t, w)

=
M∑
m=0

N∑
n=0

R∑
r=0

Bmnrψmnr(x, t, w) = B̂ψ(x, t, w)

where

Bmnr =
(2m+ 1)(2n+ 1)(2r + 1)

lTW

M∑
i=0

N∑
j=0

R∑
k=0

M∑
h=0

N∑
q=0

R∑
v=0

bijkhqvwihmw
′
jqnw

′′
kvr

Finally,

ψT (x, t, w)Bψ(x, t, w) ' B̂ψ(x, t, w)

�

Similarly, any matrix of the size (M + 1)(N + 1)(R + 1)× (M + 1)(N + 1)(R + 1)
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we have:

ψT (x, t, w)B1ψ(x, t, w) ' B̂1ψ(x, t, w)

ψT (x, t, w)B2ψ(x, t, w) ' B̂2ψ(x, t, w)

ψT (x, t, w)B3ψ(x, t, w) ' B̂3ψ(x, t, w)

ψT (x, t, w)B4ψ(x, t, w) ' B̂4ψ(x, t, w)

ψT (x, t, w)B5ψ(x, t, w) ' B̂5ψ(x, t, w)

ψT (x, t, w)B6ψ(x, t, w) ' B̂6ψ(x, t, w)

ψT (x, t, w)B7ψ(x, t, w) ' B̂7ψ(x, t, w) (5.21)

5.5 Method of Solution

In this section, we present a numerical method to find an approximate solution to 5.1

which corresponds with equation 5.4. Also, it is assumed that the included functions

this equation satisfy the conditions (5.2) to garntee that the solution is unique.

Using the Bivariate shifted Legendre functions, uP (x, t, w) and F (x, t, w) can be ap-

proximated by as:

up(x, t, w) ' CTψ(x, t, w) = ψT (x, t, w)C (5.22)

F (x, t, w) ' F Tψ(x, t, w) (5.23)

where F T is a 1× (M + 1)(N + 1)(R + 1) vector of constants of the form

F T = [F000 . . . F00R, . . . , F0N0 . . . F0NR, . . . , FM00 . . . FM0R, . . . , FMN0 . . . FMNR]

and such that Fmnr = (2m+1)(2n+1)(2r+1)
lTW

∫W
0

∫ T
0

∫ l
0
F (x, t, w)ψmnr(x, t, w)dxdtdw.

Also, the approximation of the other functions in equation 5.4 are needed, so we list
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them below:

K1(x, t, w, y, z, s) ' ψT (x, t, w)K1ψ(y, z, s) (5.24)

K2(x, t, w, y, z) ' ψT (x, t, w)K2ψ(y, z, w) (5.25)

K3(x, t, w, y, s) ' ψT (x, t, w)K3ψ(y, t, s) (5.26)

K4(x, t, w, z, s) ' ψT (x, t, w)K4ψ(x, z, s) (5.27)

K5(x, t, w, y) ' ψT (x, t, w)K5ψ(y, t, w) (5.28)

K6(x, t, w, z) ' ψT (x, t, w)K6ψ(x, z, w) (5.29)

K7(x, t, w, s) ' ψT (x, t, w)K7ψ(x, t, s) (5.30)

Substituting equations (5.22-5.30) into equation 5.4 to get:

CTψ(x, t, w) =

∫ w

0

∫ t

0

∫ x

0

ψT (x, t, w)K1ψ(y, z, s)ψT (y, z, s)Cdydzds

+

∫ t

0

∫ x

0

ψT (x, t, w)K2ψ(y, z, w)ψT (y, z, w)Cdydz

+

∫ w

0

∫ x

0

ψT (x, t, w)K3ψ(y, t, s)ψT (y, t, s)Cdyds

+

∫ w

0

∫ t

0

ψT (x, t, w)K4ψ(x, z, s)ψT (x, z, s)Cdzds

+

∫ x

0

ψT (x, t, w)K5ψ(y, t, w)ψT (y, t, w)Cdy

+

∫ t

0

ψT (x, t, w)K6ψ(x, z, w)ψT (x, z, w)Cdz

+

∫ w

0

ψT (x, t, w)K7ψ(x, t, s)ψT (x, t, s)Cds+ F Tψ(x, t, w)

95



CTψ(x, t, w) = ψT (x, t, w)K1

∫ w

0

∫ t

0

∫ x

0

ψ(y, z, s)ψT (y, z, s)Cdydzds

+ ψT (x, t, w)K2

∫ t

0

∫ x

0

ψ(y, z, w)ψT (y, z, w)Cdydz

+ ψT (x, t, w)K3

∫ w

0

∫ x

0

ψ(y, t, s)ψT (y, t, s)Cdyds

+ ψT (x, t, w)K4

∫ w

0

∫ t

0

ψ(x, z, s)ψT (x, z, s)Cdzds

+ ψT (x, t, w)K5

∫ x

0

ψ(y, t, w)ψT (y, t, w)Cdy

+ ψT (x, t, w)K6

∫ t

0

ψ(x, z, w)ψT (x, z, w)Cdz

+ ψT (x, t, w)K7

∫ w

0

ψ(x, t, s)ψT (x, t, s)Cds+ F Tψ(x, t, w)

According to equation 5.19 the above expression took the following form

CTψ(x, t, w) = ψT (x, t, w)K1

∫ w

0

∫ t

0

∫ x

0

C̃ψ(y, z, s)dydzds

+ ψT (x, t, w)K2

∫ t

0

∫ x

0

C̃ψ(y, z, w)dydz + ψT (x, t, w)K3

∫ w

0

∫ x

0

C̃ψ(y, t, s)dyds

+ ψT (x, t, w)K4

∫ w

0

∫ t

0

C̃ψ(x, z, s)dzds+ ψT (x, t, w)K5

∫ x

0

C̃ψ(y, t, w)dy

+ ψT (x, t, w)K6

∫ t

0

C̃ψ(x, z, w)dz + ψT (x, t, w)K7

∫ w

0

C̃ψ(x, t, s)ds

+ F Tψ(x, t, w)

Using equations 5.9-5.15, we get:

CTψ(x, t, w) = ψT (x, t, w)K1C̃Q1ψ(x, t, w) + ψT (x, t, w)K2C̃Q2ψ(x, t, w)

+ ψT (x, t, w)K3C̃Q3ψ(x, t, w) + ψT (x, t, w)K4C̃Q4ψ(x, t, w)

+ ψT (x, t, w)K5C̃Q5ψ(x, t, w) + ψT (x, t, w)K6C̃Q6ψ(x, t, w)

+ ψT (x, t, w)K7C̃Q7ψ(x, t, w) + F Tψ(x, t, w).
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Finally, from equations 5.21 the product CTψ(x, t, w)

CTψ(x, t, w) = B̂1ψ(x, t, w) + B̂2ψ(x, t, w) + B̂3ψ(x, t, w) + B̂4ψ(x, t, w)

+ B̂5ψ(x, t, w) + B̂6ψ(x, t, w) + B̂7ψ(x, t, w) + F Tψ(x, t, w)

CTψ(x, t, w) =

( 7∑
i=1

B̂i + F T

)
ψ(x, t, w). (5.31)

Hence we have:

CT =
7∑
i=1

B̂i + F T

which corresponds with a system of linear algebraic equations in terms of the unknown

elements of the vector C and can be solved easily using direct methods.

The unknown function u(x, t, w) can be approximated in terms of the Bivariate shifted

Legendre functions as:

u(x, t, w) ' ATψ(x, t, w) (5.32)

Such that the entries of the vector A are unknowns.

Using equations 5.19, and 5.32 , it is can be easily obtained that:

up(x, t, w) ' AT Ãp−1ψ(x, t, w) (5.33)

Finally, using equations 5.33, 5.22, we get:

AÃp−1 = CT (5.34)

Equation 5.34 forms a system of (M + 1)(N + 1)(R+ 1) system of nonlinear equations.

The result in equation 5.33 can be proved by induction, that ∀ K ∈ Z+,

Using the result 5.19, and replace C by A to have:

ψ(x, t, w)ψT (x, t, w)A ' Ãψ(x, t, w) (5.35)
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Apply the transpose for both sides of equation 5.35 to yield:

ATψ(x, t, w)ψT (x, t, w) ' ψT (x, t, w)ÃT (5.36)

Apply the result of equation 5.32 with p = 1 to get:

u(x, t, w) ' AT Ã0ψ(x, t, w) (5.37)

For p = 2,

u2(x, t, w) = u(x, t, w)u(x, t, w)

' ATψ(x, t, w)ψT (x, t, w)A

u2(x, t) ' AT Ã1ψ(x, t, w)

If p = 3, then,

u3(x, t) = u2(x, t, w)u(x, t, w)

' AT Ã1ψ(x, t, w)ψT (x, t, w)A

' AÃÃψ(x, t, w)

u3(x, t, w) ' AT Ã2ψ(x, t, w)

For p = 4,

u4(x, t, w) = u3(x, t, w)u(x, t, w)

' AT Ã2ψ(x, t, w)ψT (x, t, w)A

u4(x, t, w) ' AT Ã3ψ(x, t, w)
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Suppose that k ∈ Z+, and let equation 5.33 be true for k, then,

uk+1(x, t, w) = uk(x, t, w)u1(x, t, w)

' AT Ãk−1ψ(x, t, w)ψT (x, t, w)A

' AT Ãk−1Ãψ(x, t, w)

uk+1(x, t, w) ' AT Ãkψ(x, t, w)

Thus equation 5.33 is true for p = k + 1, and the proof is completed.

5.6 Numerical Examples

In this section, some examples are presented to show the reliability of this method. In

order to show the error of the method, the following notation is introduced:

eM,N,R(x, t, w) = |u(x, t, w)− uM,N,R(x, t, w)|, (x, t, w) ∈ D

where u(x, t, w) is the exact solution, and uM,N,R(x, t, w) is the computed result with

M , and N .

Throughout this section, we assume that M 6= N 6= R or M = N = R. Also, in order

to apply Newton’s method to solve the resultant nonlinear system, we assume that the

initial guess is A0 = C.

Example 5.1 Consider the following 3D nonlinear volterra integral equation of the

first kind:

∫ w

0

∫ t

0

∫ x

0

u3(y, z, s)

y + z + s+ 2
dydzds =

xtw

6
(2t2+3tw+3tx+12t+2w2+3wx+12w+2x2+12x+24)

(x, t, w) ∈ [0, 3]× [0, 3]× [0, 3].

The exact solution is u(x, t, w) = x+ t+ w + 2 .
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Applying the presented method with M = N = R = 1, and obtaining the linear system

in terms of the unknown coefficiets of the function u3(x, t, w) as:

c000 = 637
2
, c001 = c010 = c100 = 1989

10
, c011 = c101 = c110 = 351

4
, c111 = 81

4
.

Substituting obtained values for cijk, i, j, k = 0, 1 in to equation AT Ã2 = CT , then we

get a system of nonlinear equations in terms of the unknown coefficients of u(x, t, w).

Finally, Newton’s method is used with the initial guess A(0), eight ierations and presi-

cion 10−9, are considered.

a000 = 6.495628455, a001 = a010 = a110 = 1.510686315,

a011 = a1o1 = a110 = −0.009707900, a111 = 0.009578177.

Therefor, we have u1,1,1(x, t, w) = 1.026543529(x+ t+w)−0.00857159(tw+ tx+xw) +

0.002837978(twx) + 1.924867633.

Also,

e1,1,1 = |0.026453529(x + t + w) − 0.008590(tx + tw + xw) + 0.002837978(txw) −

0.075132367| ≤ 0.075132367.

For M = N = R = 2, we have

a000 = 6.5, a001 = a010 = a100 = 1.5, a002 = a011 = a012 = a020 = a021 = a022 = a101 =

a102 = a110 = a111 = a112 = a120 = a121 = a122 = a200 = a201 = a202 = a210 = a211 =

a212 = a220 = a221 = a222 = 0

So, u222(x, t, w) = x+ t+ w + 2 which is the exact solution.

Example 5.2 [57]

∫ w

0

∫ t

0

∫ x

0

yz2u(y, z, s)dydzds =
x3t3

9
sinw, (x, t, w) ∈ [0, 1]× [0, 1]× [0, 1]

The exact solution is u(x, t, w) = xcosw

Applyinf Bivariate shifted Legendre function for M = N = R = 1, 2, 3, The following

tables show the exact solution, the approximate solution, and the absolute error at

some particular points.
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Tab. 5.1: Exact and numerical solutions at M = N = R = 1

x = t = w Exact Approximation Error

10−7 10−7 1.0752000× 10−7 7.520000× 10−9

0.1 9.9500420× 10−2 1.0284900× 10−1 3.348580× 10−3

0.2 1.9601332× 10−1 1.9634698× 10−1 3.336600× 10−4

0.3 2.8660095× 10−1 2.8049408× 10−1 6.106870× 10−3

0.4 3.6842440× 10−1 3.5529025× 10−1 1.313415× 10−2

0.5 4.3879128× 10−1 4.2073549× 10−1 1.805579× 10−2

0.6 4.9520137× 10−1 4.7682881× 10−1 1.837256× 10−2

0.7 5.3538953× 10−1 5.2357319× 10−1 1.181634× 10−2

0.8 5.5736537× 10−1 5.6096565× 10−1 3.600280× 10−3

0.9 5.5944897× 10−1 5.8900717× 10−1 2.955820× 10−2

1 5.4030231× 10−1 6.0769777× 10−1 6.739546× 10−2

Tab. 5.2: Exact and numerical solutions at M = N = R = 2

x = t = w Exact Approximation Error

10−7 10−7 1.0034000× 10−7 3.40000× 10−10

0.1 9.9500420× 10−2 9.9544550× 10−2 4.41300× 10−5

0.2 1.9601332× 10−1 1.9577230× 10−1 2.41020× 10−4

0.3 2.8660095× 10−1 2.8609721× 10−1 5.03740× 10−4

0.4 3.6842440× 10−1 3.6793321× 10−1 4.91190× 10−4

0.5 4.3879128× 10−1 4.3869424× 10−1 9.70400× 10−5

0.6 4.9520137× 10−1 4.9579424× 10−1 5.92870× 10−4

0.7 5.3538953× 10−1 5.3664716× 10−1 1.25763× 10−3

0.8 5.5736537× 10−1 5.5866693× 10−1 1.30156× 10−3

0.9 5.5944897× 10−1 5.5926749× 10−1 1.81480× 10−4

1 5.4030231× 10−1 5.3586279× 10−1 4.43952× 10−3
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Tab. 5.3: Exact and numerical solutions at M = N = R = 3

x = t = w Exact Approximation Error

10−7 10−7 9.9947000× 10−8 5.3000× 10−11

0.1 9.9500420× 10−2 9.9513030× 10−2 1.2610× 10−5

0.2 1.9601332× 10−1 1.9605599× 10−1 4.2670× 10−5

0.3 2.8660095× 10−1 2.8661729× 10−1 1.6340× 10−5

0.4 3.6842440× 10−1 3.6837449× 10−1 4.9910× 10−5

0.5 4.3879128× 10−1 4.3869424× 10−1 9.7040× 10−5

0.6 4.9520137× 10−1 4.9513232× 10−1 6.9050× 10−5

0.7 5.3538953× 10−1 5.3543363× 10−1 4.4100× 10−5

0.8 5.5736537× 10−1 5.5753220× 10−1 1.6683× 10−4

0.9 5.5944897× 10−1 5.5955117× 10−1 1.0220× 10−4

1 5.4030231× 10−1 5.3980282× 10−1 4.9949× 10−4

(a) M = N = R =1 (b) M = N = R=2

(c) M = N = R=3

Fig. 5.1: The values of N=M=R versus absolute error at different x,w values and t = [0, 1]
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Example 5.3

∫ w

0

∫ t

0

∫ x

0

(xtw−yzs−1)u2(y, z, s)dydzds =
−twx
144

(−39wt3x−56wt2x2+48t2−39wtx3+72tx+48x2),

(x, t, w) ∈ [0, 1]× [0, 1]× [0, 1]. The exact solution is u(x, t, w) = x+ t.

Applyinf Bivariate shifted Legendre function for M = N = R = 1, 2, 3, The following

tables show the exact solution, the approximate solution, and the absolute error at

some particular points.

Tab. 5.4: Exact and numerical solutions at M = N = R = 1

(x, t, w) Exact Approximation Error

(0, 0, 0) 0 7.42393294× 10−4 7.42393294× 10−4

(0.2,0.2,0.2) 0.4 0.40202067 2.02067000× 10−3

(0.4,0.4,0.4) 0.8 0.803343470 3.34347000× 10−3

(0.6,0.6,0.6) 1.2 0.120237667 2.37667000× 10−3

(0.8,0.8,0.8) 1.6 1.59678614 3.21386000× 10−3

(1,1,1) 2 1.98423777 1.57622300× 10−2

(0.1,0.2,0.3) 0.3 0.303174610 3.17461000× 10−3

(0.3,0.5,0.4) 0.8 0.803534260 3.53426000× 10−3

(0.6,0.4,0.2) 1 1.00055495 5.54950000× 10−4

(0.5,0.7,0.6) 1.2 1.20266471 2.66471000× 10−3

(0.7,0.8,0.3) 1.5 1.49806945 1.93055000× 10−3

(0.8,0.9,0.7) 1.7 1.69496634 5.03366000× 10−3

(0.9,1,0.5) 1.9 1.89230119 7.69881000× 10−3
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Tab. 5.5: Exact and numerical solutions at M = N = R = 2

(x, t, w) Exact Approximation Error

(0, 0, 0) 0 7.93688432× 10−4 7.93688432× 10−4

(0.2,0.2,0.2) 0.4 0.400162800 1.62800000× 10−4

(0.4,0.4,0.4) 0.8 0.800007130 7.13000000× 10−6

(0.6,0.6,0.6) 1.2 1.20000476 4.76000000× 10−6

(0.8,0.8,0.8) 1.6 1.60000280 2.80000000× 10−6

(1,1,1) 2 2.00001740 1.74000000× 10−5

(0.1,0.2,0.3) 0.3 0.300252630 2.52630000× 10−4

(0.3,0.5,0.4) 0.8 0.799997140 2.86000000× 10−6

(0.6,0.4,0.2) 1 0.999994380 5.62000000× 10−6

(0.5,0.7,0.6) 1.2 1.20000114 1.14000000× 10−6

(0.7,0.8,0.3) 1.5 1.50000430 4.30000000× 10−6

(0.8,0.9,0.7) 1.7 1.69999907 9.30000000× 10−7

(0.9,1,0.5) 1.9 1.90000252 2.52000000× 10−6

Tab. 5.6: Exact and numerical solutions at M = N = R = 3

(x, t, w) Exact Approximation Error

(0, 0, 0) 0 8.3855× 10−16 8.3855× 10−16

(0.2,0.2,0.2) 0.4 0.39999999999999600 3.99680289× 10−15

(0.4,0.4,0.4) 0.8 0.799999999999984 1.60982339× 10−14

(0.6,0.6,0.6) 1.2 1.1999999999999700 2.99760217× 10−14

(0.8,0.8,0.8) 1.6 1.5999999999999400 6.01740879× 10−14

(1,1,1) 2 1.9999999999999000 9.99200722× 10−14

(0.1,0.2,0.3) 0.3 0.2999999999999980 1.99840144× 10−15

(0.3,0.5,0.4) 0.8 0.7999999999999850 1.50990331× 10−14

(0.6,0.4,0.2) 1 0.9999999999999780 2.19824159× 10−14

(0.5,0.7,0.6) 1.2 1.1999999999999700 2.99760217× 10−14

(0.7,0.8,0.3) 1.5 1.4999999999999500 4.99600361× 10−14

(0.8,0.9,0.7) 1.7 1.6999999999999300 6.99440506× 10−14

(0.9,1,0.5) 1.9 1.8999999999999100 8.99280650× 10−14
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(a) M = N = R =1 (b) M = N = R=1

(c) M = N = R=1 (d) M = N = R=2

(e) M = N = R=3

Fig. 5.2: The values of M=N=R versus absolute error at different x,t values and w = [0, 1]
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5.7 Conclusions

In the presented method of one, two, and three-dimensional nonlinear VIE of the first

kind are transformed to a nonlinear VIE of the second-kind. The bivariate shifted

Legendre functions operational matrices have been used to approximate the solution

of problem. The approximated non-linear VIE of the second-kind is transformed to

a linear system of algebraic equations with unknown coefficients which solved using

Gauss-Jordan elimination method. Finally, a system of nonlinear algebraic equations

with unknown coefficients of the solution of the main problem has been obtained which

can be solved using the Newton’s iterative method.

The applicability and accuracy of the method have been checked for some examples

in one, two, and three dimensional VEI. It was noticed that that the present method

gives more accurate results than the methods presented even when we use a small num-

ber of basis functions.

The method can be applied to the first-kind VIE integral equations in one, two, and

three dimensions. Morever, it will not difficult to extend this approach to nonlinear

integral equations of diffierent forms.
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