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Abstract

The Bivariate Shifted Legendre Functions for Nonlinear
Volterra Integral Equation

By

Mahmoud Taher Ibraheem

In this thesis, the Bivariate Shifted Legendre Method for solving one, two and three-
dimensional nonlinear Volterra Integral Equation are introduced and analyzed. More
specific, three-dimensional Bivariate Shifted Legendre has been investigated in details
and some formulas related to three-dimensional Volterra integral equation are deduced.
Further, in order to find the approximated solution, the Volterra integral Equation
of the first kind is converted to a second kind by using Leibniz integral formula and
then the obtained integral equation is reduced to a system of linear algebraic equations
using the bivariate shifted Legendre functions operational matrices. Finally, many
numerical examples were provided to demonstrate the applicability and the accuracy

of the presented method.
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Chapter 1

Introduction

An integral equation is the equation in which the unknown function u(z) appears under
an integral sign . In 1884, Volterra started working on integral equations, but his serious
study began in 1896. The name "integral equation” was given by Du Bios Reymond
in 1888. However, the name Volterra integral equation was first coined by Lalesco in
1908 [53].

Volterra integral equations arise in many scientific areas such as population dynamics,
biology, engineering, spread of epdemics, and semi- conductor devices.

The destinction between Fredhom and Volterra integral equations is analogous to the
distinction between boundary and initial value problems in ordinary differential equa-
tions [29].

Volterra integral equations can be considered as a generalization of initial value prob-
lems. In practice, Volterra equations frequently occur in connection with time- depen-
dent or evolutionary systems [11], [26].

The most well known formula of integral equations is given by:



where a(z) and f(x) are the limits of integration such that either both of them are
functions or both of them constants or at least one of them is constant , A is a constant,
K(z,t) is a known function of two variables z, and ¢ which is called the kernel of the

integral equation, while the function u(z) is the solution of integral equation. [2§].

Basing on the limits of integrations, equation (1.1)) can be classified into two known

types as follows

1. If at least one limit of integration in eqation ((1.1)) is variable, then it is called a

Volterra integral equation given and it has the form:

h(x)u(z) = g(x) f(x) + A / ", Du(t)dt (1.2)

If h(z) = 0, eqation (|1.1]) is called a Volterra integral equation of the first kind.
If h(xz) = 1, eqation (1.1) is called a Volterra integral equation of the second kind.

The function g(z) determines the homogeneity of the equation.

2. If the limits of integration in equation are constants, eqation ((1.1)) is called

Fredholm integral equation and given by the formula:

h@)u(x) = g(x) f(z) + A / k(e t)u(t)dt. (1.3)

Where a and b are constants.

Also, it can be characterized in a similar manner as in Volterra integral equation.

It is interesting to mention that any equation includes both derivatives and integrals of
the unknown function is called integro-differential equation, as for example the following

equation



kq, B(z)
h(x)%(x) = f(x) + )\/ k(x, t)u(t)dt (1.4)

Moreover, [46] the integral equation is called nonlinear if the kernel function is a non-

linear function in u(x)

B(z)
h(x)u(x) = f(z) + )\/( | k(x,t,u(t))dt (1.5)

or it has other form which is :

B(z)

h(z)u(z) :f(:c)+/\/() k(. ) F (u(t))dt (1.6)

where F'is a nonlinear function of u
For the n-independent variables x = (x1, 23, ..., ,, ), the n-dimensional integral equation
is:

h(e)ulz) = F() + /G Kz, y)u(y)dy (L.7)

where x,y € R", G C R".

Many analytical and numerical methods has been used to solve integral equations.
In [5,(6,/12,20-22/48//51,/53] the author gathered many analytical and numerical methods
to solve different types of one and two-dimensional integral equations like the Adomian
decomposition method, modified Adomian decomposition method, Variational iteration
method, Laplace transform method, successive approximations method, series solution
method, rationalized haar functions, triangular functions, collocation and iterated col-
location, and differential transform method . It was noted that little has been done to
solve the first kind cases. The numerical solution of the equation of the first kind has
been considered in [8,9,[34]. Malik Negad et.al [34] studied the numerical solution of

the first kind using block- pulse functions.



In this thesis, the method that introduced in [40] was extended to solve the nonlin-
ear Volterra integral equation of the first kind with some conditions. The considered
problem is solved using the Bivariate shifted Legendre orthogonal functions. The main
idea of this technique is to reduce the equation to a systems of nonlinear algebraic
equations [40]. In addition to the current chapter, the thesis is arranged as follows:
in chapter two, general concepts like inner product, and Newton’s method have been
introduced. In chapters three four and five, the method of the Bivariate shifted Leg-
endre functions, operational matrices of integration, and the product of operational
matrices are introduced in details and the approximated solution of the one, two, and
three dimensional Volterra integral equations discussed. Numerical examples as will as
figures obtained from the simulation that done using Matlab to illustrate the accuracy

of the presented method.



Chapter 2

Preliminaries

In this chapter, and to be familiar with the notations that will be used throughout
this work, some basic terminologies are needed. Mainly, the chapter consists of the
definition of inner product spaces and the method of Newton for systems of nonlinear

equations.

2.1 Inner Product

Recall that if u, and v are two vectors in 3-space, then the inner product < u,v > is a

function satisfying the following conditions: [1,/56]:

1. <u,v>=<v,u>
2. < Ku,v>= K < u,v >, K is scaler
3. <u,u>=0ifu=0,and < u,u>>0if u#0

4. <u+v,w>=<u,w >+ < v,w >, where w is a vector.

Throughout this work, we will deal with real valued functions defined on a finite interval

[a, b].



Definition 2.1 [50/(Inner product of function) The inner product of two functions f

and g on an interval [a,b] is the number < f,g >.

< fig>= / f(@)g(x)de

2.2 Orthogonal Functions

Motivated by the fact that two geometric vectors u and v are orthogonal whenever their

inner product is zero. Define orthogonal functions in the same manner.

Definition 2.2 (38, 56/(Orthogonal Functions) Two fnctions f and g are orthogonal

on an interval [a,b] if

< f,g >—/ f(z)g(z)dx =0 (2.1)

2.2.1 Orthogonal sets
We are primarily interested in infinite sets of orthogonal functions.

Definition 2.3 [56](Weight Function) A set of real- valued functions {1o(x), ¥1(z),...}

is said to be orthogonal with respect to a nonnegative function w(x) on an interval |a, b|
if
b
< (), nle) 5= [ () (o), Vel = 0,m £

where w(x) is called the weight function. The norm of 1, (x) is defined as
b
< Y (2), Y (2) >= [ (2)|[* = / w () [ (2) [P da

The inner product space of all continuous real valued functions on the interval[—1, 1]
with the inner product defined in (2.1)) can be completed to give a Hilbert space. This

space consists of a special type of polynomials which are called Legendre’s Polynomials.



Definition 2.4 [27/(Legendre Functions) The Legendre polynomials are defined by

Rodrigues formula

1 dr
ol dan

L, () (> =1)", n=0,1,2,... (2.2)

For arbitrary real or complex values of the variable x.

The first three Legendre polynomials are: Lo(z) = 1, Li(z) = 2, Lo(x) = 5(32® — 1).
The general expression for the n'® Legendre polynomials is obtined from using

Binomial expansion
2 n __ - (_1)kn' 2n—2k
(@-1=> K(n — k)"
k=0

which implies that:

(3]

B (=1)*©2n —2k)! .
Ln(l’) = % 2’6[{:!(71 _ k)'(n — 2]{7)!x

where the symbol [§] denotes the largest integer less than or equal [3] .

These specific n'* degree polynomials are called Legendre polynomials and are denoted
Ln(x) . |4

Recurrence relations that relate Legendre polynomials of different degrees are also im-
portant in some aspects of their applications.

We state, without proof, the three-term recurrence relation.

The well known Legendre polynomials of degree n are defined on the interval [—1, 1] as

follows:

2 1
n + I n

Lo (2) = ntl

L, 1(x), n=1,2,3,..,

where Lo(x) =1, Ly(z) = z.

Although, we have assumed that the parameter n in Legendre’s differential equation:



% {(1 - x2)dL;;x)] +n(n+1)L,(x) =0,

n =0,1,2,... Represent a non negative integer. for more general settings n can be any
real number. Any solution of legendre’s equation is called a Legendre function.

The orthogonality condition is:

1 2

/— Ly () Ly (z)dx = 2n+1

1

ifm=n

0 otherwise

For one to use these polynomials on the interval [0, (], we defined the so called Shifted
Legendre polynomials using the change of variables z = %t— 1. Let the Shifted Legendre

polynomials denoted by P,(t), which can be obtained as follows:

(2n+1),2 n
(n+1) (Tt DR = 105

Pn+1(t) = Pn—l(t)7 n = 1,2,

where Py(t) =1, Py(t) =3t —1.

The analytical form [13] of the Shifted Legendre polynomials P,(t) of degree n is given

by:
. + k)tk
P(t) =) (~1 w0+ R
®) g( ) (n — k)!(K!)?
The orthogonality condition is:
! —_ iftm=n
/ Po(t) Py (t)dt = {
0 0 otherwise



2.2.2 The Kronecker Product

Definition 2.5 [50,(54] Let A = [a;;] be an m x n matriz, and let B be a p X g, then

the Kronecker product of A and B is that (mp) X (nq) matriz defined by:

(IHB algB alnB

ang GQQB CLQnB
A®B =

am B am2B ... apnB

Remarks:

1. Sometimes the kronecker product is also called direct product or tensor product.

2. Let I,, be the n x n identity matrix, and let I,, be the m x m identity matrix.

Then I,, ® I,,, is the nm x mn identity matrix. Obviously I,,® I, = I,,&I,, = L.,.

3. Let A, be an arbitrary n x n matrix, and let O,, be the m x m zero matrix. Then

4. The kronecker product is satisfying the Distributivity and the Associativity prop-

erties, i.e:

AR (B+C) = A®B+A®C, (Distributivity),

(A®B)®C = A®(B®C), (Associativity).

2.3 Newton’s Method for System of nonlinear equations

Newton Raphson method is an iterative method for solving nonlinear system of alge-

braic equations. [55]



The system of n- nonlinear equations in n unknowns is given by:

fi(z1, 29, ..cyxy,) = 0

fg(l'l,ﬂfg, ,.Tn) = O

folz1, 20, i) = 0

This system can be written using a single form as:

F(X)=0

where the vector X contains the variabls (z1, zs, ..., x,), the vector F' is the vector of

functions f;, and O is the zero vecor.

_I1_ _f1_
xo | po | (2.3)
|| | fn]

As in newton method of one variable, we need to start with an initial guess X,. In
theory, the more variables one has, the harder it is to find the initial guess. In practice,
that must be overcome by reasonable assumptions about the possible values of the
solution. Once X is chosen, let AX = X; — X, then it can be approximated around

the vector Xy using Taylor expansion as follows [49,52]:

F(Xo+ AX) ~ F(Xo) + J(F(X))AX, (2.4)

10



where

O(f1, fay oo [
J(F(Xo)) = a((; 52 ...£>)<XO)
'g%(xo) h(Xo) 37’”;()(0)_
J(F(XO) = 3901('X0) Bm(XO) ‘%"(XO)
9 (Xo) G2 (Xo) .. SE(X0)]

’

J is called the Jacobian.
Newton’s method is based on constructing of a sequence of vectors that converges to
X, such that F'(X) = 0. Let F' be a continuously differentiable function at Xy, and the
target is to find X that makes F(X) equal to the zero vector. For that purpose, choose
X as follows [16]:

F(Xo)=J(F(X0))(X1— X)) =0

Since J(F'(Xj)) is a a square matrix, we can solve this equation by:
X1 - XO - Jﬁl(F(X(]))F(Xo)
In general
Xop1 = X, — J HF(X,))F(X,)

provided that the inverse of the Jacobian matrix is exist. However, in practice, we never
use the inverse of matrix for computations. Rather, we can do the following. First,

solve the equation

J(F(X0))AX = —F(Xo)

J(F(Xy)), F(Xo) are knows, so it is a linear system of equations, which can be solved

efficiently and accurately. Once we have the solution of the vector AX, we can obtain

11



the improved estimate X; which is

X =Xo+AX

For subsequent steps, we have the following process:

where X, .1 = AX + X,,.
A convergence criterion of the solution of the system of nonlinear equations could be
for example, that the maximum of the absolute values of the function f;(X,,) is smaller

that a certain tolerance e,

Max;| f;(X,)| <€

Another possibility for convergence is that the magnitude of the vector F'(X,,) be smaller
than the tolerance

|F(X,)| <e

We can also use the difference consecutive values of the solution

Max;|(Xi)ns1 — (Xi)n| <€

or AX =X, — X, <e.

12



Chapter 3

One-Dimensional Nonlinear Volterra Integral

Equation

In this chapter, we present a numerical methods for the solution of nonlinear one-

dimensional Volterra integral equation 1D-VIE of the form

/m K(z, P (t)dt = f(z),x €[0,1], t €0, (3.1)

where u(x) is an unknown function called the solution of the integral equation, p is a
positive integer number, K is the kernel function and f is a smooth function. Also,
the functions f and K are required to satisfy the conditions f(0) = 0 and K(z,x) #
0,Vx € [0,1]. Many problems in mathematics, physics and engineering could be reduced
to integral equations of the first kind are inherently ill-posed problems meaning that
the solution is generally unstable, and small changes to the problem can make very

large changes to the solutions. [47]

As a result of this type of problems, the numerical solution becoms very difficult to
reach. In deed, a small error could lead to an unbounded error. To overcome the
ill-posdenss, we transform nonlinear 1D-VIE of the first kind with the conditions
f(0) =0, K(z,z) # 0, Va € [0,] to a nonlinear 1D- VIE of the second kind. [43] The

nonlinear 1D-VIE of the second kind can be obtained by differentiating equation ({3.1))

13



with respect to x using Leibniz’s Integral Rule.

Theorem 3.1 |[25/[Leibniz’s Integral Rule] Suppose that the function g has a uniformly

continuous partial derivative % and let

Where a and b are continuously differentiable funtions defined on(xg,x1). Then, for

x € (x9,21) we have

of "™ dg(z,y)

% (o) O dy + b'(x)g(x, b(l’)) — d(l’)g(m? a(g;)) (32)

Thus, using (3.2)), the integral equation( can be reduced to :

of [T OK(x,t)

il M uP(t)dt + K (z, z)u? (x) (3.3)

Equation (3.3)) then will have the following shape:
W(z) = / Ki(, )P (t)dt + F(x) (3.4)
0

where Ki(z,t) = —%/K(m,x), and F(z) = 82—(;”)/[((%:10)
As a conclusion, in order to solve equation (3.1)), it is enough to solve equation ({3.4]).

Let us first intorduce the shifted lengedre polynomial as follows

Definition 3.1 [Z,15] The well-known Legendre polynomials of degree n = 0,1, ...

are defined on the interval [-1,1] and can be determined with the aid of the following

14



recurrence formula

Loai(t) = (2:::11>th(1€) - (nil)Ln_l(t), n=1,2,... (3.5)

where Lo(t) =1 and Ly(t) = t.

For one to use these shifted polynomials on the interval [a,b] = [0,[], we define the so

called shifted legnedre polynomials by using the change of variable

2 b

Now, let the shifted legendre polynomials L, (32 — 1) be deonted by P,(z), then P,(x)

can be obtained as follows

Poui(z) = (2:4:1) (%x - 1) Po(x) — (n i 1>Pn1(x), n=1,2,... (36)

where Py(z) = 1 and Pi(z) = 2z — 1. Let P,(z) and P,,(z) be two functions defined

on some interval [0,/]. These functions are called with respect to a weight function

w(x) =1on [0,]] s.t.

ifm=mn

2n+1

/O w(@) Py (2) Py () —

0 otherwise

The bivariate shifted Legendre functions are defined on z € [0, 1] as follows

n(x) = Po(z) — Ln(%x “1), n=0,1,2... (3.7)

15



and are orthgonal with respect to the weight function w(x) = 1 such that

! - _
n+1 ifm=n

l
|ty @i = (3.5)

0 0.Ww

3.1 Approximation with shifted legendre polynomials

A function f(z) € L?[0,l] may be expanded by in terms of Legendre polynomials as

follows

f@) =Y Cuthn(2) (3.9)

where C), is constant given by

(f(x), Yn(x))

C, = . 3.10
(), ) 310
If the infinite series in equation(3.9) is truncated up to term N, [30,147] then
N
fa) = Cothulz) = CT(x) (3.11)
n=0
Where C and ¢ are (N + 1) x 1 vectors given by
T T
C= {Co Cl...CN} and ¢ = {M) ¢1¢N}
Now,
(f(2),hn(2)) = <Z Citj (), ¢n($)> (3.12)
=0

= Co(Pn(2), Yn(2))

16



Therefore, from equation(3.8) the constant C, can be computed by the following

formula [10,32]

n

2
[RC

3.2 Approximating the kernel function

Let K (z,t) € L*([0,1] x [0,1]), we have

Z Z wr rsws

r=0 s=0

where

Krs =

(), (K (2, 1), ¥s(t)))
{r (@), r(2)) (s (), ¥s(1))

And can be accessed through the previous equation [45]

(U (), (K (x,1),95(t) —< Zwr K, ts(t) ws(t>>>

r,5=0

= <¢r<x)>Krs|| l/)s(t) ngr(:p»: Krs” %(95) H;H %(t) ”;

o), (K (), 0.(0)))
EOIHEXOLE

(2 (2
Krs 71—'_ S+ //% l‘td}s

rs

Therefore,

If the infinite series in equation(3.14)) is truncated, then it can be written as

Ko t) = 305 (@) Kputtat) = 07 () K (2)

17
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Similarly, any function K*(x,t) € L*([0,1]x[0,1]) can be expanded in terms of bivariate

shifted legendre functions as [32,44]

Ki(z,t) ~ " (2) K '(t) (3.19)

where K'is a (N + 1) x (N + 1) block matrix has the form

and k; = |k ky -+ kiv|, 1=0,1,...,N
_kOO ko1 /{:ON_
Therefore, K!= ko ki kin
_kNO k1 kNN_

3.3 Integration opertational matrix

The ordinary differential recurrence relations of the orthogonal Legendre polynomials

with respect to x is given by

(n+1)P1(x) = 2n+ 1)zP,(z) — nP,—1(x). (3.20)

After differentiating with respect to x and rearranging the terms we get the following

(2n + 1)Py(z) = (n+ 1) Poyr(z) — 2n 4 D)aPy(z) + nP,_i(x) (3.21)

18



On the other hand, we have [3]

zP,(x) = nP,(z) + P,_i(x) (3.22)

Now, [15] Substitute equation(3.22)) in equation(3.21)) to get

_ (n+1) . (2n+1) WP (z 5 o n 5
_ (n+1) . . n .
Po(x) + nPy(x) = mpnﬂ(x) = Pya() + mpnfl(if)
(2n +1)P, = Py (z) — Py () (3.23)
Equation can be written in the form
¢n(x) = And’n—i—l(m) + Bn¢n(x) + Cn¢n—1(x) (3'24)

Where 9,,(x) are the shifted legendre polynomials on [0,!] and the coefficients A, B,
and C,,, n=0,1,2,--- are constants. The coeficients A,,, B,, and C,, can be evaluated

by integraing the recurrence relation(3.24)) from 0 to x as follows

/OI U (z) de = Apthni1(2) + Bothn(2) + Crthy—1(2) + Dytho(x) (3.25)

Then Substitute n = 0,1,... in equation(3.25))to get

Aozé, Bozé, Co=0, Dy=0
Alzf, B, =0, Clzll, D; =0
6 6
Ay = i, By =0, Cy _—l, Dy =0
10 10
R— R A— =0, n>1
"o2@2n+1) Y 7 T 22n4+1)”

19



For simplicity, we may write equation(3.25) in the form [17.|44]

/OJ»‘ W(t) dt ~ Py(x) (3.26)

Where ¢ has the form
T

¢<l’) - {?ﬂo, wla ¢27 e 71/}N . (327)

The matrix P is an (N +1) x (/N +1) matrix which is called the integration operational

matrix of one-dimensional shifted Legendre polynomials and has the following form

[38][44] [45]
B, A, 0 0 ... 0 0 0
Di;+C; B A, 0 ... 0 0 0
D, Cy By Ay ... 0 0 0
P =
Dn—2 0 0 0 On—2 Bn—2 An—2
D,; 0 0 0 0 Cut Buoy
1 1 0 0 0 0 0
— 1
0 3 0 0 0 0
0 =+ 0 1 0 0 0
JE— l :
2
O O O O QJGil O 2N1—1
00 0 0 0 QJ;L 0 |

Thus, it is shown that any arbitrary signal can be approximated as a series of
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orhogonal functions. If the number of terms in the series is finite, then the integral
of the square of the error is a minimum in the approximation. The polynomial v, (x)
of degree n in any system of orthogonal polynomials can be generated by solving a
differential equation of order (2m + 1). Fortunately, a three-term recurrence formula is
available by menas of which the orthogonal polynomials in any system can be gener-
ated recursively, or consequently, one should not go for the solution of the differential
equation. By choosing the weighting-function w(x) and the interval [0, ], any syestem
of orthogonal polynomials, e.g, Legendre, Laguerre, Hermite can be generated. Each of
these orthgonoal polynomials is shown to satisfy a differential equation and an ordinary
differential recurrence relation, the latter is found to be useful in the derivation of the

integration operational matrix. [14]

3.4 The product operational matrix

The aim of this section is to compute the product of ¢)(z) and T (x), and put the result

in a compact form. This result will be needed for further computations in this work.

T
Now, let C' = |y, Cy, Cy, - - - 7CN:| and from equation (3.27)) we have [24]42]

[ 0| ¢, |
" C
D) (2)C = :1 {wo W - M 1
N | _CN_

oo dovn - vouw | | Co
iy vir - iYn | | Ch

|Unvo UnYr co- YnUn| | On

Simply, the last matrix can be written as follows:
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S0 Citbitbo
N
—o Civ¥
(@) (2)C = im0 Citath (3.28)
_Zj‘vzo Oj%wN_
Now, let
i+j
Yi(@)i(w) = agti(). (3.29)
k=0
From the orthogonality property, the coefficients a;;, can be computed using the formula
below.
2n+ 1\ [! -
Qjjn = ( I ) / 1/%(@%(@%1(@ dl’, 1,7, = 0717"' 7N (330)
0
Also, we let w;, = fol Yi(x);(z)n(x) dr, then a;j, = Q”Z—Hwijn Therefore, equa-
tion(3.29) becomes [38]
N
2n+1
s = Y (25 o) (3.31)

n=0
Now, plug equation(3.31]) into equation(3.28]) to get:

Ym0 Yoo Ci (55 ) wojnthn ()
S0 Y omn O (255 wijnthn ()

|30 Yono O (5w jnton (@) |

Note that w;,; = w;;,. Replace n by j, and j by n and gathering similar terms to reach

the desired form:

Y(x)p! (2)C = Cy(x) (3.32)

, where C'is a (N + 1) x (N + 1) product operational matrix
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C~(()O C~’01 C~’O2 e CN’ON
élO C~111 012 e C~’1N

@)
I

C~1]\/0 éNl C~(N2 "'C’NN_

And, each element in C' can be obtained as follows [32]

. N
- 2j + 1
Cij= ( ‘77 )Zwijncn, i,jn=0,1, ---,N (3.33)
n=0

Finally, before moving to the method of solution, let us introduce the following result.

Lemma 3.2 For an (N + 1) x (N + 1) matriz B, we have

W (@) Bib(x) = Bib(x), (3:34)
where ) )
boo bor boz -+ bon
B— bio b bz - bin
Ono byt bya -+ b |
And B is a 1 x (N + 1) vector defined as [{2,45] B = {Bo B, --- By| with




Proof:

T (@) By (x Zbog¢o¢]+zblg¢1%+ +wawj

Jj=0 Jj=0 Jj=0

According to equation (3.31)), we get:

@B = 33 (e + 30 S (S bguwnatia()

When removing these totals and gathering some similar terms to some properties, we

get the following figure:

V@B = ﬁ; 2O otz +f; 20D gt )
¥ ...+i(2<N§+ ST +i 2O E Ly wnsotola)
=0 =0
+ i(2<1>l+1)bljwljlw1 )+ .. +ZN: 20 bljwljwzv( )
n ...+§:(2(O)l+1)bN]ngo¢o +§j 2O ALy it (@)
Z =
+ o+ ZN: (2(]\7? ha 1)ijwNjN¢N(~’C)
=
@B = 35 A0 @+ 35 CO )

=0 7=0
al 2
Z bljwijN¢N(x)

=0 j=

= Bowo X +Bl ( )—l——l—BNwN(LC)

=0 j

-

ot
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Therefore, [40]

_wo_
, ol -
V' (2)BY(x)~ |By, B, --- By|| | =DBv(@) (3.35)
Kl
Where Bn = (in——i_l) ZZ]\LO ZjV:O b”w”n |:|

3.5 Method of solution

In this section, we present a numerical method to find an approximate solution to
the general problem(3.1) and conditions f(0) = 0, K(z,z) # 0, Vo € [0,1] which
corresponds with equation. We assume that the known functions in equation
satisfy the conditions that this equation has a unique solution. [43] Now, using the way
mentioned previously, the functions u”(x), F'(x), and K;(z,t) can be approximated by

the bivariate shifted legendre polynomials as
uP(x) ~ CTy(z) = ¥ (z)C (3.36)

F(x) ~ FTy(z) (3.37)

Where F7T is an 1 x (N + 1) matrix of constants

FT = [Fo Fo... FN} such that,

< F(a),n(x) > 2n+1 [ Voo ()
Fo= ey e = O [ P

Ky (z,t) ~ T (2) K'4(t) (3.38)
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Now, substituting equations(3.36)),(3.37) and (3.38) in equation(3.4]), this yiels to:

i) = [ @KU OC d+ FTG)
0
Using equation (3.32) to get:

Chote) = V@K' [ Colpyat+ Frut
= wT(x)Kl(j/Oxg/)(t) dt + FT(x)

Depending on equation ([3.26]) to have:

CTy(z) = " (2)K'CPy(x) + F ()

= T(2)By(z) + FTo(z), since B = K'CP

Then, by applying result(3.35) we may have
CTp(x) = (E + FT) V(x)

Hence we have:

cT =B+ FT

(3.39)

(3.40)

(3.41)

Which corresponds with a system of linear algebriac equations in terms of the unknown

elements of the vector C' and can be solved easily using direct methods. The unknown

function u(x) can be approximated in terms of the bivariate shifted legendre polynomials

as

u(z) ~ ATy(z)

(3.42)

Such that, the entries of the vector A are unknown. Using equation(3.32)) and (3.42)) it
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is easily obtained such that

uP(z) ~ AT AP~ () (3.43)

Finally, using u?(z) ~ CT¢(x) and the result(3.43) we get
CT = AT Ar—1 (3.44)

Equation(3.44)) forms a system of (N + 1) nonlinear equations which can be solved for

elements of A using numerical methods such as Newton’s iterative method.
The result(3.43) can be proved by induction that, Vk € Z*,

By using the result and replace C' by A we get
Y(2)e" (2)A = Ag(x) (3.45)
Take the transpose of both sides of equation this yields to
ATY(e)e (z) = ¢ (2) AT
Now, [44] apply result(3.42)) with p = 1 we get
ul(z) ~ AT A% (x)
for p = 2,

u'(x) = ul(z)ul(z) = AT(2)y" () A

wrz) ~ ATAYW(x)
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for p = 3,

) = ul(x)ul(z) ~ AT Ap(z) (W7 (z)A) ~ AT AAy(x)

AT A%4p(z)

<
w

8
~—

12

for p = 4,

ut(z) = u(x)ut(x) ~ ATA%Y ()T (2)A ~ AT A% Ay (z)

ATA%(x)

S

e

=
12

Let k € Z" be given and suppose equation(3.43)) is true for p = k. Then

u(z) = dF@)ut(z) ~ ATAR Y (2)yT (2) A ~ AT AR Ay ()

W t(z) ~ AT AFy(z)

Thus, equation(3.43)) holds for p = k41, and the proof of the induction step is complete.

3.6 Numerical Examples

In this section, some examples are presented to show the reliability of this method. In

order to show the error of the method, the following notation is introduced:

en(z) = Ju(x) —uy(z)], x€][0,]]

where u(x) is the exact solution, and ux(x) is the computed result with N.

To solve the examples, we consider N or and Newton’s method is used for solving
the nonlinear system. The initial guess in Newton’s method is for these examples is
considered to be A° = C, but the number of iterations can be reduced by choosing a

more closed A° to the exact solution.
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Example 3.1 [55] Consider the following Volterra integral equation of the first kind:

1 1 v
—at + 2t = / (x —t+ Du?(t)dt, z€][0,1]
2" "3 )

With the exact solution u(x) = +=x.

The following tables show the exact solution, the approximate solution, and the absolute

error at NV =1,3,5 at some selected grid points.

Tab. 3.1: Exact and numerical solutions at N =1

r  Exact Approximation Error

0 0 0.025419692516970  2.541969251697000 x 10~
0.1 0.1  0.121318940774885 2.131894077488500 x 10~
0.2 0.2 0.217218189032801 1.721818903280100 x 102
0.3 0.3  0.313117443729071 1.311744372907100 x 102
04 04  0.409016685548632 9.016685548632000 x 1073
0.5 0.5  0.504915933806547 4.915933806546980 x 1073
0.6 0.6 0.600815182064462 8.151820644620720 x 10~
0.7 0.7 0.696714430322378 3.285569677621950 x 1073
0.8 0.8 0.792613678580294 7.386321419706080 x 10~
0.9 0.9 0.888512926838209 1.148707316179100 x 102

1 1 0.984412175096124  1.558782490387600 x 102
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Tab. 3.2: Exact and numerical solutions at N = 3

r  Exact Approximation Error
0 0 1.524833089100301 x 10=2 1.524833 x 10~*
0.1 0.1 0.100120404160429 1.204042 x 1074
0.2 0.2 0.200085631630599 8.563163 x 10~
0.3 0.3 0.300051530302498 5.153030 x 107
04 04 0.400021464759206 2.146476 x 107°
0.5 0.5 0.499998799583798 1.200416 x 1076
06 0.6 0.599986899359354 1.310064 x 10—°
0.7 0.7 0.699989128668951 1.087133 x 107°
0.8 0.8 0.800008852095667 8.852096 x 107°
09 0.9 0.900049434222581 4943422 x 107°
1 1 1.000114239632770 1.142396 x 104
Tab. 3.3: Exact and numerical solutions at N =5
xr  Exact Approximation Error
0 0 1.977581646955672 x 1012 1.98 x 10712
0.1 0.1 0.100000000000369 3.68997 x 10~13
0.2 0.2 0.199999999999915 8.50153 x 10~ 14
0.3 0.3 0.299999999999992 7.99361 x 1071
04 04 0.400000000000021 2.09832 x 10714
0.5 0.5 0.500000000000049 4.89608 x 10~14
0.6 0.6 0.600000000000008 7.99361 x 10~1°
0.7 0.7 0.699999999999966 3.39728 x 10~14
0.8 0.8 0.799999999999984 1.60982 x 10~
0.9 0.9 0.900000000000034 3.39728 x 10714

1

0.999999999999922

7.80487 x 10714
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Fig. 3.1: The values of N versus absolute error at different x values

Example 3.2

The exact solution is u(x) = e”.

The Numerical results are given in the following tables and graphs.

The following tables show the exact solution, the approximate solution, and the absolute

error at M, N = 4,6, 8 at some selected grid points.
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Tab. 3.4: Exact and numerical solutions at N =4

T Exact Approximation Error

0 1 1.00358953 3.589530 x 10~
0.2 1.22140276 1.21014893 1.125383 x 1072
0.4 1.49182470 1.48448371 7.340990 x 1073
0.6 1.82211880 1.82422027 2.101470 x 1073
0.8 2.22554093 2.23446707 8.926140 x 1073
1 2.71828183 2.72781471 9.532880 x 1073
1.2 3.32011692 3.32433586 4.218940 x 10~
1.4 4.05519997 4.05158527 3.614700 x 1073
1.6 4.95303242 4.94459981 8.432610 x 1073
1.8 6.04964746 6.04589843 3.749030 x 1073
2 7.38905610 7.40548216 1.642606 x 10~

Tab. 3.5: Exact and numerical solutions at NV =6

x Exact Approximation Error
0 1 0.99936305 6.3695 x 104
0.2 1.22140276 1.22149906 9.6300 x 10~°
0.4 1.49182470 1.49217374 3.4904 x 1074
0.6 1.82211880 1.82221005 9.1250 x 10~°
0.8 2.22554093 2.22531469 2.2624 x 1074
1 2.71828183 2.71803051 2.5132 x 1074
1.2 3.32011692 3.32012861 1.1690 x 10~
1.4 4.05519997 4.05544002 2.4005 x 1074
1.6 4.95303242 4.95312701 9.4590 x 10~°
1.8 6.04964746 6.04939404 2.5342 x 1074
2 7.38905610 7.38963828 5.8218 x 1074
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Absolute Error

Tab. 3.6: Exact and numerical solutions at N = &

T Exact Approximation Error

0 1 0.99996857 3.1430 x 10~°
0.2 1.22140276 1.22141358 1.0820 x 107°
0.4 1.49182470 1.49181892 5.7800 x 107°
0.6 1.82211880 1.82211355 5.2500 x 107°
0.8 2.22554093 2.22554537 4.4400 x 1076
1 2.71828183 2.71828625 4.4200 x 1076
1.2 3.32011692 3.32011371 3.2100 x 107°
1.4 4.05519997 4.05519641 3.5600 x 107°
1.6 4.95303242 4.95303637 3.9500 x 107°
1.8 6.04964746 6.04964654 9.2000 x 10~
2 7.38905610 7.38906814 1.2040 x 107°

=h

i i i i
0z 04 06 08

: i i i i
112 14 1B 18
X

(a) N =4

2 0

i 1 i i I 1 i i
02 04 06 OB 1 12 14 16 18
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Fig. 3.2: The values of N versus absolute error at different x values
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Chapter 4

Two-Dimensional Nonlinear Volterra Integral

Equation

In this chapter, a numerical method for the solution of nonlinear two- dimensional

Volterra integral equation of the first kind (4.1))is presented.

/t /x K(x,t,y, z2)uf(y, 2)dydz = f(z,t), z,y€[0,l], t,z€|0,T] (4.1)
o Jo

(x,t) € Q, and Q = [0,{] x [0,T].
where u(z,t) is an unlnown function called the solution of the integral equation, p is a
positive integer number, K is the Kernel function, and f is a smooth function.

such that the following conditions are satisfied [40}/42]:

f(z,0) = 0,Vx € 0,]] (4.2)
£(0,t) = 0,vte[0,T) (4.3)
K(z,t,x,t) # 0, V(z,t) € Q. (4.4)

Integral equations of the first kind are in herently ill-posed problems. To overcome the

ill-posedness, we transform nonlinear of the first kind with conditions to a nonlinear of
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the second kind by differentiating equation [£.1] with respect to ¢t and z :

%{%[/:/;K(a:,t,y,z)up(y,z)dydz:f(wat)ﬂ-

Using Leibniz integral rule:

d*f(z,t dld [t z
% - @{@/0 (/0 K(%t,y,z)up(y,z)dy)dz}

-

t
+ / %K(m,t,m,z)up(m,z)dz+K(x,t,x,t)up(m,t) (4.5)
0

d2
dzdt

e q
K(z,t,y, 2)u”(y, Z)dydz+/ %K(x,t,y,t)up(y,t)dy
0

From equation 4.5 the function u”(x,t) has the form:

t x xT
WPl t) = / / Ky(o,t,y, )P (y, 2)dydz + / Ko(z,t,y)u? (y, t)dy

+ /t Ks(x,t, 2)uP(z, 2)dz + F(x,t) (4.6)
where:
Ki(z,t,y,z) = —[dzdtK(x,t,y,z)}/K(m,t,x,t)
Ky(z,t,y) = —[%K(m,t,y,t)}/}((x,t,x,t)
Ks(z,t,z) = —[%K(x,t,x,z)}/[((x,t,x,t)
F(z,t) = | d [z, )] /K (z,t, z,t)

dxdt

The nonlinear of the second kind will be solved using the bivariate shifted Legendre
functions. The obtained solution will be the solution of the nonlinear 2D- VIE of the

first kind. Therefore, we need first to introduce the shifted Legendre functions.

Definition 4.1 [39|/0,42] (Two- dimensional Shifted Legendre Functions) The shifted
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Legendre function are defined on 2 as:

V() = Lm(%x _ 1)Ln(%t )

¢mn(x>t) = Pm(x)Pn(t) = wm(m)wn(t)

where m=0,1,... M, n=0,1,...,N.

The two-dimensional shifted Legendre polynomials are orthogonal with respect to the

weight function w(x,t) = 1 such that:

(2mlT) (2nT+1) ifi=m, j=n

/T /lw(x’thn(xvt)wij(:c,t)dxdt =
o Jo

0 otherwise

Here L,, and L,, are the well- known Legendre polynomials respectively of order m, and

n which are defined on the interval |-1, 1] and satisfy the following recursive formula:

2 1
n+ tL (1) — n
n+1 n+1

Ln+1(t) = Lnfl(t), n = 1,2,

where L,(t) =1, and Ly(t) = t.

The shifted Legendre polynomials are defined on the interval [0, s] as [15]:

Poor(z) = (i’jjf) @x _ 1) Po(z) — (%)Pm_l(x)

where Py(z) =1, Pi(z) = 22 — 1, Py(x) = Ly, (%x — 1>, and m=1,2,....
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4.1 Function Approximation with Shifted Legendre Function

A function f(z,t) € L*(Q2) can be expanded by the shifted Legendre functions series as
follows [33,39,41]:

=Y > Comnthma(,t) (4.7)

m=0 n=0

where C),,, are constants given by:

< f(xat)vwmn(x7t) >
< ¢mn(x7t)awmn(wat) >

Omn =
The inner product in the space L*(Q) is defined by:

< f(x,t), Yy (x, t) > / / (@, ) mn(x, t)dxdt

and the norm is defined as follows:

N|=

(Dl = (<wmn<x,t>,wmn<x,t>>)

— </OT/OZ|¢mn(x,t)|2dxdt);, YV Y (2, t) € L*()

If the infinite series in equation [£.7]is truncated up to terms N and M, then we may

approximate f(x,t) in as follows [39]:

M N
fMN(xat) = chmnwmnmt CTT?(%@

0 n=0

flz,t) ~ CTo(z,t) (4.8)
where C' and 1 (z,t) are (M + 1)(N + 1) x 1 vectors given by:

C = CO() 001 C()N, ClO 011 ClNa ceeey OM() CMl CMN
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T

V(@,t) = oo Vo1 - Yon, Yo Vi1 oo ViNy e Umo Unn Uun|  (49)

Now,
< f<x7t)7wmn(x7t) > = < chzngg(%t)ﬂﬂmn(l',t) >
i=0 j=0
= Cmn < wmn(xat)awmn(x7t) >
Therefore:
2 1, 2n+1, [T [
Coun = ( ml+ Y n; )/0 /Of(x,t)wmn(x,t)dxdt

4.2 approximating the Kernel Function with Shifted

Legendre functions

The Kernel K (z,t,y, z) [41,42] can be approximated as:

K(z,t,y,2) ~ " (2, t)K{(y, 2)

where K (x,t,y,z) is an L?(Q x Q) function, and K is

an (M +1)(N +1) x (M +1)(N +1) block matrices of the form K = [K®™]M _ " and

1,m=0"

M

Y

K(z’m) = [Kijmn]é\,[n:m i, m = 07 17

T l T [
Kipn — H / / { / / K (2,1, 9, 2 (3, 2)dydz | 6y, )t
0 0 0 0

2i+1)(27+1D)(2m+1)(2n+ 1)
12772
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The derivation of Kjm, can be obtained for every K(z,t,y,2) € L*(Q x Q) as follows:

[c o luNNe e o lNe o]

K(m,t,y, Z) = ¢ij(x7t)Kijmnwmn(ya Z) (410)

1=0 j=0 m=0 n=0

<
3

where
<< K(iﬂ,t,y,z),wmn(ﬁ/,z) >7wij(x7t) >
< wij(xat)vwij(xat) >< ¢mn(y7z>7wmn<ya Z) >

Kijmn =

Kijmn can be calculated through the following expansions [24}/45)] .

<< K(z,t,9,2), Umn(y, 2) >, ¥ij(z,t) >

oo o 0 X0

= <K ZZZZwab(x;t)Kabrswrs<yaZ)7wmn(yu Z) >7wij(x7t> >

a=0 b=0 r=0 s=0

= < Z Zwab(xat)Kabmn < wmn(ya Z)a wmn(ya Z) >7¢ij($7t> >

a=0 b=0

= < ZZwab<x7t)Kabmnmen(y7$)|‘%>wij($at) >

a=0 b=0

= Kijnn[Vmn (v, 2|5 < i (@, 8), 55 (2, ) >

= Kijmnl[Vmn(y, 2)|[2]1035(z, )13

Solving the previous equation for K, to get [39]:

<< K(x7t7y7z)a¢mn(ya Z) >7,¢ij(xat) >

Kz' imn —
’ |[mn (y, 2)[[3][935(z, )] 13

Therefore:
T l T l
Kijmn = H/ / [/ /K(l’,t,y,Z)@Z)mn(y,Z)dde @sz(x,t)dxdt
0 0 0 0

2i+1)(2j+1)(2m+1)(2n+1)
1277?
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If the infinite series is truncated, then it can be written as:

=0 j=0 m=0 n=0

where 1, m = 0,1,..., N, and j,n=0,1,..., N.

Similarly, any function K; in L*(Q x Q), K, in L*(Q x [0,1]), and K3 in L*(Q x [0,T])

can be expanded in terms of bivariate shifted Legendre functions respectively as:

Kl(x,t,y,Z) = QZJ(T,’L‘,t)Klw(y,Z)
Ky(z,t,y) =~ ol t)Kap(y,t)

K3(I7 ta Z) = Qﬂ(Tl’, t)K;;lp(.T, Z)

where K, K, and K3 are (M + 1)(N + 1) x (M + 1)(N + 1) of the form
K, = [K{"™M K& = KL N im = 0,1,..,M, and ¢ = 1,23,

q i,m=0" igmnljn=0

Legendre coefficients K} q=1,2,3 are given by:

iymn)

Kl _ << Kl(x t U, 2 ) w’mn(y, Z) >7¢Z]($at) >
o [y, 2) Bl (2, 1)[]3

_u / / [ / / Ki(2, by, 2) o (1 )dydz]wu(x P dadt

<< KQ(I t y) ¢mn<yat) >)¢ij(x7t) >
g |V (y, 13110035 (2, )13

= H/ / [/ /KQ z, t, Y)mn (y, )dydt} Yij(x, t)dxdt

<< Ks(x,t,2), Yo, 2) >, 0z, t) >
o || (2, 2)[3][¢03; (2, D13

_u / / [ / / Ko, t, 2)tmn z)dxdz]ww(:c £\ dadt
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where i, m =0,1,.... M, j,n=0,1,....,N.

KOOOO KOOOl e KOOON KOOMO KOOMI e KOOMN

KOlOO KOlOl KOION PR KOlMO KOlMl KOIMN

KONOO KONOl KUNON KONMO KONMl KONMN
K =

KMOOO KMOOI KMOON KMOMO KMOMI KMOMN

KMlOO KMlDl KMlON PR KMlMO KMlMl KMlMN

KMNOO KMNOI KMNON KMNMO KMNMl KMNMN

The matrices K,;, ¢ = 1,2,3 can be derived by Replacing the coefficients Kjj,, by
K4

iymn’

4.3 Integration Operational Matrix

The integration of the vector ¢(z,t) defined by approximately obtained as:

/O/Oxg/;(y,z)dydz ~ Q1Y(x,t) (4.11)
| van = Qe (4.12)
/Otw(a:, 2)dz ~ Qs(x,t) (4.13)

where z € [0,1], t € [0,T], @1, Q2, and Q3 are (M + 1)(N +1) x (M + 1)(N + 1)

operational matrices of integration [18] which are introduced respectively as:

Ql - P1®P2
Q: = P®ID
Qs = LOP
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where I;, I, are identity matrices of size M + 1, N + 1 respectively. P;, and P,
are the operational matrices of one dimension shifted Legendre polynomials defined

respectively on [0, 1], [0, 7] as follows [15,{17,/45]:

1 1 0 O 0 0 0
1 1
= 0 3 0 0 0 0
0 %1 0 % 0 0 0
z
Pq - 5
0 0 0 0 7 0 5
i o o0 o0 0 .. 0 ﬁ 0 |
Where g =1,2
and z =1,T
and h = M, N
By Ay 0 0 .. 0 0 0
Di+Cy By A 0 .. 0 0 0
D, Cy By Ay ... 0 0 0
P1 -
Dm_g 0 0 0 Cm_g Bm_g Am_g
i D1 o o0 0 .. 0 Ci_1 Bm,l_
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where,

dl +
dy

P

dan

L dn—l

where,

Qo
a1

ag

Qn

—, By==, Cy=0, Dy =0
27 0 2; 0 ) 0
l —1
-, B =0, Ci=—, D=0
67 1 3 1 6 ) 1
l —1
107 2 07 02 107 2 0
l
m _O, Om =
2(2m + 1)
ap 0 0 0 0
bl aq 0 0 0
cy by ay ... 0 0
0 0 0 Cp—2 bn,Q
0 0 0 0 cpa
T T
57 b0:§7 co=0,dy=0
T =T
Z b =0, c=—, d =0
67 1 , C1 6 ) 1
T =T
10’ by = 0, 2= 15" dy =0
T =T
2(2n+1)7 n 07 On -

Now, we are going to prove equations 4.13
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Proof: Using the equations that we reached previously in chapter three
Multiply both sides of the equation by 1, (t) then we get:

¢mn(ya t) = Amn@[]m—i-l,n(yy t) + an¢m,n(y7 t) + Cmnqv/]m—l,n(ya t) (415)

The coefficients A,,,,, By, and C,,, can be evaluated by integrating the recurrence

relation 4.15| with respect to y from 0 to x

/ ¢mn(y’ t)dy - Amnqu)m—i-l,n(xa t) + anl/}m,n(xa t) + Cmnl/}m—l,n(xu t)
0

+  Dimntoo(, 1) (4.16)

Then, substitute m = 0,1..., M, and n = 0,1, ..., N in equation to get:

{ {
A()n = 5’ BOn:_7 C1071207 DOn:()v TLZO,L...,N
l -1
Aln = Bln:07 Cln:_7 Dln:O7 TL:O,L...,N
6 6
A __t 5 0, C _=t _p 0 0,1,..,N, m>1
mn s mn — Yy Lmn = 5 mn = U, N=U1,....,0V, T =~
2(2m + 1) 2(2m +1)

For simplicity, we may write eqution in the form:

/0 "y, )dy = Qui(a, 1)

Where

w(l’,t): |i¢00 Q;DOI ¢0Na ¢10 77Z111 QﬁlN, seey 77ZJMO ¢M1 ¢MN
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and Q9 is an (M + 1)(N + 1) x (M + 1)(N + 1) integration operational matrix of 2D

shifted Legendre functions having the form:

B, A, O O ... O O O
Di+C B A O .. 0O 0 0

Dy, Gy By Ay o o0 o0

Ds O Cy B; As o) 0)

“ 5 006G B A .. o

where,
A = diag(Akoy ooy Agn—1), k=0,1,...,m — 2
= diag(Byo, ..., Bin-1),k =0,1,...m—1
Cy. = diag(Ch, ..., Cim-1),k=1,2,...m—1
Dy, = diag(Dyo, .., Con_1), k =1,2,..;m — 1

Note that the matrix )2 has the following form:

[ B A O O ... O 0 0 ]
(Di+C)L B, Ady O ... O 0 %)
Doly  Coly Boly Asly ... O 0 0
| Dub O  Csly Byly Asl 0 0
@ Dl O O O B, A 0
Dposls O O O ... Cwoly Byl Aol
Dpaly O O O ... O  Cuily Byl
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Finally, ()5 can be written as:

Q=P ® I

where I, is the identity matrix of order N 4 1, and O is a square zero matrix of order
N +1.

it is clear that:

[ l
Ao = A0 = 57 BOn:BO—§> Con=0Cy=0, Dy, =Dy=0, n=0,1,...,N
[ -1
A, =41 = 6, B,B, =0, Cln—Cl_F7 Dy, =Dy=0, n=0,1,..,.N
l -1

22m+1)’ 2(2m+1)’

Dym=Dpn = 0,n=0,1,...N, m>1

to prove that Q3 = I; ® P,, use the equation that we reached previously in

chapter three, which is as follows:
Ya(2) = anthnia(2) + bathn(2) + cathp1(2) (4.17)
Multiply both sides of the previous equation by 1, (x) to get:
Ymn(x,2) = amnﬁm,nﬂ(az, z) + bmn@bm,n(:ﬁ, z) + cmniﬁm,n_l(:v, 2) (4.18)

The coefficients @, bimn, and ¢, can be evaluated by integrating the recurence the

relation with respect to z from 0 to ¢ as follows:

t
/ ¢mn (l‘, Z)dZ = amn¢m,n+1(m7 t) + bmn¢m,n (.I‘, t) + Cmnwm,n—l(m7 t)
0

—|— dmn'@DO,O(ZL‘y t) (419)
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Then, after substituting m =0,1..., M, and n =0, 1, ..., N in equation we can get:

T T
Amo = 97 bm0:§7 Cmo =0, dpo =0, m=0,1,... M
T =T
am1 = -, bm1:07 Cm1 = —(/—, dm1:07 m:0717"'7M
6 6
T =T
Amn = mn =0, m=0,1,. ,M, n>1

For simplicity, we may write eqution in the form:
t
/ U(x, 2)dz ~ Q31 (z,t)
0
where

P(z,t) = {%0 Yor ... Yon, Yo Y11 ... YN, -y Ym0 Yar - Yun

and Q3 is an (M 4+ 1)(N 4+ 1) x (M + 1)(N + 1) operational matrix of integration for

two-dimensional shifted Legendre functions, such a matrix have the following form:

b aw O 0 ... 0 0 0|

Ay + k1 b a0 ... 0 0 0

-5’0 0 ... 0 ] dio o bpo aws ... 0 0 0

Oy — 0 S ... 0 5= di3 0 cr3 brz axs 0 0

dia 0 0 cpa bra Qpa o 0

I 0 0 Sm_l_

din—2 0 0 0 ... Ckm-2 bpn—2 arp—2
[ dewr 00 0 oo 0 Ceut b
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We note that the entries of S; are the same as the entries of the one dimensional
operational matrix. Therefore,

Q3 = diag(Py, ..., ) =1L ® P,
Where [; is the identity matrix of the order M + 1, and O is a zero square matrix of

order N + 1.

To prove that Q1 = P, ® P, multiply equation [£.14by with Equation to have

the following formula:

Vm (Y)n(2) = (Am¢m+1(y> + Bm¢m (y)+ Cm¢m—1(y)) (an¢n+1(z) +bn¢n(z) +Cn¢n—1 (2))
(4.20)

After simplifying and using the fact that ¥, (2)¥n(y) = Ymn(y, z), and inte-

grating the resultant equation with respect to the variables z and y, the coefficients
Aamn, Abpmn, ACmn, Bammn, Bbum, Bémn, Camn, Cbpyyn, and Cec,,, can be calculated

using the equation:

t x
/ / wmn(yy Z)dydz = Aamnwm+1,n+1 (LU, t) + Abmnmerl,n(x; t) + Acmnwm+1,n71(l’7 t)
0 0

+ Bamnd}m,nqtl(xa t) + Bbmnwm,n(xy t) + ch,nz/}m,nfl(x? t)

+ Camnwm—l,n—i-l(x, t) + Cbmnwm—l,n(x7 t) + Ccmn¢m—1,n—1(x7 t)

Then, substitute m =0, 1,...M, and n = 0,1, ..., N in equation [£.21] to get:

r
42m+1)(2n+1)

Aty = ,m=0,1,... M, n=0,1,...,N,
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iz ifn=0 m=0,1,...M

Abmn _ 4(2m~+1)(2n+1)
0 ifn=12..Nm=01,.,M
p
T . - -
m 1fn—1,2,...,N,m—O,l,...,M
Acmn =
0 ifn=0 m=0,1,.., M
\
p
T :
m 1fm:O,n:0,1,...N
Bamn =
0 itm=1,2,... M, n=0,1,.... N
\
T :
T =0, n=0
Bbmn _ 4(2m+1)(2n+1)
0 itm=1,2,... M, orm=1,2,.... N
(
T . o o
W 1fm—0,n—1,2,...,N
Bemn =40 ifm=1,2,...,M, n=0,1,..,.N
0 ifm=0, n=0
\
(
T . . .
m 1fm—1,2,...,M, n—O,l,...,N
Capn =
0 itm=0,n=0,1,.... N
\
p
T . . .
m 1fn—0,m—1,2,...,M
Cbpn =40 ifn=1,2,...N, m=0,1,...M
0 ifn=0 m=0
\
T : — —
m 1fm—1,2,...,M, n—1,2,...,N
Ccmn =
0 ifm=0, orn=0

\

Ad,,, = Bd,,, = Cd,,,, = Da,,, = Db,,, = D¢y, = Dd,,,, = 0 for
m=0,1,...M, n=0,1,...,N.
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For simplicity, equation [4.21] can be written as follows:

/0 /O By, 2)dyd= = Qi 1)

Where

Y(x,t) = {%0 Yor - Yon, Y0 Y1 o YN, e, Ym0 Yan - PuN

and Qq isan (M + 1)(N + 1) x (M + 1)(N + 1) integration operational matrix of 2D

shifted Legendre functions having the form:

[ B, AW O O ... O o) 0 ]
Db +Ch Bb Ay O ... O %) o)
Db, Cby Bby, Aby, ... @) @) o)
Db, O Cby Bbs Abs @) @)
““N o o o om 0
Db,,_» O O O ... Chyo Bbp_o Aby_s
| Dby O O O ... O CThuy By
where,
[ Bbw  Bao O 0 ... 0 0 0 |
Bdy + Bew Bbg Baw 0 ... 0 0 0
Bdys  Bews Bbw Bag ... 0 0 0
Bl — Bds 0 Beis Bbis Bags .. 0 0 |
B 0 0 Bewu Bbu Bam ... 0
Bdypns O 0 0 ... Bepns Bbuns Bapns
Bdgn1 O 0 0 ... 0  Begu Bhas




£ 2L 0 0 0 0 0

=9 L 0 0 0 0

o £ o L& 0 0 0
B, — 0o o0 =& o L 0 0 |

0o 0 o FHF o z 0

0 0 0 0 - sEoym 0 D7D

00 0 0 .. 0 DT 0 |

Bby = [Olnyiyv+1y, VE=1,2,...,m —1,and n=0,1,..., N

[ Aby Aa O 0 .0 0 0 |
Adkl —+ Ackl Abkl Aakl 0 Ce 0 0 0
Adkg Ackg Abkg Aakg ce 0 0 0
_ Adkg 0 Ackg Abkg Aakg 0 0
Aby, =
Adk4 0 0 A6k4 Abk4 Aak4 0
Adkm,Q 0 0 0 N AC]{JL,Q Abk,n72 Aakm,z
Adk,n—l 0 0 0 e 0 Ackm_l Abk,n—l_
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Aby, =

k=0,1,..

Chy

TT
=0
0
1 0 0
2k +1 0 0
0 0
[0 0

,m—2,andn=0,1,...

Chyo Cayo
Cdigy + Cern Chia
Cdyo Cego
Cdys 0
Cdja 0
Cdy n—2 0
Cdj -1 0

T
12

28

=T

=T

0

T
20

36

, N

Caj
Cbyo
Cers

0

T
28

0

0

0
Cagy
Cbys
Ccra

52

0 0 0
0 0 0
0 0 0
0 0
Z 0
T 27D 0 277D
0 @weom 0
0 0 0 |
0 0 0
0 0 0
Cays 0 0
Cbrs  Capa 0

Cck,n—Q Cbk,n—Z Cak,n—Z

0

Cck,n—l Cbk,n—l |



o -
e i N (R 0 0 0
IT —IT
13 0 =5 0 0 0 0
o £ 0 F o 0 0 0
_ 1 0 50 0 0
T
o 0o 0o Z 9 T 0
IT —IT
0 0 0 0 .. 42(n—2)+1) 0 42(Mm—2)+1)
0o 0 0 0 .. 0 DT 0
where £k =1,2,...m—1,and n=0,1,..., V.
Dby Dayg 0 0 . 0 0 0
del -+ Dckl Dbkl Dakl 0 ce 0 0 0
Dd}cg Dckg Dbkg Dakg .. 0 0 0
mk _ deg 0 Dck3 Dbkg Dakg . 0 0
de4 0 0 Bck4 Dbk4 Dak4 0
de,n72 0 0 0 Dck‘,an Dbk,an Dak,n72
de,n_l 0 0 0 .. 0 Dc;w_l Dbk,n—l_
k= 1, e, — ]_, n = O, ]_, ey N and Dbk = [O](N—l—l)(N—i-l)‘
4.4 The Product Operational Matrix
Let
T
C=1Cyp Co Con, Cio Cn Cin, -y Cuo Cun .Cun
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, and

Y(z,t) = Yoo Vo1 - Yon, Yo

Then,

@/J(I, t)%UT(% t)C =

_224:0 Yo Chqrqgthmn |

Y e UiN, ey Yo

S SN Crgtrgtno
>t Z(]Ivzo Crq¥rq¥or

S SN Crgtrgtbon
> it Z(]f:o Crq¥rq¥10
S0 ) Crgtrgtinn

St o Crgthrgthin

> it Zévzo Crq¥rq¥rro
S S Crgtrgtan

(4.22)

Also, [38] 1;j(x, t)re(x, t) can be written as a linear combination of the two dimensional

shifted Legendre functions as follows:

i+k jt+q

wij(xv t)wkq (SL’, t) = Z Z arswm (]J, t)

r=0 s=0

(4.23)

and from the orthogonality property, the coefficients a,,, can be evaluated as follows
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T
. = (2m+1l)722n+1)/ /@ZJU(:B,t)wkq(x,t)l/)mn(ﬂi,t)dxdt (4.24)

_ (2m+1 )(2n + 1) /wl V() (2 da:/ ) (E) g ()b (t)dt

Now let
!
- /0 D@ (@) (2)de

and

T
Wign = / Vi (t)g()n(t)dt
0
, then from equations and

i+k j+q
by g, ) = 33 2E %2” ) it b (2,1, (4.95)

m=0 n=0

Hence from equations (4.22)}4.23)),and replacing the indices m by k and vice versa as

well as for ¢ and n, [24,38,39] we have

D(2q+1)

M N M N 2k
DI DN Brih DAY SRV C s T )

Zm 0 Zn 0 Zk 0 Zq 0 Cmnww()kmwﬁ\/qnwkq(x7 t)
Zm 0 Zn 0 Zk 0 Zq 0 Cmnwwlkmwgqnka(xa t)

Y(x, )T (z,t)C ~ PR ' )
2k+1)(2q+1
Zm:O Zn:(] Zk:o Zq:O Cm”%wlkmwqunwkq (LE, t)

D(2q+1)

M N M N 2k
Zmzo ano Zk:o Zq:O Omn(%wf\/fkmwéqnwkq(xv t)

D(2q+1)

M N M <N 2k
_ZmZO 2 =0 2k=0 Zq:O Cmn%kamw&qn@bkq(x) t)_
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c©0 o0y - o0.M)

CcoO oo o ]

O(M,O) C(M,l) C(M’M)

Note that wirm = wimk,and W', = wj,.. So, for m = 0,1,...M, let A,, be a square
matrix whose entries are [A,,],_ = 24l ZLO W, Crn, and for 4,k = 0,1, ..., M, let

C = [C0P)], where

M

: 2k +1

C(Z’k): l—l— E wzkmAm
m=0

The matrix C is a square matrix of size (M + 1)(N + 1) and called product operational

matrix. [40-42], Therefore,

O(x, )T (2,1)C ~ Cip(x, t) (4.26)

Lemma 4.1 Let B = [B®M] i,k = 0,1,..., M, such that B“*) = Dijkg) Ngmos J20 =
0,1,..., N, then
VT (2, 1) By (x,t) ~ Z%z/;(x,t),

where

~

B = BOO B01 BON7 BlO B ... BlN7 e BMO By ...Bun

r 2m~+1)(2n+1 M N M N
[42]Such that By, = Cmnt ) S S S o Wit W bijig

m=0,1,...M, n=0,1,... N

o6



Proof:

> ko 2amo bookg kg (2, 1)
Zl]cw:(] Zévzo bonkqWkq(2, 1)
> ko Poaco b1okg kg (1)

VBl = et |
Zk:o Zq:(] blquwkq(xv t)

S ks a0 barokgUkg (1)

_Zk qu 0 O NkqVkq(, t)

N M N
Z bookqWkq(,t) oo (2, t) + ... + Z Z bonkgWiq(x, t)on (2, 1)

0 ¢=0 k=0 ¢=0

M N
biokgWrq(z, t)10(, t) + ... + Z Z biNkqWrq(2, t) V1N (2, 1)

k=0 q=0

N
ZbMqu@/)kq (@, t)Ypro(, t) + .. +ZZbMqu¢kq($ t)Yun(z,t)

0 g=0 k=0 ¢q=0

I
M=

>
Il

M=
WE

i

M= 1

0gq

+

ES
Il

Now, [38] according to the equation we have:

M N
(2m + 1 (2n+1
d)m (27 t Q/qu xZ, f} 2 Z Z )wikmw/jqnwmn(xat)

m=0 n=0

which implies that:

27



T (2, ) Bi(x,t) =~

(2m+1)(2n+1)

NE
WE
NE
Fﬁz

i
o
i
=)
B
Il
o
(=}

i
NE
M-
M= 1

o
i
[e=]

q=0

IT kamw(l)qnwmn (:E? t)

(2m+1)(2n+1)

N
Z boNkq

2m+1)(2n+1)

IT kame\/’qnwmn (xa t)

M=
= 3
WE
sz

3
]
o
3
]
o
i
o
Q

|
NE
WE
M=
WE

I
=)
i
=)
B
Il
=)
hi
=)

i
NE
WE
M=
WE

Il
=)
i
=)
£
Il
=)
hi
=)

i

NE
] =
M=
WE

Il
o
3

I
o
il
=)
Q

Il
=)

r

2m+1)(2n+1)

blqu

bMqu

brrNkg

wlkmw;anquJmn (x7 t)

r

(2m+1)(2n+1)
T

kamwé)qnwmn (ZE, t)

(2m+1)(2n+1)
r

kamwqunwmn (LU, t)

Expanding the previous summations, and gathering the similar terms. Also, depending

o8



on some properties, the following form is obtained:

wT(a:’ t)Bw(l', t) ~ (2(0) + 1)(2(0) + 1) Z Z Z Z bijkqwikow;qowoo(x> t)

bijkqWika W 1N (2, 1)
Jq9

bijkqWik MWV 010 (7, 1)

M N M N
2(M) + 1 )+ 1)
+ 230 DD I IR
j= =0
= Bootoo + ... + Bonton + Bm%o + ...+ Biythy

4+ ...+ BM()Q,UM() + ...+ BMN@Z)MN

A

(2, t)Bi(x,t) ~ Bi(x,t)

where

B = |:B0() B01 B0N7 BlO Bll BlN7 e BMO BM1 BMN:|

T
¢<x7t): [¢00 %1 wONa wlO ¢11 wlN7 sy ¢MO 'QDMl wMN:|

and
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O Similarly, any matrix By, Bs, and Bs of size (M + 1)(N 4+ 1) x (M + 1)(N + 1), we

get:

1/1T(x,t)B11/)(x,t) ~ Bl¢(x,t) (4.27)
O (@, 6)Bo(x,t) ~ Bath(x,t) (4.28)
O (@, 6)Bsw(x,t) ~ Byib(x,t) (4.29)

4.5 Method Of Solution

In this section, we present a numerical method to find an approximate solution to the
problem [4.1]- [4.4] which corresponds with equation Also, we assume that the known
functions in equation [4.1] satisfy the conditions[4.2]- [4.4] that this equation has a unique
solution.

Using the way mentioned previously, [42-44] the functions u?(x, t), F(xz,t), Ki(x,t,y, 2),
Ky(x,t,y), and K3(x,t, z) can be approximated depending on the bivatiate shifted Leg-

endre functions as:

wP(z,t) ~ CTo(z,t) = ¢ (x,t)C (4.30)
F(x,t) ~ FTy(a,t) (4.31)
Ki(z,t,y,2) ~ ¢ (2, 0)Ki¢(y, 2) (4.32)
Ky(z,ty) =~ ¢ (2, 6) K (y,t) (4.33)
Ks(z,t,2) ~ 7 (x,t)Ksp(z, 2) (4.34)

where FT is 1 x (M + 1)(N + 1) vectors.

60



FT: FOO F01 FON7 F10 Fio.. F1N7 e FMO Fiy Fyn

and F),, is given by the formula:

_@m+D@2n+1) (T
B = L /0 /OF(x,t)wmn(x,t)dxdt

Substituting equations into equation [4.6] to yield:

O t) = / / W7 (2, O Kyib(y, 207 (y, =) Cydz + / U (e, 8) Koy, 907 (3, 1)y
0 0 0

+ /t VT (2, ) Katp(x, 2)07 (2, 2)Cdz + FT(z, 1)
0

From equation (4.26) the last equation becomes

CTy(z,t) = ¢ (z,t)K,C [ ,2)dyd T’JKéx t)d
(e, 1) wx)l/O/Owyz)yzw(x)z/owmy

t
b @R [ ol s+ o)
0
Applying equations(4.1114.13)) to obtain:

CT%U(%??) = ¢T(x7t)KléQl¢(m7t)+¢T(x7t)KZCN’Q2¢($7t)+¢T<m7t)K3C~’Q3¢(m’t)
+ FTap(a,t)

= ¢T(xvt)Bl¢($’ t) + ¢T($,t)32¢($at) + ¢T(xvt)B3¢($7t) + FTQ/J(xvt)

On the other hand, from equations [4.27], [£.28,and [£.29] we have:

CTy(x,t) = By(x,t) + Bob(z,t) + Bsp(a,t) + FT (z, ) (x,t).  (4.35)
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Hence CT = By + By + B; + FT which corresponds with a system of linear algebraic
equations in terms of the unknown element of the vector C', and can be solved easily
using direct methods.

The unkonwn function u(z,t) can be approximated in terms of the bivariate shifted

Legendre functions as:

u(z,t) = AT(x,t) (4.36)

such that, the entries of the vector A are unknowns. Depending on equations [4.26} and
4. 50

uP(z,t) = AT AP~ Yep(x, t) (4.37)

Finally, using equation [4.37], and .30 we get:

AT At = T (4.38)

Equation [4.38|forms a system of (M +1)(N +1) nonlinear system of algebraic equations,
which can be used be solved easily for the elements of A using numerical methods such
as Newton’s iterative method.

The result in equation can be proved by induction, ie: Vk € Z™T.

By using result and replace C' by A, we get:

O(x, )T (2, 1) A ~ A(x,t) (4.39)

Take the transpose of both sides of equation to yield:

AT(z, )T (z,t) ~ 1/)T(a:,t)f~1T

If the result is applied with p = 1, [44] then we get:

ul(xz,t) ~ AT A% (x, 1)
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For p = 2,

u (z,t) = u(x, t)u(z,t)

12

AT (e, 1) (2, 1) A

u(z,t) ~ ATAYW(x,t)

If p = 3, then,
u(z,t) = u?(z,t)u(a,t)
~ AT AW (z, ) (z,t)A
~ ATAAY(z,t)
Wz, t) ~ ATA%p(z,t)
For p =4,

ut(z,t) = u?(z,t)u(x,t)

12

AT12121/1(x, T (z,t)A

12

AT A2 Aup(z, t)

ut(z,t) ~ ATA%)(x,t)

Suppose that k& € Z*, and let equation be true for k, then,

uF Nz t) = uF(z, t)ut(x,t)

12

AT AR (, )7 (2, 1) A

12

AT A1 Ay (1)

Wz, t) ~ AT ARY(x,t)

Thus equation 4.37]is true for p = k+1, and the proof of the induction step is completed.
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4.6 Numerical Examples

In this section, some examples are presented to show the reliability of this method. In

order to show the error of the method, the following notation is introduced:
emn(x,t) = |u(z,t) —upmn(z,t)], (x,t)€Q

where u(x,t) is the exact solution, and uys y(z, %) is the computed result with M, and
N.

To solve the examples, we consider M # N or M = N and Newton’s method is used
for solving the nonlinear system. The initial guess in Newton’s method is for these
examples is considered to be AY = C, but the number of iterations can be reduced by

choosing a more closed A° to the exact solution.

Example 4.1 [42] Consider the following (2D) nonlinear Volterra integal equation of

the second kind:

t x 1
/ / 2ex+tu3(y,z)dydz — §(ex+t _ 6:}c+7t _ e4:r+t + e4x+7t>7 (l‘,f}) c [07 1] % [07 1]
0 Jo

The exact solution is u(x,t) = ™.
Applying Bivariate Shifted Legende Functions when M = N = 2,4, 6, we have the fol-
lowing tables which show the exact solution, approximate solution, and absolute error

at some particular points.
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Ahsolute Eror

Tab. 4.1: Exact and numerical solutions at M = N = 2

(x,t) Exact Approximation Error
(0.5,0.5) 4.48168910 4.29143960 1.9024950 x 107!
(0.25,0.25) 2.11700002 1.97827371 1.3872631 x 10!
(0.125,0.125) 1.45499141 1.52152785 6.6536440 x 102
(0.0625,0.0625) 1.20623025 1.41439968 2.0816943 x 10~ *
(0.03125,0.03125) 1.09828514 1.38620515 2.8792001 x 10!
(0.015625,0.015625)  1.04799100 1.37794336 3.2995236 x 107!

=}
=

=
=

Tab. 4.2: Exact and numerical solutions at M = N =4

(z,t) Exact Approximation Error
(0.5,0.5) 148168010  4.48464226  2.95316 x 107
(0.25,0.25) 2.11700002 2.11638025 6.19770 x 1074
(0.125,0.125) 1.45499141 1.45143591 3.55550 x 1073
(0.0625,0.0625) 1.20623025 1.20415010 2.08015 x 1073
(0.03125,0.03125)  1.09828514 1.09825413 3.10100 x 107°
(0.015625,0.015625)  1.04799100 1.04939061 1.39961 x 1073

Tab. 4.3: Exact and numerical solutions at M = N =6

(z,t) Exact Approximation Error
(0.5,0.5) 4.48168910 4.48171956 3.0460 x 107°
(0.25,0.25) 2.11700002 2.11696376 3.6260 x 107°
(0.125,0.125) 1.45499141 1.45524307 2.5166 x 1074
(0.0625,0.0625) 1.20623025 1.20631829 8.8040 x 107°
(0.03125,0.03125)  1.09828514 1.09829225 7.1100 x 107°
(0.015625,0.015625)  1.04799100 1.04758734 4.0366 x 10~

h=h=2
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Fig. 4.1: The values of M=N versus absolute error at different x,t values

Example 4.2 [/1] Consider the following nonlinear (2D) nonlinear Volterra integral
equation of the first kind:

(x,t) €10,2] x [0,2]

t x 1 1
/ / (y* + e )’ (y, 2)dydz = —a"(e* — 1) + —2’t,
o Jo 14 5

The exact solution is u(x,t) = z%e.

Applying Bivariate Shifted Legende Functions
when M = N = 2,4,6, we have the following tables which show the exact solution,

approximate solution, and absolute error at some particular points.

Tab. 4.4: Exact and numerical solutions at M = N = 2

(x,t) Exact Approximation Error
(0.4,0.4) 0.23869195 0.23113903 7.55292 x 1073
(0.55,0.55)  0.52430904 0.49716773 2.71413 x 1072
(0.75,0.75)  1.19081251 1.13593660 5.48759 x 1072
(0.85,0.85)  1.69039485 1.62912321 6.12716 x 1072
(1) 271828183  2.66724324  5.103%6 x 102
(1.2,1.2) 4.78096337 4.79204739 1.10840 x 1072
(1.45,1.45) 8.96319827 9.10682932 1.43631 x 107!
(1.6,1.6)  12.67976301 12.87292664  1.93164 x 107!
(1.8,1.8)  19.60085778  19.66223519  6.13774 x 1072
(1.95,1.95) 26.72658453  26.35777075  3.68814 x 107!
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Tab. 4.5: Exact and numerical solutions at M = N =4

(x,t) Exact Approximation Error
(0.4,0.4) 0.23869195 0.23474157 3.95038 x 1073
(0.55,0.55)  0.52430904 0.52432946 2.04200 x 107°
(0.75,0.75)  1.19081251 1.18996471 8.47800 x 10~*
(0.85,0.85)  1.69039485 1.68974573 6.49120 x 1074
(1,1) 2. 71828183 2.71848067 1.98840 x 10~
(1.2,1.2) 4.78096337 4.77980226 1.16111 x 1073
(1.45,1.45) 8.96319827 8.95923187 3.96640 x 1073
(1.6,1.6) 12.67976301 12.68000806 2.45050 x 1074
(1.8,1.8) 19.60085778 19.60873970 7.88192 x 1073
(1.95,1.95) 26.72658453 26.72136172 5.22281 x 1072

Tab. 4.6: Exact and numerical solutions at M = N =6

(z,t) Exact Approximation Error
(0.4,0.4) 0.23869195 0.23869316 1.210 x 107°
(0.55,0.55)  0.52430904 0.52431089 1.850 x 107°
(0.75,0.75)  1.19081251 1.19081000 2.510 x 107
(0.85,0.85)  1.69039485 1.69039006 4.790 x 10~°
(1,1) 271828183 271827851  3.320 x 10°°
(1.2,1.2) 4.78096337 4.78097515 1.178 x 10°
(1.45,1.45) 8.96319827 8.96319982 1.550 x 107°
(1.6,1.6) 12.67976301 12.67975010  1.291 x 107
(1.8,1.8)  19.60085778  19.60086411  6.330 x 10~°
(1.95,1.95) 26.72658453  26.72658890  4.370 x 10~°
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Chapter 5

Three- dimensional Nonlinear Volterra Integral

Equation

In this chapter, we present a numerical method for the solution of nonlinear three-

dimensional Volterra integral equations 3D- VIE of the first kind of the form:

w t x
o tw) = / / / K(z,t,w,y, 2 8)a? (y, =, s)dyd=ds (5.1)
0 0 0

where z,y € [0,1], t,z€[0,T], w,s € [0,W], and (z,t,w) € D :=[0,1]x[0,T] x [0, W].
u(z,t,w) is an unknown function called the solution of the integral equation, p is a
positive integer number, K is the kernel function and f is a smooth function.

Also, we assume that the following conditions are satisfied :

f(z,t,0) = 0, Yz €10,1],Vt € [0,T]
fl@,0,w) = 0 , Vae[0,]],Yw e [0, W]
0t w)= 0 , Vtel0,T],Ywe [0, W]
f(2,0,00= 0 , Vae0,]]
£0,6,0)= 0 , Vtel[0,T]
£(0,0,w)= 0 , Yw e [0, W]

Kz, t,w,z, t,w) # 0,Y(z,t,w) € D (5.2)
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Various problems in physics, mechanics, and biology arise to a nonlinear Volterra inte-
gral equations. Such equations also appear in modeling of the spatio- temporal develop-
ment of an epidemic, theory of parabolic initial, boundary value problems. Population
dynamics and Fourier problems.

The analytical solution of the thre-dimensional integral equations is usually difficult,
and in many cases it is required to approximate the solution. [7,|35] Although several
numerical methods for approximating the solutions of two dimensional Volterra integral
equations were presented for the three dimensional ones, only a few methods have been
discussed in the literature. The analysis of copmutational methods for several dimen-
sional integral equations specially in the nonlinear case, has started more recently and
is not so well developed.

The nonlinear 3D- VIE of the first kind with conditions 5.2 to a nonlinear 3D-VIE of
the second kind. the nonlinear 3D- VIE of the second kind can be obtained by making

the derivative of [5.1] with respect to w,t and x.

Using Leibniz integral rule,

Pf(r,t,w)y  d[a[d [f [t [" )
dxdtow %{a[a—w /0 < /0 /O K(z,t,w,y, 2, s)u (y,Z,S)dydz>dsH

w ot px K t
/ // 0K (z, ,w,y7z,8)up<y’2,5)dydzds
o Jo o ow

t x
| K(x,t,w,y,z,wmp(y,z,w)dydzﬂ
0 0

o [t YT OK (x,t,w,y, 2, 8) ,
[a/o (/0 /0 ow w (?/7275)dyd5)dz

t x
([ Kotz oz o )]
0 0

o5
~

70



it w)

0x0tow

twy’zjs)

e
Oz otow

up<y’ 2y S)ddedS

S> p(y’ t S)dyds

//aK:L’twy,t

w> up(y’ 25 w)dydz

// GK .T,t,w,y,z,
0o Jo ot

T

K(z,t,w,y,t,w)u’(y, t,w>dy]

/(/ amw <%%@w®)w

0

8

8thwy,2w)

u?(y, 1, S)ds) dy

0

6/ (.1 ,
xr,t,w,y,l,w
ox J, Y

8 E 8K:ctwy,t3)
i
K

p(y’ Z, w)dZ) dy

)up(y7 ta w)dy

/w//a?)thwy’ZS)
o Jo Jo OzotOow

p<y, z, S)ddedS

o

/w/t 2thw$zg)
0 otow

uP(x, z, s)dzds

w aK(l’, t, w,x, t, S)

o

/w/x82K:L‘tw Y, Ty 3)
0 Orow

P(y’ t? S)dde + /

0

ow

up((/‘;, t? S)dS

PR twy zw) LOK (z,t,w, x, 2, w)

/zathwy,tw)

uP(y, t,w)dy + K(z,t,w, z,t,w)

0
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uP (x,t, w)

up(x7 Z, w)dZ

(5.3)



Solving equation for uP(z,t,w) to get the following form:

w t x
U,p(l’,t,’w) = / // Kl(:v,t,w,y,z,s)up(y,z,s)dydzds

o Jo Jo
t T w T

s [ [ Rt e+ [ ] K @90 s)dyds
0o Jo 0o Jo
w t x

+ / /K4(x,t,w,z,s)up(:c,z,s)dzds+/ K°(z,t,w, y)uf (y, t,w)dy
o Jo 0

t w
+ / Kﬁ(x,t,w,z)up(:v,z,w)dz—i-/ K™(x,t,w,s)uP(x,t,s)ds + F(z,t,w)
0 0

(5.4)

where

PK(x,t,w,y,2,8)

K'(z,t,w,y,2,8) = ErTE /K (x,t,w,z,t,w)
K*(z,t,w,y,2) = _82K(x,é;:z§;y, 2 w) JK (z,t,w, 2z, t,w)
K32, t,w,y,s) = _82K(x57;5z;,}y,t, °) JK (z,t,w, 2z, t,w)
Kz, t,w,z,5) = —agK(xgg(;Z;x’Z’S)/K(:r,t,w,:v,t,w)

Koz, t,w,y) = —aK(m’tg;’y’t’w>/K(a:,t,w,x,t,w)

KS(z,t,w,z) = _0K(az,t,;¢;,$, 2w) JK (z,t,w,z,t,w)

K'(z,t,w,s) = —aK(x’téZ’x’t’S>/K(x,t,w,m,t,w)
F(z,t,w) M/K(z,t,w,x,t,w)

Oxotow

such that K' € L*(D x D), K? € L*(D x [0,1] x [0,T]), K3 € L*(D x [0,1] x [0, W]),
K* e L*(D x [0,T] x [0,W]), K° € L*(D x [0,1]), K® € L*(D x [0,T]), and K™ €
L*(D x [0, W]).

Now, the aim is to solve the nonlinear 3D- VIE of the second kind using the bivariate
shifted Legendre functions, and the obtained solution will be also the solution of the
nonlinear 3D VIE of the first kind. For that purpose, we introduce first the definition

of three-dimensional shifted Legendre functions.
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Definition 5.1 (Three -dimensional Shifted Legendre Functions)
The three -dimensional shifted Legendre functions are defined on the domain D as

follows:
U (T, 8, W) = Ly, <2x — 1> L, (%t — 1) L, <%w — 1>

where m =0,1,.... M, n=0,1,.... N, andr =0,1,..., R.

These functions are orthogonal with respect to the weight function w(z,t,w) = 1 such

that:

W Tl H, if i=m, j=n, k=r
/ / / w(x, t, W)V (2, t, W)Y (2, t, w)drdtdw =
o Jo Jo

0, otherwise

ITW
2m+1)(2n+1)(2r+1)

where H = i
Here L,,, L, and L, are the well known Legendre polynomials respectively of order

m, n and r which are defined on the interval [-1,1] and satisfy the following recursive

Ln+1(t):<2n+1)th(t)—( n )Ln_l(t), n=12 ..

n+1 n—+1

formla:

where Lo(t) =1, Ly(t) =t.

The shifted Legendre polynomials are defined on the interval [0, s] as:

Pova(z) = (2;:;1) (gx - 1) Po(z) — (#)Pm_l(m)
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where Py(z) =1, Pi(z) =2z — 1, Py(x) = Ly, (%x — 1>, and m=1,2,....

5.1 Function Approximation with Shifted Legendre

Functions

A function f(z,t,w) € L*(D) can be expanded in terms of Shifted Legendre series as

follows [36]:

oo 0 o0

flx, t,w) ZZCWW@/Jmm x,t,w) (5.5)

m=0 n=0 r=0

where C,,,,, are constans given by:

< flz, t,w), Yo (2, 6, w) >
< ¢mnr> wmnr >

Cmnr =
The inner product in space L?(D) is defined by:

< fx, t,w), Yo (z, T, W) / / / f(z, t, ) (z, t, w)dzdtdw

and the norm, is defined as:

=

menr<x7taw)H2 = ( < wmnr(xataw)awmnr(xat7w> > )

_ (/OW /OT/Ol |¢mnr(x,t,w)|2dxdtdw)%.
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If the infinite series in the equation is truncated up to terms R, N, and M, then

the function f(x,t,w) may be written as:

M N R
f(x,t,w) >~ ZZZ mnrwmnrxtw> fMNR(x7t7w)
m=0 n=0 r=
flz, t,w) ~ CT(x,t,w)

where C', and ¢ (x,t,w) are (M + 1)(N + 1)(R+ 1) x 1 vectors given by:

C - [00007"'7COOR70010a"'7COIR7"'7CON07"'aCONR701007"’acloRacll();"'7011Ra

T
) ClN07 cety ClNRa () CMDO; () CMORa CM107 cety CMlRa ) CMN07 ) CMNR]

w(l} t, w) = Wooo, ey WooR> V0105 ---s YO1R -+, YONOs -+ VoNRs Y100, V1015 -5 Y10Rs Y1105 -+

T
Y11R, <oy VINOy - os VINRy s UMO0s s UMOR, VM105 -y UMIR -y UMNOs -, UMNR]

Now,

oo o o0

< f((lf, ta U}), 7pmnr(ac,t,w) > = < Z Z Z Oijkwijk($7 ta w)7 1/Jmm” (ZL’, tv ’U)) >
=0 7=0 k=0
= < Omn'rl/}mnr (ZL’, t7 w)7 ¢mnr<x7 tu ’LU) >
- Cmnr < ¢mnr(xat)w)7¢mnr(xvtaw) >

< f(l', t, w), 77Z)mnr(gc,t,w) > = Cmm’quZ)mnrH%

Solving the previous equation for the constants C,,,, to get:

< flz, t,w), Ympr(z, t,w0) >

C =
o |12
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Depending on the definition of the inner product in space L?(D), the constants Ch,,,

can be expressed as:

m+1D)2n+1)2r +1) [V (T
Cm”'f - » by mnr\+ by dxdtd
/O/O/Of(xtw)l/z (x,t, w)dxdtdw

Tw

5.2 Approximating the Kernel Function with Shifted

Legendre Functions

The aim of the current section is to express the kernel function K(z,t, w,y,z,s) in

terms of the shifted Legendre functions.

Lemma 5.1 Let K(z,t,w,y, z,s) is any function € L*(D x D), then
K(:L‘7 t? w’ y? Z’ S) = wT("(E’ t? w)K¢(y7 Z? S) (5'6)

where K is a block matrices of size (M +1)(N +1)(R+1) x (M +1)(N +1)(R+ 1)
of the form K = [K"™M _o, K" = [K7"™|N _o, K7™ = [K;jkmne]fr—o;

i,m=0" 7,n=0>

%4 T l w T l
Kijkmnr = G/ / / |:/ / / K(m,t,w,y,z,s)@bmnr(y,z,s)dydzds ¢1]k(xat7w)dxdtdw
0 0 0 0 0 0

and G — (2i+1)(2j+1)(2k}|-2112g2‘;/n;1)(2n+1)(2r+1)'

Proof:  Using the shifted Legendre functions, the kernelK (z,t,w,y, z,s) can be ex-

pressed:
o0 o0 (o] o0 (o] oo

K(x,t,w,y,z,8) = ZZl/)ijk(x,t,w)Kijkmm¢mnr(?/;273) (5.7)

=0 j=0 k=0 m=0 n=0 r=0

Also, since the sequence (2, t,w) is orthonormal, the inner product of the func-

tion K(x,t,w,y,z2,s) together with the functions ., (v, 2, s) and v;j,(z,t, w) can be
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reduced as follows:

= << Zzzzzzwabc z, t 'LU abcdefwdef(y7z 8) wmnr(yaz S) >, ¢ij(x t 'LU)

a=0 b=0 c¢=0 d=0 e=0 f=0

oo o oo

= < Zzzwabc(x;taw)Kabcmmﬂ < ¢mnr<y7 2, 5)71/}mm"<y727 8) >71/}ijk<x7taw) >

00 00 00
= <D0 D el b w) Kt [ (. 7, )| 52 g, 1, 0) >
= KijkmnquvZ)mnr(y;ZyS)H% < ¢ikj(~r7t7w)7¢ikj(x7tuw) >

= KijkmnquvZ)mnr(yv <, 8)||%||¢®jk(m7 t w)||§

Therefore, the coefficients Kjjgmnr can be evaluated by

<< K(x>t7way>zvs)7wmnr(yaz>s> >7wijk($7t7w> >
menr(yaZ?'S)H%Hwijk(x’taw)H%

Kijkmnr =

and using the integral notations these coefficients can be calculated by the following

formula:

Koo — / / / [ / / / thwy,zs)wmm(y,zs)dydzds}wwk(xtw)dxdtdw

where G = (2”1)(23'“)(2’“;1%22‘;,”; D@n+1)@r+1) - 1f the infinite series in is truncated,

then it can be written as:

M N R M N R
K(LC,t w,y, z, S >~ Zzzzzzwwk Z, t w z]kmnrwmnr(y7z 8) (58)

The matrix form of the last equation is:

K(xz,t,w,y,z,s) ~ wT(x, t,w)KY(y, z, s).

7



Similarly the functions K® and ¢ = 1,2, ..., 7 can be expanded in terms of bivariate

shifted Legendre functions respectively as:

12

K'Y(x,t,w,y,2,5) U (2, t, w) K19 (y, 2, 8)
T (2, b, w) Katb(y, 2, 0)
T (2, t,w) Kaih(y, t, 5)

T (2.t w) Kyp(a, 2, 5)
T (2.t w) Ksih(y, t, w)
T (2, b, w) Ketp(2, 2, w)

@bT(ﬂfa t? w)K7¢(33, t? S)

KQ(x,t,w,y,z)

12

K?’(x,t,w,y,s)

12

12

K4(a:,t,w,z,s)

K°(z,t,w,y)

12

KS(z,t,w, 2)

12

12

K'(z,t,w,s)

where Ky, Ks, Kj3, K4, Ks, Kg, and K7 are matrices of size (M +1)(N +1)(R+1) x
(M +1)(N +1)(R + 1) of the form:
Ky =[KS™M o q=1,2,..,7

K™ = [KimN 0 iom = 0,1, M, q¢=1,2,..,7

7,n=0"

K;]mn: [K(q) ]IIC%,T:()v j?nzoal)"‘aNa q:]‘72"”’7

ijkmnr

and Legendre coefficients K;? @

ijkmnr?

q=1,2,...,7 are given by:

<< KYz,t,w,y,2,8), Yomr (Y, 2,8) > Wik (z,t, w)

K
ok ey, 2, 5) [Bl[iu (£, w)] B
- / / / |:/ / / K CL’ Lw,y, z, 8)¢mnr(yaz 3>dyd2d5:| @Z)z]k(ZE t U))dl’dtdw
K(2) << K2(I t w,yY,z ) ¢mm~(y,2 ’UJ) > 1/11]k($ t ’UJ)
ijkmnr

[ (g, 2, W3] [0 (2, £, w)] 13

_ / / / U / /K 2,0, 9, 2 (4 2, w)dydzdw}zﬁmk(x t, w)dadtdw
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<< K3(x, w0, 9, 8), Y (Y, £, 8) >, Uiz, 8, w)

K& —
ik | rnr (Y5 s $)| 3] [0z (2, T, w0) |13
- / / / [/ / / K3(z,t, 0,7, 8)Vmnr (Y, 1, s)dydtds} Yiji(x,t, w)drdtdw
(4) << K*(z,t,w, 2, 8), Yo (2, 2, 8) >, Yyijn(x, £, w)
Kijkmnr =
| [mnr (, 2, 8)113]|9in (2, 1, w)]]3
- / / / [/ / / K*(z,t,w, 2, 8) (T, 2 s)dxdzds} Yiji(x,t, w)dzdtdw
® << K5z, t,w,9), Ynr (y, £, w) >, Yiji (2, t,w)
ijkmnr T
| [mnr (g, , W) |3 0ig0 (2, E, w0) |3
= / / / [/ / / K°(z,t,w, ) Ymnr (4, L, w)dydtdw} Yiji(x, t, w)dedtdw
©6) << K%z, t,w, 2), e (@, 2, 0) >, Y, t,w)
Kijkmn'r =
| [mnr (2, 2, W) 3] [0 (2, £, w3
= / / / [/ / / KS(z,t,w, 2)Ymne(, 2 w)dxdzdw} Viji(z, t, w)drdtdw
7) << K'(z,t,w, 8), Ve (2,1, 8) >, iz, 1, w)
Kijkmn'r =
|[Wmnr (2,2, 8)|[3][Yije (2, 2, w)[3
— / / / [/ / / K™ (z,t,w, 8) (2, s)dxdtds} Yijr(x,t, w)drdtdw,
where (@ — GIFDEIFDEEDEm 1) (@n+1)(2r+1) a

12T2W?2

The matrix K in equation (5.6) will be in the form

K(0,0)
K (1,0)

K (M,0)

KO - gOM)
Ko o g

KW - g (MM)
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KOOOO KOOOI N KOOON KOOMO KOOMl N KOOMN
KOIOO KOlOl KOION KOIMO KOlMl KOIMN
0NO0O0 0NO1 ONON ONMO ONM1 ONMN
K K .. K K K .. K
KMOOO KMOOl KMOON KMOMO KMOMl KMOMN
M100 M101 MI10N M1MO M1M1 M1IMN
K K .. K o, K K . K
KMNOO KMNOI KMNON KMNMO KMNMI KMNMN

Note that K" = [K;jkmnr)(R41)x(R+1), &M = 0,1,..., M, j,n=0,1,..,N and k,r =
0,1,..., R.
the matrices K,, ¢ = 1,2,...,7 can be obtained using the same manner as the matrix

K.
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5.3 Operational Matrices of Integration

The integration of the vector ¥ (z,t,w) can be approximately obtained by the following

formulas [18]:

w t x
| [ ] vt zodyazas
0 0 0
t x

Y(y, 2, w)dydz

Y(y,t, s)dyds

S—
S—

w

t

U(x, z,8)dzds

w

S— S—
— 55—

|ty

/tw(x, z,w)dz
0

/wﬂ)(x,t, s)ds
0

12

12

12

12

12

12

12

Q1 (z, T, w)
Qa1 (x, 1, w)
Qst(z, T, w)
Qatp(z, T, w)
@st(x, T, w)
Qe (x, T, w)
Qry(x, t,w)

(5.9)
(5.10)
(5.11)
(5.12)
(5.13)
(5.14)

(5.15)

where x € [0,1], t € [0,T], and w € [0, W]. @1, @2, Qs3, Qi, Qs5,Qs and Q7 are the

(M+1)(N+1)(R+1) x (M+1)(N + 1)(R+ 1) operational matrices of integration

and have shapes:
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Q1 = (AR

Qs = (P®P)® I
Qs = (PA®Inyg) @R
Qs = (In11®P)® P
Qs = (P®Inw) ®Ipn
Qs = (Uup®P)®@Ipy

Qr = (U1 ®@Iny) @ P

where Iny1, [pr41 and Igy; are the identity matrices of size M + 1, N + 1 and R + 1.
P, P, , and P; are the operational matrices of one dimensional Shifted Legendre

polynomials defined respectively in [0,1], [0,7] and [0, W] as follows:

(1 1 0 o0 o 0 0|
2 0 1 0 0 0 0
o =+ 0 3 0o 0 0
) .
Pq - 5
0 0 0 0 = 0 5
00 0 0 .. 0 ﬁ 0 |

for z=1,Tand W, h= M,N and R, ¢ = 1,2,3. For more details see reference....
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5.4 The Product of Operational Matrices

The following property of the product of two vectors ¥ (z,t,w) and ¥ (z,t,w) is very
helpful
(e, t,w)y" (z,t,w)C ~ Cij(z, t, w) (5.16)

where

C = [00007 ceey COORa CY()lOv ) CYOlRa sy OONU7 cey CONR) C(1007 sy C(10R7 C(1107 "'CllRa sy CVl]\/'Oa

T
"'7CM107"'aCMlRy"'aCMND CYMNl CMNR]

To explain the the above result, first notice that o (z, ¢, w)y” (z,t,w)C = [Yijk][Vng]T C
is a column matrix and by elementary calculations the entries can be written as
S S o S Chgotngutlije where i =0,.., M, j=0,...,N,and k =0, ..., R.
On the other hand, the product ¢;;x(x, t, w)Ynge(z, t, w) can be written as a linear com-
binations of three-dimensional shifted Legendre function. In fact, it can be expressed

as follows
i+h j+q k+v

Vi (@t ) ngo (2,1, w) =3 Y ugptbusy(z, £, 0) (5.17)

u=0 s=0 p=0

To compute the coefficients a,,, multiply both sides of equation by Vs (2, t, W), M =
0,1,....M, n=0,1,.... N, r=0,1,..., R and integrate from 0 to [, 0 to 7', and 0 to

W and taking in account the orthogonality property

_ Cm+DEn+D)2r+1) (YTl
Uy = ITW /0 /0 /0 Vi ik gy Vmnrddtdw
2m+1)(2n+1)(2r +1) /

rw

"
Wy
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where

l

Wikm = /wz(x)wh(x)wm(‘r)dma iaham:0>17---7M
0
l

W = [ GO0, Gan =01, N

!
Whyr = /Olbk(w)zbv(w)wr(w)dw, k,v,r=0,1,...R

So, equation becomes

i+h j+q k+v

(2m +1) 2n—|—1 2r+1
wijkwhqv Z Z Z )( ) zhmw]qnwk/yrwmnr (3:7 t? U))

W
m=0 n=0 r=0

Which implying to :

2m+1)2n+1)(2r +1)
ITw

M:u

M N
¢ijk1/1hqu = Z Z

m=0 n=0 r

Witim Wi g Wy Vi (2, 1, W) (5.18)

Il
o

If we substuted equation in ¢(z,t,w)Y? (z,t,w)C , we get the approximated
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2 1)(2n+1)(2r+1
Zh 0 Zq 0 Zv =0 Zm =0 Zn 0 Zr 0 Chqv( o le“LIjIr/ Lzt )thmw(/)qnwgvrwmnT<x7 t? 'U})

M N R M N R 2m+1)(2n+1)(2r+1
Zh:o Zqzo Zu:o Zmzo ano Z’I‘:O Chqv( s )(z;thr/ s )w()hmwf)qnw%twﬂ)mm(x 1 w)

2 1 2 1)(2r+1
Zh qu Ozv Ozm Ozn Ozr oChqv( el I;IJAF/ e )thmwﬁvqnw()’wme(x,t,w)

Zh 0 Zq 0 Zv =0 Zm 0 Zn =0 Zr 0 Chqv 2l (?;;[‘/1)(27”‘5‘1) thmwaqnw%vrwmnT (SC, t? ’LU)

M N R M N R 2 1)(2n+1)(2r+1
Zh:O Z(I:O Z’UZO Zm:(] Zn:O 27":0 Chq”( = )(I;I;Ii_/ 2 )thmwéqnng’wmnr (:C’ t’ w)

M N R M N R 2 1(2n+1)(2r+1
Zh:O Zq:O ZU:O Zm:O Zn:O ZT:O Chqv( - )(Hq’ll; Mo )thmwé)qnwy%v'rwmnT (177 t? U})

Ztho Z«szzo Zf:o Z%:o Zyjj:o Zf:o Chqv (2m+1)(12;;/1)(2r+1) WAL hm W gn Woor Yrmnr (2, 1, W)

M N R M N R 2m—+1)(2n+1)(2r+1
Zh:O Zq:O Zv:O Zm:O Zn:O Zr:O thv( = )(Z;W = )thmeanwZ’wrd}mnr (Qf, t? ’LU)

It is clear that w;n, = Winp, Wi, = w'  and w} = w) and after a suitable
’ Jjqn Jng’ kvr krv

reordering of lower indices, the last column matrix could be written as
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h
Zm 0 Zn 0 Zr 0 Zh =0 Zq =0 Zv— Cmnr Ghr X lzi;l“;/l)(zqﬂrl)thmwéqnngTwhqv(x’ t’ w>

h 2041
Zm ozn 0 Zr 0 Zh qu Ozv OCmm S ?qq“JVrVI)( = )w()hmwf)qnw%vrwhqv(x’t’w)

Zm 0 Zn 0 Z’I‘ 0 Zh 0 Z 0 Zv 0 Cmnr L ?;w)(2v+1)thmw;anwgvrwhqv<x’ t’ U})
q=

Z%:o Zgzo Zf:o Zf]yzo Z<]1V=0 Zf:o Cranr (2h+1)(?7q“;/1)(2v+1) W0hm W i gn W hr Yhgo (T, 1, W)

Zn]‘fzo Zr]yzo Zf:o Zﬁ/lzo ZNzo Zszo Crnnr (Qhﬂ)(?%;/l)(zvﬂ) thmwéqnwgvrwhq”@’ 2 w)
q

o S o S S ol ENCLE DD 0 W ong (2, )

R M N R 2h+1)(2¢+1) (2v+1
Zf\gzo 2711\[:0 D re0 2h=0 Zq:() > o0 Cmnr( . )(l;;/)( = )thmw%qnwgvr@Dhqv(m’ t,w)

Dm0 Ym0 Do Coteo Cogo 2o Cranr TR a0 g Wi g (1, )
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Hence we have:

wOOO
wOOR

7#ONO

CN’ C’ C~’ wONR
10 11 1M _ éw(gjﬂf’w)

~ _ _ Yaroo
CMO CM]_ coe CMM

l/JM OR

77ZJMN0

77DMNR

Finally
O(z, t,w)p” (z,t,w)C ~ C’¢(m,t, w) (5.19)

where C'is a (M +1)(N+1)(R+1) x (M +1)(N+1)(R+1) product operational matrix.

C=1[Cy], i,h=0,1,...M (5.20)

such that Cy, is given by:

M
~ 2h +1
Cih = I Z wihmAm

m=0
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where A,, is a square matrix of size (N 4 1) whose entries are of the form:

N
2g+1
N
[Am]jquo T E :wz’anm”

and B, is a square matrix of size (R + 1) with entries of the form:

R
2v —l— 1
[an]k v=0 — Z kvr mnr
r=0

Lemma 5.2 For an (M + 1)(N +1)(R+1) x (M +1)(N +1)(R+ 1) matriz B , we
have:

VT (2, t,w)By(z, t,w) ~ Bw(x,t, w)

where B = [BMY_,, i,h=0,1,..,M, B"=[B"Y _, jq=01,.,N,

B = [bijingoi v, kv =01, R

BOO BOl BOM
BlO Bll BlM
B = ,
BMO BMl BMM
BOOOO BOOOl . BOOON BOOMO BOOMl . BOOMN
BOIOO BOIOl BOlON —_— BOlMO BOlMl BOlMN
BDNOO BONOl BONON BONMO BONMl BONMN
B =
BMOOO BMOOl BMOON BMOMO BMOMl BMOMN
BMlOO BMlOl BMlON — BMlMO BMlMl BMlMN
BMNOO BMNOl BMNON BMNMO BMNMI BMNMN
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Note that Bith = [bijkhqv](R+l)><(R+1); Z,h = 0,1,...,M, ],q = 0,1,...,N and ]{,’U =

0,1,...R.
Bisalx (M+1)(N+1)(R+1) vector defined as:

~

B = [Bow Booi .- Boor, s Bono Boni ... Bonr, Bio Bioi--- Bior,

BlNO BlNl BlNR)"'; BMOO BMOl BMOR [ENRARS BMNO BMNl

with

M N R M N R
B, - mt 1)(?; V+V 1)(2r +1) S SN wit! i

1=0 j=0 k=0 h=0 ¢=0 v=0

m=0,1,..M, n=0,1,..,N, r=0,1,...R
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Proof:

- A .
Y000 Yooo
Yoor Yoor
Yono YoNo
YoNR VoNR
wT<l’,t,w>Bz/)(x’t7w) = B
Y aroo Yoo
Yuor Yror
YamNo Yarno
_wMNR_ _w MNR|
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M N R

Zh:o Zq:O Zv:D bOOthvwhqv
M N R

Zh:[) Zq:() Zv:O bOOthvwhqv
M N R

Zh:O Zq:O ZU:O bONthvwhqv
M N R

Zh:o Zq:O szo bONthvwhqv

VT (2, t,w)By(x, t,w) = T (2, t,w) :
M N R

Zh:o Zq:O Zv:() bMOthv,le)hqv

M N R
Zh:o Zq:O Zv:O bMOthvwhqv

M N R
Zh:o Zq:() ZU:() bMNthvwhqv

M N R
_tho Zq:O Zv:O bMNth’U¢hqv_

and the above product has the following form

bOOthvaOO,[vZ}hqv

WE
M=

@/}T(:v,t,w)Bz/z(x,t,w) =

i
o
S
Il
o

bOOthv 2ﬂOORwhqv

=}
Il
=)
S
Il
=)

M= I[M]= I[V]=
[]=1[]-
(1= L[]=

bONthv 7~/J()N0¢hqv

i
o
[}
Il
o
S
Il
o
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bONthv'lvbONRq/}hqv

WE
M=

Ji
o
S
I
o

WE
M=

bMOthv wMOO 2ﬂhqv

WE
M=

ba10 Rhqv ¥ MOR Y hgv

Q
Il

o
S
Il

o

M= I1= £0= £
T
i

WE
M=

bMNthv ¢MNO ¢hqv

>
i
o

T
o
(>4
I
o

M=
WE
M=

bMNthv wMNRwhqv

>
i
o

hi
o
<
I
o

According to equation [5.18] we have:

<
P
B3
\.C*
&
sy
=
E
~

,w) =~

& (2m +1)(2n+1)(2r + 1)
Z bOOthv ITW

M=
WE
M=
M =

thmwgqnwgvr'¢mnr (.T, ta UJ)

I
=)
i
o
N

Il
o
Ji
=)

I
=)

v

2m+1)2n+1)(2r+1)
bOOthv ITW

i

NE
] =
M=
M =
M=

thmwéqnwlllzyrwmnr(x7 ta 'lU)

Il
o
3
Il
<)
N
Il
<)
<
Il
o
S
Il
o

M N R N R
2m+1)2n+1)(2r +1
SR ) 3D 3D B) D) DU Ln s net i M e
m=0 n=0 r=0 q=0 v=0
M N R N R
2m+1)2n+1)(2r +1
+ . + Z Z Z Z Z bONth’U ( >(ZTW )( >w0hmw§\/'qnw%vr¢mn7“ (l’, ta 'lU)

C2m+1)2n+1)(2r+1)

bMOthv

M =
M=

_l’_

+

M= 1

M- £

M=

M= IM= £0= M= 2= 1= 1= 21

T
i

thme)qnw()/vrwmnr (I’, ta ’LU)

m=0 n=0 r=0 q=0 v=0 ZTW
M N R N R
2m+1)2n+1)(2r +1
o YTV YY barornge ><ZTW ) >thmwgqnwgwwmm<x, £ w)

Il
S
3
I
o
S
Il
o
<
Il
S
S
Il
S

M N R N R
2m+1)(2n+1)(2r +1
IEED D5 ) B) D) D) BLITIHE-Lt Semat L SR e ATy
m=0 n=0 r=0 q=0 v=0
M N R N R
2m+1)(2n 4+ 1)(2r +1
IR D) 3) B) D) B) PN et TR SR
m=0 n=0 r=0 h=0 ¢=0 v=0
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(2(0) + 1)(2(10T> m+/ 1)(2(0) + 1) i i ZR: i”: i ZR: Dot ol oo (0, £, 1)
ERRCOESIC l(;)W )R +1 i”; i i: hﬁ: i XR: bttt gl boon (s, )

S CORS) + 1)(2(0) + 1) i i i i 3 i byttt oo, )
(2M + 1)(2(ZOT) - 1)(2(0) + 1) i XN: XR: 3 i XR: bt Ot gtnroo . £ )

M N R M N R
(2M + 1)(2((1);;/ 1)(2(N) +1) Z Z SIS bijrngewinart ol goason(x, £ w)

&
i
o

<
i
o
Eonl
f
o
>
i
o
hi
o
@

s
Il
)
<
Il
=)
il
=)
il
)
<
Il
=)
e
o

{9‘
<
-
>
<L
e
g
X
o
B
Q
2
g
T I
IS
=)
<
o
2
2
&
~
£

M N R N R
(2M + 1)(2?; Jv;/ 1)(2(0) + 1) Z Z S SN S bty g arno (b w)

M N R M N R
2M + 1)(2N + 1)(2R +1
( )( ITW A : Z Z Z Z Z Z DijkhguWik MWjN Wiy gUMNR(T, W)

=0 j=0 k=0 h=0 ¢q=0 v=0

M N R R
Z Z Z anr¢mnr<x7 t, ’IU) = Bw(l', t, w)

m=0 n=0 r=0

M N R M N R
B (2m + 1)(77;;-/1)(27“ +1) Z Z Z Z Z Z Dijkhqv Wihm W g Wiy,

i=0 j=0 k=0 h=0 q=0 v=0

Finally,

T (2, t,w) By (z, t,w) =~ Bi(x,t, w)

O

Similarly, any matrix of the size (M + 1) (N + 1)(R+1) x (M +1)(N +1)(R+ 1)
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we have:

O (2.t w)Bi(x,t,w) = Bi(z,t,w)
V" (2, w) Byt (,t,w) = Byy(x,t,w)
W7 (2, w) Byt (x,t,w) = Ba(x,t,w)
O (2, w) By (x,t,w) = By(x,t,w)
W7 (2, w)Bsh(x,t,w) = Bs(x,t,w)
VT (@, t,w) et (w, t,w) =~ Bgib(x,t,w)
O (@, t,w)Brp(x, t,w) ~ Bpp(z,t,w) (5.21)

5.5 Method of Solution

In this section, we present a numerical method to find an approximate solution to
which corresponds with equation [5.4 Also, it is assumed that the included functions
this equation satisfy the conditions to garntee that the solution is unique.

Using the Bivariate shifted Legendre functions, uf(x,t,w) and F(x,t,w) can be ap-

proximated by as:

uP(z,t,w) ~ CTy(z,t,w) =" (z,t,w)C (5.22)

F(z,t,w) ~ FT(z,t,w) (5.23)
where FT isa 1 x (M + 1)(N + 1)(R + 1) vector of constants of the form

F' = [Foo ... Foor, ---, Fono --- Fonr, -+, Fuoo - Fymors -, Funo --. Fung]

and such that F,,,,, = (2m+1)(l2;;{/1 )@r+1) fo fo fo 2, W) UV (0, £, w) dzdtdw.

Also, the approximation of the other functions in equation are needed, so we list
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them below:

K'(z,t,w,y,z,5)
K*(z,t,w,y,2)
K3(z,t,w,y,s)
K*(z,t,w, 2, )

K°(z,t,w,y)
Koz, t,w, 2)

K7(x,t,w,5)

12

12

12

12

12

12

12

O (2t w) Ka(y, 2, 8)
O (2t w) Koy, 2, w)
U (@t w) Ky, ¢, s)

YT (a,t, w) Ky (, 2, 5)
O (2t w) Ks(y, £, w)
YT (a,t, w) Ko (2, 2, w)

VT (z,t, w)Kqb(x,t, 5)

Substituting equations ((5.2245.30]) into equation [5.4] to get:

CTop(x, t,w) = /0 /0/0 O (2, t, w) K p(y, 2, s)Y7 (y, 2, s)Odydzds
b [ [ ot Kaly. 200" (5, 0)Cdyd
o Jo
+ /0 /o O (@, t,w) K (y, t, s)YT (y, t, s)Cdyds

—+ /Ow /O wT(;E7 t, w)K4¢(x7 z, S)wT(SC, 2, S)Cdzds

+ / O st w) Kt (g, £ w) (1, £, w)Cely
0

+ /t VI (z,t, w) Ko (2, 2, w)" (z, 2, w)Cdz
0

+ / T (st w) Kb (a, £, )07 (2,1, 5)Cds 1 T, 1, w)
0
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(5.28)
(5.29)

(5.30)



Ctotatw) = Wtk [ t | o507 0,2 5) s
- Tt [ t | 60007 0.2, w1
etk [ ot 0T s)Cayds
+ wT(x,t,w)K4/0w /Otw(x,z,s)w(x,z,s)cczzds
+ ks [ ot ) Cdy
+ (2, t, w) K /Otw(x,z,w)wT(x,z,w)Cdz

+ ¢l (z, tw) Ky / "t 50T (2,1, 5)Cls + FT(a, )
0

According to equation the above expression took the following form

CTop(x, t,w) = wT(x,t,w)Kl/ow/O /Ozé¢(y,z,s)dydzds
F YTt w) Ko /0 /Oxéw@,z,w)dydwwT<x,t,w>K3 /0 w /0 "Gyt 5)dyds
b Tt w) Ky / : / G, 2, s)dzds + 07 (o, w) Ky / "Gy, w)dy

+ Yl (z,t,w)Ks /t C’w(x,z,w)dz + T (2, t,w) Ky /w C’¢(m,t, s)ds

0 0
+ Fy(z,t,w)

Using equations [5.95.15] we get:

CTy(z,t,w) = ' (a,t, w)KléQlw(x,t,w) + T (z, t,w)Kgéng(x,tw)
+ T(a,t, ’U))Kgé@g’l/}(l', t,w) + T (z,t, w)K4éQ4w(x, t,w)
+ T(x, t,w)K5éQ5w(:c,t,w) + T (x, t,w)K6éQ6w(:c,t,w)

+ T(x, t,w)K}C’Qﬂb(a’,t,w) + FTy(z,t,w).
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Finally, from equations the product CTe(z,t, w)

CT¢(x7 ta ’LU) = Bﬂ/’(ﬂ?, ta ’lU) + BQ@D(% ta ’LU) + Bzﬂ/’(ﬂ?, ta UJ) + B4’¢(CE, ta ’LU)
+ Bsﬂﬂ(f’c, ta ’LU) + Bﬁw(xv ta w) + Bﬂﬂ(% t? ’LU) + FT?#(% ta UJ)

CTop(x, t,w) = (ZEZ-nLFT)@/J(x,t,w). (5.31)

Hence we have:

7
C"=> Bi+F"
1=1

which corresponds with a system of linear algebraic equations in terms of the unknown
elements of the vector C' and can be solved easily using direct methods.
The unknown function u(x,t,w) can be approximated in terms of the Bivariate shifted

Legendre functions as:

u(z,t,w) ~ AT (x, t,w) (5.32)

Such that the entries of the vector A are unknowns.

Using equations [5.19] and , it is can be easily obtained that:
uP(z,t,w) ~ AT APy (z, ¢, w) (5.33)
Finally, using equations [5.33] we get:
AAP-t = T (5.34)

Equation forms a system of (M 4+ 1)(N 4 1)(R+ 1) system of nonlinear equations.
The result in equation can be proved by induction, that V K € ZT,
Using the result [5.19 and replace C' by A to have:

(e, t,w)" (z,t,w) A ~ Ay(z,t,w) (5.35)
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Apply the transpose for both sides of equation to yield:

AT (@, t,w)o" (2, w) = Y7 (z,t, w) AT (5.36)

Apply the result of equation with p =1 to get:

u(z, t,w) ~ AT A% (x,t,w) (5.37)
For p = 2,
u (z,t,w) = u(x,t,w)u(z,t,w)
~ ATy(x, t,w)T (z,t,w)A
W (z,t) ~ ATAYW(z,t,w)
If p = 3, then,
wz,t) = vz, t,w)u(z,t,w)
~ ATAYW(z,t,w)yT (z,t,w)A
~ AAAY(z,t,w)
Ble,tw) ~ ATA%)(z,t,w)
For p =4,

ut(z,t,w) = Pz, t,w)u(z,t,w)

12

AT/P@D(x, t,w) (x,t, w)A

ut(z,tw) ~ AT A3Y(x,t,w)
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Suppose that k& € Z*, and let equation be true for k, then,

Wz, w) = uF(x,t w)ut (ot w)

12

AT AN (2, b, w) T (2,8, w) A

12

AT AR Aap (e, t, w)

Wzt w) ~ AT AR (2t w)

Thus equation [5.33]is true for p = k + 1, and the proof is completed.

5.6 Numerical Examples

In this section, some examples are presented to show the reliability of this method. In

order to show the error of the method, the following notation is introduced:
emnr(x,t,w) = |u(x,t,w) —uynr(rtw), (ztw)eD

where u(z,t,w) is the exact solution, and ups y g(z,t, w) is the computed result with
M, and N.

Throughout this section, we assume that M # N # R or M = N = R. Also, in order
to apply Newton’s method to solve the resultant nonlinear system, we assume that the

initial guess is A° = C.

Example 5.1 Consider the following 3D nonlinear volterra integral equation of the

first kind:

t
/ / / 5] —————dydzds = M(2t2+3tw+3t$+12t+2w2—|—3wx+12w—1—2m2+12$+24)
o Y+z+s+2 6

(x,t,w) € 10,3] x [0,3] x [0, 3].

The exact solution is u(x,t,w) =z +t+w+ 2.
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Applying the presented method with M = N = R = 1, and obtaining the linear system
in terms of the unknown coefficiets of the function u3(z,t, w) as:

Coo0 = 6737, Coo1 = Co10 = C100 = %39’ Co11 = C101 = C110 = %, C111 = %-

Substituting obtained values for ¢;;x, 1,7,k = 0,1 in to equation AT A2 = CT, then we
get a system of nonlinear equations in terms of the unknown coefficients of u(x,t, w).
Finally, Newton’s method is used with the initial guess A®, eight ierations and presi-
cion 107, are considered.

agop = 6.495628455, agy; = aprg = a110 = 1.510686315,

ap11 = A101 = a0 = —0.009707900, @17 = 0.009578177.

Therefor, we have uy 1 1(x,t, w) = 1.026543529(x + t + w) — 0.00857159(tw + tx + zw) +
0.002837978(twx) + 1.924867633.

Also,

e111 = [0.026453529(x + t + w) — 0.008590(tx + tw + zw) + 0.002837978(txw) —
0.075132367| < 0.075132367.

For M = N = R = 2, we have

agoo = 6.9, ago1 = @10 = @100 = 1.5, ago2 = Go11 = Ao12 = Gp20 = Ao21 = Qo2 = Q101 =
102 = Q110 = G111 = G112 = Q120 = Q121 = G122 = QG200 = Q201 = A202 = (G210 = G211 =
A212 = G290 = G221 = Q22 = 0

S0, Ugga(x,t,w) = x +t + w + 2 which is the exact solution.

Example 5.2 57/
3t
/ / / yz*u(y, z, s)dydzds = Tsmw (x,t,w) € [0,1] x [0,1] x [0, 1]

The exact solution is u(zx,t, w) = zcosw
Applyinf Bivariate shifted Legendre function for M = N = R = 1,2, 3, The following
tables show the exact solution, the approximate solution, and the absolute error at

some particular points.
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Tab. 5.1: Exact and numerical solutions at M = N=R=1

r=t=w Exact Approximation Error
10~ 107 1.0752000 x 10~ 7.520000 x 10~
0.1 9.9500420 x 1072 1.0284900 x 10~' 3.348580 x 10~
0.2 1.9601332 x 10~*  1.9634698 x 10! 3.336600 x 10~*
0.3 2.8660095 x 10~ 2.8049408 x 10~" 6.106870 x 10~
0.4 3.6842440 x 10~ 3.5529025 x 10~1 1.313415 x 102
0.5 4.3879128 x 10~1  4.2073549 x 10~' 1.805579 x 102
0.6 4.9520137 x 107! 4.7682881 x 10! 1.837256 x 10~
0.7 5.3538953 x 10~1  5.2357319 x 10~' 1.181634 x 102
0.8 5.5736537 x 10~ 5.6096565 x 10~"  3.600280 x 10~
0.9 5.5944897 x 10~! 5.8900717 x 10~1 2.955820 x 10~

1

5.4030231 x 10~}

6.0769777 x 10!

6.739546 x 1072

Tab. 5.2: Exact and numerical solutions at M = N = R =2

r=t=w Exact Approximation Error
1077 1077 1.0034000 x 10~7 3.40000 x 1010
0.1 9.9500420 x 1072 9.9544550 x 10~2 4.41300 x 10~°
0.2 1.9601332 x 10~!  1.9577230 x 101 2.41020 x 10~*
0.3 2.8660095 x 10~1 2.8609721 x 10~  5.03740 x 10~*
0.4 3.6842440 x 10~!  3.6793321 x 10~* 4.91190 x 10~
0.5 4.3879128 x 1071 4.3869424 x 10~1  9.70400 x 10~°
0.6 4.9520137 x 1071 4.9579424 x 10-1  5.92870 x 10~
0.7 5.3538953 x 10~ T 5.3664716 x 101 1.25763 x 103
0.8 5.5736537 x 10~' 5.5866693 x 10~! 1.30156 x 103
0.9 5.5944897 x 10~' 5.5926749 x 10~ 1.81480 x 10~*

1

5.4030231 x 10~!

5.3586279 x 10~

4.43952 x 1073
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Tab. 5.3: Exact and numerical solutions at M = N =R =3

r=1t= Exact Approximation Error

1077 107 9.9947000 x 10~® 5.3000 x 10~!*
0.1 9.9500420 x 1072 9.9513030 x 10~2 1.2610 x 10~
0.2 1.9601332 x 10~*  1.9605599 x 10~' 4.2670 x 10~
0.3 2.8660095 x 10~!  2.8661729 x 10~' 1.6340 x 107>
0.4 3.6842440 x 10~ 3.6837449 x 10~'  4.9910 x 10~
0.5 4.3879128 x 10~'  4.3869424 x 10~' 9.7040 x 10~°
0.6 4.9520137 x 107! 4.9513232 x 10~ 6.9050 x 107>
0.7 5.3538953 x 107! 5.3543363 x 10~'  4.4100 x 10~°
0.8 5.5736537 x 10~!  5.5753220 x 10~' 1.6683 x 10~
0.9 5.5944897 x 10—t 5.5955117 x 10~* 1.0220 x 10~*

1 5.4030231 x 1071 5.3980282 x 10~t 4.9949 x 10~*
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Fig. 5.1: The values of N=M=R versus absolute error at different x,w values and t = [0, 1]
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Example 5.3

w t T —t
/ / / (wtw—yzs—1)u?(y, 2, s)dydzds = 1::1:6 (—39wtr—56wt*x? +48t> — 39wt x>+ 72tx+4812),
o Jo Jo

(x,t,w) € [0,1] x [0,1] x [0,1]. The exact solution is u(x,t,w) = = + t.
Applyinf Bivariate shifted Legendre function for M = N = R = 1,2, 3, The following
tables show the exact solution, the approximate solution, and the absolute error at

some particular points.

Tab. 5.4: Exact and numerical solutions at M = N =R =1

(x,t,w) Exact  Approximation Error

(0,0,0) 0 7.42393294 x 10~*  7.42393294 x 1074
(0.2,0.2,0.2) 0.4 0.40202067 2.02067000 x 1073
(0.4,0.4,04) 0.8 0.803343470 3.34347000 x 1073
(0.6,0.6,0.6) 1.2 0.120237667 2.37667000 x 1073
(0.8,0.8,0.8) 1.6 1.59678614 3.21386000 x 1073

(1,1,1) 2 1.98423777 1.57622300 x 102
(0.1,0.2,0.3) 0.3 0.303174610 3.17461000 x 1073
(0.3,0.5,0.4) 0.8 0.803534260 3.53426000 x 1073
(0.6,0.4,0.2) 1 1.00055495 5.54950000 x 10~*
(0.5,0.7,0.6) 1.2 1.20266471 2.66471000 x 1073
(0.7,0.8,0.3) 1.5 1.49806945 1.93055000 x 103
(0.8,0.9,0.7) 1.7 1.69496634 5.03366000 x 10~3
(0.9,1,0.5) 1.9 1.89230119 7.69881000 x 1073
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Tab. 5.5: Exact and numerical solutions at M = N = R =2

(x,t,w) Exact  Approximation Error

(0,0,0) 0 7.93688432 x 107*  7.93688432 x 10~*
(0.2,0.2,0.2) 0.4 0.400162800 1.62800000 x 10~4
(0.4,0.4,04) 0.8 0.800007130 7.13000000 x 10~°
(0.6,0.6,0.6) 1.2 1.20000476 4.76000000 x 107°
(0.8,0.8,0.8) 1.6 1.60000280 2.80000000 x 10~°

(L,L1) 2 2.00001740 174000000 x 10~°
(0.1,0.2,0.3) 0.3 0.300252630 2.52630000 x 10~
(0.3,0.5,0.4) 0.8 0.799997140 2.86000000 x 107°
(0.6,0.4,0.2) 1 0.999994380 5.62000000 x 10~°
(0.5,0.7,0.6) 1.2 1.20000114 1.14000000 x 1079
(0.7,0.8,0.3) 1.5 1.50000430 4.30000000 x 107°
(0.8,0.9,0.7) 1.7 1.69999907 9.30000000 x 10~7
(0.9,1,0.5) 1.9 1.90000252 2.52000000 x 10~°

Tab. 5.6: Exact and numerical solutions at M = N =R =3

(x,t,w) Exact Approximation Error
(0,0,0) 0 8.3855 x 1071¢ 8.3855 x 10716
0.2,0.2,0.2) 0.4 0.39999999999999600 3.99680289 x 10~
0.4,0.4,0.4) 0.8 0.799999999999984  1.60982339 x 10~ 4
0.6,0.6,0.6) 1.2 1.1999999999999700  2.99760217 x 10~
0.8,0.8,0.8) 1.6 1.5999999999999400  6.01740879 x 10~

(1,1,1) 2 1.9999999999999000  9.99200722 x 10~4
0.1,0.2,0.3) 0.3 0.2999999999999980  1.99840144 x 10~
0.3,0.5,0.4) 0.8 0.7999999999999850  1.50990331 x 10~
0.6,0.4,0.2) 1 0.9999999999999780  2.19824159 x 104
0.5,0.7,0.6) 1.2 1.1999999999999700  2.99760217 x 10~
0.7,0.8,0.3) 1.5 1.4999999999999500  4.99600361 x 10~
0.8,0.9,0.7) 1.7 1.6999999999999300  6.99440506 x 10~
(0.9,1,0.5) 1.9 1.8999999999999100  8.99280650 x 10~

104




shik

o
-
SNy

oot
0008
E g
i 5 oo
z 2
= < oo
Es s
ooz
0
1
-4
%10
0.015 -
5 0014 2
i i
2 2
= H
5 0005 b
0.l
1
MEN=R=3
we(0,1]

Ahsolute Error

() M = N = R=3

Fig. 5.2: The values of M=N=R versus absolute error at different x,t values and w = [0, 1]

105



5.7 Conclusions

In the presented method of one, two, and three-dimensional nonlinear VIE of the first
kind are transformed to a nonlinear VIE of the second-kind. The bivariate shifted
Legendre functions operational matrices have been used to approximate the solution
of problem. The approximated non-linear VIE of the second-kind is transformed to
a linear system of algebraic equations with unknown coefficients which solved using
Gauss-Jordan elimination method. Finally, a system of nonlinear algebraic equations
with unknown coefficients of the solution of the main problem has been obtained which

can be solved using the Newton’s iterative method.

The applicability and accuracy of the method have been checked for some examples
in one, two, and three dimensional VEI. It was noticed that that the present method
gives more accurate results than the methods presented even when we use a small num-

ber of basis functions.

The method can be applied to the first-kind VIE integral equations in one, two, and
three dimensions. Morever, it will not difficult to extend this approach to nonlinear

integral equations of diffierent forms.
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