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Abstract 

 

The main purpose of this thesis is to study and compare the power of five goodness-of-

fit(GOF) tests: Chi-square(𝜒2) test, Kolmogorov-Smirnov(KS) test, Cramér-von Mises 

(CVM) test, Anderson-Darling(AD) test and Bickel-Rosenblatt(BR) test under several 

parametric and non-parametric alternatives. Power comparisons of these five tests were 

obtained by using Monte Carlo simulation method of sample data generated from 

parametric and non-parametric alternatives and the parametric alternatives follow 

symmetric and non-symmetric distributions, R software was used to generate data for 

simulations purpose. Two significance levels 5% and 10% were used and the critical 

values for power comparisons were obtained based on 10000 simulated samples from 

different null distributions. 10000 samples each of size n = 10, 20, 30, 40, 50, 100, 200, 

300, 400, 500, 1000, and 2000 were generated from each of the given alternatives. The 

power of each test was then obtained by comparing the GOF test statistics with the 

respective critical values. Simulation results show that the AD test has a higher power in 

the case of testing symmetric distributions and the data were generated from parametric 

alternative distributions followed by the CVM and the KS tests while the 𝜒2 test has the 

lowest power. The BR test has a higher power in the case of testing symmetric 

distributions and the data were generated from some non-parametric alternative 

distributions and the AD test has a higher power under other non-parametric alternative 

distributions. This study also shows that the BR test has a higher power when using the 

Epanechnikov kernel compared to the uniform kernel. 
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Chapter 1 

 

Introduction and Kernel Density Estimation 

 

1.1  Introduction 

       There are significant amount of Goodness-of-fit(GOF) tests available in the     

literature. Some of these tests can only be applied under certain conditions or 

assumptions. The main purpose of this thesis is to study and compare the power of GOF 

tests: Chi-square test, Kolmogorov-Smirnov (KS) test, Cramér-von Mises (CVM) test, 

Anderson-Darling (AD) test and the Bickel-Rosenblatt (BR) test.   

 

Chapter 1 provides the background of the study and briefly discusses the histogram and 

kernel density estimation as a method for estimating the probability density function. 

The basic properties of the kernel density estimator will be presented in this chapter. 

 

In Chapter 2, the following five Goodness-of-fit tests will be defined: Chi-square test, 

Kolmogorov-Smirnov (KS) test, Cramér-von Mises (CVM) test, Anderson-Darling 

(AD) test and the Bickel-Rosenblatt (BR) test. In addition, the asymptotic null 

distribution and also the asymptotic power for each of these tests are presented in this 

chapter.  

 

In Chapter 3, we discuss in details the Monte Carlo simulation methodology for power 

comparisons of the above mentioned Goodness-of-fit tests. The algorithms involved in 

the simulation study will be described. This chapter includes all the simulation results. 

Some analyses to rank the power of the tests and graphs of the power of tests are also 

conducted and presented in this chapter. In addition, discussion of the results and a 

conclusion based on the findings obtained are also discussed in this chapter. 

 

1.2  Literature Review 

There are significant amount of Goodness-of-fit(GOF) tests available in the literature. 

The effort of developing techniques to detect departures from normality has begun as 

early as the late 19th century. This effort was initiated by Pearson [1] who worked on 

the skewness and kurtosis coefficients, Althouse et al, [2]. In 1900, Pearson extended 

his work and introduced the Chi-square test of normality. Kolmogorov and Smirnov 

then introduced the Kolmogorov-Smirnov test in 1933. Conover [3] stated that the 

Cramer-von Mises test was developed based on the contributions by Cramér in [4] and 

von Mises [5]. In 1954, Anderson and Darling proposed their test which was a 

modification of the Cramér-von Mises test, Farrel and Stewart [6], Anderson-Darling 
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test was an improvement of Kolmogorov-Smirnov tests. Fix and Hodges [7] introduced 

the basic algorithm of nonparametric density estimation. During the following decade, 

several general algorithms and alternative theoretical modes of analysis were introduced 

by Rosenblatt [8], Parzen [9] and Cencov [10]. These were followed by the most 

important theoretical papers by Watson and Leadbetter [11], Loftsgaarden and 

Quesenberry [12], Schwartz [13], Epanechnikov [14], Tarter and Kronmal [15] and 

Wahba [16].  In 1973 and 1975 Bickel and Rosenblatt introduced their test which was 

called Bickel-Rosenblatt test and this test depends on the kernel density estimator that 

was introduced by Rosenbaltt [8] and Parzen [9].  

 

1.3  Histogram 

A histogram is a graphical representation of the distribution of the data. It is an estimate 

of the probability distribution of a continuous variable and was first introduced by Karl 

Pearson in 1895. A histogram is considered as the simplest form for estimating the 

probability density function.  

A histogram can be thought of as a special case of a kernel density estimation which 

will be defined in section 1.4, which uses a kernel to smooth frequencies over the bins. 

This will yield a smoother probability density function, which will in general more 

accurately reflect the distribution of the underlying variable. The density estimate could 

be plotted as an alternative to the histogram, and is usually drawn as a curve rather than 

a set of boxes [17, 18]. In the literature, there are several formulas for the number of 

bins. A few of them are listed below.                                         

Number of bins and width 

The number of bins 𝑘 can be assigned directly or can be calculated from a suggested bin 

width ℎ as: 

  𝑘 = ⌈max 𝑥−min 𝑥

ℎ
⌉                                          (1.1) 

  Where 𝑥 is the data set and the braces indicate the ceiling function. 

Square-root choice 

𝑘 = √𝑛                                                             (1.2) 

Which takes the square root of the number of data points in the sample. 
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Sturges' formula 

Sturges' formulas derived from a binomial distribution and implicitly assumes an  

approximately normal distribution. 

𝑘 =  ⌈log2(𝑛 + 1)⌉                                          (1.3) 

     It implicitly bases the bin sizes on the range of the data and can perform poorly 

if 𝑛 <30, because the number of bins will be small-less than seven-and unlikely to show 

trends in the data well. It may also perform poorly if the data are not normally    

distributed [19]. 

Rice Rule 

𝑘 =  ⌈2𝑛1 3⁄ ⌉                                                   (1.4) 

The Rice Rule is presented as a simple alternative to Sturges's rule. 

Scott's normal reference rule 

 ℎ = 3.5𝜎̂

𝑛1 3⁄                                                    (1.5) 

Where 𝜎̂ is the sample standard deviation. Scott's normal reference rule is optimal for 

random samples of normally distributed data, in the sense that it minimizes the integrate  

mean squared error of the density estimate. 

 

1.4  Kernel Density Estimation(KDE) 

Kernel density estimation (KDE) is a non-parametric method to estimate the probability  

density function of a random variable. Kernel density estimation is a fundamental data 

smoothing problem where inferences about the population are made, based on a finite 

data sample. It has some applications in fields such as signal processing and    

econometrics. It is also termed the Parzen-Rosenblatt window method, after Emanuel 

Parzen and Murray Rosenblatt [8,9] who are usually credited with independently 

creating it in its current form. 

Definition of Kernel Density Estimator(KDE) 

Let 𝑋1,  𝑋2, … , 𝑋𝑛  be independent and identically distributed random variables with a 

specified continuous probability density function 𝑓(𝑥). Rosenblatt's(1956) and Parzen's 

(1962) introduced the kernel density estimate 𝑓𝑛(𝑥) for estimating 𝑓(𝑥) at a fixed point 

𝑥 ∈ ℝ using the data (𝑋1,  𝑋2, … , 𝑋𝑛), as follows: 
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𝑓𝑛(𝑥) =  
1

𝑛
∑ 𝐾𝑏𝑛

(𝑥 − 𝑋𝑖)

𝑛

𝑖=1

=
1

𝑛𝑏𝑛
∑ 𝐾 [

 𝑥−𝑋𝑖

𝑏𝑛
]

𝑛

𝑖=1

 

       =
1

𝑏𝑛
∫ 𝐾 [ 𝑥−𝑋𝑖

𝑏𝑛
] 𝑑𝐹𝑛(𝑡)                                                    (1.6) 

Where 𝐾𝑏𝑛
(𝑥) =  1 𝑏𝑛⁄ 𝐾(𝑥 𝑏𝑛⁄ ) and 𝐹𝑛(𝑡) is a sample distribution function and 𝐾 is a 

suitable kernel function on ℝ such that: 

1)∫ 𝐾(𝑢)𝑑𝑢
∞

−∞
= 1 

2) 𝐾(𝑢) = 𝐾(−𝑢) for all values of 𝑢                                                                                      

And 𝑏𝑛 > 0 is a smoothing parameter called the bandwidth such that 𝑏𝑛 → 0 and  

𝑛𝑏𝑛 → ∞  𝑎𝑠 𝑛 → ∞ 

The most important choice is the bandwidth 𝑏𝑛 > 0 which controls the amount of   

smoothing. 

Practical estimation of the bandwidth 

If Gaussian basis functions are used to approximate univariate data, and the underlying 

density being estimated is Gaussian, then it can be shown that the optimal choice for 𝑏𝑛 

is 

𝑏𝑛 = (
4𝜎̂

3𝑛

5
)

1 5⁄

 ≈ 1.06 𝜎 ̂𝑛−1 5⁄                                  (1.7) 

Where 𝜎 ̂ is the standard deviation of the samples. This approximation is termed the    

normal distribution approximation, Gaussian approximation [20]. 

1.4.1 Examples of Kernel Functions 

Several kernel functions were commonly used in the literature, among them are: 

Uniform             𝐾(𝑢) =
1

2
   , −1 ≤ 𝑢 ≤ 1 

Triangular          𝐾(𝑢) = 1 − |𝑢|  , −1 ≤ 𝑢 ≤ 1 

Epanechnikov    𝐾(𝑢) =
3

4
 (1 − 𝑢2)  , −1 ≤ 𝑢 ≤ 1 
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Biweight             𝐾(𝑢) =
15

16
 (1 − 𝑢2)2  , −1 ≤ 𝑢 ≤ 1 

Triweight            𝐾(𝑢) =
35

32
 (1 − 𝑢2)3   , −1 ≤ 𝑢 ≤ 1 

Tricube               𝐾(𝑢) =
70

81
 (1 − |𝑢|3)3   , −1 ≤ 𝑢 ≤ 1 

Gaussian             𝐾(𝑢) =
1

√2𝜋
 𝑒𝑥𝑝(−

1

2
𝑢2)   , −1 ≤ 𝑢 ≤ 1 

Cosine                 𝐾(𝑢) =
𝜋

4
 𝑐𝑜𝑠(

𝜋

2
𝑢)   , −1 ≤ 𝑢 ≤ 1 

 

  Figure 1.1: Some of the kernels mentioned above in a common coordinate system. 

1.4.2   properties of the kernel density estimator 

There is a vast amount of literature on the general properties of the (KDE), which can 

be summarized as follows: 

1.4.2.1 Bias 

For the bias we have 

                              𝐵𝑖𝑎𝑠 {𝑓𝑛(𝑥)} = 𝐸{𝑓𝑛(𝑥)} − 𝑓(𝑥)   

http://en.wikipedia.org/wiki/File:Kernels.svg
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But, 

                         𝐸{𝑓𝑛(𝑥)} =  
1

𝑛𝑏𝑛
∑ 𝐸{𝐾(

𝑥− 𝑋𝑖

𝑛𝑏𝑛
)𝑛

𝑖=1 } =
1

𝑏𝑛
𝐸{𝐾(

𝑥− 𝑋

𝑏𝑛
)}           (1.8) 

                                          𝐸{𝑓𝑛(𝑥)} =
1

𝑏𝑛
∫ 𝐾(

𝑥− 𝑢

𝑏𝑛
) 𝑓(𝑢)𝑑𝑢                                          

Using the variable 𝑦 = 
𝑥−𝑢

𝑏𝑛
  and the symmetry of the kernel, i.e. 𝐾(−𝑠) = 𝐾(𝑠), we get 

                                          𝐸{𝑓𝑛(𝑥)} = ∫ 𝐾(𝑦) 𝑓(𝑥 − 𝑦𝑏𝑛)𝑑𝑦                                    (1.9) 

Now, assume that the second derivative 𝑓 ′′of the underlying density 𝑓  is absolutely 

continuous and square integrable. Then, expanding 𝑓(𝑥 − 𝑦𝑏𝑛) in a Taylor series about 

𝑥 we have 

                                       𝑓(𝑥 − 𝑦𝑏𝑛) = 𝑓(𝑥) − 𝑏𝑛𝑦𝑓′(𝑥) +
1

2
𝑏𝑛

2𝑦2𝑓′′(𝑥) + 𝑜(𝑏𝑛
2) 

Where, 𝑜(𝑏𝑛
2) is a little-𝑜 notation of order 2. 

 

Now,                   𝐸{𝑓𝑛(𝑥)} = ∫ 𝐾(𝑦){𝑓(𝑥) − 𝑏𝑛 𝑦𝑓′(𝑥) +
1

2
𝑏𝑛

2𝑦2𝑓′′(𝑥) + 𝑜(𝑏𝑛
2)}𝑑𝑦 

 

Then, using the properties of the Kernel, the bias of the density estimator is 

      𝐵𝑖𝑎𝑠 {𝑓𝑛(𝑥)} =
𝑏𝑛

2

2
𝑓′′(𝑥)𝜇2(𝐾) + 𝑜(𝑏𝑛

2), 𝑎𝑠  𝑏𝑛 → 0  (1.10) 

Here we denote 𝜇2(𝐾) = ∫ 𝑥2𝐾(𝑥)𝑑𝑥
∞

−∞
. 

Observe from equation (1.10) that the bias is proportional to 𝑏𝑛
2
. Thus, we have to 

choose a small 𝑏𝑛 to reduce the bias. Moreover, 𝐵𝑖𝑎𝑠 {𝑓𝑛(𝑥)} depends on 𝑓′′(𝑥). The 

effects of this dependence are illustrated in Figure 1.2 where the dashed lines mark 

𝐸{𝑓𝑛(∗)} and the solid line the true density {𝑓(∗)}. The bias is thus given by the vertical 

difference between the dashed and the solid line. 

http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#spmkernd:statprop:kernelbias
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Figure 1.2: Bias effects  

     Note that in "valleys" of 𝑓, the bias is positive since 𝑓′′ > 0 around a local minim- 

mum of 𝑓. Consequently, the dashed line is always above the solid line. Near peaks of 𝑓 

the opposite is true. The magnitude of the bias depends on the curvature of 𝑓, reflected 

in the absolute value of 𝑓′′. Obviously, large values of |𝑓′′| imply large values of bias 

of {𝑓𝑛(𝑥)}. 

1.4.2.2 Variance 

For the variance we calculate  

                                         𝑉𝑎𝑟{𝑓𝑛(𝑥)} = 𝑉𝑎𝑟 {1

𝑛
∑ 𝐾 [ 𝑥−𝑋𝑖

𝑏𝑛
]𝑛

𝑖=1 }   

             =  1

𝑛2 ∑ 𝑉𝑎𝑟{𝐾[
 𝑥−𝑋𝑖

𝑏𝑛
]}𝑛

𝑖=1  

                                         𝑉𝑎𝑟{𝑓𝑛(𝑥)} =
1

𝑛
 𝑉𝑎𝑟 {𝐾 [ 𝑥−𝑋

𝑏𝑛
]}  

               = 
1

𝑛
(𝐸 {𝐾2 [ 𝑥−𝑋

𝑏𝑛
]} − {𝐸 (𝐾 [ 𝑥−𝑋

𝑏𝑛
])}

2

)             (1.11) 

Using 

                                          
1

𝑛
 𝐸 {𝐾2 [ 𝑥−𝑋

𝑏𝑛
]} =

1

𝑛

1

𝑏𝑛
2 ∫ 𝐾2 (

𝑥−𝑢

𝑏𝑛
) 𝑓(𝑢)𝑑𝑢 

and                                    𝐸 {𝐾 [ 𝑥−𝑋

𝑏𝑛
]} = 𝑓(𝑥) + 𝑜(𝑏𝑛) 

and similar variable substitution and Taylor expansion arguments as in the derivation of 

the bias, it can be shown that 
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  𝑉𝑎𝑟{𝑓𝑛(𝑥)} =
1

𝑛𝑏𝑛
‖𝐾‖2

2
𝑓(𝑥) + (

1

𝑛𝑏𝑛
) , 𝑎𝑠 𝑛𝑏𝑛 → ∞   (1.12) 

 

Here, ‖𝐾‖2
2
 is shorthand for ∫ 𝐾2(𝑥)𝑑𝑥

∞

−∞
, the squared 𝐿2 norm of 𝐾. 

 

Notice that the variance of the kernel density estimator is nearly proportional to 𝑛𝑏𝑛
−1

. 

Hence, in order to make the variance small we have to choose a fairly large 𝑏𝑛 . Large 

values of 𝑏𝑛 mean bigger intervals [𝑥 − 𝑏𝑛 , 𝑥 + 𝑏𝑛] , more observations in each interval 

and hence more observations that get non-zero weight in the sum 𝐾 [ 𝑥−𝑋𝑖
𝑏𝑛

]. But, as you 

may recall from the analysis of the properties of the sample mean in basic statistics, 

using more observations in a sum will produce sums with less variability. 

 

Similarly, for a given value of 𝑏𝑛 (be it large or small), increasing the sample size 𝑛 will 

decrease 
1

𝑛𝑏𝑛
 and therefore reduce the variance. But this makes sense because having a 

greater total number of observations means that, on average, there will be more     

observations in each interval [𝑥 − 𝑏𝑛 , 𝑥 + 𝑏𝑛]. 

 

Also observe that the variance is increasing in ‖𝐾‖2
2
. This term will be rather small for 

flat kernels such as the Uniform kernel. Intuitively speaking, we might say that smooth 

and flat kernels will produce less volatile estimates in repeated sampling since in each 

sample all realizations are given roughly equal weight. 

 

1.4.2.3  Mean Squared Error(𝑴𝑺𝑬) 

As mentioned before for the histograms that the choice of the bandwidth 𝑏𝑛 is an  

important issue in nonparametric density estimation. The kernel density estimator is no 

exception. If we look at formula (1.10) and (1.12) we can see that we face the familiar 

trade-off between variance and bias. We would surely like to keep both variance and 

bias small but increasing 𝑏𝑛 will lower the variance while it will raise the bias 

(decreasing 𝑏𝑛 will do the opposite). Minimizing the 𝑀𝑆𝐸 which is the sum between 

variance and squared bias, represents a compromise between over and undersmoothing. 

Figure 1.3 puts variance, bias and 𝑀𝑆𝐸 onto one graph. 

http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#spmkernd:statprop:kernelbias
http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#spmkernd:statprop:kernelvar
http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#SPMkdemse
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Figure 1.3: Squared bias part (thin solid), variance part (thin dashed) and 

                    𝑀𝑆𝐸 (thick solid) for kernel density estimate.   

Moreover, looking at the 𝑀𝑆𝐸 provides a way of assessing whether the kernel density 

estimator is consistent. Convergence in mean square implies convergence in probability 

which is consistency. Equations (1.10) and (1.12) yield to: 

  𝑀𝑆𝐸{𝑓𝑛(𝑥)} =  𝐵𝑖𝑎𝑠2{𝑓𝑛(𝑥)} + 𝑉𝑎𝑟{𝑓𝑛(𝑥)} 

                       =  
𝑏𝑛

4

4
(𝑓′′(𝑥))2(𝜇2(𝐾))2 +

1

𝑛𝑏𝑛
‖𝐾‖2

2
 𝑓(𝑥) + 𝑜(𝑏𝑛

4) + 𝑜 (
1

𝑛𝑏𝑛
)    (1.13)      

If we look at equation (1.13) we can see that the 𝑀𝑆𝐸 of the kernel density estimator 

goes to zero as 𝑏𝑛 → 0 and 𝑛𝑏𝑛 → ∞. Hence, the kernel density estimator is indeed 

consistent. Unfortunately, by looking at equation (1.13) we can also observe that the 

𝑀𝑆𝐸 depends on 𝑓 and 𝑓 ′′, both functions being unknown in practice. If we derive the 

value of 𝑏𝑛 that is minimizing the 𝑀𝑆𝐸,call it(𝑏𝑛𝑜𝑝𝑡
), you will discover that both 𝑓 and 

𝑓 ′′ do not drop out in the process of deriving 𝑏𝑛𝑜𝑝𝑡
(𝑥). Consequently, 𝑏𝑛𝑜𝑝𝑡

(𝑥) is not 

applicable in practice unless we find a way of obtaining suitable substitutes for 𝑓(𝑥) 

and 𝑓 ′′(𝑥). Note further that 𝑏𝑛𝑜𝑝𝑡
(𝑥) depends on 𝑥 and is thus a local bandwidth [21].  

The Epanechnikov kernel is optimal in a mean square error sense, though the loss of  

efficiency is small for the kernels listed previously, and due to its convenient 

mathematical properties, the normal kernel is often used 𝐾(𝑥) = 𝜙(𝑥), where 𝜙 is the 

standard normal density function. 

 

http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#spmkernd:statprop:kernelbias
http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#spmkernd:statprop:kernelvar
http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#kernelmse
http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#kernelmse
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1.4.2.4  Mean Integrated Squared Error(𝑴𝑰𝑺𝑬) 

For the kernel density estimator the 𝑀𝐼𝑆𝐸 is given by 

 𝑀𝐼𝑆𝐸{𝑓𝑛(𝑥)} = ∫ 𝑀𝑆𝐸{𝑓𝑛(𝑥)}  𝑑𝑥 

                  = ∫ [
𝑏𝑛

4

4
{𝜇2(𝐾)}2{𝑓 ′′(𝑥)}2 +

1

𝑛𝑏𝑛
‖𝐾‖2

2
𝑓(𝑥) + 𝑜(𝑏𝑛

4) + 𝑜 (
1

𝑛𝑏𝑛
)] 𝑑𝑥 

                      = 
𝑏𝑛

4

4
{𝜇2(𝐾)}2 ∫{𝑓 ′′(𝑥)}2𝑑𝑥 +

1

𝑛𝑏𝑛
‖𝐾‖2

2
∫ 𝑓(𝑥)𝑑𝑥 +  𝑜(𝑏𝑛

4) + 𝑜 (
1

𝑛𝑏𝑛
) 

                      =
𝑏𝑛

4

4
{𝜇2(𝐾)}2‖𝑓 ′′‖2

2
+

1

𝑛𝑏𝑛
‖𝐾‖2

2
+ 𝑜(𝑏𝑛

4) + 𝑜 (
1

𝑛𝑏𝑛
)                 (1.14) 

Ignoring higher order terms an approximate formula for the 𝑀𝐼𝑆𝐸, called asymptotic 

mean integrated squared error(𝐴𝑀𝐼𝑆𝐸), can be given as 

 𝐴𝑀𝐼𝑆𝐸{𝑓𝑛(𝑥)} =
𝑏𝑛

4

4
{𝜇2(𝐾)}2‖𝑓 ′′‖2

2
+

1

𝑛𝑏𝑛
‖𝐾‖2

2
                       (1.15) 

In order to get an optimal bandwidth differentiate 𝐴𝑀𝐼𝑆𝐸 with respect to 𝑏𝑛 and solving 

the first order condition for 𝑏𝑛 yields the 𝐴𝑀𝐼𝑆𝐸 optimal bandwidth 

 

𝑏𝑛
3{𝜇2(𝐾)}2 ‖𝑓 ′′‖2

2
−

1

𝑛𝑏𝑛
2

‖𝐾‖2
2

= 0 

                                     𝑏𝑛
3{𝜇2(𝐾)}2 ‖𝑓 ′′‖2

2
= 

1

𝑛𝑏𝑛
2 ‖𝐾‖2

2
 

                                     𝑏𝑛
5𝑛{𝜇2(𝐾)}2 ‖𝑓 ′′‖2

2
= ‖𝐾‖2

2
 

                                     𝑏𝑛
5 = 

‖𝐾‖2
2

{𝜇2(𝐾)}2 ‖𝑓 ′′‖2
2

 𝑛
 

                                     𝑏𝑛𝑜𝑝𝑡
= (

‖𝐾‖2
2

{𝜇2(𝐾)}2 ‖𝑓 ′′‖2
2

 𝑛
)

1 5⁄

  ~ 𝑛−1 5⁄                        (1.16) 

Apparently, the problem of having to deal with unknown quantities has not been solved 

completely as 𝑏𝑛𝑜𝑝𝑡
 still depends on ‖𝑓 ′′‖2

2
. At least we can use 𝑏𝑛𝑜𝑝𝑡

 to get a further 

theoretical result regarding the statistical properties of the kernel density estimator. 

Inserting  𝑏𝑛𝑜𝑝𝑡
  into equation (1.15) gives 

 

 𝐴𝑀𝐼𝑆𝐸 {𝑓𝑏𝑛𝑜𝑝𝑡
} =  

5

4
(‖𝐾‖2

2
)

4 5⁄
(𝜇2(𝐾))‖𝑓 ′′‖2

2 5⁄
           (1.17) 

http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/spm/spmhtmlnode14.html#kernelamise
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Where we indicated that the terms proceeding 𝑛−4 5⁄  are constant with respect to 𝑛. 

Obviously, if we let the sample size get larger and larger 𝐴𝑀𝐼𝑆𝐸 is converging at the 

rate 𝑛−4 5⁄ . If we take the 𝐴𝑀𝐼𝑆𝐸 optimal bandwidth of the histogram and plug it into 

equation (1.15) we will find out that for the histogram, 𝐴𝑀𝐼𝑆𝐸 is converging at a slower 

rate of  𝑛−4 5⁄ . 

In chapter 2, we will define the following five goodness-of-fit tests, and study their 

asymptotic null distributions and their powers: Chi-square test, Kolmogorov-Smirnov 

(KS) test, Cramér-von Mises (CVM) test, Anderson-Darling (AD) test and Bickel- 

Rosenblatt (BR) test. 
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Chapter 2 

 

Goodness-of-Fit Tests 

 

2.1  Goodness-of-Fit (GOF) Problem 

The goodness-of-fit of a statistical model describes how well it fits a set of observations. 

Measures of goodness of fit typically summarize the discrepancy between observed 

values and the values expected under the model in question. Such measures can be used 

in statistical hypothesis testing, testing for normality of a set of data is important in 

some statistical inference procedures. 

Distribution assumptions are commonly made when conducting data analysis like the   

independent samples 𝑡-test, and the analysis of variance. Those distribution assumptions 

which include both statistical distributions and models specifications, are very often 

critical in statistical inferences. Failure of a distribution assumption or model 

specification may lead to invalid conclusions. Goodness-of-fit tests are used to examine 

how well a sample of data agrees with a given distribution of a population. The import- 

ance of goodness-of-fit test have also been emphasized by many authors, including 

Anderson and Darling [22], Stephens [23], D’Agostino and Stephens [24], Read and 

Cressie [25], Thode [26], Lehmann and Romano [27]. 

In hypothesis testing, two hypotheses are usually studied: the null hypothesis H0 and the 

alternative hypothesis H1. H0 is that a given random variable follows from a stated  

distribution with cumulative distribution function F0, the goodness-of-fit tests for testing 

H0 are then made based on measuring the correspondence of the sample data to the 

hypothesized distribution, D’Agostino and Stephens [24]. A primary goal of 

constructing goodness-of-fit test is to reduce the Type II error while controlling Type I 

error. 

In this thesis, the purpose is to test the hypothesis: 

𝐻0 ∶ 𝑓 =  𝑓0 

       Against several types of parametric and nonparametric alternatives at a specified 

significance level α, where 𝑓0 is completely specified and satisfied certain regularity 

conditions. 

       A number of goodness of fit tests exists for testing  𝐻0 ∶ 𝑓 =  𝑓0. 

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/Normality_test
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In this thesis, the following five tests will be studied and compared in terms of power 

using Monte Carlo simulation method: Chi-square test, Kolmogorov-Smirnov (KS) test, 

Cramér-von Mises (CVM) test, Anderson-Darling (AD) test and Bickel-Rosenblatt 

(BR) test. 

 

2.2    Chi-Square Test  

       The statistical procedure that is used to test whether an assumed distribution is 

correct is called goodness-of-fit test. A well-known goodness of fit test is called Pearson  

chi-square test. It was proposed by Pearson in 1900. The chi-square goodness-of-fit test, 

also referred to as the chi-square test for a single sample, is employed in a hypothesis 

testing situation consisting of a single sample. Based on some preexisting characteristic 

or measure of performance, each of 𝑛 observations that is randomly selected from a   

population consisting of 𝑁 observations is assigned to one of 𝐾 mutually exclusive 

categories [28, 29]. 

The chi-square goodness-of-fit test is based on the following assumptions:  

1. Categorical data are employed in the analysis. This assumption reflects the fact that 

the test data should represent frequencies for 𝑘 mutually exclusive categories; 

2. The data evaluated consist of a random sample of 𝑛 independent observations. This 

assumption reflects the facts that each observation can only be represented once in the 

data; and 

3. The expected frequency of each cell is 5 or greater. This is related to the normal 

approximation to the binomial distribution. 

Definition 1  

Chi-square goodness-of-fit is used to check whether or not an observed frequency 

distribution differs from a theoretical distribution [30, 31, 32].   

Chi-square test-statistic 

The value of the test-statistic is 

∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑘

𝑖=1

                                                               (2.1) 

Where 

http://en.wikipedia.org/wiki/Frequency_distribution
http://en.wikipedia.org/wiki/Frequency_distribution
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𝜒2 : Pearson's cumulative test statistics, which is asymptotically approaches a 𝜒2 

distribution. 

𝑂𝑖: is an observed frequency. 

𝐸𝑖 = 𝑛𝑝𝑖: is an expected frequency, asserted by the null hypothesis. 

      𝑘 = the number of cells. 

In the case of binomial distribution, the Chi-square test-statistic reduces to 

𝜒2 = ∑
(𝑂𝑖 − 𝑛𝑝𝑖)

2

𝑛𝑝𝑖

𝑘

𝑖=1

 

Where 𝑝𝑖 is the success probability in each trial 𝑖. 

Chi-Square-Goodness-of-Fit Test 

Theorem 1. Let 𝑋1,  𝑋2, … , 𝑋𝑘 are 𝑖𝑖𝑑 observations, and let 𝑂𝑖 be an observed frequency 

and 𝐸𝑖 be an expected frequency, 𝑖 = 1, 2, … , 𝑘 asserted by the null hypothesis. 

Consider the problem of testing [33]   

𝐻0 : 𝑂𝑖 = 𝐸𝑖  for all cells 

Versus 

𝐻1 : 𝑂𝑖 ≠ 𝐸𝑖  at least one cell 

at the level of significance 𝛼, reject 𝐻0 if  

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖
≥

𝑘

𝑖=1

𝜒2
1−𝛼,𝑘−1

 

Remark: The critical values of the Chi-square test are obtained from table A.1 in the 

appendix. 

Asymptotic Distribution of Pearson's Chi-square Statistic 

The following theorem tell us the asymptotic null distribution of the Pearson's Chi-

square statistic. 
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∑
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

𝑘

𝑖=1

 

Theorem 2.  Suppose 𝑋1,  𝑋2, … , 𝑋𝑘  are 𝑖𝑖𝑑 observations from some distribution 𝐹 in a 

finite-dimensional Euclidian space. consider testing  𝐻0 : 𝐹 = 𝐹0   (specified). Let 𝜒2 be 

the Pearson 𝜒2 statistic defined previously. Then 𝜒2
𝑑
→ 𝜒2

𝑘−1
 under 𝐻0  . 

This theorem shows that 𝜒2 converges in distribution to the chi-square distribution with 

𝑘 − 1 degrees of freedom. The idea of the proof of the theorem is to use the definition 

of the covariance and the projection matrices besides using the central limit theorem and 

the fact that 𝜒2
𝑘−1

 distribution is the distribution of the sum of the square of 𝑘 − 1 

independent standard normal random variables. 

 

2.3    Kolmogorov-Smirnov (KS) Test 

     Kolmogorov-Smirnov test is another non-parametric test which can be used to check 

whether a given sample come from a certain specified population. The name of   

Kolmogorov-Smirnov test is referred to Andrey Kolmogorov who proposed in 1933 the 

KS test-statistic defined below and it’s asymptotic distribution under the null 

hypothesis, and to Nikolai Smirnov who published the table of the distribution. The test 

is designed to test the goodness-of-fit of an empirical to a theoretical distribution 

function [34, 35]. The statistical model underlying the test assumes a continuous 

distribution so that the sample observations have zero probability of being equal. 

KS Test-Statistic 

Let 𝑋1,  𝑋2, … , 𝑋𝑛 be a sample of independent observations in ascending order all come 

from the same continuous population with cumulative distribution function 𝐹(𝑥). Then 

the KS test-statistic is defined by:  

𝐷𝑛 = sup 
𝑥

|𝐹𝑛(𝑥) − 𝐹(𝑥)|                                                  (2.2) 

Where, 𝐹𝑛 is the empirical distribution function of the sample, and 𝐹(𝑥) is the   

cumulative distribution function [36, 37, 38]. 

By using the definition of 𝐹𝑛(𝑥) = 
𝑖

𝑛
 , 𝑖 = 0, 1, … , 𝑛, We can get 

                                          𝐷𝑛 = sup 
𝑥

|𝐹𝑛(𝑥) − 𝐹(𝑥)| 

                                          𝐷𝑛 = max
𝑖

 |
𝑖

𝑛
− 𝐹(𝑥𝑖)| 
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                                          𝐷𝑛 = 1

𝑛
 max

𝑖

 |𝑖 − 𝑛𝐹(𝑥𝑖)| 

                                𝐷𝑛 = 1

𝑛
 max

𝑖

 |𝐷𝑖|                                                                 (2.3) 

The largest absolute cumulative differences divided by 𝑛. 

Kolmogorov-Smirnov Goodness-of-Fit Test 

Theorem 3.  Let 𝑋1,  𝑋2, … , 𝑋𝑛 be a sample of independent observations in ascending 

order all come from the same continuous population with cumulative distribution 

function 𝐹(𝑥). Consider the problem of testing  

𝐻0 : 𝐹 = 𝐹0 

Versus 

𝐻1 : 𝐹 ≠ 𝐹0 

Where 𝐹0 is some specified distribution function, 

Then, reject 𝐻0  if the test statistic 𝐷𝑛 exceeds the critical value. 

Remark: The critical values of the KS test are obtained from table A.2 in the appendix. 

Asymptotic Null Distribution of Kolmogorov-Smirnov Statistic 

Theorem 4.  Let 𝑋1,  𝑋2, … , 𝑋𝑛 be 𝑖𝑖𝑑 random variables with c.d.f. 𝐹, then under the 

null hypothesis   

 √𝑛 𝐷𝑛

𝐷
→ sup

𝑡
|𝐵(𝐹(𝑡)|   as  𝑛 → ∞                              (2.4) 

Where 𝐵(𝑡) is the Brownian bridge which is defined on [0,1]  and is given by: 

 𝐵𝑡 = ∑  𝑍𝑘 

∞

𝑘=1

√2 𝑠𝑖𝑛(𝑘𝜋𝑡)

𝑘𝜋
                                             (2.5) 

Where 𝑍1,  𝑍2, … are 𝑖𝑖𝑑 standard normal random variables.  

In other words, under the null hypothesis √𝑛 𝐷𝑛 converges in distribution to the  

Kolmogorov distribution [39, 40]. 

Remark: The asymptotic null distribution of the Kolmogorov-Smirnov test statistic   

does not depend on the cumulative distribution function 𝐹(𝑥). 



17 

 

Asymptotic Power of the Kolmogorov-Smirnov Test 

Theorem 5.  Let 𝑋1,  𝑋2, … , 𝑋𝑛 be 𝑖𝑖𝑑 random variables with c.d.f. 𝐹 and consider the 

problem of testing  

𝐻0 : 𝐹 = 𝐹0 

Versus 

𝐻1 : 𝐹 ≠ 𝐹0 

Then the power of the Kolmogorov-Smirnov test tends to one uniformly over all   

alternatives 𝐹 satisfying √𝑛 𝑑𝑘(𝐹, 𝐹0) ≥ ∆𝑛 if  ∆𝑛→ ∞ as 𝑛 → ∞ 

Where 𝑑𝑘 is the Kolmogorov-Smirnov distance 

     𝑑𝑘(𝐹, 𝐹0) = sup 
𝑥

|𝐹(𝑥) − 𝐹0(𝑥)|                                    (2.6) 

 

2.4   Anderson-Darling (AD) Test 

       Anderson-Darling (AD) test was proposed by Theodore Anderson and Donald 

Darling in 1954. This test is considered as an improvement of the Kolmogorov-Smirnov 

test. The Anderson-Darling test is used to check whether or not a sample of data come 

from a certain population with specific distribution function [41, 42]. Like the KS test, 

the Anderson-Darling test is based on the empirical distribution function (EDF). The 

Anderson-Darling test is known as a "quadratic" test because it is based on the weighted 

square of the distance between the empirical function and hypothesized cumulative 

distribution function. 

Definition 2 

Anderson-Darling (AD) test is used to test if a sample of data follows a population with 

a specified distribution. 

Anderson-Darling(AD) Test-Statistic 

Let 𝑋1,  𝑋2, … , 𝑋𝑛 be a sample of independent observations in ascending order selected 

from the same continuous population with cumulative distribution function 𝐹(𝑥). Then 

the AD test-statistic is defined as follows: 

𝐴𝑛
2 =  𝑛 ∫ (𝐹𝑛(𝑥) − 𝐹0(𝑥))2 𝑤(𝐹0(𝑥))𝑑𝐹0(𝑥)

∞

−∞
                  (2.7) 

Where, 

𝑤 is a non-negative weight function , 𝑤(𝑥) = [𝐹0(𝑥)(1 − 𝐹0(𝑥)]−1 
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And  

𝐹𝑛 is the empirical distribution function of the sample, and 𝐹(𝑥) is the cumulative  

distribution function [43, 44, 45, 46].  

Note that 𝐹𝑛(𝑥) = 
𝑖

𝑛
 , 𝑖 = 1, 2, . . . , 𝑛 is a piecewise constant(with the order statistics 

corresponding to the discontinuity points) and 𝐹0(𝑥) is a non-decreasing function. For 

convenience define 𝑍𝑖 = 𝐹0(𝑥𝑖), and let 𝑍(𝑖) denote the corresponding order statistics 

and since 𝐹0 is monotone 𝑍(𝑖) = 𝐹0(𝑥(𝑖)) and the order is not disorganized, we can      

therefore write equation (2.7) as            

𝐴𝑛
2 = −𝑛 − 1

𝑛
∑ {(2𝑖 − 1)𝑙𝑛(𝑍𝑖) + (2𝑛 + 1 − 2𝑖)𝑙𝑛(1 − 𝑍𝑖)}𝑛

𝑖=1          (2.8) 

Theorem 6. Let 𝑋1,  𝑋2, … , 𝑋𝑛 be a sample of independent observations in ascending 

order selected from the same continuous population with cumulative distribution 

function 𝐹(𝑥). Suppose that we need to test 

𝐻0 ∶  𝐹 = 𝐹0 

Versus 

𝐻1 ∶  𝐹 ≠ 𝐹0 

Where, 𝐹0 is some specified distribution function, 

then, reject 𝐻0  if the modified test statistic 𝐴∗ greater than the critical value. 

Where, the modified test statistic can be evaluated as follows 

A∗ = A𝑛
2(1+ 0.75

𝑛
+ 2.25

𝑛2 )                                                (2.9) 

According to D'Agostino [24], formula (2.9) is used if the parameters of the null distrib- 

ution are unknown and need to be estimated from the sample data. Moreover, when the 

sample size 𝑛 is large enough then the modified test statistic is close to the original test 

statistic.  

Remark: The critical values of the AD test are obtained from tables A.3.1 and A.3.2  in 

the appendix. 

Asymptotic Null Distribution of Anderson-Darling Test-Statistic 

Theorem 7.  Let 𝑋1,  𝑋2, … , 𝑋𝑛 be an 𝑖𝑖𝑑 random variables in ascending order with c.d.f. 

𝐹, then 

Under the null hypothesis [47, 48]   
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                                     as 𝑛 → ∞ ,        𝑛 𝐴𝑛
2 𝐷

→ ∫
𝐵0

2(𝑡)

𝑡(1−𝑡)

1

0
 𝑑𝑡                               (2.10)  

Where 𝐵0(𝑡) is the Brownian bridge which is defined on [0,1] and is given by equation 

(2.5). 

We can summarize the proof of this theorem as follows 

 Let 𝑢 = 𝐹0(𝑥),  𝑢𝑖 = 𝐹0(𝑥𝑖), and 𝑢(𝑖) = 𝐹0(𝑥(𝑖)), 𝑖 = 1, 2, . . . , 𝑛. Let 𝐺𝑛(𝑢) be the 

empirical distribution function of 𝑢1, … , 𝑢𝑛; that is, 

 𝐺𝑛(𝑢) =
𝑘

𝑛
, 0 ≤ 𝑢 ≤ 1 

If 𝑘 of  𝑢1, … , 𝑢𝑛 are ≤ 𝑢. Thus 

                                                    𝐺𝑛[𝐹0(𝑥] = 𝐹𝑛
0(𝑥)   

And                                    𝐴𝑛
2 =  𝑛 ∫ (𝐺𝑛(𝑢) − 𝑢)2 𝜓(𝑢)𝑑𝑢

1

0
,                                (2.11)   

When the null hypothesis 𝐹(𝑥) = 𝐹0(𝑥) is true. For every 𝑢 (0 ≤ 𝑢 ≤ 1) 

                                           𝑌𝑛(𝑢) = √𝑛[𝐺𝑛(𝑢) − 𝑢]                                                 (2.12)   

is a random variable, and the set of these may be considered as a stochastic process with 

parameter 𝑢. Thus 

                                           𝑃{𝐴𝑛
2 ≤ 𝑧} = 𝑃 {∫ 𝑌𝑛

2(𝑢)𝜓(𝑢)𝑑𝑢 ≤ 𝑧
1

0
} = 𝐴𝑛(𝑧),    (2.13)   

Say. for a fixed set  𝑢1, … , 𝑢𝑘  the 𝑘-variate distribution of 𝑌𝑛( 𝑢1), … , 𝑌𝑛(𝑢𝑘)  

approaches a multivariate normal distribution as 𝑛 → ∞  with mean and covariance 

function 

                           𝐸[𝑌𝑛(𝑢)] = 0, 𝐸[𝑌𝑛(𝑢)𝑌𝑛(𝑣)] = 𝑚𝑖𝑛(𝑢, 𝑣) − 𝑢𝑣. 

The limiting process of {𝑌𝑛(𝑢)} is a Gaussian process 𝑦(𝑢), 0 ≤ 𝑢 ≤ 1, and  

𝐸[𝑦(𝑢)] = 0 and 𝐸[𝑦(𝑢)𝑦(𝑣)] = 𝑚𝑖𝑛(𝑢, 𝑣) − 𝑢𝑣.  Let 

                                           𝑎(𝑧) = 𝑃 {∫ 𝑦2(𝑢)𝜓(𝑢)𝑑𝑢 ≤ 𝑧
1

0
}                                  (2.14) 

Then, 𝐴𝑛(𝑧) → 𝑎(𝑧), 0 ≤ 𝑧 < ∞. The mathematical problem for the Anderson-Darling 

statistic is to find the distribution function 𝑎(𝑧) when 𝜓(𝑢) = 
1

𝑢(1−𝑢)
 . 

Then, we follow the procedure to find the distribution of  ∫ 𝑧2(𝑢)𝑑𝑢
1

0
 , where 𝑧(𝑢) is a 

Gaussian stochastic process, and we obtain the characteristic function of the limiting 

distribution of 𝐴𝑛
2
 which is  
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√
√2𝑖𝑡

𝑠𝑖𝑛(√2𝑖𝑡)
 

Asymptotic Power of the Anderson-Darling Test 

Theorem 8.  Let 𝑋1,  𝑋2, … , 𝑋𝑛 be an 𝑖𝑖𝑑 random variables in ascending order with c.d.f. 

𝐹. consider the problem of testing      

𝐻0 ∶ 𝐹 = 𝐹0 

Versus 

𝐻1 ∶ 𝐹 ≠ 𝐹0 

Then, the statistic 𝐴𝑛
2
 will detect alternatives which produce observations towards 0 or 

1. 

We can summarize the proof as follows, since 𝐴𝑛
2
 is a quadratic statistic and gives 

more weight to the tails, then it's good at detecting irregularity in the tails of the 

distribution. When the basic problem is to test an 𝑋-values for a distribution 𝐹(𝑥) so 

that the observation 𝑢𝑖 where 0 ≤ 𝑢𝑖 ≤ 1 have been obtained by probability integral 

transformation. 𝐴𝑛
2
 will detect shifts in the mean of hypothesized distribution from the 

true mean. In addition,  𝐴𝑛
2
 is powerful test for tests 𝐹0 departs from the true 

distribution in the tails, especially when there appears to be too many outlying 𝑋-values 

for the 𝐹0 as specified. In goodness-of-fit work, departure in the tails is often important 

to detect, and 𝐴𝑛
2
 is the recommended statistic. The statistic will also detect a shift of 

values towards 0 or 1.    

Remark: 

1) 𝐴𝑛
2
 can be expected to be powerful in detecting alternatives which have high     

probability of giving observations in the tails. 

2) Other statistics of the EDF class are more suitable for alternatives which produce                                  

a cluster near 0.5, Stephens [23]. 

 

Cramér von Mises (CVM) Test 

Definition 3 

Cramér von Mises (CVM) test is a special case of Anderson-Darling test when the  

weighting function 𝑤(𝑥) = 1. 
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The Cramér–von Mises test statistic is defined as follows [49, 50]: 

     𝑤2 =  𝑛 ∫ (𝐹𝑛(𝑥) − 𝐹0(𝑥))2  𝑑𝐹0(𝑥)
∞

−∞
                               (2.15) 

 

2.5   Bickel-Rosenblatt (BR) Test 

      Bickel-Rosenblatt test is a member of the group of goodness-of-fit tests and was 

proposed by Peter Bickel and Murray Rosenblatt in(1973) and (1975). This test depends 

on the kernel density estimate 𝑓𝑛(𝑥) of a probability density function 𝑓(𝑥) which was 

defined  in chapter one in this thesis. The Bickel-Rosenblatt test depends on the distance 

between the kernel density estimate 𝑓𝑛(𝑥) and the expectation of the kernel density  

estimate 𝐸0𝑓𝑛(𝑥) under 𝑓0. 

      In the Bickel-Rosenblatt test, the value of test statistics depends on the specified 

distribution with probability density function that is being tested, kernel function, the 

smoothing parameter 𝑏𝑛, the weighted function 𝑎(𝑥) in addition to the sample size 𝑛. 

The computed value of Bickel-Rosenblatt test-statistics is compared with 𝜇(𝐾, 𝑎) +

𝑧𝛼𝑏𝑛

1
2⁄  𝜎(𝐾, 𝑎) and null hypothesis is rejected if test statistic is greater than this value 

[51]. 

Definition 4 

Bickel-Rosenblatt test is used to verify if a sample of data follows a population with a 

specified continuous probability density function 𝑓. 

Bickel-Rosenblatt(BR)Test-Statistic 

Let 𝑋1,  𝑋2, … , 𝑋𝑛 be 𝑖𝑖𝑑 random variables with a specified continuous probability  

density function 𝑓(𝑥). Bickel-Rosenblatt (BR) test-statistic is defined as follows: 

𝑇𝑛 = 𝑛𝑏𝑛 ∫ (𝑓𝑛(𝑥) −  𝐸0𝑓𝑛(𝑥))
2

𝑎(𝑥)𝑑𝑥
∞

−∞
                     (2.16) 

Where 𝑎 is a weight function on ℝ and 𝑓𝑛(𝑥) is the kernel density estimator as defined 

in chapter one [52]. 

Bickel-Rosenblatt Goodness-of-Fit Test 

Theorem 9. [53]  Let 𝑋1,  𝑋2, … , 𝑋𝑛 be 𝑖𝑖𝑑 random variables with a specified continuous 

probability density function 𝑓(𝑥). Consider the problem of testing 

𝐻0 ∶ 𝑓 = 𝑓0 

Versus 
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𝐻1 ∶ 𝑓 ≠ 𝑓0 

where 𝑓0 is completely specified at a specified significance level 𝛼. Then, 

Reject 𝐻0 if 

                                        𝑇𝑛  ≥ 𝜇(𝐾, 𝑎) + 𝑧𝛼𝑏𝑛

1
2⁄  𝜎(𝐾, 𝑎) = 𝑑𝛼                             (2.17)   

Where   

                                        𝜇(𝐾, 𝑎) = 𝐼(𝐾) ∫ 𝑓0(𝑥) 𝑎(𝑥)𝑑𝑥 ,
∞

−∞
                                       (2.18) 

                                        𝜎2(𝐾, 𝑎) = 2 𝐽(𝐾) ∫ 𝑓0
2(𝑥)𝑎2(𝑥)𝑑𝑥

∞

−∞
                            (2.19) 

                    𝐼(𝐾) = ∫ 𝐾2(𝑥) 𝑑𝑥
∞

−∞
                                                        (2.20) 

  𝐽(𝐾) = ∫ [∫ 𝐾(𝑥 + 𝑦)𝐾(𝑥)𝑑𝑥
∞

−∞
]

2∞

−∞
𝑑𝑦                           (2.21) 

also 𝑧𝛼 is defined by : 

                                       Φ(𝑧𝛼) = 1 − 𝛼 , Φ(z) =
1

√2𝜋
∫ exp(−𝑥2 2⁄ )  𝑑𝑥 

𝑧

−∞
        (2.22) 

To test 𝐻0 ∶ 𝑓 = 𝑓0 it is natural to compute 𝑀̃𝑛 with 𝑓 = 𝑓0 and reject for large values 

of the statistic. 

Where                            𝑀̃𝑛 = 𝑚𝑎𝑥{|𝑌𝑛(𝑡)|: 0 ≦ 𝑡 ≦ 1}                                          (2.23) 

And                                𝑌𝑛(𝑡) = 𝑏𝑛
−

1

2 𝑓−
1

2(𝑡) ∫ 𝐾 (
𝑡−𝑠

𝑏𝑛
) 𝑑𝑍𝑛

0(𝐹(𝑠))
∞

−∞
.                    (2.24) 

Where, 𝑍𝑛
0(𝑡) = 𝑛

1

2(𝐹𝑛
∗(𝑡) − 𝑡),  0 ≦ 𝑡 ≦ 1 and 𝐹𝑛

∗ = 𝐹𝑛(𝐹−1) is the empirical distrib-

ution of 𝐹(𝑋1), … , 𝐹(𝑋𝑛). 

Now, in order to understand the asymptotic distribution of the Bickel-Rosenblatt stati- 

stic, consider the following regularity conditions (a-𝑑́) that are defined as follows [53, 

54]:  

a) 𝑓0 is bounded, either positive on ℝ or positive only on some [𝑐0, 𝑑0], and continuous 

with a bounded continuous derivative in the interior of it's domain of positivity; 

b) 𝑎(𝑥) is piecewise continuous, bounded and integrable on ℝ ; 

c)  ∫ 𝐾(𝑥)𝑑𝑥 = 1
∞

−∞
, ∫ 𝑥2𝐾(𝑥)𝑑𝑥 < ∞

∞

−∞
, ∫ 𝐾2(𝑥) < ∞ ; 

∞

−∞
 

and either  
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d) 𝑏𝑛 = 𝑛−𝛿 for some δ ∈ (0, 1 4⁄ ) and 𝐾 is continuous on ℝ  satisfying 

             ∫ |𝐾́(𝑥)|
2

𝑑𝑥 < ∞ ;  ∫ |𝑥|3/2 |𝐾́(𝑥)|
2

(𝑙𝑜𝑔(|𝑥|)
1

2⁄ ) 𝑑𝑥 < ∞
∞

3

∞

−∞
 ,    

or 

𝑑́) 𝑏𝑛 = 𝑛−𝛿 for some 𝛿 ∈ (0,1) and 𝐾 is bounded on some [𝐶𝑘, 𝐷𝑘] and 0 outside. 

Asymptotic Null Distribution of Bickel-Rosenblatt Test-Statistic 

Theorem 10. [54]  Let 𝑋1,  𝑋2, … , 𝑋𝑛 be 𝑖𝑖𝑑 random variables with a specified conti- 

nuous probability density function 𝑓(𝑥). 

When 𝛼-level test is asymptotic then under the null hypothesis   

𝑇𝑛 is asymptotically normal with mean 𝜇(𝐾, 𝑎) and variance 𝑏𝑛𝜎2(𝐾, 𝑎), where 

𝜇(𝐾, 𝑎) and 𝜎2(𝐾, 𝑎)are defined previously in equations (2.18) and (2.19). 

The proof of this theorem is not direct and several theorems and results are needed, but 

we can summarize the proof as follows: 

First, the technique that used is to consider the BR statistic as functionals of certain 

stochastic process on the interval [0, 1]. 

According to theorem 3.2. in the paper of Bickel and Rosenblatt [54], the BR statistic is 

asymptotically unbiased for such alternatives. The reason is that 𝑠(𝜂) ≧ 2 with    

𝑠(𝜂) > 2 unless 𝜂 = 0 and family of distributions 𝑒𝜃𝑒−𝑥
 is an exponential family in 𝜃. 

Where  𝑠(𝜂) = ∫ {𝑒𝑥𝑝[𝜂(𝑥)/(𝑓0(𝑥)𝜆(𝐾))
1
2] + 𝑒𝑥𝑝[−𝜂(𝑥)(𝑓0(𝑥)𝜆(𝐾))

1
2]}

1

0
𝑑𝑥     (2.25) 

And      𝜆(𝐾) = ∫ 𝐾2(𝑥) 𝑑𝑥
∞

−∞
 , and 𝜂 must be continuous on [0,1]. 

Unfortunately these tests are asymptotically inadmissible(have pitman efficiency 0) 

when compared to the test based on the quadratic functional that presented below. The 

reason is that alternatives there may be permitted to come in to 𝑓0 at rate  𝑛−1
2

+𝛿
4⁄  rather 

than 𝑛−1
2

+𝛿
2⁄ . However,  this test for moderate sample and some alternatives may well 

preferable. 

In addition, we are interested in the behavior of the quadratic functionals in the same 

paper [54]:  

                 𝑇𝑛 = 𝑛𝑏𝑛 ∫ (𝑓𝑛(𝑥) −  𝐸0𝑓𝑛(𝑥))
2

𝑎(𝑥)𝑑𝑥
∞

−∞
= ∫ 𝐿𝑛

2(𝑥)𝑎(𝑥)𝑑𝑥
∞

−∞
,         (2.26) 
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Where 𝐿𝑛 = 𝑓
1
2 𝑌𝑛 and 𝑌𝑛 is some Gaussian process and 𝑎 is integrable. If the regularity 

conditions (a-𝑑́) hold and (say) 𝑏𝑛 = 𝑛−𝛿 ,  𝛿 <
1

4
 , then. 

                                     𝑎𝑛 = |𝑇𝑛 − ∫ (𝐿0
𝑛(𝑥))2𝑎(𝑥)𝑑𝑥

∞

−∞
| = 𝑜𝑝( 𝑏𝑛

1

2)                      (2.27) 

Means that 
𝑎𝑛

‖𝑏𝑛

1
2‖

  converges in probability to zero. 

Moreover, if 𝑎 is bounded as well as integrable and 𝐾 and 𝑓 are bounded, we can  

replace 𝐿𝑛
0  by 𝐿𝑛

1 = 𝑓1

1

2 𝑌𝑛 and hence by 𝐿𝑛
2 = 𝑓2

1

2 𝑌𝑛 , we get 

                                       |𝑇𝑛 − ∫ (𝐿𝑛
2 (𝑥))2𝑎(𝑥)𝑑𝑥

∞

−∞
| = 𝑜𝑝(𝑏

1

2𝑛).                            (2.28) 

Theorem 11. [54]   Suppose that 𝑍𝑛(𝑓0) is defined as follows: 

 𝑍𝑛(𝑓0) =  𝑛
𝛿

2⁄  𝜎0
−1 {𝑛1−𝛿 ∫(𝑓𝑛(𝑥) −  𝐸0𝑓𝑛(𝑥))

2
𝑎(𝑥)𝑑𝑥 −  𝜇0}           (2.29) 

Where 𝜇0 and 𝜎0 denote 𝜇(𝐾, 𝑎) and 𝜎(𝐾, 𝑎) respectively defined in equations (2.18) 

and (2.19). 

Then, the distribution of  𝑍𝑛(𝑓0) is asymptotically 𝑁(0,1) under assumptions (𝑎) − (𝑑). 

Proof.   

The proof of this theorem follows directly from theorem 10. By theorem 10 since 𝑇𝑛 is 

asymptotically normal with mean 𝜇0 and variance 𝑏𝑛𝜎0
2 and by using transformation 

we get 

                    𝑍𝑛(𝑓0) = 
𝑇𝑛−𝜇0 

√𝑏𝑛 𝜎0
  

                    𝑍𝑛(𝑓0)√𝑏𝑛 𝜎0 = 𝑇𝑛 − 𝜇0  

                    𝑍𝑛(𝑓0) = 𝑏𝑛
−

1

2 𝜎0

−1

{𝑛𝑏𝑛 ∫ (𝑓𝑛(𝑥) −  𝐸0𝑓𝑛(𝑥))
2

𝑎(𝑥)𝑑𝑥
∞

−∞
−  𝜇0}      (2.30) 

Now, under assumptions (𝑎) − (𝑑), substitute 𝑏𝑛 = 𝑛−𝛿 for some δ ∈ (0, 1 4⁄ ) in 

equation(2.30) to get 

                    𝑍𝑛(𝑓0) = (𝑛−𝛿)−
1

2 𝜎0

−1

{𝑛 𝑛−𝛿 ∫ (𝑓𝑛(𝑥) −  𝐸0𝑓𝑛(𝑥))
2

𝑎(𝑥)𝑑𝑥
∞

−∞
−  𝜇0}  

                    𝑍𝑛(𝑓0) = 𝑛
𝛿

2⁄  𝜎0

−1

{ 𝑛1−𝛿 ∫ (𝑓𝑛(𝑥) −  𝐸0𝑓𝑛(𝑥))
2

𝑎(𝑥)𝑑𝑥
∞

−∞
−  𝜇0}     (2.31) 
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Therefore, 𝑍𝑛(𝑓0) is asymptotically 𝑁(0,1). 

 

The Asymptotic Power of the Bickel-Rosenblatt Test 

The asymptotic power of the Bickel-Rosenblatt test is a decreasing function of 𝐽(𝐾) in 

equation (2.21) for any fixed choice of (𝑓0 , 𝑔, 𝑎 > 0, 𝛿 ) ,where 𝑔 is an arbitrary 

alternative. 

Since 𝑍𝑛(𝑓0) is asymptotically 𝑁(0,1) under 𝑔, it follows that the power of the BR test 

against an arbitrary 𝑔 tends to 1. 

The following theorem illustrates the power of the BR-test against an arbitrary alterna- 

tives to 𝐻: 𝑓 = 𝑓0.  

Theorem 12. [54]   Let 𝑔𝑛(𝑥) be an alternative to 𝐻 defined as follows: 

𝑔𝑛(𝑥) =  𝑓0(𝑥) + 𝑛−𝛽𝑤(𝑥) + 𝑜(𝑛−𝛽), 𝛽 > 0                  (2.32) 

Then, under assumptions (𝑎) − (𝑑) and for each 𝛿 ∈ (0, 1 4⁄ ) the power of the BR test  

against equation (2.32) is : 

       𝑙𝑖𝑚𝑛→∞ 𝜋𝑛(𝑔𝑛) = {

𝛼, 𝑖𝑓  𝛽 > (2 − 𝛿) 4⁄ ,                              

𝛷(𝑙), 𝑖𝑓  𝛽 = (2 − 𝛿) 4⁄ ,                       

1, 𝑖𝑓  0 < 𝛽 < (2 − 𝛿) 4⁄ ,                      

    (2.33) 

Where 

𝑙 = 𝜎0
−1 ∫ 𝑤2(𝑥)𝑎(𝑥) 𝑑𝑥 − 𝑧𝛼                                            (2.34) 

Remark: under assumptions (𝑎) − (𝑐)and (𝑑́), equation (2.33) holds for each 𝛿 ∈

(0, 2 3⁄ ).  

The proof of this theorem is straightforward according to Bickel and Rosenblatt [54]. 

Since the test rejects 𝐻0 when 𝑇𝑛 ≥ 𝜇(𝐾, 𝑎) + 𝑧𝛼𝑏𝑛

1
2⁄  𝜎(𝐾, 𝑎) is locally strictly     

unbiased if 𝑎(𝑥) > 0 for all 𝑥. Also as before asymptotic lead to choosing 𝛿 as large as 

possible and again this conclusion is shaken if one uses better approximation to the 

asymptotic mean. It is also clear for a fixed 𝛿 we can get power.   

In addition, According to Ghosh and Huang [53], when 𝛼 > 0 we can conclude: first, 

the asymptotic power of the BR test against equation (2.32) is a decreasing function of 

𝐽(𝐾), second as 𝛿 gets smaller (from 1 4⁄  or 2 3⁄  to 0), the power improves. This 

feature, incidentally, conflicts with the fact that the asymptotic normality of 𝑇𝑛 under 𝐻 

improves as 𝛿 gets larger (from 0 to 1 4⁄  or 1).  
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In chapter 3, we will conduct Monte Carlo simulation to compare the power of 

Goodness-of-fit-tests: Chi-square test, Kolmogorov-Smirnov (KS) test, Cramér-von 

Mises (CVM) test, Anderson-Darling (AD) test and Bickel-Rosenblatt (BR) test. 

Chapter 3 

 

Results and Analysis 

 

3.1 Simulation Methodology 

In this study, Monte Carlo procedures were used to evaluate the power of χ2, KS, AD, 

CVM and BR tests in testing if a random sample of 𝑛 independent observation come 

from a population with specified distribution. 

The null and alternative hypotheses are: 

𝐻0: The data comes from a population with a specified distribution 

𝐻1: The data does not come from a population with a specified distribution 

Two levels of significance, α = 0.05 and 0.1 and different sample sizes were considered 

to investigate the effect of the significance level and the sample sizes on the power of 

the tests. The critical values for each test vary with the sample size, Yazici and Yolacan 

[55]. Therefore, first, choose critical values for each test statistic under the null     

distribution and sample sizes 𝑛 =10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 1000 and 

2000. The critical values were obtained based on 50,000 simulated samples from a 

standard normal distribution, uniform distribution and 𝑇 distribution [56, 57, 58]. 

The KS, CVM and AD tests are right-tailed test, so their critical values are the 100(1-

α)th percentiles of the empirical distribution of the test statistics and it is available in the 

literature. The critical values of KS and CVM tests depend on the sample sizes 𝑛 and 

the significance levels α, but the critical values of AD test depends on the distribution 

being tested, in addition to the sample sizes 𝑛 and the significance levels α and the 

critical values of χ2 test depend on the number of intervals when we grouped the data. 

For the BR test, there is a formula for calculating the critical values. These critical 

values depend on the sample size 𝑛, kernel function, bandwidth 𝑏𝑛 and the probability 

density function of the distribution being tested. 

In order to obtain the simulated power of the five Goodness-of-fit tests at 𝛼 = 0.05 and 

𝛼 = 0.1 and for each sample size 𝑛, we can follow the following procedure: 
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  a)  Generate 10000 samples from each of the following: 

1) Symmetric parametric alternative distributions: 𝑁(0,1), 𝑈(0,1), 𝑈(0,2), 𝑡(7), 

𝑡(15), 𝑡(4). 

2) Skewed parametric alternative distributions: 𝐸𝑥𝑝(0.9), 𝐸𝑥𝑝(5), 𝐺amma(4,5),  

χ2(4), 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(10,2). 

 

3) Family of non-parametric alternatives distributions A(θ), B(θ), C(θ), θ = 1.5, 2 

which are presented in section 3.2. 

 b) Substitute these generated samples in each formula of goodness-of-fit test-statistics   

        under the distribution being tested and then obtain the values of test-statistics for  

        each sample.  

 

 c)  Compare these values of test-statistics with corresponding critical values by coun-  

       ting the number of values of test-statistics that exceed the corresponding critical  

       values, then the simulated power will be this number divided by the number of 

       generated samples.   

  

 

           

  

            

                                   

  

     

. 
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3.2 Results and Discussion 

 

      The main purpose of this thesis is to use Monte Carlo simulation method to compare  

the power of several goodness-of-fit tests based on the empirical distribution function 

and the kernel density function under parametric and nonparametric alternatives. The  

results were organized in three parts: 

Part 1: Symmetric parametric null hypotheses vs. symmetric parametric alternative   

hypotheses. 

Part 2: Symmetric parametric null hypotheses vs. skewed parametric alternative  hypot-

heses. 

Part 3: Symmetric parametric null hypothesis vs. nonparametric alternative hypotheses. 

 

The Non-parametric alternative distributions that were used by Stephen are as follows: 

                            𝐴() =  (1 − 𝑥)𝜃−1, 0 ≤ 𝑥 ≤  1, 𝜃 ∈ ℛ  

  𝐵(𝜃) =  {
𝐵1(𝜃) =  𝜃(2𝑥)𝜃−1           ,      0 ≤ 𝑥 < 1 2⁄

𝐵2(𝜃) =  𝜃(2 − 2𝑥)𝜃−1   , 1 2⁄  ≤ 𝑥 ≤ 1
      , 𝜃 ∈ ℛ  

  

𝐶(𝜃) =  {
 𝐶1(𝜃) =  𝜃(1 − 2𝑥)𝜃−1       , 0 ≤ 𝑥 < 1 2⁄

𝐶2(𝜃) =  𝜃(2𝑥 − 1)𝜃−1      ,       1 2⁄  ≤ 𝑥 ≤ 1
      , 𝜃 ∈ ℛ  

Stephen’s used the following: 

𝜃 = 3/2, 2
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3.2.1  Comparison of power of GOF tests for testing symmetric distributions 

          against symmetric parametric alternative distributions. 

  

Case 1: Testing 𝑵(𝟎. 𝟓, 𝟏) against 𝑵(𝟎, 𝟏) 

Table 1(a): Critical values, CV(α, 𝑛) of the tests(𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under normal 

distribution tests with different sample sizes 𝑛 and  α = 0.05. 

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.9431867 1.58428 2.492 0.217 0.294 16.919 9.488 20 

0.9101042 1.527956 2.492 0.218 0.2417 16.919 9.488 30 

0.8729264 1.464661 2.492 0.220 0.189 16.919 9.488 50 

0.8295028 1.390732 2.492 0.220 0.1360 16.919 9.488 100 

0.7929881 1.328565 2.492 0.220 0.0961 16.919 9.488 200 

0.7743844 1.296892 2.492 0.220 0.0785 16.919 9.488 300 

0.762283 1.276289 2.492 0.220 0.0680 16.919 9.488 400 

0.7534778 1.261298 2.492 0.220 0.0608 16.919 9.488 500 

 

 

  Figure 1(a): The graph of the null distribution 𝐻0: 𝑓 = 𝑁(0.5,1) and the alternative 

                       distribution 𝐻1: 𝑓 = 𝑁(0,1)  
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Table 1(b): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis (𝐻0) at 

𝛼 = 0.05.  

Data were generated from the Alternative Hypothesis with different sample sizes (𝑛) and 

number of intervals (𝐾) and different kernel functions(Uniform, Epanchnikov) for 10000 

simulations. 

   𝐻0 : 𝑁𝑜𝑟𝑚𝑎𝑙(0.5,1)  

𝐻1 : 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.1509 0.0697 0.5868 0.8195 0.8825 - - 20 

0.2185 0.1008 0.7599 0.9161 0.9860 - 0.8887 30 

0.3390 0.1670 0.9323 0.9828 1.0000 0.8970 0.9978 50 

0.6113 0.3542 0.9983 0.9997 1.0000 1.0000 1.0000 100 

0.9104 0.7056 1.0000 1.0000 1.0000 1.0000 1.0000 200 

0.9878 0.8977 1.0000 1.0000 1.0000 1.0000 1.0000 300 

0.9991 0.9653 1.0000 1.0000 1.0000 1.0000 1.0000 400 

1.0000 0.9922 1.0000 1.0000 1.0000 1.0000 1.0000 500 

 

 

Figure 1(b): Comparison of power for different normality tests against 𝑵𝑜𝑟𝑚𝑎𝑙(0,1) 
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Summary 

Table 1(b) and Figure 1(b) summarize the simulated power of Goodness-of-fit tests 

(𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) for testing 𝐻0: 𝑁(0.5,1) against 𝐻1: 𝑁(0,1) at significance 

level 𝛼 = 0.05 and at different sample sizes 𝑛. We observe the following main findings: 

1. Chi-square test is able to detect the null hypothesis at sample sizes 𝑛 ≥ 100. 

2. CVM test has a higher power compared with (𝐴𝐷, 𝐵𝑅) tests under different sample 

sizes 𝑛. 

3. The power of the BR test is sensitive to the choices of the kernel functions, and BR 

test has a higher power at Epanechnikov kernel than that of uniform kernel. 

4. In addition, all tests have good power when the sample size is greater than or equal 300. 

 

Case 2(a): Testing Normality against 𝑼(𝟎, 𝟏) 

Table 2(a): Critical values, CV(α, 𝑛) of the (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under normal 

distribution tests with different sample sizes 𝑛 and α = 0.05. 

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

1.359673 2.293353 0.752 0.212 0.409 16.919 9.488 10 

1.238806 2.087576 0.752 0.217 0.232 16.919 9.488 20 

1.177227 1.982736 0.752 0.218 0.19 16.919 9.488 30 

1.108024 1.864917 0.752 0.220 0.149 16.919 9.488 50 

1.027196 1.727306 0.752 0.220 0.107 16.919 9.488 100 

0.9592272 1.611589 0.752 0.220 0.075 16.919 9.488 200 

0.9245984 1.552633 0.752 0.220 0.061 16.919 9.488 300 

0.9020729 1.514283 0.752 0.220 0.053 16.919 9.488 400 

0.8856829 1.486379 0.752 0.220 0.047 16.919 9.488 500 

0.8402297 1.408994 0.752 0.220 0.034 16.919 9.488 1000 

0.8020083 1.343922 0.752 0.220 0.024 16.919 9.488 2000 
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Figure 2(a): The graph of the null distribution 𝐻0: 𝑓 = 𝑁(0.5,0.0833) and the alterna- 

                     tive distribution 𝐻1: 𝑓 = 𝑈(0,1)  

                       

 

Table 2(b): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis (𝐻0) 

at 𝛼 = 0.05. 

Data were generated from the Alternative Hypothesis with different sample sizes(𝑛) and 

number of intervals(𝐾)and different kernel functions(Uniform, Epanchnikov) for 10000 

simulations. 

𝐻0: Normal having the same mean and variance as in 𝐻1 

𝐻1: 𝑈(0,1) 

BR      𝛘𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.0005 0.0009 0.0847 0.0024 0.0858 - - 10 

0.0180 0.0232 0.1708 0.0077 0.1074 - - 20 

0.0812 0.0614 0.3022 0.0188 0.1239 - 0.2948 30 

0.2712 0.1890 0.5817 0.0633 0.1618 0.5223 0.6472 50 

0.7634 0.5993 0.9523 0.3568 0.2562 0.9479 0.9614 100 

0.9959 0.9690 1.0000 0.9077 0.4851 1.0000 0.9997 200 

1.0000 0.9993 1.0000 0.9949 0.7045 1.0000 1.0000 300 

1.0000 1.0000 1.0000 0.9998 0.8446 1.0000 1.0000 400 

1.0000 1.0000 1.0000 1.0000 0.9331 1.0000 1.0000 500 

1.0000 1.0000 1.0000 1.0000 0.9996 1.0000 1.0000 1000 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2000 
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Figure 2(b): Comparison of power for different normality tests against 𝑈(0,1) 

 

Case 2(b): Testing Normality against 𝑼(𝟎, 𝟐) 

Table 2(c): Critical values, CV(α, 𝑛) of the (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under normal 

distribution tests with different sample sizes 𝑛 and α = 0.05 . 

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

 1.137251 1.914676 0.752 0.212 0.409 16.919 9.488 10 

 1.051772 1.769148 0.752 0.217 0.232 16.919 9.488 20 

 1.008222 1.695004 0.752 0.218 0.19 16.919 9.488 30 

 0.9592811 1.611681 0.752 0.220 0.149 16.919 9.488 50 

 0.9021182  1.51436 0.752 0.220 0.107 16.919 9.488 100 

 0.8540501 1.432524 0.752 0.220 0.075 16.919 9.488 200 

 0.8295602 1.390829 0.752 0.220 0.061 16.919 9.488 300 

 0.8136298 1.363708 0.752 0.220 0.053 16.919 9.488 400 

 0.8020386 1.343973 0.752 0.220 0.047 16.919 9.488 500 
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Figure 2(c): The graph of the null distribution 𝐻0: 𝑓 = 𝑁(1,0.333) and the alternative 

                      distribution 𝐻1: 𝑓 = 𝑈(0,2) 

 

 

Table 2(d): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis (𝐻0) 

at 𝛼 = 0.05. 

Data were generated from the Alternative Hypothesis with different sample sizes(𝑛) and 

number of intervals(𝐾)and different kernel functions(Uniform,Epanchnikov) for 10000 

simulations. 

𝐻0: Normal having the same mean and variance as in 𝐻1 

𝐻1: 𝑈(0,2) 

BR      𝛘𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.0097 0.0098 0.0793 0.0022 0.0001 - - 10 

0.0665 0.0379 0.1718 0.0072 0.0063 - - 20 

0.1412 0.0729 0.2931 0.0210 0.0133 - 0.3001 30 

0.2998 0.1693 0.5750 0.0734 0.0267 0.5234 0.6466 50 

0.7196 0.4806 0.9489 0.3556 0.1417 0.9492 0.9620 100 

0.9869 0.9065 1.0000 0.9108 0.6097 0.9999 1.0000 200 

0.9998 0.9916 1.0000 0.9908 0.9161 1.0000 1.0000 300 

1.0000 0.9995 1.0000 1.0000 0.9912 1.0000 1.0000 400 

1.0000 1.0000 1.0000 1.0000 0.9994 1.0000 1.0000 500 



35 

 

 

       Figure 2(d): Comparison of power for different normality tests against 𝑈(0,2) 

 

Summary 

Tables 2(b), 2(d) and Figures 2(b), 2(d) summarize the simulated power of Goodness-

of-fit tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) for testing 𝐻0: 𝑁𝑜𝑟𝑚𝑎𝑙 against different alterna- 

tives 𝐻1: 𝑈(0,1) and 𝐻1: 𝑈(0,2) at significance level 𝛼 = 0.05 and at different sample 

sizes 𝑛 . We can conclude that BR test has a good power at sample sizes greater than or 

equal 400, and it is able to detect the null hypothesis at sample sizes greater than or 

equal 400 in both cases. BR test has a higher power when using the Epanechnikov 

kernel than that of uniform kernel at sample sizes greater than or equal 30. BR test has a 

higher power than KS and CVM tests for 𝑛 = 50, 100, 200, 300. In addition, all tests 

have good powers at sample sizes greater than or equal 200 except the KS test.  

One important thing is that BR test has a lower power when testing normality and the 

data generated from 𝑈(0,2) than that of 𝑈(0,1) for sample sizes 𝑛 = 100, 200, 300, 400. 

In addition, the power of KS and AD tests decrease when the data generated from the 

𝑈(0,2) than that of 𝑈(0,1) for sample sizes 𝑛 = 10, 30, 50, 100 .   
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Case 3(a): Testing normality against 𝒕(𝟕) 

Table 3(a): Critical values, CV(α, 𝑛) of the (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under normal 

distribution tests with different sample sizes 𝑛 and α = 0.05. 

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.9751941  1.638773 0.752 0.212 0.409 16.919 9.488 10 

0.9154994 1.537142 0.752 0.217 0.232 16.919 9.488 20 

0.8850858 1.485362 0.752 0.218 0.19 16.919 9.488 30 

0.8509074 1.427173 0.752 0.220 0.149 16.919 9.488 50 

0.8109871 1.359208 0.752 0.220 0.107 16.919 9.488 100 

0.7774183 1.302057 0.752 0.220 0.075 16.919 9.488 200 

0.7603156 1.272939 0.752 0.220 0.061 16.919 9.488 300 

0.7491904 1.253999 0.752 0.220 0.053 16.919 9.488 400 

0.7410956 1.240217 0.752 0.220 0.047 16.919 9.488 500 

0.7186468 1.201998 0.752 0.220 0.034 16.919 9.488 1000 

0.6997697 1.169859 0.752 0.220 0.024 16.919 9.488 2000 

 

 

       

 

  Figure 3(a): The graph of the null distribution 𝐻0: 𝑓 = 𝑁(0,1.4) and the alternative 

                      distribution 𝐻1: 𝑓 = 𝑡(7)  
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Table 3(b): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis (𝐻0) 

at 𝛼 = 0.05. 

Data were generated from the Alternative Hypothesis with different sample sizes (𝑛) 

and number of intervals (𝐾) and different kernel functions(Uniform, Epanchnikov) for 

10000 simulations.   

𝐻0: Normal having the same mean and variance as in 𝐻1 

𝐻1: 𝑡(7)  

BR     𝛘𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.0217 0.0129 0.0862 0.0085 0.0421   10 

0.0355 0.0175 0.1177 0.0169 0.0437 - - 20 

0.0395 0.0228 0.1431 0.0215 0.0467 - 0.035 30 

0.0585 0.0281 0.1785 0.0355 0.0529 0.1271 0.0554 50 

0.0767 0.0380 0.2781 0.0595 0.0593 0.2253 0.1057 100 

0.1053 0.0552 0.4496 0.1194 0.0935 0.3927 0.2113 200 

0.1339 0.0642 0.5984 0.2133 0.1280 0.5484 0.3035 300 

0.1597 0.0821 0.7115 0.2968 0.1625 0.6598 0.4111 400 

0.1864 0.0966 0.8065 0.4064 0.2009 0.7531 0.5107 500 

0.3148 0.1767 0.9794 0.7958 0.4248 0.9521 0.8395 1000 

0.5782 0.3481 0.9999 0.9918 0.8106 0.9898 0.9844 2000 

 

 

       

 

Figure 3(b): Comparison of power for different normality tests against 𝑡(7) 
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Case 3(b): Testing normality against 𝒕(𝟏𝟓)  

Table 3(c): Critical values, CV(α, 𝑛) of the (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under normal 

distribution tests with different sample sizes 𝑛 and α = 0.05 . 

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

 0.9937645 1.670389 0.752 0.212 0.409 16.919 9.488 10 

 0.9311151 1.563728 0.752 0.217 0.232 16.919 9.488 20 

 0.8991963 1.509386 0.752 0.218 0.19 16.919 9.488 30 

 0.8633262 1.448316 0.752 0.220 0.149 16.919 9.488 50 

  0.82143 1.376988 0.752 0.220 0.107 16.919 9.488 100 

 0.7861997 1.317007 0.752 0.220 0.075 16.919 9.488 200 

 0.7682504 1.286449 0.752 0.220 0.061 16.919 9.488 300 

 0.7565747  1.26657 0.752 0.220 0.053 16.919 9.488 400 

 0.7480792 1.252107 0.752 0.220 0.047 16.919 9.488 500 

  

  

  

 

Figure 3(c): The graph of the null distribution 𝐻0: 𝑓 = 𝑁(0,1.154) and the alternative 

                      distribution 𝐻1: 𝑓 = 𝑡(15) 
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Table 3(d): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis (𝐻0) 

at 𝛼 = 0.05. 

Data were generated from the Alternative Hypothesis with different sample sizes(𝑛) and 

number of intervals(𝐾)and different kernel functions(Uniform,Epanchnikov) for 10000 

simulations. 

𝐻0: Normal having the same mean and variance as in 𝐻1 

𝐻1: 𝑡(15) 

BR      𝛘𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.0139 0.0116 0.0603 0.0030 0.0001 - - 10 

0.0270 0.0134 0.0710 0.0049 0.0051 - - 20 

0.0303 0.0179 0.0780 0.0065 0.0056 - 0.0236 30 

0.0385 0.0181 0.0846 0.0083 0.0073 0.0583 0.0259 50 

0.0443 0.0237 0.0996 0.0097 0.0089 0.0869 0.0314 100 

0.0587 0.0305 0.1340 0.0127 0.0125 0.1271 0.0470 200 

0.0614 0.0309 0.1551 0.0155 0.0150 0.1615 0.0621 300 

0.0646 0.0375 0.1897 0.0185 0.0193 0.2021 0.0772 400 

0.0671 0.0410 0.2283 0.0260 0.0238 0.2365 0.0934 500 

 

 

       Figure 3(d): Comparison of power for different normality tests against 𝑡(15) 
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Case 3(c): Testing Normality against 𝒕(𝟒) 

Table 3(e): Critical values, CV(α, 𝑛) of the (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under normal 

distribution tests with different sample sizes 𝑛 and α = 0.05 . 

 

Figure 3(e): The graph of the null distribution 𝐻0: 𝑓 = 𝑁(0,2) and the alternative 

                          distribution 𝐻1: 𝑓 = 𝑡(4) 

 

 

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.9431867 1.58428 0.752 0.212 0.409 16.919 9.488 10 

0.8885845 1.491319 0.752 0.217 0.232 16.919 9.488 20 

0.8607655 1.443957 0.752 0.218 0.19 16.919 9.488 30 

0.8295028 1.390732 0.752 0.220 0.149 16.919 9.488 50 

0.7929881 1.328565 0.752 0.220 0.107 16.919 9.488 100 

 0.762283 1.276289 0.752 0.220 0.075 16.919 9.488 200 

0.7466392 1.249655 0.752 0.220 0.061 16.919 9.488 300 

0.7364632 1.23233 0.752 0.220 0.053 16.919 9.488 400 

0.7290589 1.219724 0.752 0.220 0.047 16.919 9.488 500 
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Table 3(f): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis (𝐻0) 

at 𝛼 = 0.05. 

Data were generated from the Alternative Hypothesis with different sample sizes(𝑛) and 

number of intervals(𝐾)and different kernel functions(Uniform, Epanchnikov) for 10000 

simulations. 

𝐻0: Normal having the same mean and variance as in 𝐻1 

𝐻1: 𝑡(4) 

BR      𝛘𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.0250 0.0128 0.1362 0.0242 0.0010 - - 10 

0.0486 0.0252 0.2284 0.0673 0.0331 - - 20 

0.0685 0.0326 0.3049 0.0930 0.0628 - 0.0931 30 

0.0970 0.0476 0.4123 0.1584 0.1003 0.2839 0.1703 50 

0.1738 0.0827 0.6582 0.3192 0.2143 0.5283 0.3396 100 

0.3096 0.1592 0.8892 0.6276 0.4663 0.8049 0.6148 200 

0.4430 0.2327 0.9704 0.8272 0.6932 0.9166 0.7879 300 

0.5741 0.3202 0.9947 0.9304 0.8284 0.9559 0.8903 400 

0.6616 0.4065 0.9983 0.9757 0.9158 0.9673 0.9338 500 

 

 

 

       Figure 3(f): Comparison of power for different normality tests against 𝑡(4) 
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Summary 

Table 3(b), 3(d) and 3(f) and Figure 3(b), 3(d), 3(f)  summarize the simulated power of 

Goodness-of-fit tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) for testing 𝐻0: 𝑁𝑜𝑟𝑚𝑎𝑙 against different 

alternatives 𝐻1: 𝑡(7), 𝑡(15), 𝑡(4) at significance level 𝛼 = 0.05 and at different sample 

sizes 𝑛. we can conclude that: 

1. The BR test has a higher power when using the Epanechnikov kernel than that of 

uniform kernel at different sample sizes 𝑛 and for all cases.  

2. The BR test has a higher power when using the Epanechnikov kernel than that of KS 

test at sample sizes 𝑛 = 50, 100, 200, 300 when data generate from 𝑡(7) and it's always 

has higher power than that of KS for all sample sizes 𝑛 when the data generated from 

𝑡(15) .  

3. The BR test has a higher power when using the Epanechnikov kernel than that of 

CVM test at sample sizes 𝑛 = 10, 20, 30, 50, 100 when the data generated from 𝑡(7) 

and  BR test has higher power than that KS and CVM tests for all sample sizes in the 

case data were generated from 𝑡(15) . 

4. In addition, when the data are generated from 𝑡(4) then AD test has a higher power 

followed by CVM and KS tests. 

Remarks:  

There are general remarks about the behavior of the power of GOF tests when data are 

generated  from 𝑡-distribution with different degrees of freedom as in the following : 

1. The power of GOF tests decrease when the data are generated from 𝑡(15) than that   

data generated from 𝑡(7), because when the number of degrees of freedom of 𝑡-

distribution is large enough then the 𝑡-distribution is close to the standard normal distri- 

bution and the variance of the 𝑡-distributions close to 1 .   

2. The power of GOF tests increase when testing normality and the data generated from 

𝑡(4) than that the data are generated from 𝑡(7), this is because when the number of 

degrees of freedom is small then the 𝑡-distribution doesn't has the same variance of the 

standard normal distribution and then the two distribution doesn't have the same shape.    
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3.2.2  Comparison of power of GOF tests for testing symmetric distributions 

          against skewed parametric alternative distributions. 

 

Case 4: Testing Normality against 𝑬𝒙𝒑(𝟓) 

Table 4(a): Critical values, CV(α, 𝑛) of the (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under normal 

distribution tests with different sample sizes 𝑛 and α = 0.05 . 

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

1.367389 2.30649 0.752 0.217 0.232 15.507 7.815 20 

1.293414 2.180547 0.752 0.218 0.19 15.507 7.815 30 

1.210282 2.039013 0.752 0.220 0.149 15.507 7.815 50 

1.113184 1.873702 0.752 0.220 0.107 15.507 7.815 100 

1.031534 1.734693 0.752 0.220 0.075 15.507 7.815 200 

0.9899354 1.66387 0.752 0.220 0.061 15.507 7.815 300 

0.9628758 1.617801 0.752 0.220 0.053 15.507 7.815 400 

0.9431867 

 

 

1.58428 

 

0.752 0.220 0.047 15.507 

 

7.815 500 

 

Figure 4(a): The graph of the null distribution 𝐻0: 𝑓 = 𝑁(0.2,0.04) 
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Figure 4(b): The graph of the alternative distribution 𝐻1: 𝑓 = 𝐸𝑥𝑝(5) 

 

Table 4(b): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis (𝐻0) 

at 𝛼 = 0.05. 

Data were generated from the Alternative Hypothesis with different sample sizes (𝑛) 

and number of intervals (𝐾) and different kernel functions(Uniform, Epanechnikov) for 

10000 simulations. 

𝐻0: Normal having the same mean and variance as in 𝐻1 

𝐻1: 𝐸𝑥𝑝(5) 

BR      𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 (𝑲 = 𝟏𝟎) (𝑲 = 𝟓) 𝒏 

0.0847 0.1474 0.7643 0.3695 0.2756 - - 20 

0.2913 0.4240 0.9349 0.6365 0.5025 - 0.5678 30 

0.8112 0.8708 0.9958 0.9152 0.8201 0.9832 0.7269 50 

0.9998 0.9996 1.0000 0.9997 0.9972 1.0000 0.9398 100 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 200 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 300 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 400 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 500 
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Figure 4(c): Comparison of power for different normality tests against 𝐸𝑥𝑝(5) 

 

Summary 

Table 4(b) and Figure 4(c) summarize the simulated power of Goodness-of-fit tests 

(𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) for testing 𝐻0: 𝑁(0.5,1) against 𝐻1: 𝐸𝑥𝑝(5) at significance 

level 𝛼 = 0.05 and at different sample sizes 𝑛. We observe the following main findings: 

1. AD test has a good power compared with all other  tests, and it is able to detect the 

null hypothesis at small sample sizes 𝑛 = 30, 50. 

2. BR test has a higher power under uniform kernel than 𝜒2 at (𝐾 =5) and KS tests at 

sample sizes 𝑛 = 50, 100.  

3. In addition, all tests have good powers when the sample size is greater than or equal 

100. 
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Case 5: Testing Normality against 𝑾𝒆𝒊𝒃𝒖𝒍𝒍(𝟏𝟎, 𝟐) 

Table 5(a): Critical values, CV(α, 𝑛) of the (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under normal 

distribution tests with different sample sizes 𝑛 and α = 0.05. 

BR    𝝌𝟐  

𝑬𝐩𝐚𝐧. 𝑼𝒏𝒊𝒇𝒐𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

1.310609 2.221204 0.752 0.217 0.232 14.067 5.991 20 

1.242108 2.103482 0.752 0.218 0.19 14.067 5.991 30 

1.165127 1.971188 0.752 0.220 0.149 14.067 5.991 50 

1.075213 1.816668 0.752 0.220 0.107 14.067 5.991 100 

0.9996049 1.686733 0.752 0.220 0.075 14.067 5.991 200 

0.9610837 1.620534 0.752 0.220 0.061 14.067 5.991 300 

0.9360263 1.577472 0.752 0.220 0.053 14.067 5.991 400 

0.917794 1.546139 0.752 0.220 0.047 14.067 5.991 500 

        

        

 

Figure 5(a): The graph of the null distribution 𝐻0: 𝑓 = 𝑁(1.902,0.054) and the  

                    alternative distribution 𝐻1: 𝑓 = 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(10,2)   
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Table 5(b): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis (𝐻0) 

at 𝛼 = 0.05. 

Data were generated from the Alternative Hypothesis with different sample sizes (𝑛) 

and number of intervals (𝐾) and different kernel functions(Uniform, Epanechnikov) for 

10000 simulations. 

𝐻0: Normal having the same mean and variance as in 𝐻1 

𝐻1: 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(10,2) 

BR     𝛘𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.0019 0.0033 0.1358 0.0142 0.0209 - - 20 

0.0085 0.0098 0.1826 0.0226 0.0313 - 0.1091 30 

0.0344 0.0233 0.2752 0.0521 0.0599 0.1221 0.1387 50 

0.1119 0.0631 0.5156 0.1367 0.1338 0.2007 0.1923 100 

0.2928 0.1622 0.8305 0.4135 0.3424 0.3748 0.3032 200 

0.4652 0.2690 0.9543 0.6699 0.5629 0.5356 0.4197 300 

0.6177 0.3932 0.9897 0.8373 0.7333 0.6757 0.5436 400 

0.7472 0.4985 0.9971 0.9339 0.8569 0.7927 0.6600 500 

 

 
       

 

Figure 5(b): Comparison of power for different normality tests against 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(10,2) 
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Summary 

Table 5(b) and Figure 5(b) summarize the simulated power of Goodness-of-fit tests 

(𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷,𝐵𝑅) for testing 𝐻0: 𝑁𝑜𝑟𝑚𝑎𝑙 against 𝐻1: 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(10,2) at signifi- 

cance level 𝛼 = 0.05 and at different sample sizes 𝑛. We observe the following main 

findings:  

1. AD test has a higher power compared with the other 3 tests, and it is able to detect the 

null hypothesis at sample sizes greater than or equal 300. 

2. BR test has a higher power at Epanechnikov kernel than uniform kernel at sample 

sizes greater than or equal 50. 

3. In addition, the power of Chi-square test is larger when we grouped the data into ten 

intervals than that of five intervals at sample sizes 𝑛 ≥100 . 

 

Case 6: Testing Normality against 𝑮𝒂𝒎𝒎𝒂(𝟒, 𝟓) 

Table 6(a): Critical values, CV(α, 𝑛) of the (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under normal 

distribution tests with different sample sizes 𝑛 and α = 0.05 . 

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

1.245295 2.098622 0.752 0.212 0.4092 16.919 9.488 10 

1.142626 1.923828 0.752 0.217 0.2940 16.919 9.488 20 

1.090318 1.834772 0.752 0.218 0.2417 16.919 9.488 30 

1.031534 1.734693 0.752 0.220 0.189 16.919 9.488 50 

0.9628758 1.617801 0.752 0.220 0.1360 16.919 9.488 100 

0.9051409 1.519506 0.752 0.220 0.0961 16.919 9.488 200 

0.875726 1.469427 0.752 0.220 0.0785 16.919 9.488 300 

0.8565919 1.436851 0.752 0.220 0.0680 16.919 9.488 400 

0.8426697 1.413148 0.752 0.220 0.0608 16.919 9.488 500 

0.80406 1.347415 0.752 0.220 0.0430 16.919 9.488 1000 

0.7715934 1.29214 0.752 0.220 0.0304 16.919 9.488 2000 
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Figure 6(a): The graph of the null distribution 𝐻0: 𝑓 = 𝑁(0.8,0.16) 

 

 

Figure 6(b): The graph of the alternative distribution 𝐻1: 𝑓 = 𝐺𝑎𝑚𝑚𝑎(4,5) 
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Table 6(b): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀 , 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis 

(𝐻0) at 𝛼 = 0.05. 

Data were generated from the Alternative Hypothesis with different sample sizes (𝑛) 

and number of intervals (𝐾) and different kernel functions(Uniform, Epanchnikov) for 

10000 simulations. 

𝐻0: Normal having the same mean and variance as in 𝐻1 

𝐻1: 𝐺𝑎𝑚𝑚𝑎(4,5) 

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.0052 0.0049 0.1285 0.0137 0.0669 - - 10 

0.0349 0.0233 0.2469 0.0407 0.0861 - - 20 

0.0669 0.0427 0.3765 0.0812 0.1078 - 0.1265 30 

0.1501 0.0836 0.5908 0.1733 0.1495 0.2771 0.2493 50 

0.3851 0.2069 0.8925 0.4925 0.2423 0.5699 0.5270 100 

0.7376 0.5020 0.9970 0.9058 0.4424 0.8934 0.8658 200 

0.9201 0.7315 1.0000 0.9914 0.6233 0.9831 0.9779 300 

0.9813 0.8614 1.0000 0.9993 0.7568 0.9981 0.9965 400 

0.9937 0.9367 1.0000 1.0000 0.8738 0.9995 0.9994 500 

1.0000 0.9997 1.0000 1.0000 0.9999 1.0000 0.9999 1000 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2000 

 

 
       

 

Figure 6(c): Comparison of power for different normality tests against 𝐺𝑎𝑚𝑚𝑎(4,5) 
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Summary 

If we look at the Table 6(b) and Figure 6(c) that summarize the simulated power of 

Goodness-of-fit tests(𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) for testing 𝐻0: 𝑁𝑜𝑟𝑚𝑎𝑙 against 𝐻1 ∶

𝐺𝑎𝑚𝑚𝑎(4,5) at significance level 𝛼 = 0.05 and at different sample sizes 𝑛. We can  

conclude that: The AD test has a higher power compared with other tests at different 

sample sizes n followed by CVM test at sample sizes greater than or equal 200. And BR 

test has a higher power than KS test at sample sizes greater than or equal 50. In      

addition, BR test has a higher power when using the Epanechnikov kernel than that of 

uniform kernel at different sample sizes 𝑛. 

 

Case 7: Testing Normality against 𝛘𝟐(𝟒) 

Table 7(a): Critical values, CV(α, 𝑛) of the (χ2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under normal 

distribution tests with different sample sizes 𝑛 and α = 0.05. 

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.8426697 1.413148 0.752 0.212 0.409 16.919 9.488 10 

0.80406 1.347415 0.752 0.217 0.232 16.919 9.488 20 

0.7843891 1.313925 0.752 0.218 0.19 16.919 9.488 30 

0.762283 1.276289 0.752 0.220 0.149 16.919 9.488 50 

0.7364632 1.23233 0.752 0.220 0.107 16.919 9.488 100 

0.7147514 1.195366 0.752 0.220 0.075 16.919 9.488 200 

0.7036896   1.176533 0.752 0.220 0.061 16.919 9.488 300 

0.696494 1.164282 0.752 0.220 0.053 16.919 9.488 400 

0.6912584 1.155369 0.752 0.220 0.047 16.919 9.488 500 

0.6767389 1.130649 0.752 0.220 0.034 16.919 9.488 1000 

0.6645295 1.109862 0.752 0.220 0.024 16.919 9.488 2000 

 

 

Figure 7(a): The graph of the null distribution 𝐻0: 𝑓 = 𝑁(4,8) and the alternative 

                          distribution 𝐻1: 𝑓 = 𝜒2(4) 
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Table 7(b): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis (𝐻0) 

at 𝛼 = 0.05. 

Data were generated from the Alternative Hypothesis with different sample sizes (𝑛) 

and number of intervals (𝐾) and different kernel functions(Uniform, Epanchnikov) for 

10000 simulations.                                                

𝐻0: Normal having the same mean and variance as in 𝐻1 

𝐻1: 𝜒2(4) 

BR     𝛘𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.0673 0.0406 0.2196 0.0367 0.0801 - - 10 

0.1247 0.0598 0.4620 0.1196 0.1205 - - 20 

0.1675 0.0804 0.6617 0.2331 0.1584 - 0.3472 30 

0.2747 0.1262 0.8891 0.4905 0.2402 0.6014 0.6305 50 

0.5164 0.2709 0.9971 0.9110 0.4391 0.9358 0.9379 100 

0.8499 0.5726 1.0000 0.9992 0.8417 0.9982 0.9994 200 

0.9703 0.8028 1.0000 1.0000 1.0000 1.0000 0.9998 300 

1.0000 0.9180 1.0000 1.0000 1.0000 1.0000 1.0000 400 

1.0000 0.9674 1.0000 1.0000 1.0000 1.0000 1.0000 500 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1000 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2000 

        

 

Figure 7(b): Comparison of power for different normality tests against 𝜒2(4) 
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Summary 

Table 7(b) and Figure 7(b) summarize the simulated power of Goodness-of-fit tests 

(𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) for testing 𝐻0: 𝑁𝑜𝑟𝑚𝑎𝑙 against 𝐻1: 𝜒2(4) at significance level 

𝛼 = 0.05 and at different sample sizes 𝑛. We observe the following main findings: 

1. The AD test has a higher power compared with other all tests at different sample sizes 

𝑛. 

2. BR test has a higher power when using the Epanechnikov kernel than KS test at 

sample sizes 𝑛 = 20, 30, 50, 100, 200. 

3. BR test has a higher power when using the Epanechnikov kernel than CVM test at 

sample sizes 𝑛 = 10, 20. 

 

Case 8: Testing 𝑻-distribution against 𝑬𝒙𝒑(𝟎. 𝟗) 

Table 8(a): Critical values, CV(α, 𝑛) of the (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under T distribut- 

ion tests with different sample sizes 𝑛 and α = 0.05.  

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.9326425 .1.566328  0.752 0.217 0.232 16.919 9.488 20 

0.9005765 1.511735 0.752 0.218 0.19 16.919 9.488 30 

0.8645409 1.450384 0.752 0.220 0.149 16.919 9.488 50 

0.8224515 1.378727 0.752 0.220 0.107 16.919 9.488 100 

0.7870586 1.31847 0.752 0.220 0.075 16.919 9.488 200 

0.7690266 1.28777 0.752 0.220 0.061 16.919 9.488 300 

0.7572969 1.2678 0.752 0.220 0.053 16.919 9.488 400 

0.7487623 1.25327 0.752 0.220 0.047 16.919 9.488 500 

        

 

Figure 8(a): The graph of the null distribution 𝐻0: 𝑓 = 𝑡(10) and the alternative  

                           distribution 𝐻1: 𝑓 = 𝐸𝑥𝑝(0.9). 
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Table 8(b): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀 , 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis 

(𝐻0) at 𝛼 = 0.05. 

Data were generated from the Alternative Hypothesis with different sample sizes (𝑛) 

and number of intervals (𝐾) and different kernel functions(Uniform, Epanchnikov) for 

10000 simulations. 

𝐻0: 𝑇 distribution having the same variance as in 𝐻1 

𝐻1: 𝐸𝑥𝑝(0.9) 

BR     𝛘𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.9917 0.7496 1.0000 1.0000 1.0000 - - 20 

1.0000 0.9848 1.0000 1.0000 1.0000 - 1.0000 30 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 50 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 100 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 200 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 300 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 400 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 500 

        

        

 

Figure 8(b): Comparison of power of GOF tests for testing 𝑡(10) against 𝐸𝑥𝑝(0.9) 
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Case 9: Testing Uniformity against 𝑬𝒙𝒑(𝟎. 𝟗) 

Table 9(a): Critical values, CV(α, 𝑛) of the (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under uniform 

distribution tests with different sample sizes 𝑛 and α = 0.05. 

BR    𝝌𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.9925484 1.668319 2.5020 0.217 0.232 16.919 9.488 20 

0.9547075 1.603894 2.5130 0.218 0.19 16.919 9.488 30 

0.9121822 1.531494 2.4941 0.220 0.149 16.919 9.488 50 

0.8625129 1.446932 2.4901 0.220 0.107 16.919 9.488 100 

0.8207462 1.375823 2.4901 0.220 0.075 16.919 9.488 200 

0.7994667 1.339595 2.4901 0.220 0.061 16.919 9.488 300 

0.7856247 1.316028 2.4901 0.220 0.053 16.919 9.488 400 

0.775553 1.298881 2.4901 0.220 0.047 16.919 9.488 500 

       
 

 

 

Figure 9(a): The graph of the null distribution 𝐻0: 𝑓 = 𝑈(−0.55,2.15) and the 

                            alternative distribution 𝐻1: 𝑓 = 𝐸𝑥𝑝(0.9) 
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Table 9(b): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis (𝐻0) 

at 𝛼 = 0.05. 

Data were generated from the Alternative Hypothesis with different sample sizes (𝑛) 

and number of intervals (𝐾) and different kernel functions(Uniform, Epanchnikov) for 

10000 simulations. 

𝐻0: Uniform having the same mean and variance as in 𝐻1 

𝐻1: 𝐸𝑥𝑝(0.9)   

BR      𝛘𝟐  

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝑲 = 𝟏𝟎 𝑲 = 𝟓 𝒏 

0.9995 0.9885 0.9740 0.5452 0.2602 - - 20 

1.0000 0.9998 0.9985 0.7927 0.5406 - 0.9453 30 

1.0000 1.0000 1.0000 0.9711 0.9053 0.9979 0.9951 50 

1.0000 1.0000 1.0000 0.9999 0.9997 1.0000 1.0000 100 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 200 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 300 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 400 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 500 

 

 

Figure 9(b): Comparison of power of GOF tests for testing 𝑈(−0.55,2.15) against  

                     𝐸𝑥𝑝(0.9) 
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Summary 

Table 9(b) and Figure 9(b) summarize the simulated power of Goodness-of-fit tests 

(𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) for testing 𝐻0: 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 against 𝐻1: 𝐸𝑥𝑝(0.9) at significance 

level 𝛼 = 0.05 and at different sample sizes 𝑛. One can say that: The BR test has a 

higher power compared with other tests. The BR test has a higher power when using the 

Epanechnikov kernel than that of uniform kernel at sample sizes 𝑛 = 20, 30. And, all 

tests are able to detect the null hypothesis at small sample sizes 𝑛 = 20, 30, 50 except 

the KS and CVM  tests that have a small power at 𝑛 = 20, 30.  
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3.2.3  Comparison of power of GOF tests for testing symmetric distributions  

          against non-parametric alternative distributions. 

 

Case 10: Testing Uniformity against Non-parametric alternative 𝑨(𝜽) 

Table 10(a): Critical values, CV(α, 𝑛) of the (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under uniform 

distribution tests with different sample sizes 𝑛 and α = 0.1. 

BR      

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝝌𝟐 𝒏 

1.197908 2.017947 1.9518 0.167 0.368 - 10 

1.102779 1.855988 1.9385 0.172 0.264 6.251 20 

1.022785 1.719797 1.9362 0.173 0.193 12.017 40 

 

Remark: Concerning  𝜒2 test We used in Table 10(a) the number of degrees of freedom 

3 for  𝑛 = 20 and 7 for 𝑛 = 40. 

 

Figure 10(a): The graph of the null distribution 𝐻0: 𝑓 = 𝑈(0,1)and the nonparametric 

                         alternative distribution 𝐻1: 𝑓 = 𝐴(𝜃) 𝑎𝑡  𝜃 = 1.5, 2 
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Table 10(b): The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis 

(𝐻0) at 𝛼 = 0.1. 

Data were generated from the Nonparametric Alternative Hypothesis 𝐴(𝜃) with differ- 

ent sample sizes(𝑛) and number of intervals(𝐾) and different kernel functions(Uniform, 

Epanchnikov) for 1000 simulations. 

𝐻0: 𝑈(0,1) 

 𝐻1: 𝐴() =  (1 − 𝑥)𝜃−1, 0 𝑥 1, 𝜃 ∈ ℛ 

BR       

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺  𝛘𝟐 𝒏 N 

0.09 0.06 0.24 0.27 0.23 - 10 𝑨, 𝜽 = 𝟏. 𝟓 

0.24 0.16 0.46 0.46 0.38 - 20  

0.54 0.35 0.74 0.70 0.60 0.40 40  

        

0.23 0.14 0.58 0.60 0.54 - 10 𝑨, 𝜽 = 𝟐. 𝟎 

0.63 0.43 0.87 0.87 0.78 0.59 20  

0.95 0.87 0.99 0.99 0.98 0.89 40  

 

 

Figure 10(b): Comparison of power for different uniformity tests against 𝐴(𝜃), 𝜃 = 1.5 
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Figure 10(c): Comparison of power for different uniformity tests against 𝐴(𝜃), 𝜃 = 2 

 

Summary 

Table 10(b) and Figures 10(b) and 10(c) summarize the simulated power of Goodness-

of-fit tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) for testing 𝐻0: 𝑈(0,1) against nonparametric 

alternatives 𝐻1: 𝐴(𝜃) at significance level 𝛼 = 0.1 and at sample sizes 𝑛 = 10, 20, 40. 

We observe the following main findings: The AD test has a higher power compared 

with all other tests at sample sizes 𝑛 = 10, 20 under nonparametric alternatives 𝐴(𝜃), 

 𝜃 = 1.5, 2. BR test has a higher power when using the Epanechnikov kernel than χ2 

test at sample size 𝑛 = 40 when using 𝐴(1.5) and sample sizes 𝑛 = 20, 40 when using 

𝐴(2). In addition, BR test has a higher power when using the Epanechnikov kernel than 

that of uniform kernel for all sample sizes 𝑛. 
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Case 11: Testing Uniformity  against Non-parametric alternative 𝑩(𝜽) 

 

Figure 11(a): The graph of the null distribution 𝐻0: 𝑓 = 𝑈(0,1) and the nonparametric 

                         alternative distribution 𝐻1: 𝑓 = 𝐵(𝜃) 𝑎𝑡  𝜃 = 1.5, 2, 3 

 

 

Table 11: The power for tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis(𝐻0) at  

𝛼 = 0.1. 

Data were generated from the Nonparametric Alternative Hypothesis 𝐵(𝜃) with differ- 

ent sample sizes (𝑛) and different kernel functions (Uniform, Epanchnikov) for 1000 

simulations.                                                

𝐻0: 𝑈(0,1) 

𝐻1: 𝐵(𝜃) =  {
𝐵1(𝜃) =  𝜃(2𝑥)𝜃−1           ,      0 ≤ 𝑥 < 1 2⁄

   𝐵2(𝜃) =  𝜃(2 − 2𝑥)𝜃−1   , 1 2⁄  ≤ 𝑥 ≤ 1
      , 𝜃 ∈ ℛ  

BR       

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺  𝛘𝟐 𝒏 N 

0.07 0.09 0.06 0.07 0.09 - 10 𝑩, 𝜽 = 𝟏. 𝟓 

0.32 0.20 0.10 0.11 0.13 - 20  

0.65 0.47 0.25 0.22 0.19 0.39 40  

        

0.17 0.16 0.06 0.7 0.09 - 10 𝑩, 𝜽 = 𝟐. 𝟎 

0.65 0.51 0.28 0.25 0.25 - 20  

0.97 0.89 0.78 0.72 0.56 0.85 40  
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Figure 11(b): Comparison of power for different uniformity tests against 𝐵(𝜃), 𝜃 = 1.5 

Figure 11(c): Comparison of power for different uniformity tests against 𝐵(𝜃), 𝜃 = 2 
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Summary 

Table 11 and Figures 11(b) and 11(c) summarize the simulated power of Goodness-of-

fit tests (𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) for testing 𝐻0: 𝑈(0,1) against nonparametric alterna- 

tives 𝐻1: 𝐵(𝜃) at significance level 𝛼 = 0.1 and at sample sizes 𝑛 = 10, 20, 40. We 

observe the following main findings: 

1. The BR test has a higher power compared with all other tests at sample sizes 𝑛 = 10, 

20, 40 under nonparametric alternatives 𝐵(𝜃), 𝜃 = 1.5, 2, 3. 

2. In addition, BR test has a higher power when using the Epanechnikov kernel than that 

of uniform kernel when using nonparametric alternatives 𝐵(𝜃), 𝜃 = 1.5, 2, 3 for sample 

sizes 𝑛 = 10, 20, 40 except for 𝐵(𝜃) 𝑎𝑡 𝜃 = 1.5 and 𝑛 = 10. 

 

Case 12: Testing Uniformity  against Non-parametric alternative 𝑪(𝜽) 

 

 

Figure 12(a): The graph of the null distribution 𝐻0: 𝑓 = 𝑈(0,1) and the nonparametric 

                         alternative distribution 𝐻1: 𝑓 = 𝐶(𝜃) 𝑎𝑡 𝜃 = 1.5, 2 
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Table 12: The power for tests (𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷, 𝐵𝑅) under the Null Hypothesis(𝐻0) at  

𝛼 = 0.1. 

Data were generated from the Nonparametric Alternative Hypothesis 𝐶(𝜃)with different 

sample sizes (𝑛) and different kernel functions (Uniform, Epanchnikov) for 1000 simul- 

ations. 

𝐻0: 𝑈(0,1) 

𝐻1: 𝐶(𝜃) =  {
 𝐶1(𝜃) =  𝜃(1 − 2𝑥)𝜃−1       , 0 ≤ 𝑥 < 1 2⁄

𝐶2(𝜃) =  𝜃(2𝑥 − 1)𝜃−1      ,       1 2⁄  ≤ 𝑥 ≤ 1
      , 𝜃 ∈ ℛ 

BR      

𝑬𝒑𝒂𝒏. 𝑼𝒏𝒊𝒇𝒐𝒓𝒎 𝑨𝑫 𝑪𝑽𝑴 𝑲𝑺 𝒏 N 

0.11 0.10 0.28 0.20  0.25 20 𝑪, 𝜽 = 𝟏. 𝟓 

0.30 0.23 0.39 0.32 0.36 40  

       

0.28 0.26 0.54 0.44 0.47 20 𝑪, 𝜽 = 𝟐. 𝟎 

0.83 0.75 0.85 0.80 0.71 40  

       

 

Figure 12(b): Comparison of power for different uniformity tests against 

                                   𝐶(𝜃), 𝜃 = 1.5  
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Figure 12(c): Comparison of power for different uniformity tests against 𝐶(𝜃), 𝜃 = 2 

 

Summary 

Table 12 and Figures 12(b) and 12(c) summarize the simulated power of Goodness-of-

fit tests(𝜒2, 𝐾𝑆, 𝐶𝑉𝑀, 𝐴𝐷,𝐵𝑅) for testing 𝐻0: 𝑈(0,1) against nonparametric alternatives 

𝐻1: 𝐶(𝜃) at significance level 𝛼 = 0.1 and at sample sizes 𝑛 = 20, 40. We can conc- 

lude that: The AD test has a higher power compared with all other tests at sample sizes 

𝑛 = 20, 40 under nonparametric alternatives 𝐶(𝜃), 𝜃 = 1.5, 2. In addition, BR test has 

a higher power when using the Epanechnikov kernel than that of uniform kernel when 

using nonparametric alternatives 𝐶(𝜃), 𝜃 = 1.5, 2 for sample sizes 𝑛 = 20, 40. 
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3.3  Conclusions and A Future work 
 

       In the real world, the parameters of the distribution are usually unknown and need 

to be estimated. When the parameters are estimated from the data, it affects the power 

of the GOF tests. In general, there is no most powerful test i.e. there is no test has a 

higher power for all cases, because the power of tests are dramatically changed with 

sample sizes 𝑛, the significance level 𝛼, the type of the distribution being tested, and 

also it depends on the alternative distribution. In addition, simulated power for all tests 

increased as the sample size and significance level increased. 

       In general, it can be concluded that from comparison of power of GOF tests the  

following: 

1) For testing the symmetric distributions against parametric alternative distributions 

(Sec 3.2.1, Sec 3.2.2) among the five tests considered that the AD test has a higher 

power compared with all other tests, whereas the χ2 test has lower power, and the power 

of AD test is still low for small sample sizes. 

2) For testing the symmetric distributions and the data that are generated from non-

parametric alternative distribution (Sec 3.2.3), we can conclude that from comparison of 

power of GOF tests among the five tests considered that the power of tests is 

dramatically changed with the type of non-parametric distribution 𝐴(𝜃), 𝐵(𝜃), 𝐶(𝜃), 

𝜃 = 1.5, 2. The AD test has a higher power compared with all other tests, whereas the 

 χ2 test has lower power when testing 𝑈(0,1), and the data generated from alternative 

𝐴(𝜃), 𝐶(𝜃), 𝜃 = 1.5, 2, and the BR test has a higher power compared with all other tests 

when data generated from alternative 𝐵(𝜃), 𝜃 = 1.5, 2. Also, we can conclude that the 

BR test has a higher power when using the Epanechnikov kernel than that of uniform 

kernel. 

As a future work,  we are planning to study the power of the Bickel-Rosenblatt (BR) 

test by using different distributions as Cauchy distribution, Laplace distribution and 

compare it with four well-known Goodness-of-fit tests: Chi-square test, Kolmogorov-

Smirnov (KS) test, Cramér-von Mises (CVM) test and Anderson-Darling (AD) test. 

Moreover, we want to study the power of the BR test under other choices of the kernel 

functions as Gaussian kernel, Biweight kernel and Triangular kernel. Finally, as we 

have seen from the previous results the BR test has a higher power when the data are 

generated from non-parametric alternative distributions, for this purpose we want to 

study the power of BR test when the data are generated from different non-parametric 

alternative distributions. 
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 ملخص

    لخمس   جحدة المطرابق قحة  حمقارن  هح دراس  طررحة الأالهدف الرئيسي من هذه          

  Cramér-von)اراختب ، (Kolmogorov-Smirnov) راختبا ،تربيع اختبارات حهي: اختبار كاي

Mises)  ، اختبار(Anderson-Darling)  حاختبار(Bickel-Rosenblatt)   تةت تأثير البدائل

 هذه الاختبارات الخمس ل جحدة المطرابق  قحىرنات مقا. تم الةصحل على حغير المعلمي  المعلمي 

 حغير المعلمي باستخدام طرريق  محنتي كارلح لسةب عين  من المشاهدات من بدائل معلمي  

لسةب  Rالإةصاء تم استخدام برنامج  حالبدائل المعلمي  تتبع تحزيعات متماثل  حغير متماثل .

ج  رحالقيم الة ٪١۰و ٪٥لال  تم استخدامهما: عينات لأغراض المةاكاة. اثنتان من مستحيات الد

من تحزيعات  مسةحب عين   ١۰۰۰۰ لمقارنات القحى التي تم الةصحل علها بالاعتماد على

، ٣۰۰، ۲۰۰، ١۰۰، ٥۰،  ٤۰ ،٣۰ ،۲۰، ١۰:عين  حةجم كل عين ١۰۰۰۰ .صفري  مختلف 

تبار تم الةصحل تم سةبها من تحزيعات بديل  معطراة. قحة كل اخ ۲۰۰۰، ١۰۰۰، ٥۰۰، ٤۰۰

تبين نتائج المةاكاة أن  مع القيم الةرج  منها. جحدة المطرابق عليه بحاسطر  مقارن  اختبارات 

له أعلى قحة في ةال  اختبار التحزيعات المتماثل  حالعينات مسةحب   (Anderson-Darling)اختبار 

-Kolmogorov) تباراخح (Cramér-von Mises) من تحزيعات البدائل المعلمي  متبحع  باختبار

Smirnov). اختبار  (Bickel-Rosenblatt)  له أعلى قحة في ةال  اختبار التحزيعات المتماثل

له  (Anderson-Darling)حاختبار غير المعلمي  حالعينات مسةحب  من تحزيعات بعض البدائل 

-Bickel)اختبار الأخرى. هذه الدراس  أيضا بينت أن غير المعلمي  أعلى قحة تةت تأثير البدائل 

Rosenblatt) في ةال  استخدام اقتران أكبر له قحة(Epanechnikov)   عن استخدام الاقتران

 .المنتظم
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Appendices 

Appendix A:   Critical Values of Goodness-of-Fit Tests 

A.1      Chi-Square Distribution Table   

The  shaded are is equal to 𝛼 for  𝜒2 = 𝜒2
𝛼

     

 
 
 

 𝑑𝑓 

 
 
     𝜒2

0.995 

 
 
     𝜒2

0.990 

 
 
     𝜒2

0.975 

 
 
     𝜒2

0.950 

 
 
     𝜒2

0.900 

 
 
     𝜒2

0.100 

 
 
     𝜒2

0.050 

 
 
     𝜒2

0.025 

 
 
     𝜒2

0.010 

 
 
     𝜒2

0.005 

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879 

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597 

3 0.072 0.115 0.216 0.352 0.584 6.251  7.815 9.348 11.345 12.838 

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860 

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750 

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548 

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278 

8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955 

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589 

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188 

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757 

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300 

13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819 

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319 

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801 

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267 

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718 

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156 

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582 

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997 

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401 

22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796 

23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181 

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559 

25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928 

26    11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290 

27      11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645 

28     12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993 

29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336 

30     13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672 

 

 

 
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A.2      Kolmogorov-Smirnov Table 

  

Critical values, dalpha;(n)a , of the maximum absolute difference between sample Fn(x) 
and population F(x) cumulative distribution. 

            

Level of significance, α 
Number of 

trials, 𝑛 
 

0.10 

 

0.05 

 

0.02 

 

0.01 

  

25 0.23768 0.26404 0.29516 0.31657 

26 0.23320 0.25907 0.28962 0.31064 

27 0.22898 0.25438 0.28438 0.30502 

28 0.22497 0.24993 0.27942 0.29971 

29 0.22117 0.24571 0.27471 0.29466 

30 0.21756 0.24170 0.27023 0.28987 

31 0.21412 0.23788 0.26596 0.28530 

32 0.21085 0.23424 0.26189 0.28094 

33 0.20771 0.23076 0.25801 0.27677 

34 0.20472 0.22743 0.25429 0.27279 

35 0.20185 0.22425 0.26073 0.26897 

36 0.19910 0.22119 0.24732 0.26532 

37 0.19646 0.21826 0.24404 0.26180 

38 0.19392 0.21544 0.24089 0.25843 

39 0.19148 0.21273 0.23786 0.25518 

40b 0.18913 0.21012 0.23494 0.25205 

Values of dα (n) such that p(max)|Fn (x) − F(x)|dα (n) = α 

 b 𝑛 > 40≈
1.22

𝑛1 2⁄ ,
1.36

𝑛1 2⁄ ,
1.51

𝑛1 2⁄  and 
1.63

𝑛1 2⁄   for the four levels of significance. 

1 0.95000 0.97500 0.99000 0.99500 

2 0.77639 0.84189 0.90000 0.92929 

3 0.63604 0.70760 0.78456 0.82900 

4 0.56522 0.62394 0.68887 0.73424 

5 0.50945 0.56328 0.62718 0.66853 

6 0.46799 0.51926 0.57741 0.61661 

7 0.43607 0.48342 0.53844 0.57581 

8 0.40962 0.45427 0.50654 0.54179 

9 0.38746 0.43001 0.47960 0.51332 

10 0.36866 0.40925 0.45662 0.48893 

11 0.35242 0.39122 0.43670 0.46770 

12 0.33815 0.37543 0.41918 0.44905 

13 0.32549 0.36143 0.40362 0.43247 

14 0.31417 0.34890 0.38970 0.41762 

15 0.30397 0.33760 0.37713 0.40420 

16 0.29472 0.32733 0.36571 0.39201 

17 0.28627 0.31796 0.35528 0.38086 

18 0.27851 0.30936 0.34569 0.37062 

19 0.27136 0.30143 0.33685 0.36117 

20 0.26473 0.29408 0.32866 0.35241 

21 0.25858 0.28724 0.32104 0.34427 

22 0.25283 0.28087 0.31394 0.33666 

23 0.24746 0.27490 0.30728 0.32954 

24 0.24242 0.26931 0.30104 0.32286 
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A.3.1        Critical values for the AD test under uniform distribution at               

different significance levels.                        

   

 

 

 

 

 

 

 

 

 

 

A.3.2         Critical values for the AD test under normal distribution at               

different significance levels.                         

 

 

 

 

 

 

 

 

 

 

 

Significance 

  level,   

𝛼 = 0.05    

Significance 

  level, 

𝛼 = 0.1  

Number of 

samples 𝑛 

2.5121 1.9518 10 

2.5020 1.9385 20 

2.5130 1.9313 30 

2.5042 1.9362 40 

2.4941 1.9277 50 

2.5044 1.9367 60 

2.4959 1.9304 70 

2.4951 1.9235 80 

2.5064 1.9326 90 

2.4901 1.9325 100 

0.01 

 

0.025 

 

0.05 

 

Significance 

level           

1.035 

 

0.873 

 

0.752 

 

Critical values 
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A.4        Critical Values for Cramér-von Mises Test-Statistic 

  

                          Significance level, 𝛼   
 

 

Sample     

size, 𝑛 

 

0.20 

 

      0.15 

 

0.10 

 

        0.05 

 

0.01 

 

2 

 

0.138 

 

0.149 

 

0.162 

 

0.175 

 

0.186 

 

3 

 

0.121 

 

0.135 

 

0.154 

 

0.184 

 

0.23 

 

4 

 

0.121 

 

0.134 

 

0.155 

 

0.191 

 

0.28 

 

5 

 

0.121 

 

0.137 

 

0.160 

 

0.199 

 

0.30 

 

6 

 

0.123 

 

0.139 

 

0.162 

 

0.204 

 

0.31 

 

7 

 

0.124 

 

0.140 

 

0.165 

 

0.208 

 

0.32 

 

8 

 

0.124 

 

0.141 

 

0.165 

 

0.210 

 

0.32 

 

9 

 

0.125 

 

0.142 

 

0.167 

 

0.212 

 

0.32 

 

10 

 

0.125 

 

0.142 

 

0.167 

 

0.212 

 

0.32 

 

11 

 

0.126 

 

0.143 

 

0.169 

 

0.214 

 

0.32 

 

12 

 

0.126 

 

0.144 

 

0.169 

 

0.214 

 

0.32 

 

13 

 

0.126 

 

0.144 

 

0.169 

 

0.214 

 

0.33 

 

14 

 

0.126 

 

0.144 

 

0.169 

 

0.214 

 

0.33 

 

15 

 

0.126 

 

0.144 

 

0.169 

 

0.215 

 

0.33 

 

16 

 

0.127 

 

0.145 

 

0.171 

 

0.216 

 

0.33 

 

 

 

 

 

 

 

 

 

 

17 

 

0.127 

 

    0.145 

 

0.171 

 

0.217 

 

0.33 

 

18 

 

0.127 

 

   0.146 

 

0.171 

 

0.217 

 

0.33 

 

19 

 

0.127 

 

   0.146 

 

0.171 

 

0.217 

 

0.33 

 

20 

 

0.128 

 

  0.146 

 

0.172 

 

0.217 

 

0.33 
 

30 

 

0.128 

 

  0.146 

 

0.172 

 

0.218 

 

0.33 

 

60 

 

0.128 

 

  0.147 

 

0.173 

 

0.220 

 

0.33 

 

100 

 

0.129 

 

  0.147 

 

0.173 

 

0.220 

 

0.34 
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Appendix B:   R codes 

 

B.1      Algorithm for calculating the power of Anderson-Darling test, testing  

            Normality against 𝑬𝒙𝒑(𝟓)  

 

for (n in c(20,30,50,100,200,300,400,500)) 

   { 

AD <- c(0,1) 

F <- c(0,1) 

power <- 0 

number_of_samples <- 10000 

partion_number <- 330 

H0 <- function(x){(1/sqrt(2*pi*vari))*exp(-((x-mu)^2)/(2*vari))] 

 for estimated parameters# 

cv<-0.752 # 

 for not estimated parameters  # 

cv<-2.492  

y[1] <-(-5) 

j<-1 

repeat { 

y[j+1] <- (y[j]+0.03) 

if(j==partion_number)break 

j<-j+1 

    }    

kh<-1 

repeat 

{ 

sum <- 0 

set.seed(123) 

x = sort(rexp(n,5)) 

mu = mean(x) 

vari = var(x) 

cat('x=',x,'\n') 

s <- 1 

j <- 1 

repeat 

{ 

F[j] = 0 

k <- 1 

repeat 

{ 

if (x[k] <= y[j]) 

{  

F[j]=s/n 
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s = s+1 

               } 

if(k==n)break 

k<-k+1 

  }      

cat('F[j]=',F[j],'\n") 

cat('y[j]=',y[j],'\n') 

if(j==partion_number)break 

j <- j+1 

s = 1 

  } 

j<-1 

repeat 

   { 

p = integrate(H0,-Inf,y[j])$val 

cat('p=',p,'\n') 

if(p<=1 && p>= 0.9999999){p = 0.9999999} 

if(p>=0 && p<=0.000001){p = 0.000001} 

sum = sum + (F[j]-p)^2*(H0(y[j])*0.03)*(1/(p*(1-p))) 

sum = sum + (2*i-1)*log(pnorm(x[i],0.5,1))+(2*n+1-2*i)*log(1-pnorm(x[i],0.5,1))  

    if(j==partion_number)break 

    j<-j+1 

      } 

AD[kh]=n*sum # 

AD[kh]=n*(1+(0.75/n)+(2.25/(n^2)))*sum 

if(AD[kh]>cv) 

{ 

power <- power + 1/number_of_samples 

cat('k=',k,' ', 'power=',power,'\n') # 

} 

if(kh==number_of_samples)break 

kh <- kh +1 

} 

cat('n=',n,' ', 'power=',power,'\n') 

power = 0 

} 

 

B.2      Algorithm for calculating the power of Bickel-Rosenbaltt test, testing  

            Uniformity against non-parametric alternatives. 

 

for (n in c(10,20,40)) 

{ 

number_of_samples <- 1000 

partion_number <- 100 

I <- c(0,1) 
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z <- c(0,1) 

d <- c(0,1) 

x <- c(0,1) 

BR <- c(0,1) 

power <- 0 

sum2<-0 

y <- c(0,1) 

FN <- c(0,1) 

honenorm <- c(0,1) 

sum <- 0 

K <- c(0,1) 

zalpha=1.28 

mu<-0 

vari<-0 

mean <- c(0,1) 

variance <- c(0,1) 

mu <- c(0,1) 

vari <- c(0,1) 

bn=1/sqrt(n) 

H0 <- function(x){(1+(x-x))}  

H0int <- function(x){(1+(x-x))} 

             Calculation the Critical value of BR test # 

kernel <- function(x){(3/4)*(1-(x^2))} 

kernel <- function(x){(1)}  # 

kernel2 <- function(x,y)sapply(x,function(z,y){kernel(z)},y=y) 

multiply=function(a,b) 

{ 

force(a) 

force(b) 

function(x){a(x)*b(x)} 

} 

multiply2=function(c,d)) 

{ 

force(c) 

force(d) 

function(x,y)sapply(x,function(z,y){c(z)*d(z+y)},y=y) 

} 

mult=multiply(kernel,kernel) 

normal2=multiply(H0int,H0int) 

I = integrate(Vectorize(mult),-1,1)$val) 

fvec=multiply2(kernel,kernel 

gvec = function(x) sapply(x, function(y) integrate(fvec, lower=-1, upper=1, y=y)$val) 

gvec2=multiply(gvec,gvec) 

J = integrate(Vectorize(gvec2), lower=-1, upper=1)$val 

mu = I*(integrate(H0int,0,1)$val) 

(var=2*J*(integrate(normal2,0,1)$val 
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mu = I*1 

var=2*J*1 

segma=sqrt(var) 

cv=mu+(zalpha*sqrt(bn)*segma 

k<-1 

repeat { 

         Generate data from non-parametric alternative distributons # 

Alternative A # 

I <- function(t){(1-(1-t)^(2/3))}  

I <- function(t){(1-sqrt(1-t))}  # 

set.seed(123) 

z = sort(runif(n,0,1)) 

mean = mean(z) 

variance = var(z) 

m <- 1 

repeat 

{ 

d[1]=I(z[1]) 

d[m]=sort(I(z[m])) 

x[m]=sort(d[m]) 

if(m==n)break 

m<-m+1  

} 

mu = mean(x) 

vari = var(x) 

y[1] <-(0) 

j<-1 

repeat { 

y[j+1] <- (y[j]+0.01) 

if(j==partion_number)break 

j<-j+1 

} 

j <- 1 

repeat { 

honenorm[j]=H0(y[j]) 

if(j==partion_number)break 

j<-j+1 

} 

j<-1 

repeat{ 

  i<-1 

 { repeat 

    if(((y[j]-x[i])/bn)>=(-1)&&((y[j]-x[i])/bn)<=(1))  

   ((K[i]<-kernel(((y[j]-x[i])/bn 

     else  

        K[i]<-0 
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] sum = sum + K[i 

        if(i==n )break 

        i<-i+1 

} 

FN[j] = sum * (1/(n*bn)) 

sum =0 

if (j==partion_number)break 

j<-j+1 

} 

j<-1 

repeat{ 

diff = FN[j]-honenorm[j] 

sum2 = sum2 + (diff^2)*0.01 

if(j==partion_number)break 

j <- j+1 

}  

BR[k] = sum2 * n * bn 

') cat('BR=','[',k,']',BR[k],'\n# 

sum2 = 0; 

if(BR[k]>cv) 

power = power + 1/number_of_samples 

if(k==number_of_samples)break 

k<- k +1 

} 

cat('n=',n,' ','cv=',cv,' ' ,'power=',power,'\n') 

power = 0 

} 

 

 

 


