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Abstract

The main purpose of this thesis is to study and compare the power of five goodness-of-
fit(GOF) tests: Chi-square(y?) test, Kolmogorov-Smirnov(KS) test, Cramér-von Mises
(CVM) test, Anderson-Darling(AD) test and Bickel-Rosenblatt(BR) test under several
parametric and non-parametric alternatives. Power comparisons of these five tests were
obtained by using Monte Carlo simulation method of sample data generated from
parametric and non-parametric alternatives and the parametric alternatives follow
symmetric and non-symmetric distributions, R software was used to generate data for
simulations purpose. Two significance levels 5% and 10% were used and the critical
values for power comparisons were obtained based on 10000 simulated samples from
different null distributions. 10000 samples each of size n = 10, 20, 30, 40, 50, 100, 200,
300, 400, 500, 1000, and 2000 were generated from each of the given alternatives. The
power of each test was then obtained by comparing the GOF test statistics with the
respective critical values. Simulation results show that the AD test has a higher power in
the case of testing symmetric distributions and the data were generated from parametric
alternative distributions followed by the CVM and the KS tests while the y? test has the
lowest power. The BR test has a higher power in the case of testing symmetric
distributions and the data were generated from some non-parametric alternative
distributions and the AD test has a higher power under other non-parametric alternative
distributions. This study also shows that the BR test has a higher power when using the
Epanechnikov kernel compared to the uniform kernel.
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Chapter 1

Introduction and Kernel Density Estimation

1.1 Introduction

There are significant amount of Goodness-of-fit(GOF) tests available in the
literature. Some of these tests can only be applied under certain conditions or
assumptions. The main purpose of this thesis is to study and compare the power of GOF
tests: Chi-square test, Kolmogorov-Smirnov (KS) test, Cramér-von Mises (CVM) test,
Anderson-Darling (AD) test and the Bickel-Rosenblatt (BR) test.

Chapter 1 provides the background of the study and briefly discusses the histogram and
kernel density estimation as a method for estimating the probability density function.
The basic properties of the kernel density estimator will be presented in this chapter.

In Chapter 2, the following five Goodness-of-fit tests will be defined: Chi-square test,
Kolmogorov-Smirnov (KS) test, Cramér-von Mises (CVM) test, Anderson-Darling
(AD) test and the Bickel-Rosenblatt (BR) test. In addition, the asymptotic null
distribution and also the asymptotic power for each of these tests are presented in this
chapter.

In Chapter 3, we discuss in details the Monte Carlo simulation methodology for power
comparisons of the above mentioned Goodness-of-fit tests. The algorithms involved in
the simulation study will be described. This chapter includes all the simulation results.
Some analyses to rank the power of the tests and graphs of the power of tests are also
conducted and presented in this chapter. In addition, discussion of the results and a
conclusion based on the findings obtained are also discussed in this chapter.

1.2 Literature Review

There are significant amount of Goodness-of-fit(GOF) tests available in the literature.
The effort of developing techniques to detect departures from normality has begun as
early as the late 19th century. This effort was initiated by Pearson [1] who worked on
the skewness and kurtosis coefficients, Althouse et al, [2]. In 1900, Pearson extended
his work and introduced the Chi-square test of normality. Kolmogorov and Smirnov
then introduced the Kolmogorov-Smirnov test in 1933. Conover [3] stated that the
Cramer-von Mises test was developed based on the contributions by Cramér in [4] and
von Mises [5]. In 1954, Anderson and Darling proposed their test which was a
modification of the Cramér-von Mises test, Farrel and Stewart [6], Anderson-Darling



test was an improvement of Kolmogorov-Smirnov tests. Fix and Hodges [7] introduced
the basic algorithm of nonparametric density estimation. During the following decade,
several general algorithms and alternative theoretical modes of analysis were introduced
by Rosenblatt [8], Parzen [9] and Cencov [10]. These were followed by the most
important theoretical papers by Watson and Leadbetter [11], Loftsgaarden and
Quesenberry [12], Schwartz [13], Epanechnikov [14], Tarter and Kronmal [15] and
Wahba [16]. In 1973 and 1975 Bickel and Rosenblatt introduced their test which was
called Bickel-Rosenblatt test and this test depends on the kernel density estimator that
was introduced by Rosenbaltt [8] and Parzen [9].

1.3 Histogram

A histogram is a graphical representation of the distribution of the data. It is an estimate
of the probability distribution of a continuous variable and was first introduced by Karl
Pearson in 1895. A histogram is considered as the simplest form for estimating the
probability density function.

A histogram can be thought of as a special case of a kernel density estimation which
will be defined in section 1.4, which uses a kernel to smooth frequencies over the bins.
This will yield a smoother probability density function, which will in general more
accurately reflect the distribution of the underlying variable. The density estimate could
be plotted as an alternative to the histogram, and is usually drawn as a curve rather than
a set of boxes [17, 18]. In the literature, there are several formulas for the number of
bins. A few of them are listed below.

Number of bins and width

The number of bins k can be assigned directly or can be calculated from a suggested bin
width h as:

k= [maxx’:minx] (1.1)

Where x is the data set and the braces indicate the ceiling function.

Square-root choice
k=+/n (1.2)

Which takes the square root of the number of data points in the sample.



Sturges' formula

Sturges' formulas derived from a binomial distribution and implicitly assumes an
approximately normal distribution.

k= [log,(n+1)] (1.3)

It implicitly bases the bin sizes on the range of the data and can perform poorly
if n <30, because the number of bins will be small-less than seven-and unlikely to show
trends in the data well. It may also perform poorly if the data are not normally
distributed [19].

Rice Rule
k = [2n'/3] (1.4)
The Rice Rule is presented as a simple alternative to Sturges's rule.

Scott's normal reference rule

Q)

__ 35
h = 1
n

(1.5)

~|
w

Where G is the sample standard deviation. Scott's normal reference rule is optimal for
random samples of normally distributed data, in the sense that it minimizes the integrate
mean squared error of the density estimate.

1.4 Kernel Density Estimation(KDE)

Kernel density estimation (KDE) is a non-parametric method to estimate the probability
density function of a random variable. Kernel density estimation is a fundamental data
smoothing problem where inferences about the population are made, based on a finite
data sample. It has some applications in fields such as signal processing and
econometrics. It is also termed the Parzen-Rosenblatt window method, after Emanuel
Parzen and Murray Rosenblatt [8,9] who are usually credited with independently
creating it in its current form.

Definition of Kernel Density Estimator(KDE)

Let X;, X,,...,X,, be independent and identically distributed random variables with a
specified continuous probability density function f(x). Rosenblatt's(1956) and Parzen's
(1962) introduced the kernel density estimate £, (x) for estimating f(x) at a fixed point
x € R using the data (X;, X», ..., X;,), as follows:



fu) = 5D Ko = X0 = ) K[
=1 i=1

=K E=IFING) (16)

Where K, (x) = 1/b, K(x/by) and E,(t) is a sample distribution function and K is a
suitable kernel function on R such that:

[ Kwdu=1

2) K(u) = K(—u) for all values of u

And b,, > 0 is a smoothing parameter called the bandwidth such that b,, — 0 and
nb, = o asn - ©

The most important choice is the bandwidth b,, > 0 which controls the amount of
smoothing.

Practical estimation of the bandwidth
If Gaussian basis functions are used to approximate univariate data, and the underlying

density being estimated is Gaussian, then it can be shown that the optimal choice for b,,
IS

4/\5

5 1/5
b, = (E ) ~ 1.06 5n"1/5 (1.7)

Where & is the standard deviation of the samples. This approximation is termed the
normal distribution approximation, Gaussian approximation [20].

1.4.1 Examples of Kernel Functions

Several kernel functions were commonly used in the literature, among them are:
Uniform K(u)=§ ,—1<u<1
Triangular Ku=1—-|ul ,-1<uc<1

Epanechnikov K(u) = % (1-u?) ,-1<u<1



Biweight Kw =2 (1-u?)? ,-1<us<1
Triweight K@) == (1-u?)? ,-1<u<1
Tricube K@) = ;—‘1’ (1—|ul®)® ,-1<uc<1
i -1 L -
Gaussian K(u) = T exp( ~ ) ,—1<u<l1
- V3 Y[
Cosine K(u) = " cos(Eu) ,—1<u<l
1 I I I I
— Uniform
1of ~— Triangle .
—— Epanechnikov
—— Quartic
| — Triweight |
0.8 Gaussian
Cosine
o6 7
041 \ .
0.2 7
0.0 ' : -
1 | | 1 |
-1.0 0.5 0.0 0.5 1.0

Figure 1.1: Some of the kernels mentioned above in a common coordinate system.
1.4.2 properties of the kernel density estimator

There is a vast amount of literature on the general properties of the (KDE), which can
be summarized as follows:

1.4.2.1 Bias

For the bias we have

Bias {f,(x)} = E{fa(x)} = f(x)


http://en.wikipedia.org/wiki/File:Kernels.svg

But,
E{fu(0} = 5B E(KCp0) = BRSO} (19)
E(fu(0)} = 5-f K35 fwdu

Using the variable y = % and the symmetry of the kernel, i.e. K(—s) = K(s), we get
E{fu()} = [K) f (x — yby)dy (1.9)

Now, assume that the second derivative f of the underlying density f is absolutely
continuous and square integrable. Then, expanding f(x — yb,,) in a Taylor series about
x we have

£ = ybn) = f(x) = bpyf' (%) +5 by (x) + 0(bn”)
Where, o(b,,?) is a little-o notation of order 2.
N — ’ 1 2.2 ¢m1 2

ow, E{f,(0)} = [ KO () = bp yf' () +5ba°y?f" (x) + 0(b*)}dy

Then, using the properties of the Kernel, the bias of the density estimator is

Bias {f,(x)} = b%f”(x)yz(l() + o(bnz), as b, - 0 (1.10)
Here we denote 11, (K) = [ x2K (x)dx.
Observe from equation (1.10) that the bias is proportional to b,%. Thus, we have to
choose a small b,, to reduce the bias. Moreover, Bias {f,,(x)} depends on f'"'(x). The
effects of this dependence are illustrated in Figure 1.2 where the dashed lines mark

E{f,,(*)} and the solid line the true density {f (*)}. The bias is thus given by the vertical
difference between the dashed and the solid line.


http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#spmkernd:statprop:kernelbias
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Figure 1.2: Bias effects

Note that in "valleys" of f, the bias is positive since f > 0 around a local minim-
mum of f. Consequently, the dashed line is always above the solid line. Near peaks of f
the opposite is true. The magnitude of the bias depends on the curvature of f, reflected
in the absolute value of f"'. Obviously, large values of |f"| imply large values of bias

of {fu ()}

1.4.2.2 Variance

For the variance we calculate

Using

and

Var(f,(0)} = Var {231, K [£24]}

= S var{k [T}

Var{f,(x)} = % Var {K [’;;nx]}

Sl -fEED) o

e -2 e (52 o

E{K 2]} = () + o(bn)

and similar variable substitution and Taylor expansion arguments as in the derivation of
the bias, it can be shown that



Var(f, 0} = = IK112*F () + (5-) as by — o0 (1.12)
Here, ||K||22 is shorthand for ffooo K?(x)dx, the squared L, norm of K.

Notice that the variance of the kernel density estimator is nearly proportional to nb,, ~*.
Hence, in order to make the variance small we have to choose a fairly large b,, . Large
values of b,, mean bigger intervals [x — b, , x + b, ], more observations in each interval

and hence more observations that get non-zero weight in the sum K ["b;:l] But, as you

may recall from the analysis of the properties of the sample mean in basic statistics,
using more observations in a sum will produce sums with less variability.

Similarly, for a given value of b,, (be it large or small), increasing the sample size n will
decrease % and therefore reduce the variance. But this makes sense because having a

nbn
greater total number of observations means that, on average, there will be more
observations in each interval [x — b,,, x + b,].

Also observe that the variance is increasing in ||K||22. This term will be rather small for
flat kernels such as the Uniform kernel. Intuitively speaking, we might say that smooth
and flat kernels will produce less volatile estimates in repeated sampling since in each
sample all realizations are given roughly equal weight.

1.4.2.3 Mean Squared Error(MSE)

As mentioned before for the histograms that the choice of the bandwidth b, is an
important issue in nonparametric density estimation. The kernel density estimator is no
exception. If we look at formula (1.10) and (1.12) we can see that we face the familiar
trade-off between variance and bias. We would surely like to keep both variance and
bias small but increasing b,, will lower the variance while it will raise the bias
(decreasing b,, will do the opposite). Minimizing the MSE which is the sum between
variance and squared bias, represents a compromise between over and undersmoothing.
Figure 1.3 puts variance, bias and MSE onto one graph.


http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#spmkernd:statprop:kernelbias
http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#spmkernd:statprop:kernelvar
http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#SPMkdemse

Bias"2, Vanance and MSE

Bim"l, Vadance and MEEYE-4

Bandwidih h*E-2
Figure 1.3: Squared bias part (thin solid), variance part (thin dashed) and
MSE (thick solid) for kernel density estimate.

Moreover, looking at the MSE provides a way of assessing whether the kernel density
estimator is consistent. Convergence in mean square implies convergence in probability
which is consistency. Equations (1.10) and (1.12) yield to:

MSE{f,(x)} = Bias*{f,(x)} + Var{f,(x)}
= 2 () (4 (K + S lIKIL? £G) +0(b,*) +0 () (213)

If we look at equation (1.13) we can see that the MSE of the kernel density estimator
goes to zero as b, — 0 and nb,, » . Hence, the kernel density estimator is indeed
consistent. Unfortunately, by looking at equation (1.13) we can also observe that the
MSE depends on f and f ", both functions being unknown in practice. If we derive the
value of b,, that is minimizing the MSE ,call it(bnopt), you will discover that both f and

f "' do not drop out in the process of deriving bnopt(x). Consequently, bnopt(x) is not

applicable in practice unless we find a way of obtaining suitable substitutes for f(x)
and f " (x). Note further that bnop .(x) depends on x and is thus a local bandwidth [21].

The Epanechnikov kernel is optimal in a mean square error sense, though the loss of
efficiency is small for the kernels listed previously, and due to its convenient
mathematical properties, the normal kernel is often used K (x) = ¢(x), where ¢ is the
standard normal density function.


http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#spmkernd:statprop:kernelbias
http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#spmkernd:statprop:kernelvar
http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#kernelmse
http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#kernelmse
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1.4.2.4 Mean Integrated Squared Error(MISE)

For the kernel density estimator the MISE is given by

MISE{f,(x)} = [ MSE{f,(x)} dx

= [ GO V2 + 2 NI F ) + 0(5n) + 0 ()]

nby

= (0, (K)Y JUf /(o) 2elx + - lIKIL? [ fGydx + o(ba*) +0 ()

= 5GP I+ KL + o(be") +0 () (114

nby,

Ignoring higher order terms an approximate formula for the MISE, called asymptotic
mean integrated squared error(AMISE), can be given as

AMISE(f, (0} = 2= (o GOVIIF "Il,” + - 1K, (1.15)

In order to get an optimal bandwidth differentiate AMISE with respect to b,, and solving
the first order condition for b,, yields the AMISE optimal bandwidth

1

2
nb,

b, (KO NI " 1l5° — IKIl,> =0

" 1
b’ {2 (KOY NIF 11" = e [iqPS

b n{u, FOY NI 1% = 11K,

5 _ LIPS
T (KNI
1/5
IK|5> ) _
b, = ( ~n1/5 1.16
ot \ (upy GOY2 I "Ml % m (1.16)

Apparently, the problem of having to deal with unknown quantities has not been solved
completely as bnopt still depends on ||f ”'|l,°. At least we can use bnopt to get a further
theoretical result regarding the statistical properties of the kernel density estimator.

Inserting bnopt into equation (1.15) gives

AMISE {f,, ¥ = (K12 ()If 1,75 (@17)


http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#kernelamise
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Where we indicated that the terms proceeding n~*/> are constant with respect to n.
Obviously, if we let the sample size get larger and larger AMISE is converging at the
rate n~*/>. If we take the AMISE optimal bandwidth of the histogram and plug it into
equation (1.15) we will find out that for the histogram, AMISE is converging at a slower
rate of n=*/°,

In chapter 2, we will define the following five goodness-of-fit tests, and study their
asymptotic null distributions and their powers: Chi-square test, Kolmogorov-Smirnov
(KS) test, Cramér-von Mises (CVM) test, Anderson-Darling (AD) test and Bickel-
Rosenblatt (BR) test.
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Chapter 2

Goodness-of-Fit Tests

2.1 Goodness-of-Fit (GOF) Problem

The goodness-of-fit of a statistical model describes how well it fits a set of observations.
Measures of goodness of fit typically summarize the discrepancy between observed
values and the values expected under the model in question. Such measures can be used
in statistical hypothesis testing, testing for normality of a set of data is important in
some statistical inference procedures.

Distribution assumptions are commonly made when conducting data analysis like the
independent samples t-test, and the analysis of variance. Those distribution assumptions
which include both statistical distributions and models specifications, are very often
critical in statistical inferences. Failure of a distribution assumption or model
specification may lead to invalid conclusions. Goodness-of-fit tests are used to examine
how well a sample of data agrees with a given distribution of a population. The import-
ance of goodness-of-fit test have also been emphasized by many authors, including
Anderson and Darling [22], Stephens [23], D’Agostino and Stephens [24], Read and
Cressie [25], Thode [26], Lehmann and Romano [27].

In hypothesis testing, two hypotheses are usually studied: the null hypothesis H, and the
alternative hypothesis H;. H, is that a given random variable follows from a stated
distribution with cumulative distribution function F,, the goodness-of-fit tests for testing
H, are then made based on measuring the correspondence of the sample data to the
hypothesized distribution, D’Agostino and Stephens [24]. A primary goal of
constructing goodness-of-fit test is to reduce the Type Il error while controlling Type |
error.

In this thesis, the purpose is to test the hypothesis:
Hy:f = fo

Against several types of parametric and nonparametric alternatives at a specified
significance level a, where f, is completely specified and satisfied certain regularity
conditions.

A number of goodness of fit tests exists for testing H, : f = f,.


http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/Normality_test
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In this thesis, the following five tests will be studied and compared in terms of power
using Monte Carlo simulation method: Chi-square test, Kolmogorov-Smirnov (KS) test,
Cramér-von Mises (CVM) test, Anderson-Darling (AD) test and Bickel-Rosenblatt
(BR) test.

2.2 Chi-Square Test

The statistical procedure that is used to test whether an assumed distribution is
correct is called goodness-of-fit test. A well-known goodness of fit test is called Pearson
chi-square test. It was proposed by Pearson in 1900. The chi-square goodness-of-fit test,
also referred to as the chi-square test for a single sample, is employed in a hypothesis
testing situation consisting of a single sample. Based on some preexisting characteristic
or measure of performance, each of n observations that is randomly selected from a
population consisting of N observations is assigned to one of K mutually exclusive
categories [28, 29].

The chi-square goodness-of-fit test is based on the following assumptions:

1. Categorical data are employed in the analysis. This assumption reflects the fact that
the test data should represent frequencies for k mutually exclusive categories;

2. The data evaluated consist of a random sample of n independent observations. This
assumption reflects the facts that each observation can only be represented once in the
data; and

3. The expected frequency of each cell is 5 or greater. This is related to the normal
approximation to the binomial distribution.

Definition 1

Chi-square goodness-of-fit is used to check whether or not an observed frequency
distribution differs from a theoretical distribution [30, 31, 32].

Chi-square test-statistic

The value of the test-statistic is

k
Z% 2.1)

Where


http://en.wikipedia.org/wiki/Frequency_distribution
http://en.wikipedia.org/wiki/Frequency_distribution
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x? : Pearson's cumulative test statistics, which is asymptotically approaches a y?
distribution.

0;: is an observed frequency.
E; = np;: is an expected frequency, asserted by the null hypothesis.

k = the number of cells.
In the case of binomial distribution, the Chi-square test-statistic reduces to
k 2
¥ = z (0; — npy)
=L
Where p; is the success probability in each trial i.
Chi-Square-Goodness-of-Fit Test

Theorem 1. Let X;, X, ..., X, are iid observations, and let O; be an observed frequency
and E; be an expected frequency, i =1,2,...,k asserted by the null hypothesis.
Consider the problem of testing [33]

H, : 0; = E; forall cells
Versus

H, : 0; # E; atleast one cell

at the level of significance «a, reject H,, if
> (0, — E?
2 _ i 2
X5 = ZT ZX 1 ak-1
i=1

Remark: The critical values of the Chi-square test are obtained from table A.1 in the
appendix.

Asymptotic Distribution of Pearson's Chi-square Statistic

The following theorem tell us the asymptotic null distribution of the Pearson's Chi-
square statistic.
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k 2
2 : (0, — E;)
. E;
=1

Theorem 2. Suppose X;, X5, ..., X are iid observations from some distribution F in a
finite-dimensional Euclidian space. consider testing H,: F = F, (specified). Let y? be

d
the Pearson x* statistic defined previously. Then y* - y?, . under Hy .

This theorem shows that y? converges in distribution to the chi-square distribution with
k — 1 degrees of freedom. The idea of the proof of the theorem is to use the definition
of the covariance and the projection matrices besides using the central limit theorem and
the fact that )(Zk_l distribution is the distribution of the sum of the square of k — 1

independent standard normal random variables.

2.3 Kolmogorov-Smirnov (KS) Test

Kolmogorov-Smirnov test is another non-parametric test which can be used to check
whether a given sample come from a certain specified population. The name of
Kolmogorov-Smirnov test is referred to Andrey Kolmogorov who proposed in 1933 the
KS test-statistic defined below and it’s asymptotic distribution under the null
hypothesis, and to Nikolai Smirnov who published the table of the distribution. The test
is designed to test the goodness-of-fit of an empirical to a theoretical distribution
function [34, 35]. The statistical model underlying the test assumes a continuous
distribution so that the sample observations have zero probability of being equal.

KS Test-Statistic

Let X;, X,, ..., X,, be a sample of independent observations in ascending order all come
from the same continuous population with cumulative distribution function F(x). Then
the KS test-statistic is defined by:

Dy, = sup |F,(x) — F(x)| (22)

Where, F, is the empirical distribution function of the sample, and F(x) is the
cumulative distribution function [36, 37, 38].

By using the definition of F, (x) = i ,i=0,1,..,n, We can get
D, = sup |Fn(x) - F(X)l
X

D, = max |i — F(xi)|
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max |D;| (2.3)
i

The largest absolute cumulative differences divided by n.
Kolmogorov-Smirnov Goodness-of-Fit Test

Theorem 3. Let X;, X,, ..., X,, be a sample of independent observations in ascending
order all come from the same continuous population with cumulative distribution
function F(x). Consider the problem of testing

Hy,:F =F,
Versus
H,:F # F,

Where F, is some specified distribution function,
Then, reject H,, if the test statistic D,, exceeds the critical value.

Remark: The critical values of the KS test are obtained from table A.2 in the appendix.

Asymptotic Null Distribution of Kolmogorov-Smirnov Statistic

Theorem 4. Let X;, X5, ..., X, be iid random variables with c.d.f. F, then under the
null hypothesis

D
Vn D, > sup|B(F(t)| as n - o (2.4)
t

Where B(t) is the Brownian bridge which is defined on [0,1] and is given by:

> V2 sin(knt)
Bt == Z Zk T (25)
k=1

Where Z,, Z,, ... are iid standard normal random variables.

In other words, under the null hypothesis vn D, converges in distribution to the
Kolmogorov distribution [39, 40].

Remark: The asymptotic null distribution of the Kolmogorov-Smirnov test statistic
does not depend on the cumulative distribution function F(x).
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Asymptotic Power of the Kolmogorov-Smirnov Test

Theorem 5. Let X;, X5, ..., X;, be iid random variables with c.d.f. F and consider the
problem of testing

Hy,:F=F,
Versus
H, :F # F,

Then the power of the Kolmogorov-Smirnov test tends to one uniformly over all
alternatives F satisfying vn dy(F, Fy) = A, if A,— wasn - o

Where d;, is the Kolmogorov-Smirnov distance

di(F, Fo) = sup |F(x) = Fo(x)] (2.6)

2.4 Anderson-Darling (AD) Test

Anderson-Darling (AD) test was proposed by Theodore Anderson and Donald
Darling in 1954. This test is considered as an improvement of the Kolmogorov-Smirnov
test. The Anderson-Darling test is used to check whether or not a sample of data come
from a certain population with specific distribution function [41, 42]. Like the KS test,
the Anderson-Darling test is based on the empirical distribution function (EDF). The
Anderson-Darling test is known as a "quadratic” test because it is based on the weighted
square of the distance between the empirical function and hypothesized cumulative
distribution function.

Definition 2

Anderson-Darling (AD) test is used to test if a sample of data follows a population with
a specified distribution.

Anderson-Darling(AD) Test-Statistic

Let X;, X,, ..., X,, be a sample of independent observations in ascending order selected
from the same continuous population with cumulative distribution function F(x). Then
the AD test-statistic is defined as follows:

A = n 7 (B, (%) — Fo(x))? w(Fo(x))dF,(x) 2.7)
Where,

w is a non-negative weight function , w(x) = [Fy(x)(1 — Fy(x)] !
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And

E, is the empirical distribution function of the sample, and F(x) is the cumulative
distribution function [43, 44, 45, 46].

Note that F,(x) = i ,i=1,2,...,n is a piecewise constant(with the order statistics

corresponding to the discontinuity points) and F,(x) is a non-decreasing function. For
convenience define Z; = Fy(x;), and let Z;, denote the corresponding order statistics
and since F, is monotone Z;y, = Fy(x;)) and the order is not disorganized, we can
therefore write equation (2.7) as

A% = —n =13 {(2i - Din(Z) + @n+1 - 2)In(1 - Z;)} (2.8)

Theorem 6. Let X;, X,, ..., X;,, be a sample of independent observations in ascending
order selected from the same continuous population with cumulative distribution
function F (x). Suppose that we need to test

Hy: F=F,
Versus
H,: F #F,
Where, F, is some specified distribution function,
then, reject H, if the modified test statistic A* greater than the critical value.

Where, the modified test statistic can be evaluated as follows
* 0.75 2.25

According to D'Agostino [24], formula (2.9) is used if the parameters of the null distrib-
ution are unknown and need to be estimated from the sample data. Moreover, when the
sample size n is large enough then the modified test statistic is close to the original test
statistic.

Remark: The critical values of the AD test are obtained from tables A.3.1 and A.3.2 in
the appendix.

Asymptotic Null Distribution of Anderson-Darling Test-Statistic

Theorem 7. Let X;, X, ..., X;,, be an iid random variables in ascending order with c.d.f.
F, then

Under the null hypothesis [47, 48]
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D 1 g2
asn - o, nAn2—>f0 5;’—5?) dt (2.10)

Where B, (t) is the Brownian bridge which is defined on [0,1] and is given by equation
(2.5).

We can summarize the proof of this theorem as follows

Letu = FO(x), u; = F°(x;), and uy = F°(xy),i = 1,2,...,n. Let G, (u) be the
empirical distribution function of u, ..., u,; that is,

Gu(u) ==, 0<u<1
If k of uq,...,u, are < u. Thus
Gp[F°(x] = Fno(x)
2 1 2
And A" = n [ (G(W) —u)? Y(w)duy, (2.12)
When the null hypothesis F(x) = F°(x) is true. Forevery u (0 < u < 1)
Yo (w) = Vn[Gp(w) — u] (2.12)

is a random variable, and the set of these may be considered as a stochastic process with
parameter u. Thus

P{A,* <z} = P{[} "2(yp@)du <z} =A,(2), (213)

Say. for a fixed set uq, ..., u; the k-variate distribution of ¥,,(w,), ..., ¥y, (uy)

approaches a multivariate normal distribution as n — o« with mean and covariance
function

E[Y,(w] =0, E[Y,(wWY,(v)] = min(u,v) — uv.

The limiting process of {Y,,(u)} is a Gaussian process y(u), 0 <u < 1, and
Ely(w)] =0and E[y(w)y(v)] = min(u,v) —uv. Let

1
a(z) = P{f; y*@wwdu < z} (2.14)
Then, A,,(z) = a(z), 0 < z < «. The mathematical problem for the Anderson-Darling
statistic is to find the distribution function a(z) when (u) = u(ll—u) :

Then, we follow the procedure to find the distribution of f01 z?(u)du , where z(u) is a

Gaussian stochastic process, and we obtain the characteristic function of the limiting
distribution of 4,,% which is
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V2it
sin(V2it)

Asymptotic Power of the Anderson-Darling Test

Theorem 8. Let X;, X, ..., X,, be an iid random variables in ascending order with c.d.f.
F. consider the problem of testing

HO : F == FO
Versus
H,:F #F,

Then, the statistic 4,,% will detect alternatives which produce observations towards 0 or
1.

We can summarize the proof as follows, since A, is a quadratic statistic and gives
more weight to the tails, then it's good at detecting irregularity in the tails of the
distribution. When the basic problem is to test an X-values for a distribution F(x) so
that the observation u; where 0 < u; < 1 have been obtained by probability integral
transformation. A,,> will detect shifts in the mean of hypothesized distribution from the
true mean. In addition, A,* is powerful test for tests F, departs from the true
distribution in the tails, especially when there appears to be too many outlying X-values
for the F, as specified. In goodness-of-fit work, departure in the tails is often important

to detect, and A4, is the recommended statistic. The statistic will also detect a shift of
values towards 0 or 1.

Remark:

1) A,* can be expected to be powerful in detecting alternatives which have high
probability of giving observations in the tails.

2) Other statistics of the EDF class are more suitable for alternatives which produce
a cluster near 0.5, Stephens [23].

Cramér von Mises (CVM) Test
Definition 3

Cramér von Mises (CVM) test is a special case of Anderson-Darling test when the
weighting function w(x) = 1.
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The Cramér—von Mises test statistic is defined as follows [49, 50]:

w2 = n [ (F,(x) = Fo(x))? dFy(x) (2.15)

2.5 Bickel-Rosenblatt (BR) Test

Bickel-Rosenblatt test is a member of the group of goodness-of-fit tests and was
proposed by Peter Bickel and Murray Rosenblatt in(1973) and (1975). This test depends
on the kernel density estimate f,,(x) of a probability density function f(x) which was
defined in chapter one in this thesis. The Bickel-Rosenblatt test depends on the distance
between the kernel density estimate f,,(x) and the expectation of the kernel density
estimate E, f,, (x) under f;.

In the Bickel-Rosenblatt test, the value of test statistics depends on the specified
distribution with probability density function that is being tested, kernel function, the
smoothing parameter b,,, the weighted function a(x) in addition to the sample size n.

The computed value of Bickel-Rosenblatt test-statistics is compared with u(K,a) +

zabnl/ 2 g(K, a) and null hypothesis is rejected if test statistic is greater than this value
[51].

Definition 4

Bickel-Rosenblatt test is used to verify if a sample of data follows a population with a
specified continuous probability density function f.

Bickel-Rosenblatt(BR) Test-Statistic

Let X;, X,, ..., X, be iid random variables with a specified continuous probability
density function f (x). Bickel-Rosenblatt (BR) test-statistic is defined as follows:

Ty = nby [ (£u(0) = Eofo(0) a(x)dx (2.16)

Where a is a weight function on R and f,,(x) is the kernel density estimator as defined
in chapter one [52].

Bickel-Rosenblatt Goodness-of-Fit Test

Theorem 9. [53] Let X;, X5, ..., X,, be iid random variables with a specified continuous
probability density function f(x). Consider the problem of testing

Hy:f=fo

Versus
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Hy: f # fo

where f, is completely specified at a specified significance level a. Then,

Reject H, if
T, > u(K,a) + zgby 2 6(K, @) = d (2.17)
Where
u(K, @) = 1(K) [2, fo(x) a(x)dx, (2.18)
o2(K,a) = 2](K) [” fo* (x)a®(x)dx (2.19)
1K) = [~ K?(x) dx (2.20)
JU) = [ 12 K+ K )dx]” dy (2.21)

also z,, is defined by :
P(zg)=1—a, ®(z) = \/%f_zw exp(—x?/2) dx  (2.22)

Totest Hy : f = f, it is natural to compute M,, with f = f, and reject for large values
of the statistic.

Where M, = max{|Y,,(t)|:0 =t = 1} (2.23)
And Ya(®) = by 7 £72(0) [ K (52) dZ(F (5)). (2.24)

Where, Z2(t) = n2(F,"(t) — t), 0 =t = 1and E,” = E,(F™1) is the empirical distrib-
ution of F(Xy), ..., F(X;,).

Now, in order to understand the asymptotic distribution of the Bickel-Rosenblatt stati-

stic, consider the following regularity conditions (a-d) that are defined as follows [53,
54]:

a) f, iIs bounded, either positive on R or positive only on some [c,, d,], and continuous
with a bounded continuous derivative in the interior of it's domain of positivity;

b) a(x) is piecewise continuous, bounded and integrable on R ;
c) f_ctoK(x)dx = 1,fjooox2K(x)dx < oo,ffooo[(z(x) < 0

and either
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d) b,, = n~% for some & € (0,1/4) and K is continuous on R satisfying
f_()ooo|K(x)|2dx < 0; f;olx|3/2 |K(x)|2(log(|x|)1/2) dx < o,
or

d) b, = n~% for some & € (0,1) and K is bounded on some [C},, D, ] and 0 outside.

Asymptotic Null Distribution of Bickel-Rosenblatt Test-Statistic

Theorem 10. [54] Let X;, X5, ..., X, be iid random variables with a specified conti-
nuous probability density function f(x).

When a-level test is asymptotic then under the null hypothesis
T,, is asymptotically normal with mean u(K, a) and variance b,,6%(K, a), where

u(K,a) and o?(K, a)are defined previously in equations (2.18) and (2.19).

The proof of this theorem is not direct and several theorems and results are needed, but
we can summarize the proof as follows:

First, the technique that used is to consider the BR statistic as functionals of certain
stochastic process on the interval [0, 1].

According to theorem 3.2. in the paper of Bickel and Rosenblatt [54], the BR statistic is
asymptotically unbiased for such alternatives. The reason is that s(n) = 2 with

s(n) > 2 unless n = 0 and family of distributions e?¢™" is an exponential family in 6.

1 1
Where () = [; {exp[n(0)/ (fo(AK)Z] + expl=n(0) (oAWK fdx  (2:25)
And A(K) = ffooo K?(x) dx , and n must be continuous on [0,1].

Unfortunately these tests are asymptotically inadmissible(have pitman efficiency 0)
when compared to the test based on the quadratic functional that presented below. The

1
reason is that alternatives there may be permitted to come in to f, at rate n~z*°/a rather

1

than n~2*"2. However, this test for moderate sample and some alternatives may well
preferable.

In addition, we are interested in the behavior of the quadratic functionals in the same
paper [54]:

T = by, [© (fu(x) = Eofp(0) a()dx = [* Ly2(x)a(x)dx,  (2.26)
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Where L,, = f% Y,, and Y;, is some Gaussian process and a is integrable. If the regularity
conditions (a-d) hold and (say) b,, = n=%, § < % , then.

=T, - [~ _(LE))2alx)dx| = 0,( by 2) (2.27)

Means that —5; converges in probability to zero.

bn

Moreover, if a is bounded as well as integrable and K and f are bounded, we can

1 1

replace L), by L%, = £ Y, and hence by L2 = £} Y, , we get
T, — [© (12(0)2a(x)dx| = 0, (bz). (2.28)

Theorem 11. [54] Suppose that Z,,(f,) is defined as follows:

Zu(fo) = 0’2 0y {110 [(f(0) — Eofp(0)) alOdx — o} (229)

Where u, and g, denote u(K,a) and o(K, a) respectively defined in equations (2.18)
and (2.19).

Then, the distribution of Z,(f;) is asymptotically N(0,1) under assumptions (a) — (d).
Proof.

The proof of this theorem follows directly from theorem 10. By theorem 10 since T,, is
asymptotically normal with mean u, and variance b,,0,? and by using transformation
we get

Zu(fo) =

Zn(fo)\/b_n go =T — lo

Zu(fy) = bu 206 {nby [7(fu(®) — Eofu(0) aGdx — po}  (2:30)

Now, under assumptions (a) — (d), substitute b, =n~% for some & € (0,1/4) in
equation(2.30) to get

Zu(f) = () 20y nn® [7 (100 — Eofu() alddx — o)

Zu(f) =n2 gy {n178 [% (£,00) = Eofa(0) aldx — o) (2:31)
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Therefore, Z,,(f,) is asymptotically N(0,1).

The Asymptotic Power of the Bickel-Rosenblatt Test

The asymptotic power of the Bickel-Rosenblatt test is a decreasing function of J(K) in
equation (2.21) for any fixed choice of (f,, g, a >0, §) ,where g is an arbitrary
alternative.

Since Z,,(f,) is asymptotically N(0,1) under g, it follows that the power of the BR test
against an arbitrary g tends to 1.

The following theorem illustrates the power of the BR-test against an arbitrary alterna-
tivesto H: f = f,.

Theorem 12. [54] Let g,(x) be an alternative to H defined as follows:
In(X) = folx) +nBw(x) + o(n_ﬁ), B >0 (2.32)

Then, under assumptions (a) — (d) and for each § € (0,1/4) the power of the BR test
against equation (2.32) is :

a if B>(2-6)/4
limy o0 mp(gn) =4 M), if B=2-68)/4 (2.33)
1, if 0<B<(2-8§)/4

Where
l=0,"t [w2(x)a(x) dx — z, (2.34)

Remark: under assumptions (a) — (c)and (d), equation (2.33) holds for each & €

(0,2/3).

The proof of this theorem is straightforward according to Bickel and Rosenblatt [54].

Since the test rejects H, when T, > u(K, a)+zabn1/2 o(K,a) is locally strictly
unbiased if a(x) > 0 for all x. Also as before asymptotic lead to choosing § as large as
possible and again this conclusion is shaken if one uses better approximation to the
asymptotic mean. It is also clear for a fixed § we can get power.

In addition, According to Ghosh and Huang [53], when a > 0 we can conclude: first,
the asymptotic power of the BR test against equation (2.32) is a decreasing function of
J(K), second as & gets smaller (from 1/4 or 2/3 to 0), the power improves. This
feature, incidentally, conflicts with the fact that the asymptotic normality of T,, under H
improves as & gets larger (from O to 1/4 or 1).
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In chapter 3, we will conduct Monte Carlo simulation to compare the power of
Goodness-of-fit-tests: Chi-square test, Kolmogorov-Smirnov (KS) test, Cramér-von
Mises (CVM) test, Anderson-Darling (AD) test and Bickel-Rosenblatt (BR) test.

Chapter 3

Results and Analysis

3.1 Simulation Methodology

In this study, Monte Carlo procedures were used to evaluate the power of ¥?, KS, AD,
CVM and BR tests in testing if a random sample of n independent observation come
from a population with specified distribution.

The null and alternative hypotheses are:
H,: The data comes from a population with a specified distribution
H;: The data does not come from a population with a specified distribution

Two levels of significance, a = 0.05 and 0.1 and different sample sizes were considered
to investigate the effect of the significance level and the sample sizes on the power of
the tests. The critical values for each test vary with the sample size, Yazici and Yolacan
[55]. Therefore, first, choose critical values for each test statistic under the null
distribution and sample sizes n =10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 1000 and
2000. The critical values were obtained based on 50,000 simulated samples from a
standard normal distribution, uniform distribution and T distribution [56, 57, 58].

The KS, CVM and AD tests are right-tailed test, so their critical values are the 100(1-

a)th percentiles of the empirical distribution of the test statistics and it is available in the
literature. The critical values of KS and CVM tests depend on the sample sizes n and
the significance levels a, but the critical values of AD test depends on the distribution
being tested, in addition to the sample sizes n and the significance levels o and the
critical values of 2 test depend on the number of intervals when we grouped the data.
For the BR test, there is a formula for calculating the critical values. These critical
values depend on the sample size n, kernel function, bandwidth b,, and the probability
density function of the distribution being tested.

In order to obtain the simulated power of the five Goodness-of-fit tests at « = 0.05 and
a = 0.1 and for each sample size n, we can follow the following procedure:



27

a) Generate 10000 samples from each of the following:
1) Symmetric parametric alternative distributions: N(0,1), U(0,1), U(0,2), t(7),
t(15), t(4).

2) Skewed parametric alternative distributions: Exp(0.9), Exp(5), Gamma(4,5),
x2(4), Weibull(10,2).

3) Family of non-parametric alternatives distributions A(6), B(6),C(6), 6 = 1.5,2
which are presented in section 3.2.

b) Substitute these generated samples in each formula of goodness-of-fit test-statistics

under the distribution being tested and then obtain the values of test-statistics for
each sample.

c) Compare these values of test-statistics with corresponding critical values by coun-
ting the number of values of test-statistics that exceed the corresponding critical

values, then the simulated power will be this number divided by the number of
generated samples.
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3.2 Results and Discussion

The main purpose of this thesis is to use Monte Carlo simulation method to compare
the power of several goodness-of-fit tests based on the empirical distribution function
and the kernel density function under parametric and nonparametric alternatives. The
results were organized in three parts:

Part 1. Symmetric parametric null hypotheses vs. symmetric parametric alternative
hypotheses.

Part 2: Symmetric parametric null hypotheses vs. skewed parametric alternative hypot-
heses.

Part 3: Symmetric parametric null hypothesis vs. nonparametric alternative hypotheses.

The Non-parametric alternative distributions that were used by Stephen are as follows:

A()= 61 —x)°1, 0<x<10€eRrR

_ B,(0) = 9(2){)9_1 ., 0<x<1/2
B(Q)_{Bz(e):g(z_zx)e—1 12 <x<1 ,O0ER

_ Cl(e) = 9(1 - 2X)9_1 , 0<x< 1/2
c) = {CZ(Q): o2x— 11, 1/2 <x<1 OER

Stephen’s used the following:

0=3/22
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3.2.1 Comparison of power of GOF tests for testing symmetric distributions

against symmetric parametric alternative distributions.

Case 1: Testing N(0.5,1) against N(0,1)

Table 1(a): Critical values, CV(a, n) of the tests(y?, KS,CVM, AD, BR) under normal
distribution tests with different sample sizes n and o = 0.05.

x> BR

n K=5 K=10 KS CVM AD Uniform Epan.
20 9.488 16.919 0.294 0.217 2.492 1.58428  0.9431867
30 9.488 16.919 0.2417 0.218 2.492 1.527956  0.9101042
50 9.488 16.919 0.189 0.220 2.492 1.464661  0.8729264
100 9.488 16.919 0.1360 0.220 2.492 1.390732  0.8295028
200 9.488 16.919 0.0961 0.220 2.492 1.328565  0.7929881
300 9.488 16.919 0.0785 0.220 2.492 1.296892  (0.7743844
400 9.488 16.919 0.0680 0.220 2.492 1.276289  0.762283
500 9.488 16.919 0.0608 0.220 2.492 1.261298  0.7534778

05

045 e ........... ......... i — ......... .......... ; —ng(o,f,,n g

Figure 1(a): The graph of the null distribution H,: f = N(0.5,1) and the alternative
distribution H;: f = N(0,1)
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Table 1(b): The power for tests (y2, KS, CVM, AD, BR) under the Null Hypothesis (H,) at
a = 0.05.

Data were generated from the Alternative Hypothesis with different sample sizes (n) and
number of intervals (K) and different kernel functions(Uniform, Epanchnikov) for 10000
simulations.

H, : Normal(0.5,1)

H; : Normal(0,1)

x> BR

n K=5 K=10 KS CVM AD Uniform Epan.
20 - - 0.8825 0.8195 0.5868 0.0697 0.1509
30 0.8887 - 0.9860 0.9161 0.7599 0.1008 0.2185
50 0.9978 0.8970 1.0000 0.9828 0.9323 0.1670 0.3390
100 1.0000 1.0000 1.0000 0.9997 0.9983 0.3542 0.6113
200 1.0000 1.0000 1.0000 1.0000 1.0000 0.7056 0.9104
300 1.0000 1.0000 1.0000 1.0000 1.0000 0.8977 0.9878
400 1.0000 1.0000 1.0000 1.0000 1.0000 0.9653 0.9991
500 1.0000 1.0000 1.0000 1.0000 1.0000 0.9922 1.0000

T | T I T
1 i
—©— Chi, K=5
TR . ST . W . ———— —6-Chi,K=10 | |
K$
- ~i-CcvM
3 ~7-AD
20.6 .................................................................................................................................................... +BR, Unif. |
T BR, Epan.
®
3
£
? 04k o
0 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

Sample size,n

Figure 1(b): Comparison of power for different normality tests against Normal(0,1)
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Summary

Table 1(b) and Figure 1(b) summarize the simulated power of Goodness-of-fit tests
(x%,KS, CVM, AD, BR) for testing H,: N(0.5,1) against H;: N(0,1) at significance
level @ = 0.05 and at different sample sizes n. We observe the following main findings:

1. Chi-square test is able to detect the null hypothesis at sample sizes n > 100.

2. CVM test has a higher power compared with (AD, BR) tests under different sample
sizes n.

3. The power of the BR test is sensitive to the choices of the kernel functions, and BR
test has a higher power at Epanechnikov kernel than that of uniform kernel.

4. In addition, all tests have good power when the sample size is greater than or equal 300.

Case 2(a): Testing Normality against U(0,1)

Table 2(a): Critical values, CV(a,n) of the (x?, KS, CVM, AD, BR) under normal
distribution tests with different sample sizes n and a = 0.05.

x? BR

n K=5 K=10 KS CVM AD Uniform Epan.

10 9.488 16.919 0.409 0.212 0.752 2.293353 1.359673
20 9.488 16.919 0.232 0.217 0.752 2.087576 1.238806
30 9.488 16.919 0.19 0.218 0.752 1.982736 1.177227
50 9.488 16.919 0.149 0.220 0.752 1.864917 1.108024
100 9.488 16.919 0.107 0.220 0.752 1.727306 1.027196
200 9.488 16.919 0.075 0.220 0.752 1.611589  0.9592272
300 9.488 16.919 0.061 0.220 0.752 1.552633  0.9245984
400 9.488 16.919 0.053 0.220 0.752 1.514283  0.9020729
500 9.488 16.919 0.047 0.220 0.752 1.486379  0.8856829

1000 9.488 16.919 0.034 0.220 0.752 1.408994  0.8402297
2000 9.488 16.919 0.024 0.220 0.752 1.343922  0.8020083
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Figure 2(a): The graph of the null distribution H,: f = N(0.5,0.0833) and the alterna-
tive distribution H;: f = U(0,1)

Table 2(b): The power for tests (x2, KS, CVM, AD, BR) under the Null Hypothesis (H,)
ata = 0.05.

Data were generated from the Alternative Hypothesis with different sample sizes(n) and
number of intervals(K)and different kernel functions(Uniform, Epanchnikov) for 10000
simulations.

Hy: Normal having the same mean and variance as in H,

Hy:U(0,1)
x> BR
n K=5 K=10 KS cvVM AD Uniform  Epan.
10 - - 0.0858 0.0024 0.0847 0.0009 0.0005
20 - - 0.1074 0.0077 0.1708 0.0232 0.0180
30 0.2948 - 0.1239 0.0188 0.3022 0.0614 0.0812

50 0.6472 0.5223 0.1618 0.0633 0.5817 0.1890 0.2712
100 0.9614 0.9479 0.2562 0.3568 0.9523 0.5993 0.7634
200 0.9997 1.0000 0.4851 0.9077 1.0000 0.9690 0.9959
300 1.0000 1.0000 0.7045 0.9949 1.0000 0.9993 1.0000
400 1.0000 1.0000 0.8446 0.9998 1.0000 1.0000 1.0000
500 1.0000 1.0000 0.9331 1.0000 1.0000 1.0000 1.0000
1000 1.0000 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000
2000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Figure 2(b): Comparison of power for different normality tests against U(0,1)

Case 2(b): Testing Normality against U(0, 2)

Table 2(c): Critical values, CV(a,n) of the (x?, KS, CVM, AD, BR) under normal
distribution tests with different sample sizes n and a = 0.05 .

XZ BR
n K=5 K=10 KS cvM AD Uniform Epan.
10 9.488 16.919 0.409 0.212 0.752 1914676  1.137251
20 9.488 16.919 0.232 0.217 0.752 1.769148  1.051772
30 9.488 16.919 0.19 0.218 0.752 1.695004  1.008222
50 9.488 16.919 0.149 0.220 0.752 1.611681  0.9592811
100 9.488 16.919 0.107 0.220 0.752 1.51436 0.9021182
200 9.488 16.919 0.075 0.220 0.752 1.432524  0.8540501
300 9.488 16.919 0.061 0.220 0.752 1.390829  0.8295602
400 9.488 16.919 0.053 0.220 0.752 1.363708  0.8136298

500 9.488 16.919 0.047 0.220 0.752 1.343973  0.8020386
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Figure 2(c): The graph of the null distribution H,: f = N(1,0.333) and the alternative
distribution H;: f = U(0,2)

Table 2(d): The power for tests (x2, KS, CVM, AD, BR) under the Null Hypothesis (H,)
ata = 0.05.

Data were generated from the Alternative Hypothesis with different sample sizes(n) and
number of intervals(K)and different kernel functions(Uniform,Epanchnikov) for 10000
simulations.

Hy: Normal having the same mean and variance as in H;

Hy:U(0,2)

x> BR
n K=5 K=10 KS cvM AD Uniform  Epan.
10 - - 0.0001 0.0022 0.0793 0.0098 0.0097
20 - - 0.0063 0.0072 0.1718 0.0379 0.0665
30 0.3001 - 0.0133 0.0210 0.2931 0.0729 0.1412

50 0.6466 0.5234 0.0267 0.0734 0.5750 0.1693 0.2998
100 0.9620 0.9492 0.1417 0.3556 0.9489 0.4806 0.7196
200 1.0000 0.9999 0.6097 0.9108 1.0000 0.9065 0.9869
300 1.0000 1.0000 0.9161 0.9908 1.0000 0.9916 0.9998
400 1.0000 1.0000 0.9912 1.0000 1.0000 0.9995 1.0000
500 1.0000 1.0000 0.9994 1.0000 1.0000 1.0000 1.0000
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Figure 2(d): Comparison of power for different normality tests against U(0,2)

Summary

Tables 2(b), 2(d) and Figures 2(b), 2(d) summarize the simulated power of Goodness-
of-fit tests (x2, KS,CVM, AD, BR) for testing H,: Normal against different alterna-
tives H,: U(0,1) and H,: U(0,2) at significance level « = 0.05 and at different sample
sizes n . We can conclude that BR test has a good power at sample sizes greater than or
equal 400, and it is able to detect the null hypothesis at sample sizes greater than or
equal 400 in both cases. BR test has a higher power when using the Epanechnikov
kernel than that of uniform kernel at sample sizes greater than or equal 30. BR test has a
higher power than KS and CVM tests for n = 50, 100, 200, 300. In addition, all tests
have good powers at sample sizes greater than or equal 200 except the KS test.

One important thing is that BR test has a lower power when testing normality and the
data generated from U(0,2) than that of U(0,1) for sample sizes n = 100, 200, 300, 400.
In addition, the power of KS and AD tests decrease when the data generated from the
U(0,2) than that of U(0,1) for sample sizes n = 10, 30, 50, 100 .
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Case 3(a): Testing normality against ¢(7)

Table 3(a): Critical values, CV(a,n) of the (x?, KS, CVM, AD, BR) under normal
distribution tests with different sample sizes n and a = 0.05.

10
20
30
50
100
200
300
400
500
1000
2000

x> BR
K=5 K=10 KS cvVM AD Uniform Epan.
9.488 16.919 0.409 0.212 0.752 1.638773  0.9751941
9.488 16.919 0.232 0.217 0.752 1.537142  0.9154994
9.488 16.919 0.19 0.218 0.752 1.485362  0.8850858
9.488 16.919 0.149 0.220 0.752 1.427173  0.8509074
9.488 16.919 0.107 0.220 0.752 1.359208  0.8109871
9.488 16.919 0.075 0.220 0.752 1.302057  0.7774183
9.488 16.919 0.061 0.220 0.752 1.272939  0.7603156
9.488 16.919 0.053 0.220 0.752 1.253999  0.7491904
9.488 16.919 0.047 0.220 0.752 1.240217  0.7410956
9.488 16.919 0.034 0.220 0.752 1.201998  0.7186468
9.488 16.919 0.024 0.220 0.752 1.169859  0.6997697
05
048 L ................ ............... ............... ................ ............... ................ “““ — =N

=

0.4' “““““““““““““ ““““““““““““““ ................ ................ “““““““““““““““ “““““““““““““ ................ ““““““““““““““ -

Figure 3(a): The graph of the null distribution Hy: f = N(0,1.4) and the alternative
distribution Hy: f = t(7)



37

Table 3(b): The power for tests (x2, KS, CVM, AD, BR) under the Null Hypothesis (H,)
ata = 0.05.

Data were generated from the Alternative Hypothesis with different sample sizes (n)
and number of intervals (K) and different kernel functions(Uniform, Epanchnikov) for
10000 simulations.

H,: Normal having the same mean and variance as in H;

Hy: t(7)
x> BR
n K=5 K=10 KS CVM AD Uniform Epan.
10 0.0421 0.0085 0.0862 0.0129 0.0217
20 - - 0.0437 0.0169 0.1177 0.0175 0.0355
30 0.035 - 0.0467 0.0215 0.1431 0.0228 0.0395
50 0.0554 0.1271 0.0529 0.0355 0.1785 0.0281 0.0585
100 0.1057 0.2253 0.0593 0.0595 0.2781 0.0380 0.0767
200 0.2113 0.3927 0.0935 0.1194 0.4496 0.0552 0.1053
300 0.3035 0.5484 0.1280 0.2133 0.5984 0.0642 0.1339
400 04111 0.6598 0.1625 0.2968 0.7115 0.0821 0.1597
500 0.5107 0.7531 0.2009 0.4064 0.8065 0.0966 0.1864
1000 0.8395 0.9521 0.4248 0.7958 0.9794 0.1767 0.3148
2000 0.9844 0.9898 0.8106 0.9918 0.9999 0.3481 0.5782
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Figure 3(b): Comparison of power for different normality tests against t(7)
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Case 3(b): Testing normality against £(15)

Table 3(c): Critical values, CV(a,n) of the (x?, KS, CVM, AD, BR) under normal
distribution tests with different sample sizes n and a = 0.05 .

10
20
30
50
100
200
300
400
500

Xz BR

K=5 K=10 KS CVM AD Uniform  Epan.
9.488 16.919 0.409 0.212 0.752  1.670389  0.9937645
9.488 16.919 0.232 0.217 0.752 1563728  0.9311151
9.488 16.919 0.19 0.218 0.752 1509386  0.8991963
9.488 16.919 0.149 0.220 0.752  1.448316  0.8633262
9.488 16.919 0.107 0.220 0.752  1.376988  0.82143
9.488 16.919 0.075 0.220 0.752  1.317007  0.7861997
9.488 16.919 0.061 0.220 0.752  1.286449  0.7682504
9.488 16.919 0.053 0.220 0.752  1.26657 0.7565747
9.488 16.919 0.047 0.220 0.752  1.252107  0.7480792
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Figure 3(c): The graph of the null distribution Hy: f = N(0,1.154) and the alternative

distribution Hy: f = t(15)



39

Table 3(d): The power for tests (x2, KS, CVM, AD, BR) under the Null Hypothesis (H,)
ata = 0.05.

Data were generated from the Alternative Hypothesis with different sample sizes(n) and
number of intervals(K)and different kernel functions(Uniform,Epanchnikov) for 10000
simulations.

H,: Normal having the same mean and variance as in H;

Hy: t(15)
x> BR
n K=5 K=10 KS CVM AD Uniform Epan.
10 - - 0.0001 0.0030 0.0603 0.0116 0.0139
20 - - 0.0051 0.0049 0.0710 0.0134 0.0270
30 0.0236 - 0.0056 0.0065 0.0780 0.0179 0.0303

50 0.0259 0.0583 0.0073 0.0083 0.0846 0.0181 0.0385
100 0.0314 0.0869 0.0089 0.0097 0.0996 0.0237 0.0443
200 0.0470 0.1271 0.0125 0.0127 0.1340 0.0305 0.0587
300 0.0621 0.1615 0.0150 0.0155 0.1551 0.0309 0.0614
400 0.0772 0.2021 0.0193 0.0185 0.1897 0.0375 0.0646
500 0.0934 0.2365 0.0238 0.0260 0.2283 0.0410 0.0671
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Figure 3(d): Comparison of power for different normality tests against t(15)
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Case 3(c): Testing Normality against t(4)

Table 3(e): Critical values, CV(a,n) of the (x?, KS, CVM, AD, BR) under normal
distribution tests with different sample sizes n and a = 0.05 .

10
20
30
50
100
200
300
400
500

Xz BR

K=5 K=10 KS CVM AD Uniform Epan.
9.488 16.919 0.409 0.212 0.752 1.58428 0.9431867
9.488 16.919 0.232 0.217 0.752 1.491319 0.8885845
9.488 16.919 0.19 0.218 0.752 1.443957 0.8607655
9.488 16.919 0.149 0.220 0.752 1.390732 0.8295028
9.488 16.919 0.107 0.220 0.752 1.328565 0.7929881
9.488 16.919 0.075 0.220 0.752 1.276289 0.762283
9.488 16.919 0.061 0.220 0.752 1.249655 0.7466392
9.488 16.919 0.053 0.220 0.752 1.23233 0.7364632
9.488 16.919 0.047 0.220 0.752 1.219724 0.7290589
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Figure 3(e): The graph of the null distribution Hy: f = N(0,2) and the alternative

distribution Hy: f = t(4)
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Table 3(f): The power for tests (x?, KS, CVM, AD, BR) under the Null Hypothesis (H,)
ata = 0.05.

Data were generated from the Alternative Hypothesis with different sample sizes(n) and
number of intervals(K)and different kernel functions(Uniform, Epanchnikov) for 10000
simulations.

H,: Normal having the same mean and variance as in H;

Hy:t(4)
x> BR
n K=5 K=10 KS CVM AD Uniform Epan.
10 - - 0.0010 0.0242 0.1362 0.0128 0.0250
20 - - 0.0331 0.0673 0.2284 0.0252 0.0486
30 0.0931 - 0.0628 0.0930 0.3049 0.0326 0.0685

50 0.1703 0.2839 0.1003 0.1584 0.4123 0.0476 0.0970
100 0.3396 0.5283 0.2143 0.3192 0.6582 0.0827 0.1738
200 0.6148 0.8049 0.4663 0.6276 0.8892 0.1592 0.3096
300 0.7879 0.9166 0.6932 0.8272 0.9704 0.2327 0.4430
400 0.8903 0.9559 0.8284 0.9304 0.9947 0.3202 0.5741
500 0.9338 0.9673 0.9158 0.9757 0.9983 0.4065 0.6616
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Figure 3(f): Comparison of power for different normality tests against t(4)
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Summary

Table 3(b), 3(d) and 3(f) and Figure 3(b), 3(d), 3(f) summarize the simulated power of
Goodness-of-fit tests (2, KS, CVM, AD, BR) for testing H,: Normal against different
alternatives H,: t(7), t(15),t(4) at significance level « = 0.05 and at different sample
sizes n. we can conclude that:

1. The BR test has a higher power when using the Epanechnikov kernel than that of
uniform kernel at different sample sizes n and for all cases.

2. The BR test has a higher power when using the Epanechnikov kernel than that of KS
test at sample sizes n = 50, 100, 200, 300 when data generate from t(7) and it's always
has higher power than that of KS for all sample sizes n when the data generated from
t(15) .

3. The BR test has a higher power when using the Epanechnikov kernel than that of
CVM test at sample sizes n = 10, 20, 30, 50, 100 when the data generated from t(7)
and BR test has higher power than that KS and CVM tests for all sample sizes in the
case data were generated from ¢t(15) .

4. In addition, when the data are generated from t(4) then AD test has a higher power
followed by CVM and KS tests.

Remarks:

There are general remarks about the behavior of the power of GOF tests when data are
generated from t-distribution with different degrees of freedom as in the following :

1. The power of GOF tests decrease when the data are generated from t(15) than that
data generated from t(7), because when the number of degrees of freedom of t-
distribution is large enough then the t-distribution is close to the standard normal distri-
bution and the variance of the t-distributions close to 1 .

2. The power of GOF tests increase when testing normality and the data generated from
t(4) than that the data are generated from t(7), this is because when the number of
degrees of freedom is small then the t-distribution doesn't has the same variance of the
standard normal distribution and then the two distribution doesn't have the same shape.
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3.2.2 Comparison of power of GOF tests for testing symmetric distributions

against skewed parametric alternative distributions.

Case 4: Testing Normality against Exp(5)

Table 4(a): Critical values, CV(a,n) of the (x?, KS, CVM, AD, BR) under normal
distribution tests with different sample sizes n and a = 0.05 .

x> BR

n K=5 K=10 KS CVM AD Uniform Epan.
20 7.815 15.507 0.232 0.217 0.752 2.30649 1.367389
30 7.815 15.507 0.19 0.218 0.752 2.180547 1.293414
50 7.815 15.507 0.149 0.220 0.752 2.039013 1.210282
100 7.815 15.507 0.107 0.220 0.752 1.873702 1.113184
200 7.815 15.507 0.075 0.220 0.752 1.734693 1.031534
300 7.815 15.507 0.061 0.220 0.752 1.66387  0.9899354
400 7.815 15.507 0.053 0.220 0.752 1.617801  0.9628758
500 7.815 15.507 0.047 0.220 0.752 1.58428  0.9431867

1 : : y T T i w ! T

10r

......... _f=N‘0.2,0.04)—

Figure 4(a): The graph of the null distribution Hy: f = N(0.2,0.04)
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022

Figure 4(b): The graph of the alternative distribution H;: f = Exp(5)

Table 4(b): The power for tests (x?, KS, CVM, AD, BR) under the Null Hypothesis (H,)
ata = 0.05.

Data were generated from the Alternative Hypothesis with different sample sizes (n)
and number of intervals (K) and different kernel functions(Uniform, Epanechnikov) for
10000 simulations.

H,: Normal having the same mean and variance as in H,

H;: Exp(5)
x? BR
n (K=5) (K=10) KS CVM AD Uniform Epan.
20 - - 0.2756 0.3695 0.7643 0.1474 0.0847
30 0.5678 - 0.5025 0.6365 0.9349 0.4240 0.2913
50 0.7269 0.9832 0.8201 0.9152 0.9958 0.8708 0.8112
100 0.9398 1.0000 0.9972 0.9997 1.0000 0.9996 0.9998
200 0.9987 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Figure 4(c): Comparison of power for different normality tests against Exp(5)

Summary

Table 4(b) and Figure 4(c) summarize the simulated power of Goodness-of-fit tests
(x%,KS, CVM, AD, BR) for testing H,: N(0.5,1) against H,: Exp(5) at significance
level @ = 0.05 and at different sample sizes n. We observe the following main findings:

1. AD test has a good power compared with all other tests, and it is able to detect the
null hypothesis at small sample sizes n = 30, 50.

2. BR test has a higher power under uniform kernel than y? at (K =5) and KS tests at
sample sizes n = 50, 100.

3. In addition, all tests have good powers when the sample size is greater than or equal
100.
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Case 5: Testing Normality against Weibull(10,2)

Table 5(a): Critical values, CV(a,n) of the (x?, KS, CVM, AD, BR) under normal
distribution tests with different sample sizes n and a = 0.05.

x> BR
n K=5 K=10 KS cvM AD  Unifom  Epan
20 5.991 14.067 0.232 0.217 0.752 2.221204  1.310609
30 5.991 14.067 0.19 0.218 0.752 2.103482 1.242108
50 5.991 14.067 0.149 0.220 0.752 1.971188  1.165127

100 5.991 14.067 0.107 0.220 0.752 1.816668  1.075213
200 5.991 14.067 0.075 0.220 0.752 1.686733  0.9996049
300 5.991 14.067 0.061 0.220 0.752 1.620534 0.9610837
400 5.991 14.067 0.053 0.220 0.752 1.577472  0.9360263
500 5.991 14.067 0.047 0.220 0.752 1.546139  0.917794

—f=N(1.902,0.094) | |
—f=Weibull{10,2)

Figure 5(a): The graph of the null distribution H,: f = N(1.902,0.054) and the
alternative distribution H,: f = Weibull(10,2)
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Table 5(b): The power for tests (x2, KS, CVM, AD, BR) under the Null Hypothesis (H,)
ata = 0.05.

Data were generated from the Alternative Hypothesis with different sample sizes (n)
and number of intervals (K) and different kernel functions(Uniform, Epanechnikov) for
10000 simulations.

H,: Normal having the same mean and variance as in H;

Hy: Weibull(10,2)

x* BR
n K=5 K=10 KS CVM AD Uniform Epan.
20 - - 0.0209 0.0142 0.1358 0.0033 0.0019
30 0.1091 0.0313 0.0226 0.1826 0.0098 0.0085

50 0.1387 0.1221 0.0599 0.0521 0.2752 0.0233 0.0344
100 0.1923 0.2007 0.1338 0.1367 0.5156 0.0631 0.1119
200 0.3032 0.3748 0.3424 0.4135 0.8305 0.1622 0.2928
300 0.4197 0.5356 0.5629 0.6699 0.9543 0.2690 0.4652
400 0.5436 0.6757 0.7333 0.8373 0.9897 0.3932 0.6177
500 0.6600 0.7927 0.8569 0.9339 0.9971 0.4985 0.7472

1 o _e_ ch|, K:5 ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 7
—&Chi, K=10
081 "V CVM
—V-AD
g. —<—BR, Unif,
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Figure 5(b): Comparison of power for different normality tests against Weibull(10,2)
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Summary

Table 5(b) and Figure 5(b) summarize the simulated power of Goodness-of-fit tests
(x? KS, CVM, AD,BR) for testing Hy: Normal against H;: Weibull(10,2) at signifi-
cance level a = 0.05 and at different sample sizes n. We observe the following main
findings:

1. AD test has a higher power compared with the other 3 tests, and it is able to detect the
null hypothesis at sample sizes greater than or equal 300.

2. BR test has a higher power at Epanechnikov kernel than uniform kernel at sample
sizes greater than or equal 50.

3. In addition, the power of Chi-square test is larger when we grouped the data into ten
intervals than that of five intervals at sample sizes n =100 .

Case 6: Testing Normality against Gamma(4,5)

Table 6(a): Critical values, CV(a,n) of the (y2, KS, CVM, AD, BR) under normal
distribution tests with different sample sizes n and a = 0.05 .

x> BR

n K=5 K=10 KS cvVM AD Uniform Epan.

10 9.488 16.919 0.4092 0.212 0.752 2.098622 1.245295
20 9.488 16.919 0.2940 0.217 0.752 1.923828 1.142626
30 9.488 16.919 0.2417 0.218 0.752 1.834772 1.090318
50 9.488 16.919 0.189 0.220 0.752 1.734693 1.031534
100 9.488 16.919 0.1360 0.220 0.752 1.617801  0.9628758
200 9.488 16.919 0.0961 0.220 0.752 1.519506  0.9051409
300 9.488 16.919 0.0785 0.220 0.752 1.469427 0.875726
400 9.488 16.919 0.0680 0.220 0.752 1.436851  0.8565919
500 9.488 16.919 0.0608 0.220 0.752 1.413148  0.8426697

1000 9.488 16.919 0.0430 0.220 0.752 1.347415 0.80406
2000 9.488 16.919 0.0304 0.220 0.752 1.29214 0.7715934
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Figure 6(a): The graph of the null distribution H,: f = N(0.8,0.16)
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Figure 6(b): The graph of the alternative distribution H;: f = Gamma(4,5)
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Table 6(b): The power for tests (y2, KS, CVM , AD, BR) under the Null Hypothesis
(Hy) at @ = 0.05.

Data were generated from the Alternative Hypothesis with different sample sizes (n)
and number of intervals (K) and different kernel functions(Uniform, Epanchnikov) for
10000 simulations.

H,: Normal having the same mean and variance as in H;

H,: Gamma(4,5)

x> BR
n K=5 K=10 KS CVM AD Uniform Epan.
10 - - 0.0669 0.0137 0.1285 0.0049 0.0052
20 - - 0.0861 0.0407 0.2469 0.0233 0.0349
30 0.1265 - 0.1078 0.0812 0.3765 0.0427 0.0669
50 0.2493 0.2771 0.1495 0.1733 0.5908 0.0836 0.1501
100 0.5270 0.5699 0.2423 0.4925 0.8925 0.2069 0.3851
200 0.8658 0.8934 0.4424 0.9058 0.9970 0.5020 0.7376
300 0.9779 0.9831 0.6233 0.9914 1.0000 0.7315 0.9201
400 0.9965 0.9981 0.7568 0.9993 1.0000 0.8614 0.9813
500 0.9994 0.9995 0.8738 1.0000 1.0000 0.9367 0.9937
1000 0.9999 1.0000 0.9999 1.0000 1.0000 0.9997 1.0000
2000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Figure 6(c): Comparison of power for different normality tests against Gamma(4,5)
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Summary

If we look at the Table 6(b) and Figure 6(c) that summarize the simulated power of
Goodness-of-fit tests(y?, KS, CVM, AD, BR) for testing H,: Normal against H, :
Gamma(4,5) at significance level @ = 0.05 and at different sample sizes n. We can
conclude that: The AD test has a higher power compared with other tests at different
sample sizes n followed by CVM test at sample sizes greater than or equal 200. And BR
test has a higher power than KS test at sample sizes greater than or equal 50. In
addition, BR test has a higher power when using the Epanechnikov kernel than that of
uniform kernel at different sample sizes n.

Case 7: Testing Normality against ¥2(4)

Table 7(a): Critical values, CV(a,n) of the (x?, KS, CVM, AD, BR) under normal
distribution tests with different sample sizes n and a = 0.05.

x? BR

n K=5 K=10 KS CVM AD Uniform Epan.
10 9.488 16.919 0.409 0.212 0.752 1.413148  0.8426697
20 9.488 16.919 0.232 0.217 0.752 1.347415 0.80406
30 9.488 16.919 0.19 0.218 0.752 1.313925 0.7843891
50 9.488 16.919 0.149 0.220 0.752 1.276289 0.762283
100 9.488 16.919 0.107 0.220 0.752 1.23233  0.7364632
200 9.488 16.919 0.075 0.220 0.752 1.195366  0.7147514
300 9.488 16.919 0.061 0.220 0.752 1.176533 0.7036896
400 9.488 16.919 0.053 0.220 0.752 1.164282 0.696494
500 9.488 16.919 0.047 0.220 0.752 1.155369  0.6912584
1000 9.488 16.919 0.034 0.220 0.752 1.130649  0.6767389
2000 9.488 16.919 0.024 0.220 0.752 1.109862  0.6645295
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Figure 7(a): The graph of the null distribution Hy: f = N(4,8) and the alternative

distribution H,: f = x?(4)
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Table 7(b): The power for tests (x2, KS, CVM, AD, BR) under the Null Hypothesis (H,)
ata = 0.05.

Data were generated from the Alternative Hypothesis with different sample sizes (n)
and number of intervals (K) and different kernel functions(Uniform, Epanchnikov) for
10000 simulations.

H,: Normal having the same mean and variance as in H;

Hy: x*(4)
x> BR
n K=5 K=10 KS CVM AD Uniform Epan.
10 - - 0.0801 0.0367 0.2196 0.0406 0.0673
20 - - 0.1205 0.1196 0.4620 0.0598 0.1247
30 0.3472 - 0.1584 0.2331 0.6617 0.0804 0.1675
50 0.6305 0.6014 0.2402 0.4905 0.8891 0.1262 0.2747
100 0.9379 0.9358 0.4391 0.9110 0.9971 0.2709 0.5164
200 0.9994 0.9982 0.8417 0.9992 1.0000 0.5726 0.8499
300 0.9998 1.0000 1.0000 1.0000 1.0000 0.8028 0.9703
400 1.0000 1.0000 1.0000 1.0000 1.0000 0.9180 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000 0.9674 1.0000
1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Figure 7(b): Comparison of power for different normality tests against y2(4)
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Summary

Table 7(b) and Figure 7(b) summarize the simulated power of Goodness-of-fit tests
(x%,KS, CVM, AD, BR) for testing Hy: Normal against H,: y?(4) at significance level
a = 0.05 and at different sample sizes n. We observe the following main findings:

1. The AD test has a higher power compared with other all tests at different sample sizes
n.

2. BR test has a higher power when using the Epanechnikov kernel than KS test at
sample sizes n = 20, 30, 50, 100, 200.

3. BR test has a higher power when using the Epanechnikov kernel than CVM test at
sample sizes n = 10, 20.

Case 8: Testing T-distribution against Exp(0.9)

Table 8(a): Critical values, CV(a, n) of the (x?, KS, CVM, AD, BR) under T distribut-
ion tests with different sample sizes n and a = 0.05.

x? BR

n K=5 K=10 KS cvM AD Uniform Epan.

20 9.488 16.919 0.232 0.217 0.752 1.566328.  0.9326425
30 9.488 16.919 0.19 0.218 0.752 1.511735  0.9005765
50 9.488 16.919 0.149 0.220 0.752 1.450384  0.8645409
100 9.488 16.919 0.107 0.220 0.752 1.378727  0.8224515
200 9.488 16.919 0.075 0.220 0.752 1.31847 0.7870586
300 9.488 16.919 0.061 0.220 0.752 1.28777 0.7690266
400 9.488 16.919 0.053 0.220 0.752 1.2678 0.7572969
500 9.488 16.919 0.047 0.220 0.752 1.25327 0.7487623

T T
——f=1t(10)
| ——f=Exp(0.9) |

0.8
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04r-
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Figure 8(a): The graph of the null distribution Hy: f = t(10) and the alternative
distribution H,: f = Exp(0.9).
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Table 8(b): The power for tests (y2, KS, CVM , AD, BR) under the Null Hypothesis
(Hy) at @ = 0.05.

Data were generated from the Alternative Hypothesis with different sample sizes (n)
and number of intervals (K) and different kernel functions(Uniform, Epanchnikov) for
10000 simulations.

H,: T distribution having the same variance as in H;

Hy: Exp(0.9)
x> BR
n K=5 K=10 KS CVM AD Uniform Epan.
20 - - 1.0000 1.0000 1.0000 0.7496 0.9917
30 1.0000 - 1.0000 1.0000 1.0000 0.9848 1.0000
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
T T I T
tr ¥ ¥ v v 1
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Figure 8(b): Comparison of power of GOF tests for testing t(10) against Exp(0.9)
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Case 9: Testing Uniformity against Exp(0.9)

Table 9(a): Critical values, CV(a,n) of the (x?, KS, CVM, AD, BR) under uniform
distribution tests with different sample sizes n and a = 0.05.

n
20
30
50
100

200
300
400
500

2
K=5 K=10
9.488 16.919
9.488 16.919
9.488 16.919
9.488 16.919
9.488 16.919
9.488 16.919
9.488 16.919
9.488 16.919

KS
0.232
0.19
0.149
0.107
0.075
0.061
0.053
0.047

cVM
0.217
0.218
0.220
0.220
0.220
0.220
0.220
0.220

AD
2.5020
2.5130
2.4941
2.4901
2.4901
2.4901
2.4901
2.4901

BR

Uniform Epan.
1.668319  0.9925484
1.603894  0.9547075
1.531494 09121822
1.446932  0.8625129
1.375823  0.8207462
1.339595  0.7994667
1.316028  0.7856247
1.298881 0.775553

‘ ‘ ‘ |

—f2U0.55,015)

| 3 —f=Exp0d9) |
A 0 f 2 3

Figure 9(a): The graph of the null distribution H,: f = U(—0.55,2.15) and the
alternative distribution H,: f = Exp(0.9)
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Table 9(b): The power for tests (y2, KS, CVM, AD, BR) under the Null Hypothesis (H,)
ata = 0.05.

Data were generated from the Alternative Hypothesis with different sample sizes (n)
and number of intervals (K) and different kernel functions(Uniform, Epanchnikov) for
10000 simulations.

H,: Uniform having the same mean and variance as in H,

H,: Exp(0.9)
x* BR
n K=5 K=10 KS cVM AD Uniform Epan.
20 - - 0.2602 0.5452 0.9740 0.9885 0.9995
30 0.9453 - 0.5406 0.7927 0.9985 0.9998 1.0000
50 0.9951 0.9979 0.9053 09711 1.0000 1.0000 1.0000
100 1.0000 1.0000 0.9997 0.9999 1.0000 1.0000 1.0000
200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Figure 9(b): Comparison of power of GOF tests for testing U(—0.55,2.15) against
Exp(0.9)
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Summary

Table 9(b) and Figure 9(b) summarize the simulated power of Goodness-of-fit tests
(x? KS, CVM, AD, BR) for testing Hy: Uniform against H,: Exp(0.9) at significance
level « = 0.05 and at different sample sizesn. One can say that: The BR test has a
higher power compared with other tests. The BR test has a higher power when using the
Epanechnikov kernel than that of uniform kernel at sample sizes n = 20, 30. And, all
tests are able to detect the null hypothesis at small sample sizes n = 20, 30, 50 except
the KS and CVM tests that have a small power at n = 20, 30.
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3.2.3 Comparison of power of GOF tests for testing symmetric distributions

against non-parametric alternative distributions.

Case 10: Testing Uniformity against Non-parametric alternative A(8)

Table 10(a): Critical values, CV(a,n) of the (x2, KS, CVM, AD, BR) under uniform
distribution tests with different sample sizes n and a = 0.1.

n x? KS CVM
10 - 0.368 0.167
20 6.251 0.264 0.172
40 12.017 0.193 0.173

BR
AD Uniform Epan.
1.9518 2.017947  1.197908
1.9385 1.855988  1.102779
1.9362 1.719797  1.022785

Remark: Concerning x? test We used in Table 10(a) the number of degrees of freedom

3 for n=20and 7 for n = 40.
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Figure 10(a): The graph of the null distribution H,: f = U(0,1)and the nonparametric
alternative distribution Hy: f = A(6) at 6 = 1.5,2
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Table 10(b): The power for tests (x2, KS, CVM, AD, BR) under the Null Hypothesis
(H,) at a = 0.1.

Data were generated from the Nonparametric Alternative Hypothesis A(6) with differ-
ent sample sizes(n) and number of intervals(K) and different kernel functions(Uniform,
Epanchnikov) for 1000 simulations.

Ho: U(0,1)

Hi:A(0) = 01 —x)9"1,0<x<1, 6€ER

BR
N n x> KS CVM AD  Uniform Epan.
A0 =15 10 - 0.23 0.27 0.24 0.06 0.09
20 - 0.38 0.46 0.46 0.16 0.24
40 0.40 0.60 0.70 0.74 0.35 0.54
A,0=2.0 10 - 0.54 0.60 0.58 0.14 0.23
20 0.59 0.78 0.87 0.87 0.43 0.63
40 0.89 0.98 0.99 0.99 0.87 0.95
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Figure 10(b): Comparison of power for different uniformity tests against A(8), 6 = 1.5
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Figure 10(c): Comparison of power for different uniformity tests against A(6), 0 = 2

Summary

Table 10(b) and Figures 10(b) and 10(c) summarize the simulated power of Goodness-
of-fit tests (x?, KS, CVM, AD, BR) for testing H,:U(0,1) against nonparametric
alternatives H,: A(0) at significance level @ = 0.1 and at sample sizes n = 10, 20, 40.
We observe the following main findings: The AD test has a higher power compared
with all other tests at sample sizes n = 10, 20 under nonparametric alternatives A(6),
6 = 1.5, 2. BR test has a higher power when using the Epanechnikov kernel than x?
test at sample size n = 40 when using A(1.5) and sample sizes n = 20, 40 when using
A(2). In addition, BR test has a higher power when using the Epanechnikov kernel than
that of uniform kernel for all sample sizes n.
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Case 11: Testing Uniformity against Non-parametric alternative B(0)

5 : § —f=U{0,1)
—f=B1(1.5)
25 oo ===f=B2{1.5) |4
f=B1(2)
~-f=B2{2)
2 | ——f=B1(3) |
---f=B2(3)
15 B
1_ —
0.5 -
o N
o] “‘;‘_‘TL -
-0, i i i | i i
-8.2 0 0.2 04 0.6 08 1 12

Figure 11(a): The graph of the null distribution Hy: f = U(0,1) and the nonparametric
alternative distribution Hy: f = B(6) at 8 = 1.5,2,3

Table 11: The power for tests (x2, KS, CVM, AD, BR) under the Null Hypothesis(H,) at
a=0.1.

Data were generated from the Nonparametric Alternative Hypothesis B(6) with differ-
ent sample sizes (n) and different kernel functions (Uniform, Epanchnikov) for 1000
simulations.

Ho: U(0,1)
B,(8) = 6(2x)°1 , 0<x<1/2
Hy:B(9) = 1(0) = 6(2x0) o1 / L0 ER
B,(0) = 0(2—2x)%1, 1/2<x<1
BR
N n x> KS CVM AD  Uniform Epan.
B, =1.5 10 - 0.09 0.07 0.06 0.09 0.07
20 - 0.13 0.11 0.10 0.20 0.32
40 0.39 0.19 0.22 0.25 0.47 0.65
B,0 =2.0 10 - 0.09 0.7 0.06 0.16 0.17
20 - 0.25 0.25 0.28 0.51 0.65

40 0.85 0.56 0.72 0.78 0.89 0.97
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Figure 11(b): Comparison of power for different uniformity tests against B(6), 8 = 1.5
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Figure 11(c): Comparison of power for different uniformity tests against B(6), 6 = 2
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Summary

Table 11 and Figures 11(b) and 11(c) summarize the simulated power of Goodness-of-
fit tests (x2, KS, CVM, AD, BR) for testing H,: U(0,1) against nonparametric alterna-
tives Hy: B(@) at significance level @ = 0.1 and at sample sizesn = 10, 20, 40. We
observe the following main findings:

1. The BR test has a higher power compared with all other tests at sample sizes n = 10,
20, 40 under nonparametric alternatives B(6), 6 = 1.5, 2, 3.

2. In addition, BR test has a higher power when using the Epanechnikov kernel than that
of uniform kernel when using nonparametric alternatives B(6), 6 = 1.5, 2, 3 for sample
sizesn = 10, 20, 40 except for B(8) at 6 = 1.5 and n = 10.

Case 12: Testing Uniformity against Non-parametric alternative €(0)

35 : ! : ! ! :
! ] ] ] —f= U(0,1]
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W R— SURS— ST— . W— . SR—— S— ---f=C2(1.5) |
: : | r : f=C1(2)
‘ | | ' -—-f=¢2(2)
2Bt .................... ...................... ..................... ...................... ...................... .................... &

Figure 12(a): The graph of the null distribution H,: f = U(0,1) and the nonparametric
alternative distribution Hy: f = C(6) at 6 = 1.5, 2
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Table 12: The power for tests (KS, CVM, AD, BR) under the Null Hypothesis(H,) at
a=0.1.

Data were generated from the Nonparametric Alternative Hypothesis C (8)with different
sample sizes (n) and different kernel functions (Uniform, Epanchnikov) for 1000 simul-
ations.

Hy:U(0,1)
C(@)=01-2x)01 , 0<x<1/2
H,: C(6) = { 1(0) = 6( x)e_l *<1Z  pex
C,(6)=0(2x—-1) , 1/2 <x<1
BR
N n KS CVM AD Uniform  Epan.
C,6=1.5 20 0.25 0.20 0.28 0.10 0.11
40 0.36 0.32 0.39 0.23 0.30
C,6=2.0 20 0.47 0.44 0.54 0.26 0.28
40 0.71 0.80 0.85 0.75 0.83
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Figure 12(b): Comparison of power for different uniformity tests against
c(6),06 =15
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Figure 12(c): Comparison of power for different uniformity tests against C(6), 0 = 2

Summary

Table 12 and Figures 12(b) and 12(c) summarize the simulated power of Goodness-of-
fit tests(y2, KS, CVM, AD,BR) for testing H,: U(0,1) against nonparametric alternatives
H;:C(0) at significance level a = 0.1 and at sample sizes n = 20, 40. We can conc-
lude that: The AD test has a higher power compared with all other tests at sample sizes
n = 20, 40 under nonparametric alternatives C(8), 6 = 1.5, 2. In addition, BR test has
a higher power when using the Epanechnikov kernel than that of uniform kernel when
using nonparametric alternatives C(8), 6 = 1.5, 2 for sample sizes n = 20, 40.
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3.3 Conclusions and A Future work

In the real world, the parameters of the distribution are usually unknown and need
to be estimated. When the parameters are estimated from the data, it affects the power
of the GOF tests. In general, there is no most powerful test i.e. there is no test has a
higher power for all cases, because the power of tests are dramatically changed with

sample sizes n, the significance level «, the type of the distribution being tested, and
also it depends on the alternative distribution. In addition, simulated power for all tests
increased as the sample size and significance level increased.

In general, it can be concluded that from comparison of power of GOF tests the
following:

1) For testing the symmetric distributions against parametric alternative distributions
(Sec 3.2.1, Sec 3.2.2) among the five tests considered that the AD test has a higher
power compared with all other tests, whereas the x? test has lower power, and the power
of AD test is still low for small sample sizes.

2) For testing the symmetric distributions and the data that are generated from non-
parametric alternative distribution (Sec 3.2.3), we can conclude that from comparison of
power of GOF tests among the five tests considered that the power of tests is
dramatically changed with the type of non-parametric distribution A(8), B(8), C(6),
6 = 1.5,2. The AD test has a higher power compared with all other tests, whereas the
x? test has lower power when testing U(0,1), and the data generated from alternative
A(6),C(60),0 = 1.5,2, and the BR test has a higher power compared with all other tests
when data generated from alternative B(68),0 = 1.5, 2. Also, we can conclude that the
BR test has a higher power when using the Epanechnikov kernel than that of uniform
kernel.

As a future work, we are planning to study the power of the Bickel-Rosenblatt (BR)
test by using different distributions as Cauchy distribution, Laplace distribution and
compare it with four well-known Goodness-of-fit tests: Chi-square test, Kolmogorov-
Smirnov (KS) test, Cramér-von Mises (CVM) test and Anderson-Darling (AD) test.
Moreover, we want to study the power of the BR test under other choices of the kernel
functions as Gaussian kernel, Biweight kernel and Triangular kernel. Finally, as we
have seen from the previous results the BR test has a higher power when the data are
generated from non-parametric alternative distributions, for this purpose we want to
study the power of BR test when the data are generated from different non-parametric
alternative distributions.
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Appendix A: Critical Values of Goodness-of-Fit Tests

A.1  Chi-Square Distribution Table
0 y2
The shaded are is equal to a for x* = x?_
af X’000s | Xloge0| Xl097s| Xlooso| X’0s00| Xlo100| Xlooso| X'oozs| X oor0| X 000s
1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4,168 14.684 16.919 19.023 21.666 23.589
10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4575 5.578 17.275 19.675 21.920 24,725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24,996 27.488 30.578 32.801
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44,314 46.928
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
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Critical values, dalpha;(n), of the maximum absolute difference between sample Fn(x)
and population F(x) cumulative distribution.

Level of significance, o

Number of

trials, n 0.10 0.05 0.02 0.01
1 0.95000 0.97500 0.99000 0.99500
2 0.77639 0.84189 0.90000 0.92929
3 0.63604 0.70760 0.78456 0.82900
4 0.56522 0.62394 0.68887 0.73424
5 0.50945 0.56328 0.62718 0.66853
6 0.46799 0.51926 0.57741 0.61661
7 0.43607 0.48342 0.53844 0.57581
8 0.40962 0.45427 0.50654 0.54179
9 0.38746 0.43001 0.47960 0.51332
10 0.36866 0.40925 0.45662 0.48893
11 0.35242 0.39122 0.43670 0.46770
12 0.33815 0.37543 0.41918 0.44905
13 0.32549 0.36143 0.40362 0.43247
14 0.31417 0.34890 0.38970 0.41762
15 0.30397 0.33760 0.37713 0.40420
16 0.29472 0.32733 0.36571 0.39201
17 0.28627 0.31796 0.35528 0.38086
18 0.27851 0.30936 0.34569 0.37062
19 0.27136 0.30143 0.33685 0.36117
20 0.26473 0.29408 0.32866 0.35241
21 0.25858 0.28724 0.32104 0.34427
22 0.25283 0.28087 0.31394 0.33666
23 0.24746 0.27490 0.30728 0.32954
24 0.24242 0.26931 0.30104 0.32286
25 0.23768 0.26404 0.29516 0.31657
26 0.23320 0.25907 0.28962 0.31064
27 0.22898 0.25438 0.28438 0.30502
28 0.22497 0.24993 0.27942 0.29971
29 0.22117 0.24571 0.27471 0.29466
30 0.21756 0.24170 0.27023 0.28987
31 0.21412 0.23788 0.26596 0.28530
32 0.21085 0.23424 0.26189 0.28094
33 0.20771 0.23076 0.25801 0.27677
34 0.20472 0.22743 0.25429 0.27279
35 0.20185 0.22425 0.26073 0.26897
36 0.19910 0.22119 0.24732 0.26532
37 0.19646 0.21826 0.24404 0.26180
38 0.19392 0.21544 0.24089 0.25843
39 0.19148 0.21273 0.23786 0.25518
40P 0.18913 0.21012 0.23494 0.25205

Values of de (n) such that p(max)|F" (x) — F(X)|d* (n) =a

bn> 40~

1.22 1.36 1.51
ni/2’ n1/2’ n1/2

for the four levels of significance.
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A3.1 Critical values for the AD test under uniform distribution at
different significance levels.

Number of Significance | Significance
samples n level, level,
a=0.1 a = 0.05
10 1.9518 2.5121
20 1.9385 2.5020
30 1.9313 2.5130
40 1.9362 2.5042
50 1.9277 2.4941
60 1.9367 2.5044
70 1.9304 2.4959
80 1.9235 2.4951
90 1.9326 2.5064
100 1.9325 2.4901
A.3.2 Critical values for the AD test under normal distribution at

different significance levels.

Significance 0.05 | 0.025 | 0.01
level

Critical values | 0.752 | 0.873 | 1.035
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A4 Critical VValues for Cramér-von Mises Test-Statistic

Significance level, a
ngple 0.20 0.15 0.10 0.05 0.01
size,n
2 0.138 0.149 0.162 0.175 0.186
3 0.121 0.135 0.154 0.184 0.23
4 0.121 0.134 0.155 0.191 0.28
5 0.121 0.137 0.160 0.199 0.30
6 0.123 0.139 0.162 0.204 0.31
7 0.124 0.140 0.165 0.208 0.32
8 0.124 0.141 0.165 0.210 0.32
9 0.125 0.142 0.167 0.212 0.32
10 0.125 0.142 0.167 0.212 0.32
11 0.126 0.143 0.169 0.214 0.32
12 0.126 0.144 0.169 0.214 0.32
13 0.126 0.144 0.169 0.214 0.33
14 0.126 0.144 0.169 0.214 0.33
15 0.126 0.144 0.169 0.215 0.33
16 0.127 0.145 0.171 0.216 0.33
17 0.127 0.145 0.171 0.217 0.33
18 0.127 0.146 0.171 0.217 0.33
19 0.127 0.146 0.171 0.217 0.33
20 0.128 0.146 0.172 0.217 0.33
30 0.128 0.146 0.172 0.218 0.33
60 0.128 0.147 0.173 0.220 0.33
100 0.129 0.147 0.173 0.220 0.34
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Appendix B: R codes

B.1  Algorithm for calculating the power of Anderson-Darling test, testing
Normality against Exp(5)

for (nin ¢(20,30,50,100,200,300,400,500))
{
AD <-¢(0,1)
F<-¢(0,1)
power <- 0
number_of_samples <- 10000
partion_number <- 330
HO <- function(x){(1/sqrt(2*pi*vari))*exp(-((x-mu)"2)/(2*vari))]
# for estimated parameters
#cv<-0.752
# for not estimated parameters
cv<-2.492
y[1] <-(-5)
j<-1
repeat {
yli+1] <- (y[j]+0.03)
if(j==partion_number)break
j<-j+1
}
kh<-1
repeat
{
sum<-0
set.seed(123)
x = sort(rexp(n,5))
mu = mean(x)
vari = var(x)

cat('x=",x,"\n")

j<-1

repeat

{

Flil=0

k<-1

repeat

{

if (x[k] <=y[j])
{

Flil=s/n
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s=s+l
{
if(k==n)break
k<-k+1

}
cat('F[j]=',F[j],"\n")
cat('y[il="y[i],"\n')
if(j==partion_number)break
j<-j+1
s=1

}
j<-1
repeat
{
p = integrate(HO,-Inf,y[j])$val
cat('p=',p,"\n’)
if(p<=1 && p>=0.9999999){p = 0.9999999}
if(p>=0 && p<=0.000001){p = 0.000001}
sum = sum + (F[j]-p)*2*(HO(y[j]) *0.03)*(1/(p*(1-p)))
sum = sum + (2*i-1)*log(pnorm(x[i],0.5,1))+(2*n+1-2*i)*log(1-pnorm(x[i],0.5,1))
if(j==partion_number)break
j<-j+1

}
#AD[kh]=n*sum
AD[kh]=n*(1+(0.75/n)+(2.25/(n"2)))*sum
if(AD[kh]>cv)
{
power <- power + 1/number_of_samples

#cat('k="k," "', 'power=',power,'\n')

}
if(kh==number_of_samples)break
kh <- kh +1

}

cat('n=",n,"", 'power=',power,"'\n')
power =0

}

B.2  Algorithm for calculating the power of Bickel-Rosenbaltt test, testing

Uniformity against non-parametric alternatives.

for (nin c(10,20,40))

{

number_of_samples <- 1000
partion_number <- 100

1<-¢(0,1)
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z<-¢(0,1)

d<-¢(0,1)

x <-¢c(0,1)

BR <- ¢(0,1)

power <- 0

sum2<-0

y <-¢(0,1)

FN <- ¢(0,1)

honenorm <- ¢(0,1)

sum<-0

K <-¢(0,1)

zalpha=1.28

mu<-0

vari<-0

mean <- ¢(0,1)

variance <- ¢(0,1)

mu <- ¢(0,1)

vari <- ¢(0,1)

bn=1/sqrt(n)

HO <- function(x){(1+(x-x))}

HOint <- function(x){(1+(x-x))}

# Calculation the Critical value of BR test
kernel <- function(x){(3/4)*(1-(x*2))}

# kernel <- function(x){(1)}

kernel2 <- function(x,y)sapply(x,function(z,y){kernel(z)},y=y)
multiply=function(a,b)

{

force(a)

force(b)

function(x){a(x)*b(x)}

}

(multiply2=function(c,d)

{

force(c)

force(d)
function(x,y)sapply(x,function(z,y){c(z)*d(z+y)},y=y)
}

mult=multiply(kernel,kernel)
normal2=multiply(HOint,HOint)

| = integrate(Vectorize(mult),-1,1)Sval)
fvec=multiply2(kernel,kernel

gvec = function(x) sapply(x, function(y) integrate(fvec, lower=-1, upper=1, y=y)Sval)
gvec2=multiply(gvec,gvec)

J = integrate(Vectorize(gvec2), lower=-1, upper=1)$val
mu = |*(integrate(H0int,0,1)Sval)

var=2*J*(integrate(normal2,0,1)$val)



mu = *1

var=2*J*1

segma=sqrt(var)
cv=mu+(zalpha*sqrt(bn)*segma
k<-1

repeat {

# Generate data from non-parametric alternative distributons
# Alternative A

| <- function(t){(1-(1-t)*(2/3))}
# 1 <- function(t){(1-sqrt(1-t))}
set.seed(123)

z = sort(runif(n,0,1))

mean = mean(z)

variance = var(z)

m<-1

repeat

{

d[1]=I(z[1])

d[m]=sort(l(z[m]))
x[m]=sort(d[m])

if(m==n)break

m<-m+1

}

mu = mean(x)
vari = var(x)
y[1] <-(0)
j<-1

repeat {

yli+1] <- (y[j]+0.01)
if(j==partion_number)break
j<-j+1

}

j<-1

repeat {
honenorm(j]=HO(y[j])
if(j==partion_number)break
j<-j+1

}

j<-1

}repeat

i<-1

repeat {
if(((y[i1-x(i1)/bn)>=(-1)&&((y[j]-x[i])/bn)<=(1))
K[i]<-kernel(((y[j]-x[i])/bn ))
else

K[i]<-0
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sum =sum + K[i ]

if(i==n )break
i<-i+1
}

FN[j] = sum * (1/(n*bn))

sum =0

if (j==partion_number)break
j<-j+1

}

j<-1

repeat{

diff = FN[j]-honenorm[j]

sum2 = sum?2 + (diffA2)*0.01
if(j==partion_number)break
j<-j+1

}

BR[k] =sum2 * n * bn
#cat('BR=",'[',k,'"",BR[k],"\n ")
sum2 =0;

if(BR[k]>cv)

power = power + 1/number_of_samples
if(k==number_of_samples)break
k<- k +1

}

cat('n=',n,""'ev=",cv," ' ,'power=',power,"\n')
power =0

}



