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Abstract

Estimation for the Survival Function of Quality Adjusted
Lifetime

By

Hadeel Salah Aden Zayyat

Recently, quality adjusted life time has received much attention
because of its ability to take quality of life into consideration. The quality
adjusted lifetime is a new approach to therapy evaluation in clinical trials.
In this work we will present the case of censoring, assuming that a subject
disappears at specific time, and reports back at any time later. We will deal
with this type of censoring using two methods: The Mean Value Theorem
method and the shifting method.

Also, we will find another estimator for the survival function, using
the Monotonized Zhao-Tiatis estimator and Wang estimator by following
Almanssra method(2005). We will study the efficiency of this estimator
using simulation study to compare MSE, BIAS for the estimations and the

true value of survival function by using R program.
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Chapter 1

Introduction

Survival analysis is defined as a collection of statistical procedures for
data analysis for which the outcome variable of interest is the time when
the event occurs. In the past, the survival analysis was obtained from initial
studies where the event of interest was death only. But nowadays, the scope
of the survival analysis has become wider. Today, scientists are using the
survival anélysis to estimate time until of set of disease, the time until stock
market crash and the time until an earthquake, and so on [23].

Many clinical trials are intreaste& in following patients for a long time. The
event of interest in those studies is death, relapse, onset of illness, recovery
from illness, adverse drug reaction or development of a new disease. The

follow-up time for the study may range from a few weeks to many years.

Most clincal studies involve observations on individuals subjected to cen-
soring. The existence of censoring in these studies causes difficulties in
analyzing such data.

Two of the most popular estimators proposed to consider censored data are
the Kaplan-Meier estimator and the Nelson-Aalen estimator [27].

In clinical trials of chronic diseases such as AIDS or cancer, it has been
recognized that it is not enough just to consider simple time to event and
points. For example, a new experimentai drug may prolong the overall sur-

vival time of patients, but in the mean time, it can be toxic for a longer



period of time.

Therefore, the trade-off between the quality and quantity of life of patients
needs to be considered.

Cox(1992) pointed out that we need a new measure which take in consid-
eration both the quality and the quantity of patient’s life; which is called
quality-adjusted lifetime. |

A Iof of researchers studied quality adjusted lifetime. Gelber et al. (1989)
noted that the use of the Kapaln-Meier estimater with censored quality ad-
justed lifetime data will obtianed inconsistent and biased estimation. Many
different estimatiors have been proposed to solve this difficulty and estimate
consistent biased estimator. One of them was studied by Korn(1993).

Zhao and Tsiatis(1997) presented a method which finds an estimation of the
survival function of quality adjusted lifetime involved censored data. They
proved that their estimator is consistent. Huang and Louis (1998) noted
that the above Zhao-Tsiatis estimator is not a monotonic function.
Zhao-Tsiatis estimator is a member of a class of inverse probability of cen-
soring weighted (IPCW) estimators. Huang and Louis(1998) used (IPCW)
technique to propose an estimator of the distribution function of the unre-
stricted quality adjusted lifetime.

Zhao and Tsiatis(2000) [33] discussed the efficiency of the weighted estima-
tors of survival functions for the guality -adjusted lifetime by proposed a
modified estimator. This modified estimator is more efficient than the one

proposed in Zhao-Tsiatis(1997).

Zhao-Tsiatis(2000) noted the problem of estimating the mean of the quality
adjusted lifetime (QAL), which is often of interest in its own right. Because
of the presence of censoring, it is impossible to obtain a consistent estima-

tor for mean QAL over the entire health history. Therfore, they considered



mean QAL restricted to a certain time, which is often determined by the
follow-up time of the study. Wang(2001) [30] suggested an imporoved ver-
sion of the Zhao-Tsiatis estimator, which is more efficient than the original
version of Zhao- Tsiatis estimator. Since Wang estimator is an modified
verision of Zhao-Tsiatis estimator it is also consistent. A survival function
estimator assigned negative mass at a point if and only if the value of the
survival function befor the point is smaller than its value after this point.
Almanassra et al. (2005) studied the jump points for Zhao-Tsiatis estima-
tor and Wang estimator and he investigated which of these estimators jump
points assigned negative mass. Therefore, Zhao-Tsiatis estimator and Wang
estimator are not monotonic estimators.

An estimator will be not a proper survival function, if it fails to be mono-
tonic estimator. Since Zhao-Tsiatis estimator and Wang estimator are effi-
cient estimators of survival function of quality adjusted lifetime but they are
not monotonic, and therfore not proper survival functions, if ”isotonized”
to make monotoic by invistigate thier consisteﬁcy and efficiency which has
been done by Almanassra et al. (2005). Since the Simple Weighted esti-
mator of the survival function of quality adjusted lifetime is a consistent
estimator and a proper survival function, and it has been considered that
it is less efficient than many estimators that are not monotonic and there-
fore, are not proper survival functions. They intorduced new monotonic
estimators, by finding the jump points of the Simple Weighted estimator,
Zhao-Tsiatis estimator, and Wang estimator and their values at these point
to proposed a class of monotonic estimators for survival function of quality
adjusted lifetime.

All proposed estimators derived by Almanassra et al.(2005) are consistant,
but they are nearly as efficient as their non monotonic counter parts, when

the sample size is large. So the method of modifying any consistent non-



monotonic estimator to define a class of monotonic estimators is descibed .
in Almanassra et al.(2005). This method is applied to the Zhao-Tsiats es-
timator and the Wang estimator using the Simple Wieghted estimator as
a consistent estimator to intorduce the monotonic Zhao-Tsiatis estimator
and the monotonic Wang estimator. They presented a simulation study
which campares the two proposed monotonic estimators with their unmod-
ified counterparts and the Simple Weighted estimator.

In this work, we will use the monotonic Zhao-Tsiats estimator which pro-
posed by Almanassra et al. (2005) and Wang estimator to find a new estima-
tor for the survival function of quality adjusted lifetime which we hope it will
be efficient as the other estimators by following Almanassra method(2005).
Also we present a case of censoring which we suppose that there is missing
data in an interval in the follow-up time, then we used two methods to deal
with this case of censoring, the mean value theorem to estimate the quality
adjusted lifetime function for the missing data and shifing method, we will
study the jump points of Simple Weighted estimator, Zhao-Tslatis estimator

and Wang estimator.

1.1 Work Plan

This thesis consists of 4 chapters. In the first chapter, we give a review of
the literature and explian some of the basic ideas about survival functions.
We defined Kapalan-Meier estimator and Empirical estimator when there is
no censoring. we presented the mean quality adjusted lifetime and Simple
Weighted estimator, Zhao-Tsiatis estimator and Wang estimator, we pre-
sented the mean value theorem and some notes for MSE and consistency.

In the second chapter, we review a case of censoring and we will present ex-
amples consider this case of censoring, and we will identify the jump points

of Simple Weight estimators, Zhao-Tsiatis estimator and Wang estimator.



In the third chapter we will estimate a survival function of quality adjusted
lifetime using the monotonized Zhao estimator to introduce the monotonic
Wang estimator by following Almanassra et al. method (2005).

In the fourth chapter, we will present a simulation study compares MSE,
Bias for the Simple Weighted estimator, Zhao-Tiatis estimator, Wang es-
timetor, monotonic Zhao-Tiatis estimator, monotoic Wang estimator an new

monotonic Zhao-Wang estimator.



Chapter 2

Review

2.1  Survival Functions

One of the main concepts in survival analysis is the survival function, S(t)
which gives the probability that a person survives longer than some certian
time t. The survival function is a monotonic noninceasing function of time.
let T be a non-negative random variable representing the waiting time until
the occurrance of an event.

Here, the terminology of survival analysis is limited to suppose that the
death is event of intrest, and the waiting time is ”survival” time, but the
techniques to be studied have much widder applicabili.ty. They can be used,
for example, to study duration of a marriage, the intervals between succes-
sive births to a wbman, the duration of study in a city(or stay in a job) and
the length of life.

It may include flelds such as Fertility, mortality and migration.

The cumulative distribtion function which is the probability of the event

occuring prior to or at time ¢ is given by.
F{t) = P(T < t)

Survival function S{¢), also called the survivorship function, or the survival

function is simply the reverse cumulative distrubution function of 7.



S{t) = P(T>t)= (1~ P(T <t)) =1~ F(t).

Where ¢ € [0,00), and S(t) € [0,1].
Which gives the probability of a life just before time 1, or the probability
that the event of interest has not occurred before time ( [3].

The probability density function is given by f(t), which is

£ = SF(@) = S25(0)

2.2  Hazard function

The hazard function, A(t) also known as the conditional failure rate [3].
The hazard function is the limiting probability that the failure event occurs
in a given interval, conditional upon the subject having survived to the be-

ginning of that interval, divided by the width of that interval {3].

Prit + At > T > t|T >t}
Ater30 At )

Let T in the interval [(, ¢ + At],

POL<T <L+ AP OT > ¢)

Al = Altlﬂ(} P(T > t)At
<tk
AE) = Jim Pt <T <t+4O8)

a0 p(T > AL

By the defintion of S(¢) = P{T > t).

Since,

. P+ At - F(t)
YOS Alzlﬁe At

Then,



A(t),_.g% (21)
since [(I) = d(Fdit))
~S()  ~dS@)
Alt) = S%tt} - scfi) (2.2)
Then,
Alt) = 10g(3(i)) (2.3)

The hazard rate can vary from zero which means no risk at all, to infinity
which means the certainty of failure at that instant. The greater the hazard
between times t; and iy causing greater the risk of failure in this time in-
terval which means that over time, the hazard rate may increase, decrease,

stay constant, or even take on more serpentine shapes [3].

2.2.1 Cumulative hazard function

The cumulative hazard function [3]
A(t) is given by:

AE) = /0 Mu)de (2.4)
AQt) = fo -é-%dw S(U){ 2 Stu)du = - In(S(9). (2.5)

The cumulative hazard function measures the total amount of risk that has
been accumulated up to time {. We can see the inverse relationship between

the accumulated risk and the probability of survival function.



t.g(t) == 8_A(t) -

S(t) = elo Mo
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Example 2.2.1

Lets obtain the risk as a constant, the hazard is given by
M) =), for all t

S(t) = e™™.

This ditribution is called the exponential distribution with parameter A.
The density may be obtained by multiplying the survival function by the
hazard.

Ft) = de™.

1
the mean turns out to be .

A

2.3 Censored Data

Most survival analysis considers a problem called censoring. Censoring oc-
curs when we have some information about individual survival time, but we
do not know the survival time exactly.

In real data-analysis situations, we often do not know when failures oc-
curred, at least not for every observation in the dataset [3].

The censoring is defined as when the failure event occurs and the subject is
not under observation [3].

There are three reasons of censoring :

A person does not experience the event before the study ends, or when a
person withdraws from the study because of death (if death is not the event
of the interest), or a person is lost to follow-up during the study period or

some other reason like adverse drug reaction.
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Broadly classifying two types of censoring are encountered, ¢.e, point and
interval censoring [3] .
Point censoring is said to occur when a subject leaves the study befor an

event occurs. We called that type, right censoring.

Left-censored data can occur when a person’s survival time becomes incom-
plete on the left side of the follow-up period for this subject.

For example, we may follow up a patient for any infectious disorder from
the time of his being tested positive for the infection. The exact time of
exposure to the infectious agent could never be known [3].

In interval censoring we know the event occurs in a time interval, but we
don’t know exactly when in this interval it might occur.

Here, we are intrested in right censoring which has two types:

1. Type one: Completely random drop out, where total duration of study

is fixed.

2. Type two: Study ends when a fixed number of subjects were expe-
rienced the event has occured, and the duration of the study is then

random.

In random censoring, which is a more general scheme, each unit is asociated
with its censoring time.

Let C; is the time to the censoring event and T; is the time to event. lifetime
T;, and C; are independent variables.

We observe X; which is the minimum of censoring and lifetime.

X; = min(C;, T;) The censoring indicator is defined as

A; = I{T; < Cy).
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which is equal to one if the observations terminated by death or the event

of interest, and zero if the observations considered as censoring.

2.3.1 Censoring and Truncation

Truncation is often confused with censoring because it also gives rise to
incomplete observations over time. Truncation usually refers to complete
ignorance of the event of interest and of the covariates over part of the dis-
tribution [3].

The right truncation is defined as a period over which the subject was not

observed but is known not to have failed to be observed [3].

2.4 Empirical Distribution Function

The empirical distribution function is the distribution function associated
with the empirical measure of a sample. This cumulative distribution func-

1
tion is a step function that jumps up by — at each of the n point [28].
T

Definition 2.4.1 The Empirical Distribution Function [4]

Let X,,..., X, be i.i.d real random variables with the cumulative distribution

function F(i}. Then the empirical distribution function is given

Fot) = -éi I(X; < t). (2.6)

The empirical estimation of survival function provides the best estimation
of the survival function since it is an unbiased and consistent estimator of
F(t) when we don’t have censored data.

Let Cy,...,C, denote the censoring time for the i — th subject so we measure

the pair (X;, A;), where
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Xi == mm(ﬁ,@)
Nelson-Aalen estimator and Kapalan-Meier estimator are the most popular

estimators proposed to deal with censoring data.

2.5 Kaplan-Meier Estimator

The Kaplan-Meier method is based on individual survival times and as-
sumes that censoring is independent of survival time. That is the reason
an observation is censored and unrelated to the cause of failure {24]. The
Kaplan—Meier estimator, also known as the producf; limit estimator, is used
for estimating the survival function for lifetime data .

The main idea behind the Kaplan-Meier estimator is dividing the observed
timespan of the study into a series of fine intervals to get a separate interval

for each time of death or censoring,.

Let ¢, 85,83, ... denote the times of death of n individulas in a study.

Let d;,dy,ds...... denote the number of deaths that occur at each of these
times.

Let r,rg, ... .7, be the number of patients remaining in the study, or the
number of patients in risk. where, ry =1 —dy, 73 =2 — da, ..., ete.

P(T > t;) = §(t;) is the probability of surviving beyond time ;.
A numerical estimator S(t) of the true survival function S(t) can iteratively
be build by using that recursive idea.

For any time ¢ € [0,#,;), then S{t) = 1; because no deaths have yet occurred.

For any time ¢ € [t1, ),




14

For any time t € [t3,13], we have

S(t) = P({T>t)

_ d; T2 — da
= (-2 x (=
. d] dg
= 7"1)X(§_ Tz

and so on.

Now, for any t € [t;,tj41],7 = 1,2,.....,n the Kaplan Meier estimater given by

S(t) - (1m£:_:_1_x(1m-§—2)>< ......... X(—'gi)
o J
i H(lw_l) {}(t(t

Jity <t

Where, #;,7 = 1,2,...,n is the total set of failure times recorded, d; is the
number of failures at time ¢;, and r; is the number of individuals at risk at
time ;.

If there are no censored observations, then the kaplan Meier estimator 5‘(6)

is reduce to one minus the empirical distribution funcion.

Sa(t) = (1= Fult)) (2.7)
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Example 2.5.1 Suppose thatt; = 2, 4, 5, 7, 9, 11, 16, 18, 20.

Let n==10

Where the ordered observations in the table:

observation | 2 15519116116 18
A| 1 ol1y0|1| 1| 17 0
d; d; .
t; ry | ds ;f* {1~ ;—j_-) S(t)
2 10-0| 2 2| 1-0.2=0.8 0.8
A 10-(1+8)=T7| 0 2=0 1-0=1 0.8%1
5 (7-0)=7 1 Ll1-1=8) (08)(%)=0.69
T-(1+1)=5| 1 Li1—1=2%|%069) =0.552
9 5-1=4| 1 : 111 H0.552)=0.41
11 4-1=31 0 =0 1| 0.41%1=041
16 3-0=3| 2 2l1-2=3 0.41(%)
18 3-2=1| 0 0 1 0.14
20 1-1=0| 0| not defined | not defind not defind

Where K(.) is Kaplan-Meier estimator.

Note that as the intervals get finer and finer the approximations made in
estimating the probabilities of getting through, each interval becomes more

and more accurate, at the end, the estimator converges to the value of the

true survival function S(t) in probability.

The variance of the Kaplan-Meier estimator is estimated by {14]:

5(t) = 3(t)?

Lige

d;

ri{ry —dj)
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2.6 Nelson-Aalen Estimator

The Nelson-Aalen Estimator is nonparametéric estimator, which can be used
to estimate the cumulative hazard rate function from censored data {14].

The Nelson Aalen Estimator is given by

Ay =y2%

ti<t 7
where, r; is the number of individuals at risk élive and not censored just
prior to or befor ;.
The Nelson-Aalen is én increasing function with increasing right continuous
step function with increments ﬂ; at the observed failure times. |

Ts
The variance of the Nelson-Aalen estimator can be estimated by [14].

c o N g dg)d;
0 =2 (ry = L)r; 28)
2.6.1 The relationship between Kaplan-Meier estimator and
the Nelson-Aalen estimator:

The survival distirution function S(t) is absolute continuous with density

function {7}

fe) = =5(t).
Hazard rate function
M) = »é%

The cumulative hazard rate function

AlL) = fn Mu)du.
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At) = 0; —g;?—;&—i%du

where, S{u") denotes the left limit of the survival distibution function at ¢.

For an absolute contiuvous distibution .

At) = ~InS(t) = /0 Aluldu

So, the survival function takes the form
S(t) = 2@

The Nelson-Aalen estimator for the cumulative hazard rate function is given

by

" dj
A= 2
i<t J

The Kaplan Meier estimator takes the form

50y =T~ 4

£t

2.7  Quality Adjusted Lifetime and its mean

Gelber et al.(1989) presented that the patients méy experience several
health states which different in their gulaity of life.

The perfect health is weighted ”1” and a state of being dead is weighted
e {12].

Then the total quality adjusted life years is the area under the quality of
life over time.

[/ is the utility which is the measure in Quality Adjusted Life years(QALY)

is given by.



18

7 k
U= Z q:5:
i==1

where, ¢y, ..., g is the utility assigned to each of k-health states, and s;, ..., 54

B

is the time (years ) spent in each state [12].

A more general form of quality adjusted life years is given by:
Ui{t) = g f ().

where, U;(t) is the utility of surviving ¢ years in health state i and f(t) is a

increasing monotonically function of ¢ [23].

Gelberet al.(1989) defined the quality adjusted lifetime by considering three
health states, which are TWiST, TX and TOX: TWiST is equal to the
amount of time spent without symptoms and toxicity [10]. For the uncen-
sored case, the TWiST is calculated for each patient by subtracting from
overall time to symptomatic disease relapse any previous time that the pa-
tient experiences treatment toxicity [10].

Let TR; the time from the start of treatment to symptomatic disease relapse
for each patient [10].

TX; is defined as the amount of toxicity which the patient would experience
from the treatment, in the absence of censoring by death or relapse [10].
Note that 7°X; need not be accured during censecutive time periods; e.g., a
patient might have toxicity in months 1, 2 and 4, but not 3. TX; may or
may not be statistically independent of T'R; [10}.

Let TOX,; is the amount of toxicity observed prior to relapse for the pa-
tient [10]. They weighted the time spent in each class according to subjec-

tive judgement as to the quality of life in each state.
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By definition
TOX; <TH;

The definitions of TR; and TOX; can be adjusted to account for conditions
and events, with special relevance to particular clinical situations.
Let FU; the follow-up time for each patient [10].
Using the notation for censored survival data, let OTR; be the observed
value of TR; and Let OTOX; be the observed value of TOX;, with censoring
indicators A; [10].

OTR; = min{TR;, FU),

OTOX1 == T?’E?W(TOX“ FUZ),

Then, the observed TWiST, is given by
OTWiST; = OTR; — OTOX,. (2.9)

Gelber et al.(1989) defined also accumulated TWiST, TWiST(L), in order
to reduce the amount of censoring, then TWiST(L) is the amount of TWiST

observed within [ time units from the start of treatment [10]
OTR-,, = min(TRi, FUi, L),

The observed TWiSTi(L) for patient ¢ is given by
OTWiSTi(L) = OTR; — OTOX(L) (2.10)

Note thatTWiST(L) is never censored if L < FU; {10].
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We will use these variables in our simulation study.

Q—TWiST defined as a series of health states use a partitioned survival anal-
ysis to compute the average time in each state, and then weighted each state
according to its quality of life to find out Quality Adjusted Lifetime [33].
Cox(1972) mentioned that we should have a new measure from evaluation
of treatment for chronic diseases, expanding overall survival time that com-
bines both the quality and the quantity of the patients life, this measure is
called quality adjusted lifetime [33].

The importance of studying quality adjusted lifetime is its ability to take
into conideration both quantity and the quality for the life of the patient [33].
Quality adjusted lifetime places states of health on a utility scale with ref-
erence points ranging from 0 (death) to 1(perfect life). [33]

Quality Adjusted Lifetime "QAL” is given by:

U=> QT

Where, @1,...,Qr are the utility coefficient assigned to each of "k” health
states, and T, ....., Ty are the time spent in each state.

Let the i-th patient’s health history for n patients under a study be de-
scribed by a discrete state continuous time {v;(t),t > 0}. Where, v;(t) maps
to the state space S = {0,1,....,k}; at any time ¢, the health status v;(t) may

take on any of k -+ 1 values corresponding to different states of health [33].

Let T, denote the time it takes the i-th patient to move into the state 707,
Ty = inf{t : v(t) = 0}; T} will be considered as the over all survival time.

Let’s define v; as the i-th patients health history up to time { i.e.
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vi{t) = {v{u:u <)}
Let Q(.) be the quality of life function mapping the state space v fo the

interval [0, 1].

The i-th patient’s quality adjusted lifetime is [33]

Ui = f(} 0t i)}t

The i-th patient also has a potential to be censored denoted by C; > 0.

Then the survival distribution function for C is given by
K{u) = Pr(C > u),

To reduce the censoring, we need to consider a limit denoted by L. Then,

L is an artificial endpoint.

2.8 Estimation the Survival Function of Quality Adjusted
Lifetime

In this section, we will review the Simple Weighted Estimator, Zhao-Tsiatis
estimator and Wang estimator.

Let U; = (U, Uy, Us...,Uy,) be a random continuous failure times variables with
survival function S(.) [1]. The truncated failure times given by T; = min(U;, L),
where [, is an artifical endpoint.

Zhao-Tsiatis(1997) defined restricted quality adjusted lifetime by:

73
N(T) = | Qi (2.11)
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where, Vi(t) is the health status function of i-th individual at time ¢, and
Q(.) is a known function maps v;(t) in the interval {0, 1].
The survival function of restricted quality-adjusted lifetime (RQAL) is given
by

Sula) = P(N(Ty > a)), 0<a<l.

Let C; = (C,Cs,Cs, ..., Cp,) be random continuous variables denoting censor-
ing times with hazard function X.(.) and survival function K(.).

In the presence of censoring. Let {T;,C;, {N(r),r € [0,Ti},i = 1,2, ...,n} repre-
sent #id copies of {X; = min(T}, Cy, Ay = I{T; < C;), Ni(r),r € [0, Xe),i = 1,2,..,n}
[1]. Where, n is the sample size.

The Censored Restricted Quality Adjusted Lifetime is given by [1]

Ay
N(X;) = ; Q(v;{t))dt.

Almanassra et al.(2005) mentioned that a single (censored or uncensored)
observation can be classified into one of four mulually exclusive cases, de-
pending on the answer of two questions. These questions are ” Can the value
of I(N(T) > a) be (unambiguously) determind?” If the answer is "yes”, then,
what is the first time point at which the value can be determined?

He defined the values T(a), T'(a), X{a), X (a}, to use these data to define the
Simple Weighted estimator, Zhao-Tsiatis estimator and Wang estimator.

The indicator functions for a complete observation are defined by :
Afa) = I{T(a) < C}

A(e) = H{T' (@) < O)}

A new class of estimators given by Strawderman(2000) and Almanassra ef

al. (2005) [1]:
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Ly Gl N (X)) > @) ife= 1

n = (2)

Ba(s, k)=

Where the ith index s is used to explain which method of estimation is
used to estimate K(.), and the index k is used to indicate whether the esti-
mator renormalized £k =1 or not £ = 2.

Almanassra et al. (2005) defined the weights as follows: [1].

Let

be the meén of estimated weights.

As long as the largest observation is not censored. Then,

(i(a) = Gi(a) = Gi(a) = 1 for each a.

Then,

Bal131) = 6,(152), 6a(3: 1) = 0a(3;2), 6al(4: 1) = 0,(4;2) [1).

In order to estimate the weight fs,j(a) and their means, first, we have to

estimate Kaplan-Meier estimator K{.) {1].
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Kaplan-Meier estimator for censoring random variable is given by

kO = [[0-2) (2.12)

ETRS

2.8.1 Simple Weighted Estimator

Let A(Y() be the Nelson-Aalen estimator for the cumualtive hazard function
obtained from the data (X;, 1 — A;). Therefore, the Kaplan-Meier estimator

is estimated using the Nelson-Aalen estimator by the following formula

K(t) = [](1 - A9(w)). (2.13)

<
Then the Simple Weighted estimator using the data (X, A;) to get the
Kaplan-Meier estimator K(X;) is given by
; Iy~ A

g (1, 1) == E . mI(N1(XZ e (I)) (2.}.4)

The Simple Weighted estimator is a consistent estimator for estimating the

true survival function.

2.8.2 Zhao-Tsiatis Estimator

Zhao and Tsiatis presented a more efficient estimator for the survival func-
tion of quality adjusted lifetime. Zhao-Tsiatis motivatation as follows [33]:
With no censoring the survival function 9,(z) would be estimated simply

using the empirical survival function
5 1
u I(N X-; .
Su= - STIN(X) > )

With the presence of censoring, note that, for fixed a if NV (X)) exceeds a,

then this would be known at any time s such that s > s}(a) where [32],
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S;(a) = inf]s : /Os Q{u(t)dt > a}]

where N(X;) will be known to be less than a only if [32].

-
/ Qfw(D)}dt < a
]

Therefore, with censoring, it would observe the value [(N{X;) > a) if and
only if C; > Ti(a)
where

(X; = min{T}, 5} {a)}).

Consequently, the indicator for a complete observation with respect to a
can be defined as A;(e) = I{C; > Ti(a}}.
That means that the typical individual whose health status would be ob-

served until Ti(z) would probability K{Ti(a}} of not being censored where
K(u) = Pr{C > u). . {2.15)

Since the censoring is independent of the health status, an individual with a
health history uncensored and observed up to T;(a) is on average represen-

tative of

1
TITaT TTia)} similar individuals some of which may be censored [32].

K(E){I(N{Xi) > a) = Su(a)H

{HN (X:) > a) = SulePTF, )

= E{I(N(X) > ¢) = Su(a)} = 0

(Bl

K(T)

Since, this estimator solved the estimation equation.
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Then
-1

Since K (t) is unknown, it is estimated using Kaplan-Meier estimator for the

Xi) > a)

censoring random variable C, with the data {X;(a) = min(T} (@), Cy), A{a),i =
1,..,n}

Let Ale® be the Nelson-Aalen estimator for the cumulative hazard function
obtained from the data (X;(a}, 1—2A;(a}), to estimate K(.) using Kaplan-Meier

estimator, using the Nelson-Aalen estimator given by

Ra(t) =[]0 — daca (u))

ugid
Let o be the fixed point, the Zhao and Tsiatis estimator for the survival
function of Restricted Quality Adjusted Lifetime (RQAL) using the data
(Xi(a), As(a) to find K,(Xi(a)) is given by [1].

A 1 n A,

i=]

2.8.3 Wang Estimator

Wang estimator is an modified varision of Zhao-Tsiatis estimator.
If I(N(X) > a) = 0 and N(X) + (L — X) < a, to find the first time point at

which this value can be determind, consider [2]
w(a) = inf{w: N(w) + L —w < a}

w(a) is the first time point t when N(t) + (L —t) < a. Since N(¢)+(L—t) is a
decreasing function of t,N(t) + (L - t} < a for all t > w(a}, define
T(a) =T, and T'(a) = w(a)
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Let X (o) = T(a) AC and X'(a) =T (a) AC.

That data had been used to estimate the Wang estimator.

First, we estimate K(.) using the data (X,(a), Ai(a).

Let A“Y() be the Nelson-Aalen estimator for the cumulative hazard func-
tion obtianed from the data (X;(a), 1~ Aj(a),i = 1,...,n, we can estimate K(.)

using the Kaplan-Meier estimator, based on the Nelson-Aalen estimator de-

fined by
K, (t) -—H(l dA" (w)).
We get
" 1 A .
0(4,1) = Z——————-——(X( ))I(N(X > a)) (2.17)

This is the Wang estimator for the survival function of Restricted Quality

Adjusted Lifetime (RQAL) [2].

2.9 The jump. points of the Simple Weighted estimator,
Zhao-Tsiatis estimator, and Wang estimator

Almanassra et al. (2005) presented the jump points of the Simple Weighted

estimator, Zhao-Tsiatis estimator and Wang estimator.

2.9.1 Jump points of the Simple weighted estimator

This estimator has a jump point at a point ¢ if and only if there exist index
i such that o = N(X;) and & =L i=1,2,....,n

The estimator jumps only at points of deaths.



28

2.9.2  Jump Points of the Zhoa-Tsiatis estimator

The jump points of this estimator are of three kinds:

1. a is a jump point if there exists an index i such that a = N {X;), and

A-‘;: 1, 7 == 1,2,..,71

2. o is a jump point if there exists an index i such that ¢ = N(X;), and

A;=0,i=12,... n
3. o is a jump point if there exists an index i such that A; =0,:=1,...,n,
N(X,,) < Q.

and there exists another indexj such that

Ay

0

and Xj > X,

2.9.3 Jump Points of the Wang estimator

This estimator is modified version of Zhao-Tsiatis estimator, the jump points

of this estimator are of four types [2]:

1. a is a jump point if there exist an index { such that

a=N(X),and Ny =1,i=1,2,.,n.

2. a may be a jump point if there exists an index ¢ such that;
a= N(X;) or
G.ZN(Xi)‘{‘LmXi,
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and A; = 0,i=1,2,.,n

3. @ is a jump point if there exists an index i such that

A =0,i=12.n

N{X;) <a< N(X;)+ L~ X,

and there exist another index j such that
Xy
a == Q;(t)dt
Jo

and X; > X;

4. ¢ is a jump point, if there exists an index ¢ such that
Ai = O, i == 1,2, ceny Thy
N(X;) <a < N{X) + L~ X, and there exist another index j such that
X3

a= | QB+ (L—X),

0

and Xj > X, and N(XJ) + L X} < (.

2.10 The Mean Value Theorem

The mean value theorem is one of the most important theorem in calculas

and it has been used to prove many theorems.

Theorem 2.10.1 Mean Value Theorem
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Let f:[a,b] — R be a continuous function on the closed interval [a,b], and
differentiable on the open interval (a,b), where a < b. Then, there exists
some ¢ in (a,b} such that [26]
b) — fla
PR ICEY )

b—a

The Mean Value Theorem is one of the milestones in calculus. The ge-
ometric nature of the Mean Value Theorem makes it easy to believe and
understand.

The defintion of average value of any continuous (or integrable) function,

whether positive, negative, or both is given by [26}:

1 b
A 2w z)dz.
verage = r— a/a flz)da

Geometrically, this means that the area under the graph of a continuous
function on a closed and bounded interval is the same area of a rectangle
that base is the length of the interval and the height is the value of the
intergrand at some points in the interval.

The idea of the average of n numbers is their sum divided by n. A continuous
function f on the interval [¢,b] have infintely many values, but we can sample
them .in an orderly way.

One divides the interval [a,}] into n subintervals of equal width Az = (b— a)/n

and caleulate the value of [ at the point ¢ in each subinterval.
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The average of the n sampled values is [26]

fla) + fleg)+ o+ flen) 1 if(ck)

T

foml
Ar &
= > flex)
b—a &
Ap - b—a
n
1 Az
n  b-—a
l ki3
= Zf(c;c)Am (Constant Multiple Rule)
kel

So the average is obtained by dividing a Riemann sum for { on [a,b] by (b-a).
When the size of the sample increases and let the partition of subintervals
approach zero, the average of the function f approaches (1—(a-b)) ]:f f{z)daz.

Both points of view lead to the following definition:

Definition 2.10.1 The average value on [a, b]

Let f be integrable on [a,b], then the average value of the function [ on the

interval [a,b], also called its mean, is given by

- b
average(f) = A i a/ f(z)dz.

2.10.1 The Mean Value theorem for Difinite Integrals

The mean value theorem for difinite integrals ensures that this average value
of the function [ is always taken on at least once by the function [ in the
interval [a, b] [26].

Geometrically, the Mean Value theorem for difinite integrals says that there
is a number ¢ in the interval [a,b] such that, the rectangle in which height
equals to the average value f(c) of the function and base width (b — o) has

exactly the same area as the region under the graph of the function [ from
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the point a to the point b [26].

Theorem 2.10.2 The Mean Value Theorem for Difinite Integrals [26]

If the function f is continuous on the interval [, b, then at some point ¢ in

the interval [a, b],

b
£ = = / f()de.

Note that, the continuity of the function [ is important here. It is possible

that a discontinuous function [ never equals its average value.

2.11 MSE, Bias and Consistancy

One of the main goals of this thesis is to figure out how to chose the right
stasitic (any function of data is called statistic) to estimate the true survival

function 4.

Definition 2.11.1 Unbiased estimator [29]

Let § be a point estimator for a true survival function §. Then the estimator

g is said to be an unbiased estimator if

If
E(B) +# 0

§ is said to be biased estimator [29].

Definition 2.11.2 {Bias of a point estimator)

The bias of a point estimatorB(6) is defined by

B(8) = E(§) — 9.
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Definition 2.11.3 The Mean Squar Error (29]

The mean square error (MSE) of a point estimator § is given by
MSE = E|(§ — )%

The mean square error of an estimator ¢ is a function of both its variance
and its bias;

MSE(®) = var(0) + [B(§)]%,

If 4 is unbiased estimator bias(§) = 0, then
MSE(6) = var(§)

Therefore, mean square error of an estimator ¢ is small, only if this estima-

tor has small variance and small bias and consistency [29] .

Definition 2.11.4 Consistent Estimator [29]

The estimator 0, is said to be a consistent estimator of the true value of the

survival function 8, if for any positive number ¢
im P(f, -6 <) = 1.
Tod OO
or, equivalently
lim P(|6, — 0] >¢) =0.
b OO0

Definition 2.11.5 Weak Consistency [29]

Let 0,,0,,...,0,,... be a sequence of estimators of a real valued of survival
function 4.

The sequence {0,} is called a simple (or weakly ) consistent estimator of Z
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if for every ¢ > 0

lim Pllg, — 0 <€ =1
T3 O

For every f in the parameter space (1.
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Chapter 3

Estimators of survival function and Jump points

In this chapter, we will present a case of censoring, assume that a subject
disappears for a while but then reports back to the study, causing a gap in
the follow-up. We will consider this type of censoring in estimating the sur-
vival function of restricted quality adjusted lifetime. Then we will calculate
the jump pionts of the Simple Weighted estimator, Zhao-Tiatis estimator
and Wang estimator.

In this chapter we will deal with the case of interval and right censoring.
We suppose that the i-th subject will be missed at time X and come back
Jater at time X;;. This means that the data is missed during the interval

[Xz'i? X?‘,E]-

To estimate the survival function of restricted quality adjusted lifetime in
this case of censoring, we may ignore the area of missing data, or we may esti-
mate the restricted quality adjusted lifetime by use the mean value theorem
to estimate the average value of quality of life. In this thesis A; represents

right censoring only at the time X;.

3.1 Estimating N(X;) using Shifting Method

Through the interval[0, X;| the data is missed at the partial interval [ X1, Xl

Where i = 1,...,n, n is the sample size.
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we calculate the restricted quality adjusted lifetime for the first interval by:
X
o

We calculate the restricted quality adjusted lifetime for the second interval

Xy

Xig

Since the function of quality of life in the missing interval is an unknown
function we may shift the function of quality of life of the second interval as

followes:

Let ();(t) is the function of quality of life after shifting the function of quality
of life ng(t) by (X1 - Xﬂ) to the left.

Q;(t) = Qualt + (Xiz — Xun)). ‘ (3.1)

We calculate the size of the final interval by shifting the intervals where the
subject exists.
Define X

X; = 10, Xa)| + |[[ X, Xi}] = X — (Xio ~ Xi1) (3.2)

The function of quality of life is

Qulit) 0<t< Xy
Qilt) = (3.3)
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3.1.1 Jump points of the Simple weighted estimator using shi-
fiting method

This estimator has a jump point at a point a if and only if there exist index
1 such that
t Xa Xi ’
a= N(X;) = Qa(t)dt + Qiplt)dt

o} 4 X

and A;=1,i=12,..,7

3.1.2 Jump Peints of the Zhoa-Tsiatis Estimator using shifit-
ing method:
The jump points of this estimator are of three kinds:
1. ¢ is a jump point if there exists an index ¢ such that a = N(X}), and

As=14=12 .n

2. a is a jump point if there exists an index 7 such that a = N (X)), and

A=0,i=12,...,n.

3. a is a jump point if there exists an index i such that &; =0,i=1,...,n,
N(X}) < a.
and there exists another index j such that
Let Q; (t) is the function of quality of life after shifted the function of

quality of life Q;(t) by (X2 — Xj1) to the left.

Q) = Qplt + (X2 — Xp)). (3.4)

Qu(t) 0<t <Xy
Q;{t) =
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Where,
X;=Xn+(Xj— Xp)

And X;- > X;.

3.1.3 Jump Points of the Wang Estimater using shifiting method

This estimator is a modified version of Zhao-Tsiatis estimator, the jump
points of this estimator are of four types [1]:
We will adjust X;, X;, and @, @; similar to what we did for the Zhao-Tsiatis

jump points if it is needed.

1. a is a jump point if there exist an index i such that

a=N(X,),and A;=1,i=1,2,..,n.

2. o may be a jump point if there exists an index i such that;
a= N(X]) or
a=N{X;)+ L~ X,
and A;=0,i=1,2,..,n

3. o is a jump point if there exists an index i such that

N=0,0=1,2,..,n
N(X)) <a< NX)+ L - X,

and there exist another index j such that

X!

and X; > X,



39

4. o is a jump point, if there exists an index ¢ such that
Ai=0,i=1,2,..,n

N(X]) < a < N(X;) + L ~ X; and there exist another index j such that

X, ,
au] Q;(t)dt + L — X
G

and X; > X; and N(Xj)+L—X; <a.

3.2 Estimation N{X;) using the Mean value theorem (MV'T)

To caculate the average value of a function on the interval {a,b], where the

function is continuous by use Mean Value Theorem for Integrals.

Average(Q(z)) = ;—1_—&/ Q{z)dz.

We will use this theorem to estimate the average value of ;(t) for data

which missed at time X; and comes back at time Xp.

1. First, we find the average value of the function of quality of life of the

the first interval {0, X;).

1 Xi

Average((h) = (X —0) Jy

Qu(t)dt.

2. Find the average value for function of qulality of life to third interval
X, Xl
1 X

Average(Q@s) = (X — Xa) Jx
[3 T i2

Qs(t)dt.
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3. Find the average for the function of quality of life for the interval that

the data is missed by using the Mean Value Theorem.

o » (X — 0)Average(Qh) + (X — Xin) Average(Qis)
Qult) = Average(Qs) = 110, Xo]l + |Xez Xo]

(Xil - O)AUE?”GQ@(QH) e (Xz - .X-,;z)AU@TCLQ‘E(Qig)
X’t', - (Xi2 . Xﬂ)

r

Qalt) 0515 Xy

Qﬁ(t) = 4 sz(t) Xﬂ <t < X (35)

Qit) Xpsti<X
\
Then N{X;) is given by

X Xz Xz
N{X;) = Qu(t)dt + Qu(t)dt -+ Qis(t). (3.6)

4] Xil Xz

The jump points will be obtained as follows:
3.2.1 Jump points of the Simple weighted estimator using

MVT

This estimator has a jump point at a point g if and only if there exists index

7 such that

X
o= N(X;) = ] Qu(t)at
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where,

-

QGa(t) 0SS Xy

Qi(t) = Qig(‘[;) Xn<i< Xio (37)

Qi) X <t<X;
\

and A, = 1,1=12,...,n.

3.2.2 Jump Points of the Zhoa-Tsiatis Estimator using MVT:

The jump points of this estimator are of three kinds:

1. o is a jump point if there exists an index ¢ such that a = N(X;), and

Ai = 1, i = 1,2,..,?7..

2. @ is a jump point if there exists an index ¢ such that o = N(X;), and

Ay=0,1=12,...,n.
3. a is a jump point if there exists an index i such that A; =0,2=1,...,n,
N(Xz) < Q.
and there exists another index j such that
Xy
a = QJ([’)dta
0

For X; > X,.

Where, the quality of life for subject j is given by
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’

Qunft)y 0Lt < Xn

Qj"(t) = 9 ng(t) Xj;[ <t < ng (38)

ij3(f,) Xj1 << Xj

Then

X ’
@ = Qj(t)dﬁ

Al

3.2.3 Jump Points of the Wang Estimator using MV'T

The jump points of this estimator are of four fypes. In each f{ype, we
adjusted X;, @i, N{Xi), Xj, Q;, and a as we did in finding the jump points
of the Zhao-Tsiatis estimator. Therefore, the jumps of the Wang estimator

will be find in a similar to section 2.9.3.

3.2.4 Example

Example 3.2.1

This example illustrates the difference between using shifting method and
using MVT method
Consider [ = 80, for observation X;, where X; = 60 and the function of qual-

ity of life is given by

0% 0<t<5
Qift) =
Ol 20<¢t<60

5
N(Xy) = / 02tdt = .01(25) = .25.
0
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oo 01
N(Xp) = » (01)tdt = —-2—(3600 — 400) = 16.

N(X)) = N{(Xa)+ N{Xi)
= 0.25 416

= 16.25

Using the shifting method

Qia(t) = Qalt -+ (Xi — Xip))
= .0L(t + (20 — 5))
= .01t + 15(.01)

= .01 4 .15

and, X; = 5+ 40 =45

5 45
N(X) = / 0.02tdt + [ (0.01¢ + .0.15)d¢
0O 5
= 25+ 16

= 16.25

Using Mean Value Theorem:

2
Average(@;) = ggé = .05
16
Average((}3) = T 0.4

0.05(5) + 40(0.4)

= ().
40 4-5 .

Average(Qa)
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N{Xp) = 0.36dt = (0.36)(20 — 5) = 5.4
5
N(X) = 025+54+16

= 21.65

3.2.5 Comments

Note that the value of N (X;) =16.25 using shifting method, but equals 21.65
using MVT method since we estimate the Average value of @ in the the

interval of missing data.

In the following example, we will find the jump points for the Simple
Wieghted estimator, Zhao-Tsiatis estimator and Wang estimator and the

values of these estimators at every point by using the shifting method :

Example 3.2.2

Consider the following set of data given in table(3.1). Find the jump points
of Simple Weighted estimator, Zhao-Tsiatis estimator, and Wang estimator.
Then find the value of these estimator at every point by use the shifting

method.

Tab. 3.1: Data for example(3.2.2)

1 Xi | D Q()
1 10,10 0 11
2 | [0,5]{20,60 003,025
3 0,60 1 0.5
4 0,80 1 1
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Note that for the second subject

0.3 0Pstgh
Qa(t) =
0.25 5 <t <40

We calculate the values of N(Xj) .

HY
L

5 0
N(Xq) = /0'3(11';*%/ 0.254d¢
0 5
= 1.5+10
= 115
60
N(X;) = / 0.54t
0
= 0.5 60
= 30
30
N(Xy) = / 1dt
0

= 80.

The table of the data is become

Tab. 3.2: Data for example(3.2.2)

111y 0 1 10
2745] 0]03,0.25 115
3160 1 0.5 30
4180 1 1 80

1. The jump points of the Simple Weighted estimator.

The Simple Weighted estimator has jump points at 30, 80.
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2. The jump points of Zhao-Tisiatis estimator.

(a) When, ¢ = N(Xy), &; =1,

the jump points are 30, 80
(b) ¢ = N(X;), A; =0, the jump points are 10, 11.5

(c) To find the jump points of third kind where,

A; =0, and N{X;) < a, and there exist another index j, where

X
2= /0 Q,(at,

and X; > X;
So the first point which has A; = 0 is Xj, and Xy, X; and X, is

greater than X;. For X, we have

5 10
a = / 0.3dt+/- 0.25d¢
Jo - Js

~ 03%5+5%025

= 2.75

Since 2.75 < 10, @ is not a jump point.

ForX,,

+10

0
= (0.5)(10)
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Since 5 < 10, e is not jump point.

For X;, a = (10)(1) = 10, and since 10 is not greater than 10, then
¢ is not a jump point.

The second point which has A; = 0 is X;. Now, X3 and Xy are
greater than Xs.

For X3,

45
a = / 0.5d¢t
0

= 45(0.5)

= 22.5

Since, 22.5 > 11.5,a is a jump point.

For X,

a = 45(1) = 45, and since 45 > 11.5, a is a jump point
Therfore, the jump points of the Zhao-Tsiatis estimator are

10, 11.5, 22.5, 30, 45, 80.

3. The jump points for the Wang estimator

(a) a= N(X;) and A; =1,

the jump poins are 30, 80.

(b) where g = N(X;), and
A; = 0, the jump points are 10, 11.5
When,
a=N{X;)+ L~ X

A, = 0, the jump points are 10--(80-10)=80,
and, 11.5+(80-45)=46.5



(c)

(d)
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A; =0, and

N(Xz) < N(Xz) -+ L - .Xz'a

and there exist index j where

Xi
a= [ Q).
0

Where, X; > X;.
The first point which A, = 0 is X;, we do not have any jump point
in this case.
The second point, which has A; =0, isX,,
both X, and X, are greater than X,, we will check which of them
lead to a jump point.
For X3, we have a = 45(.5) = 22.5,
Since, 11.5 < 22.5 < 11.5 + 80 — 45
11.5 < 22.5 < 46.5, then 22.5 is ajump point.
a = 45{1) = 45, since 11.5 < 45 < 46.5.

Then, a is a jump point

To find the jump points of the fourth kind, we have to see if there
exists another index 7, such that
X

0

Xj > X and N(Xj) —?—L-—-Xj < d-
The first point, which has A; =0 is X.

Now, X,, X3, and X, are all greater than X;, we have to check
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which of them lead to a jump point.

a = 2.75+4+80-10

= 7275

Since, 72.75 > 10 10--(80-10)=80 and since, 10 < 72.75 < 80

115+ (80 — 45) = 46.5

Since, 46.5 < 72.75, then 72.75 is a jump point.

For X5, we have

a = 10{(.5)+ 80— 10
w54 80— 10

= 75

Since, 10 < 75 < 10+ 80 — 10, and 10 < 75 < 80

30+ (80-60)=50, since 50 < 75 Then, 75 is a jump point.

For X, we have, a=10(1)+80-10=80, and since 80 is not greater
than 80. Then a is not a jump point.

The second point which has A; =0 is Xy,

Both X; and X; are greater than X,, we will check which of them

lead to a jump point.

@ = 45(0.5)+ 80 — 45

= 57.5

Since, 11.5 < 57.5, and 57.5 > 11.5 + 80 — 45
57.5 > 11.5.
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Since 57.5 > 46.5, then a is not a jump point.

For X,, we have

a = 45(1) + 80 — 45 = 80, and since 80 is not greater than 80, a is
not a jump point.

Therefore, the jump points of the Wang estimator are

10, 11.5, 22.5, 30, 45, 72.75, 75, 80.

Here, we will find the survival function using Simple Weighted estimator,
the Zhao-Tsiatis estimator and Wang estimator at every jump point we
calcuated.

For ¢ = 10
1. To calculate the Simple Weighted estimator
I A

6,(1:1) = i 2 mI(N(Xi >) > 10)

Both I(N(X; >} > 10) and A; are equal to the value 1 for i = 2,3, 4

Therefore, we need the value of the function K{.) at the point X3, X,

K(X3) = K(X4)

Then,

1 11
G4(1;1) = Z(0+0+I+I):z
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2. To calculate the Zhao-Tsiatis estimator

4

A 1 A
f10(3;1) = 1 Z ?;}—(?(i%gﬁf(fv()ﬁ) > 10)

i1
We have to find the values of X;(10}.
Since, N{X;) > 10, for X,, X3, X4, we have
X:(10) = X, for i = 1,2,3,4

I{N{X3) > 10) =1

X2(10) = inf{s: N{s) =s%.25=10}

Zs = 10
s = 10=%4
Xo(10) = 40

X5(10) = inf{s: N(s)=sx*; =10}
X,(10) = dnf{s: N{(s)=sx(1) =10}

X (10) = 10

The values of I(N(X;) > 10) and A;(10) are equal to 1 for ¢ = 2,3,4.
Therefore, we need to calculate the value of the function Kio() at the

pOil’ltS Xg(lO), Xg(lO), X4(10)

N N - 1
then,
. 1 3Ix4
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3. To calculate the Wang estimator

4

5 oy Ay(10) |
FCHESDY PR 1O))I(N(XJ > 10)

]

First, we have to find the values of X,(10)
We dont have N((X;) < 10) then,

. -, 3
K1o(X3{(10)) = K,(X:(10)) = 1
- 1 1 1 i
91[](4‘, i) == z({} 4 T + K -+ ";"*)
4 4 4
i 3Ix4
= Z(O + - )
= 1

We do the same calculations for each jump point, the results in the

table(3,3)

Tab. 3.3: The values of the Simple Weighted estimator, the Zhao-Tsiatis estimator, and Wang
estimator using shifting method.
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a|SWE | Z-T | Wang
10~ 1] 1 1
1o* 1 1 1
11,57 1] 1 1
11.5% 1| 2 2
22.5” 1, 2 2
22.5% 1] 1 1
30™ 1| 1 1
I I
I I
st 3| 33
72.75” 3 5
72.75" 2R 2
G B
o 1 1
| 3| 4| %
8ot 0, 0 0

3.2.6 Comments:
As you see the simple wighted estimator is monotonic, but the Zhao-Tiatis

estimator and Wang estimator are not monotonic.

Example 3.2.3

Use the data from the the example (3.2.2) to find the jump points by using
the mean value theorem for the second subject, to check if the jump point

are the same or not.
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We have to calculate N{X,) by using mean value thorem.

1 3
ave T T 3dt
G2 £70 /, 0.3
_ 15
5
= 0.3
1 60
ave T Tamay 25d¢
Qs (60 — 20) Jag 0.25
= {.25
5(0.3) + 40(0.25)
o et - 2 .
Q2,2tw 40+5 .26

Then,

,

03 0<<E<H

Q2(f) =026 5<t<?20

0.25 20 <t <40
\

5 20 60
N{Xy) = f 0.3dt + 0.26dt + 0.25dt
0 5

20
= 1.54+39+10

= 15.4

We will find the jump points for the data of the table (3.4).

Tab. 3.4: Data for example

XA Q) | NOG)
1116 O 1 10
21601 01]0.3,0.26,0.25 15.4
3760 1 05| 30
41 80 1 1 80

1. The Jump Points for Simple Weighted estimator:
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This estimator has jump points at 30, 80, where A; = 1.

2. The jump points for Zhao-Tsiatis estimator:

(a) When a = N(X;), &; =1,

the jump points are 30, 80 .

(b) When a = N(X;), &; =0,

the jump point is 10, 15.4 .

(c) We may find the jump points of this kind, where A; = 0, and
N(X;) < a , and there exist another index j, where
X
a4 = Qj (t)dt
0

and Xj > X;.
So, the first point which has A; =0 is A7,
Xs, X3 and X is greater than X,

5 10
a = j .3dt++f 26
0 5

354+ .26%5 1.5+1.3

Il

= 2.8

Then, o = 2.8, since 2.8 < 10, then a is not a jump point.
For X,

o = 10{.5) = 5, 5 < 10, then a is not a jump point.

For X4,
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a = 1(10) = 10, and since 10 is not greater than 10, ¢ is not a jump
point.

The second point, which has A; =0 is Xp

Only X is greater than X.

a = 60(1) = 60, and 60 > 15.4, then ¢ is a jump point.

Therefore, the jump points of Zhao-Tsitis estimator are

10, 15.4, 30, 60 and 80.

3. The jump point for the Wang estimator

(2)
(b)

(c)

o = N(X;), and A, = 1, the jump points are 30, 80 .
When o = N{X;), and A; =0, the jump point is 10, 15.4.

When a = N(X;) + L — X;, A; =0, the jump points are

10+ (80 —10) = 80

15.4 + (80 — 60)

i

354

A; =0, and
N(X;) < a< NX) + L — X

and there exist index j such that

Where, X; > X
So, the first point which has A, = 0 is Xy,
we do not have any jump points in this case.

The second point which A; =0 is Xy,
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only X, is greater than X,, we will check if it leads to a jump
point.

For X,, we have

a = 60(1) = 60,

15.4 < 60 < 15.4 + 80 — 60,

15.4 < 60 < 35.4, then 60 is a jump point.

(d) To find the jump points of the fourth kind, we have to see if there

exists another index j, where

X: ‘
(3 === Qj(t)di '{'L—Xi.
Q
X;>X;, and N(X;) + L~ X; <a.
The first point which has A; = 0 is X;,
Now, X, X3 and X, is greater than X; we have to check which of

‘them lead to a jump point.

2848010

o
i

= 72.8

Since, 72.8 > 10, and 10+480-10=80,
and since 10 < 72.8 < 80, and 15.44-80-60=35.4
Since, 35.4 < 72.8, then 72.8 is a jump point.

For X, we have

0 = 19(%) 80 - 10

= 7H

Since, 10 < 75 < 10 + 80 — 10, and since 10 < 75 < 80.
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30--(80-60)=50, Since 50 < 70, then 75 is a jump point.

For X4, we have

a = 10{1)+80-10 ==80 , and since 80 is not greater than 80 then o
is not a jump point.

The second point which has A; = 0 is X,

X, is greater than X», we will check if it lead to a jump point or
not.

a =60(1) 480 -60 =80 , and since 80 is not greate than 80, then
a is not a jump point.

Therefore, the jump points of Wang Estimator are:

10, 15.4, 30, 60, 72.8, 75, and 80 .
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Tab. 3.5: Jump Points from two examples

Estimator Shift MVT
SWE 30, 80 30, 80

Z-T 10, 11.5, 22.5, 30, 45, 80 10, 15.4; 30, 60, 80
Wang | 10, 11.5, 22.5, 30, 45, 72.75, 75, 80 | 10, 15.4, 30, 60, 72.8, 75, 80

In this table, we present the jump points of the Simple Weighted estimator,
Zhao-Tsiatis estimator and Wang estimator. In the first example, we used
the shifting intervals and, in the second example, we used the Mean Value
Theorem.

The jump points for the Simple Weighted estimator are the same for both
methods.
We note that the number of jump points for Z-T estimator are 6 using shift-
ing method but 5 jump points using the MVT, and the number of jump
points for Wang estimator is 9 using shift method, but 8 jump points us-

ing MV'T, which means that the MVT decreases the number of jump points .

The point 11.5 is a jump point of Z-T estimator use the shift method, but
not a jump point using (MVT), where N(X) = 15.4 instead.

In the next table, we present the values of the Simple Weighted estimator,
the Zhao-Tsiatis estimator and the Wang estimator for the second example

using the Mean Value Thorem method.
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Tab. 3.6: The values of the Simple Wieghted estimator, the Zhao-Tsiatis estimator and Wang
estimator using the mean value theorem method

a|SWE | Z~T | Wang

10~ 1 1 1
10F 1 1 1
15.4° 1 1 1
15.4* 1 2 2
30- i z 2
o |3 5l
o | | 3| 3
o | 3| 3| 3
me | 3| 2| 4
72.8+ : 3 2
w| 3] 4l 3
o I
| 3 4
8ot 0 0 0

3.2.7 Comments:

As you see the simple wighted estimator is monotonic, but the Zhao-Tiatis
estimator and Wang estimator are not monotonic. Also the values of the
Zhao-Tiatis estimator and Wang estimator are different at some jump points

using the different methods.
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Chapter 4
Monotonizing the Wang Estimator

We will preview some theorems and defintions about weak consistency. Then

we will prove that the monotonized Zhao-Wang is weakly consistent.

Definition 4.0.1 Weak Consistency [1]

Let 91, éz, - g,, be a sequence of estimators of a parameter #. The se-
quence {9,,,} is defined to be a weakly {or simple ) consistent sequence of

estimator of 4 if for every ¢ > 0, then.

lim Plif, — 8] <=1
Fpmd O
For every # in the parameter space((2).

Theorem 4.0.1 Slutsky’s Theorem [1]

If X,, — X in distribuation, and Y, — o, o constant, in prpbability, then:
a) Y, X, — «X in distribution

b) X, + Y, — X + a in distribution

Theorem 4.0.2 []
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Let ém, ég_n be two weakly consistent estimators of a parameter 0. Consider

the sequence of convex linear combinations defined by

”

én = anélln -+ (1 - Ofn)ggm.

Where, o, are random variables such that 0 < o, <1 for all integer n.

Then, 6, is a weak consistant estimator of 6.

Theorem 4.0.3

Let Gy, f2n, and 65, be three sequences of weakly consistent estimators of
a parameter 0, consider the sequence of convex linear combination definded

by

én = ﬁn(éd,n) 4 (1 - 'Bn)é\&ﬂ-'
Where,

bim = an(Byn) + (1 — @) (ban).

where, o, 8, are random variables such that 0 < o, €1,0< 6, <1, for all
integer n. Then d, is weakly consistent estimator of 6.

f4.is weakly consistent estimator by( thmd4.0.2).

Proof:
én m ﬁn(é4,n) + (1 . ﬁn)é&n
== ﬁn[an(élm) + (1 - an)é2.n] + (1 - 6ﬂ)é3»n
== éS,n + anﬁn(él,n . f§2,n) + ﬁn(éz,n - éa,n)-
Since,

bin D58, bpn>0and by, 5o
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By Slutsky Theorem

(é]ﬂn b éz}n) 'I'j“)’ 0

and since a,, 3, are bounded, then

anﬁn(él,n - ég,n) —)3 {}

Since 3, is bounded then,

ﬁn(éQ,n - és,n) "f} 0.

Also

92,,1 . 93m 0. by Slutsky’s Theorem

Now,
f = 9A3,,1 + anﬁn(@;,n — égm) + ﬁn(ég‘n — @gm)] L9 By Slutsky Theorem.

Then, f, is a weakly consistent estimator of 4. O

Definition 4.0.2 Mean Squared-error Consistence

Let 8,0, ..., 0, be a sequence of estimators of a real valued survival function
f. The sequence {éﬂ} is defined to be a mean sequared-error consistent se-

quence of estimator of 9, if and only if [11,

lim E[(6, —6)% = 0.

P OO

We say 4. is a MSE consistent estimator of 6.
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4.1 Monotonizing The Wang Estimator

We will give the procedure for monotonizing the Wang estimator 8,(4;1) by
following Almanassra et al. (2005) method which he preasented in one of
his papers to monotonize the Zhao-Tsiatis estimator and Wang estimator.
The new estimator is a linear comination of the (monotonic)Zhao-Tsiatis
estimator and Wang estimator, both the monotonic Zhao-Tsistis estimator
and Wang estimator are consistent estimators {1l

The procedure for monotonizing the Wang estimator is given in the following

steps:
1. Let U{] ==
2. Find all possible jump points for Wang estimator.

3. Find the monotonic Zhao-Tsiatis estimator and find all possible jump

points for monotonized Zhao-Tsiatis estimator.

4. Denote all possible jump points of Wang estimator and Zhao-Tsiatis

estimator Uy, Us, ..., Ug-3-
5. Let Ry = Uy, and Ry, ...., R be the possible ordered jump points.

6. Find the values of monotonic Zhao-Tsiatis and Wang estimator at these

points.

7. The new Zhao-Wang estimator is a step function.

The value of this function between successive jump points is defined
by:
Grwa(B) = Bilral(4 1) + (1 - B:Y0rman, i

Where, i =1,2,...,k , B < B < Ry, fi's are random numbers such that

0SB <]
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12 Bifmi4;1) +(1 - B1)0r1 mat
Bl (4;1) + (1~ ﬁ1)ém,mza > Babp(4; 1) + (1 — ﬁ?)éﬁ2,m.zt

Br-sbr, (4 1)+ (1 — Bi1)8r, st = Belp, (4;1) + (1 — B)0ryma = 0

Biefr, (4;1) + {1 — ﬁk)ém._,mzr, =0

. Maximizing the objective function

k
Z 3.

fz=1
Where p; are known {positive) weights.

The constraints are given by

pwy > C

where,

B
Ba
Bs

B
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QRl,mzt -1
gRg,mzt - QRl‘mzt
GRa,mzt - gRg,mzt

ng,mzt - gﬁk_l,mzt

‘”“GRk,mzt

and the matrix p is in the next page

(4.2)



()™ g — (1%)"49)

i
©w

0
0
0
0

0

0

(o) g — (1) g)— (12) T g — (1°%)779) 0

((prau)®¥g — .a Fyeg)—  ((1zw)¥¥g — (19)%g)

0
]

((rw)edg — (1)) —
0

0

((prue)g — (17) ¥g)
{pzw) g — (1'9)"¥g)— |
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9. We use linear programming to find the matrix V.
Note that the programming has known feasible soluation given by new

the Monotonic Zhao-Wang estimator [1].

Then the Monotonic Zhao-Wang Estimator is given by:

,

B1§31(4; 1) -+ (1 - ﬁl)éijZf, R1 <L o< Ry
Bobry(4;1) + (1 ~ B2)0r,mat, Ry < o < Ry
Ouw (@) = (& (4.3)

Bico1brr1(4;1) + (1 — Bx_1)0rr1imzt, Rg_oy << Ry

4.1.1 Examples

Example 4.1.1

First, we will use the data in the table ( 3.8).

We will apply the procedure given in Almanassra et al. (2005) to find the
monotonized Zhao-Tsiatis estimator .

Let Uy =10

The possible jump points of Zhao-Tsiatis estimator are 10, 15.4, 30, 60, 80
table (3.5).

The values of the Simple Weighted estimator and Zhao-Tisatis estimator are

given in the table 3.6.
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Then, we have to find the matrices W and B.

—(1-1)
(1-1)

0
0
0
0
0

0

~{1-1)

1-1)

fan-T s B s S s |

0 0

0 ]

0 0
“3-) 0
G-H -G-d

0 G-

0 f
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0

(4.4)

(1-1)
(1-1)
1-1

—e

3 0

3)

(0-

B= (-1




Tl

Using linear programming in R, we find the matrix

1
1

X = (4.5)

Therefore, the monotonized Zhao-Tsiatis estimator is

4

1 0<a<30
éMZ(a'): —~ 3L a< 80
0 B0<a

\

Now, we will use the values of the monotonized Zhao-Tsiatis estimator to
calculate values of the monotonized Zhao-Wang estimator.

We will apply the procedure given above to the data to find the monotonized
Zhao-Tsiatis estimator.

Let Ug = Ry =0

The possible jump points are 10, 15.4, 30, 60, 72.8, 75, 80(as found in chap-
ter 3).

The value of the monotonized Zhao-Tsiatis are given in part 1.

The next step is to find the matrices C and .
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0

(1-1)
~1-1) (1-1)

0

0

(-1 -G-1

0

[ IR wno B o B o)

el

—Ee

Eatia]

o

e

™Mo

—jey

e

—loy

Lt les]

il

mles

ey

o300

fan]

0

0
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And Y is

i
I
—i

— S T A s

I | i ; !

e el e —jer O

Il
S
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Using Linear programming in R, we find the matrix

1

Therefore, the monotonized Zhao-Wang estimator is

1 0<a<154

R 6 154<a<30
QMZW(G) =
5 30<a<80
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Chapter 5

Simulation Results

5.1 Simulation Results

In this study we will use the R code to estimate and compare the mean
squar erorrs of the Simple Wieght estimator, Zhao-Tiatis estimator, Wang
estimator, Monotonized Zhao estimator, Monotonized Wang estimator and
the new Monotonized-Zhao Wang estimator use Monotonized Zhao-Tsiatis
estimator.
The parameter of interest is the survival function of time without symptoms
of disease and toxicity (TWiST).
FIU is the time to follow-up, that is uniformly distributed in the interval
0,94],

FU ~ U(0,94)

1
TR is exponentially distributed with hazard A = 557

TR~ ci.’f;p(i%bw).

TOX is defined as the time of toicity which is uniformly distributed on{0, TOX2]({0, 72]),

TOX ~ U(0,72).
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That variables are statistically independent.

The true survival function of time without symptoms, disease and toxicity

is given by Gelber et al(l‘). 89).
( i — A —-ATOX2

e — < — .,
3 XZCXp (1 exp ) 0<a<L-TOX2

Pr(TWiST > a) = {

)\TéXZ (exp™® — exp™*) 1 —-TOX2 <a<0L
\

To calculate all estimators, we will use
T =TRAL, Ny =I{T; < FU), Xi =T ANFU

We use the data X;,/\; to calculate the Simple Wieghted estimator

We will use that results:
ry=TOX; +a, Tila) =7 A T
Ai((L) = I(T; < FUt), Xi((},) = Tz A FU;

To calculate the Zhao-Tsiatis estimator and the monotonized Zhao-Tsiatis
estimator.

To compute the Wang estimator and monotonized Wang estimator, we use
the following results,

ifN{X;)<a, and L-TOX;<a Let,

wila) =L —a, Tila)=wila) AT}

Otherwise,let
r,=T0X;+a, Tia)=rAT;

A= I(T < FU), X, ANFU;
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To caleulate the montonic Zhao-Wang estimator, we use the data of Zhao-
Tsiatis estimator and Wang estimator.

L is the artifical end point equal 80.

In this experment, we will consider different sample sizes, n= 10, 15, 20, 30,

40, 50.The number of simulations = 1000.
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Tab. 5.1: This table to compare MSE for the folowing estimators: the Simple Weighted
estimator, the Zhao-Tsiatis estimator, the Wang estimator, the monotonized Zhao-
Tsiatis estimator, the monotonized Wang estimator and monotonized Zhao-Wang
estimator, n=10

fresury MSE.S  MSEZ  MSEW  MSEMZ MSEMW MSEMZW
0.751981 0.089380 0.047462 0.047462 0.061633 0.062000  0.015002
0.727328 0.001624 0.062713 0.062713 0.069968 0.069932  0.015058
0.703483 0.004323 0.073214 0.073214 0.062742 0.063044  0.011472
12 0.652367 0.100102 0.087144 0.085975 0.058752 0.058911  0.019119
16 0.602027 0.105785 0.090315 0.088322 0.047042 0.047510  0.020103
20 0.555108 0.104136 0.091409 0.086540 0.037999 0.038058  0.036821
o4 0.508856 0.113283 0.093788 0.085046 0.029024 0.029088  0.031193
98 0.464121 0.109453 0.088483 0.080400 0.025421 0.025210  0.039611
32 (0.420852 0.101088 0.080558 0.072207 0.023189 0.022033  0.038684
36 0.379002 0.098996 0.077712 0.068021 0.025814 0.025582  0.025880
40 0.338524 0.094817 0.066738 0.056570 0.031297 0.031434  0.023046
44 0.209373 0.086577 0.059666 0.049883 0.039561 0.039713  0.022794
48 0.261505 0.083049 0.053084 0.043502 0.043387 0.043180  0.021804
52 (0.224879 0.067790 0.040029 0.033696 0.042268 0.042737  0.013463
52 0172178 0.053015 0.028250 0.022961 0.027689 0.028100  0.014702
60 0.155189 0.049627 0.026034 0.020381 0.024618 0.024559  0.013617
64 0.122049 0.044245 0.018992 0.012413 0.014811 0.014913 0.014693
6% 0.080994 0.029689 0.011454 0.008612 0.009096 0.008697  0.009088
72 0.058991 0.014251 0.005503 0.003623 0.003485 0.003006  0.003487
76 0.029004 0.010840 0.002847 0.002170 0.001841 0.002000  0.001856

OOﬁhCDE

This table columns are MSE.S, MSE.Z, MSE.W, MSE.MZ MSE.MW MSE.MZW
are the MSE of the simple weighted estimator ,the Zhao-Tsiatis estimator
,the Wang estimator , the monotonized Zhao-Tsiatis estimator ;,monotonized
Wang estimator and the monotonized Zhao-Wang estimator respectively.

Each entry comes from 1000 simulation
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. 5.2: This table to compare the Biases for the following estimators: the Simple Weighted
estimator, the Zhao-Tsiatis estimator, the Wang estimator, the monotonized Zhao-
Tsiatis estimator, the monotonized Wang estimator and monetonized Zhao-Wang
estimator, n=10.

tru-surv
0.751981
(.727328
(0.703483
0.652367
0.602027
0.555108
0.508856
0.464121
0.420852
0.379002
0.338524
(.299373
0261505
0.224879
0.172178
0.155189
0.122049
0.089994
0.058991
0.029004

BIAS.S
0.055097
{.006636
~0.016559
-0.020370
-0.038605
-0.040316
-0.067786
-0.063862
-0.071276
-0.073831
-0.068030
-0.059564
-0.061717
-0.060022
-0.069700
-0.053603
~0.029063
-0.033142
-0.030490
-0.609146

BIAS.Z

-0.056602
-0.101675
-(1.152130
-0.179461
-0.197667
-0.197451
~(.216660
-0.202702
-0.203112
-0.196536
-0.192677
~(.1741°70
-0.169703
-0.153404
-0.127705
-0.109872
-0.089879
-0.073758
~0.049951
-0.023731

BIAS.'W

-0.056602
-0.101675
-0.152130
-0.176321
-0.190613
-0.183876
-0.201811
-0.188805
-(.189703
-0.185065
-0.176395
-0.165723
-0.160097
-0.139961
-(.122712
-0.108476
-0.090788
-0.070404
-0.049901
-0.022887

BIAS.MZ
0.048019
0.260182
0.236046
0.212721
0.172601
0.132751
0.085211
0.040557
-0.001313
-0.042005
-0.087973
-0.132647
~(.168032
-0.182004
-0.157763
-0.150220
-0.120896
-0.088834
-0.058838
-0.028004

BIAS. MW
0.248019
0.260611
0.236542
0.212754
0.173625
0.133185
0.085368
0.041381
-0.000621
-0.041243
-0.088207
-(.132674
-0.168028
-0.182426
-0.158151
-0.150331
-0.120896
-0.088834
-0.058838
-0.028604

BIAS.MZW
0.048019
0.272580
0.281233
0.286413
0.259427
0.220193
0.176159
0.128967
0.080616
0.039637
-0.003997
-0.048599
-(.096116
-0.130812
-0.130241
-0.139773
-0.118079
-0.087842
-(.058831
-0.027852

This columns are BIAS.S, BIAS.Z, BIASW, BIAS. M Z, BIAS.MW,BIASMZW

are the Biased of the Simple Weighted estimator, the Zhao-Tsiatis estimator,

the Wang estimator, the monotonized Zhao-Tsiatis estimator, monotonized

Wang estimator and the monotonized Zhao-Wang estimator respectively.

Each entry comes from 1000 simulation
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Tab. 5.3: This table to compare the MSE for the following estimators: the Simple Weighted
estimator, the Zhao-Tsistis estimator, the Wang estimator, the monotonized Zhao-
Tsiatis estimator, the monotonized Wang estimator and monotonized Zhao-Wang
estimator, n=15,

tresurv. MSES  MSEZ  MSEW MSEMZ MSEMW MSEMZW
0751981 0.069599 0.032565 0.032565 0.062517 0.052120  0.007266
0797398 0.069845 0.041842 0.041842 0.071198 0.071089  0.015241
0.703483 0.067036 0.053636 0.053636 0.053423 0.063729  0.013136
12 0.652367 0.071867 0.067667 0.065921 0.059516 0.059735 0.011671
16 0.602927 0.077283 0.072256 0.068716 0.051880 0.051930 0.014817
20 0.555108 0.080282 0.074550 0.068842 0.044793 0.044990  0.014786
94 0.508856 0.084424 0.074197 0.066377 0.035528 0.035577  4.032182
98 0.464121 0.087493 0.076144 0.066927 0.029033 0.029081  0.031102
32 0.420852 0.081209 0.068708 0.062167 0.022008 0.022033 0.020178
36 0.379002 0.078950 0.068356 0.056940 0.019777 0.019615 {.020799
40 0.338524 0.073500 0.060442 0.052177 0.016158 0.015905 0.020197
44 0.299373 0.075932 0.053087 0.044858 0.018891 0.018551  0.015409
48 0261505 0.066624 0.043871 0.036690 0.020683 0.020364  0.014730
52 0.224879 0.063396 0.036521 0.030156 0.025638 0.025569 0.014770
58 0.172178 0.052681 0.026014 0.020293 0.021298 0.021530 0.014250
60 0.155180 0.049020 0.022264 0.017798 0.022189 0.022069  0.013773
64 0.122049 0.037381 0.014348 0.011323 0.01490  0.014500  0.013512
6% 0.080004 0.025568 0.009456 0.007930 0.009059 0.008961 0.008660
79 0.058091 0.017219 0.005495 0.003276 0.003478 0.002999 0.002507
76 0.020004 0.009751 0.002545 0.001990 0.001841 0.001230  0.001112

OO»ShCDE

This table columns are MSE.S, MSE.Z, MSE. W, MSE.MZ,M.SE.MW,MSE.MZW
are the MSE of the simple weighted estimator, the Zhao-Tsiatis estimator,

the Wang estimator, the monotonized Zhao-Tsiatis estimator,monotonized
Wang estimator and the monotonized Zhao-Wang estimator respectively.Each

entry comes from 1000 simulation
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Tab. 5.4: This table to Compare the Biases for the following estimators: the Simple Weighted
estimator, the Zhao-Tsiatis estimator, the Wang estimator, the monotonized Zhao-
Tsiatis estimator, the monotonized Wang estimator and monotonized Zhao-Wang
estimator, n=15.

m iru-surv

§  0.751981
4 (.727328
8 0.703483
12 0.652367
16 0.602927
20 0.555108
24  0.508856
28  0.464121
32 0.420852
36 0.379002
40 0.338524
44  0.289373
48 (1261505
52 (.224879
58 0172178
60 0.155189
84 0.122049
68 0.089994
72 0.058991
76 0.029004

BIAS.S

-0.043391
-0.068758
-0.007722
-00.188320
-0.179362
-0.163340
-0.252957
-0.134614
-0.123514
-0.108429
-0.194265
-0.179558
-0.154921
-(.134468
-0.107940
-0.094496
-0.075101
-0.057436
-00.034860
-0.017553

BIASZ

-0.020446
-0.063801
-0.098189
-0.102530
-0.102895
-0.100864
-0.103893
-0.099315
-0.097842
-0.095470
-0.098686
-0.092343
-0.084318
-0.075072
-0.071847
-0.060806
-0.053203
-0.046659
-0.029683
-0.016283

BIAS.'W
-0.029446
-0.063801
-0.098189
-0.103198
-0.099534
-0.089783
-0.079998
-0.062438
-0.030053
-0.009291
0.005905
0.045252
0.075873
0.103703
0.144204
0.150342
0.1754057
0.179964
0.191211
0.193562

BIAS.MZ
0.045218

-0.020915
-0.069056
-0.076537
-0.080643
-0.084091
-0.089730
~0.089665
-0.091467
-0.093395
-0.094301
-0.093614
-0.098344
-(1.102418
-0.095014
-0.117431
-0.109872
-0.086773
-0.058813
~-(.028004

BIAS MW
0.056762
-0.000745
-0.040399
-0.037545
-0.030767
-0.019577
-0.010084
0.002703
0.013017
0.025930
(0.036108
0.046851
0.054144
0.062525
0.083011
0.064368
0.055308
0.039888
(.004131
-0.028004

BIAS.MZW
0.056762
-0.000745
-0.040399
-0.037538
-0.030584
-0.019112
-0.009396
0.003437
0.014662
0.028124
0.039461
0.050978
0.060494
0.070797
0.093655
0.080224
0.078297
0.074665
0.058179
0.027729

This table columms BIAS.S, BIAS.Z, BIASW, BIAS.MZ, BIAS. MW, BIAS. MZW

are the Biased of the simple weighted estimator, the Zhao-Tsiatis estimator,

the Wang estimator , the monotonized Zhao-Tsiatis estimator, monotonized

Wang estimator and the monotonized Zhao-Wang estimator respectively.

Each entry comes from 1000 simulation
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Tab. 5.5: This table to compare the MSE for the follwing estimators: the Simple Weighted
estimator, the Zhao-Tsiatis estimator, the Wang estimator, the monotonized Zhao-
Tsiatis estimator, the monotonized Wang estimator and monotonized Zhao~-Wang
estimator, n=20.

m  trusurv MSES  MSEZ MSEW MSEMZ MSEMW MSEMZW.
0  0.751981 0.065312 0.021601 0.021601 0.041823 0.021950  0.013005
4 0.727328 0.062646 0.033380 0.033380 0.031444 0.031250  0.010282
8 0.703483 0.053167 0.044844 0.044844 0.042857 0.041042  0.013512
12 0.652367 0.058835 0.056120 0.054374 0.056844 0.056819  0.011297
16 0.602027 0.059584 0.054536 0.050226 0.052912 0.053047  0.012219
20 0.555108 0.054935 0.061346 0.057246 0.047137 0.045163  0.030498
24 0.508856 0.067272 0.064506 0.057682 0.038711 0.038587  0.025925
98 0464121 0.065938 0.066534 0.058920 0.033507 0.033167  0.026337
32 0.420852 0064848 0.061709 0.055217 0.025754 0.025377  0.025281
36 0.379002 0.067548 0.057417 0.049281 0.020951 0.020743  0.015516
40 0.338524 0.064639 0.051140 0.043470 0.015131 0015035  0.017733
44 0200373 0.060233 0.048882 0.040574 0.013048 0.012023  0.012378
48 0261505 0.057039 0.041481 0.034497 0.012066 0.011994  0.032098
52 0.224879 0.053284 0.035561 0.028914 0.015207 0.015227  0.012036
58 0.172178 0.045723 0.022726 0.018305 0.015030 0.015122  0.014331
60 0.155180 0.040358 0.020437 0.016408 0.018373 0.018350  0.024251
64 0.122049 0.029201 0.013856 0.010901 0.013500 0.013601  0.011677
68 0.080904 0.026479 0.000226 0.007251 0.008984 0.008891  0.008709
72 0.058091 0.015312 0.004966 0.002937 0.003485 0.003008  0.003616
76 0.029004 0.013045 0.003417 0.001870 0.001770 0.002012  0.001619

This table columns are MSE.S, MSE.Z, MSE.W, MSE.MZ, MSE. MW, MSE.MZW
are the MSE of the Simple Weighted es{;imator, the Zhao-Tsiatis estimator,
the Wang estimator, the monotonized Zhao-Tsiatis estimator, monotonized
Wang estimator and the monotonized Zhao-Wang estimator respectively.

Each entry comes from 1000 simulation.
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_5.6: This tahle to compare the Biases for the following estimators: the Simple Weighted
estimator, the Zhao-Tsiatis estimator, the Wang estimator, the monotonized Zhao-
Tsiatis estimator, the monotonized Wang estimator and monotonized Zhao-Wang
estimator, n=20.

tru-surv

£.751981
0.727328
0.703483
0.652367
0.602027
0.555108
0.5088566
0.464121
.420852
0.379002
(1.338524
0.290373
(0.261505
0.224879
0.172178
{.155189
0.122049
0.089994
£.058991
0.029004

BIAS.S

~0.053883
-0.168701
-0.185160
-0.178731
-0.172083
-0.163314
-0.150053
-0.132318
-(0.118162
-.107445
-0.095345
-0.174917
-0.156381
-0.033056
~0.100462
-0.097398
-0.078057
-0.067429
-0.037858
-0.016843

BIAS.Z

-0.026670
-0.059743
-0.090007
~-0.093904
-0.099003
-0.097928
-0.097631
-0.100608
-0.098743
-0.095784
-0.094235
-0.086562
-0.082956
-0.073145
-0.067636
-0.064474
-0.054870
-0.046738
-0.029961
-0.016220

BIAS.W
-0.026670
-0.059743
-0.090007
~(.094176
-0.095240
-0.082285
-0.075456
-0.060067
~0.034785
-0.011590
0.030935
0.064876
0.097534
0.020482
(.057817
0.067155
0.081228
0.097718
{.100236
0.201701

BIAS.MZ
0.032142

-0.030909
-0.073679
-0.077186
-0.081640
-0.084462
-0.089076
-0.089116
-0.089560
-0.089465
-0.093456
-0.091803
-0.091572
-0.091758
-0.077950
-0.099266
-0.100027
-0.083137
-0.058578
-0.028004

BIAS MW
0.041683
-0.013117
-0.045959
~0.039462
-0.031232
-0.020462
-0.007897
0.006278
0.018496
(0.033626
0.045702
0.058549
0.068165
0.079137
0.002647
0.089560
0.088077
0.074745
0.039024
-0.03304

BIAS.MZW
(.041683
-0.013117
-0.045934
-0.039461
-0.031192
-0.020393
-0.007718
0.006792
0.019076
0.035061
0.047450
0.061761
0.072344
0.084468
0.010434
0.003422
0.005164
0.074698
0.092691
0.062431

This table columns BIAS.S, BIAS.Z, BIAS.W, BIAS.MZ, BIAS. MW, BIAS.MZW

are the Biased of the Simple Weighted estimator, the Zhao-Tsiatis estimator,

the Wang estimator, the monotonized Zhao-Tsiatis estimator, monotonized

Wang estimator and the monotonized Zhao-Wang estimator respectively.

Each entry comes from 1000 simulation
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Tab. 5.7- This table to compare the MSE of the following estimators: Simple Weighted es-

timator, the Zhao-Tsiatis estimator, the Wang estimator, the monotonized Zhao-
Tsiatis estimator, the monotonized Wang estimator and monotonized Zhao-Wang
estimator, n=30

m tru-surv  MSE.S MSE.Z MSEW MSEMZ MSEMW MSEMZW

0 0751981 0.061824 0.014368 0.014368 0.011514 0.012390  0.011514

4 0727328 0.052410 0.022812 0.022812 0.021001 0.010099  0.012811

8 (.703483 0.044561 0.035314 0.035314 0.030661 0.029918  0.019059

19 0.652367 0.043971 0.043676 0.043412 0.028824 0.028424  0.015186

16 0.602927 0.045203 0.045029 0.044136 0.013784 0.013074  0.013765

20 0.555108 0.052435 0.051172 0.051078 0.039132 0.028262  0.023400

o4 0.508856 0.053224 0.053843 (.049161 0.031898 0.031483  0.013171

28 0.464121 0.062434 0.05348  0.053238 0.035317 0.034981  0.023095

32 (0.420852 0.046627 0.051066 0.045743 0.028484 0.028317  0.013041

36 0.379002 0.054517 0.048201 0.048418 0.023132 0.022927  0.010580

40 0.338524 0.049162 0.049049 0.042425 0.017534 0.017619  0.011107

44 0.299373 0.047250 0.043113 0.036300 0.014782 0.014626  0.015233

48 0.261505 0.040619 0.035895 0.030714 0.010968 0.011225  0.011814

52 0.9224879 0.038992 0.031389 0.026246 0.010799 0.010864 0.011174

58 0.172178 0.032909 0.021043 0.017347 0.009208 0.009394  0.010574

60 0.155180 0.030676 0.018904 0.015427 0.011440 0.011263  0.010559

64 (0.122049 ©0.025576 0.012132 0.009952 0.010018 0.000958  (.008596

68 0.080994 0.019739 0.009307 0.007105 0.008220 0.008167  0.007871

79 (0.058991 0.015143 0.003555 0.002734 0.003474 0.003020  0.003029

76 0.020004 0.007793 0.002469 0.001750 0.001893 0.002051  0.002033

This table columns MSE.S, MSE.Z, MSE.W, MSE.MZ, MSE.MW, MSE.MZW
are the MSE of the simple weighted estimator ,the Zhao-Tsiatis estima-
tor, the Wang estimator, the monotonized Zhao-Tsiatis estimator, mono-
tonized Wang estimator and the monotonized Zhao-Wang estimator respec-

tively.Each entry comes from 1000 simulation.
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. 5.8: This table to compare the Biases of the following estimators: the Simple Weighted
estimator, the Zhao-Tsiatis estimator, the Wang estimator, the monotonized Zhao-
Tsiatis estimator, the monotonized Wang estimator and monotonized Zhao-Wang
estimator, n=30.

tru-surv

0.751981
0.727328
0.703483
0.652367
0.602927
0.555108
0.508856
(1464121
.420852
0.379002
0.338524
0.289373
0.261505
0.224879
0.172178
0.155189
$.122049
0.086994
0.058991
0.029004

BIAS.S

-0.047404
-0.069877
-(.089659
-0.079449
-0.074934
-0.057298
-0.055826
-0.038667
-0.023121
-0.007675
-0.088919
-0.077617
-0.049866
-(1.030616
-0.004489
-0.094683
-0.079285
-0.053059
-0.038261
-0.015312

BIAS.Z

-0.031360
-0.063882
-0.094211
-0.090373
-0.103572
-0.097582
-0.106111
~0.100604
-0.095012
-0.097306
-0.091049
-0.096105
-0.079604
-0.074144
-0.067553
-0.060001
-0.058916
-0.040765
-0.032217
-0.013945

BIAS.W
-0.031360
-0.063882
-0.094211
-0.090437
-0.097771
-0.081354
-0.076831
-0.047307
-(.010945
0.004454
0.050898
0.068936
0.006789
0.037228
0.081439
0.080244
0.088452
0.002698
0.003897
0.007858

BIAS.MZ
0.010278

-0.044743
-0.082195
-0.085997
-0.090581
-0.092100
-0.095623
-0.095872
-0.096149
-0.093568
-0.093814
-0.090219
-0.087811
-0.083707
-0.065808
-0.080651
-0.080009
-0.074828
-0.056971
-0.028004

BIAS. MW
0.018640
-0.027962
~0.057892
-0.048304
-0.036164
-0.021855
-0.009945
0.007176
$.021711
0.038337
0.053041
0.069442
0.083030
0.097419
0.021507
0.013892
0.014868
0.009756
0.084241
-0.028004

BIAS.MZW
0.018640
-0.027962
~-0.057892
~(.048304
-0.036148
-0.021844
-0.009877
0.007286
0.022027
0.039083
0.053742
0.070752
{.085008
0.010468
0.026895
0.021063
0.026494
0.029936
0.025150
0.004279

This table columns BIAS.S, BIAS.Z, BIAS.W, BIAS.MZ, BIAS. MW, BIAS MZW

are the Biased of the Simple Weighted estimator, the Zhao-Tsiatis estimator,

the Wang estimator, the monotonized Zhao-Tsiatis estimator, monotonized

Wang estimator and the monotonized Zhao-Wang estimator respectively.

Each entry comes from 1000 simulation.



86

Tab. 5.0: This table to campare the MSE for the following estimators: the Simple Weighted
estimator, the Zhao-Tsiatis estimator, the Wang estimator, the monotonized Zhao-
Tsiatis estimator, the monotonized Wang estimator and monotonized Zhao-Wang
estimator, n=40.

tru-surv  MSE.S MSE.Z MSE.W MSEMY7 MSEMW MSEMZW

0.751981 0.061528 0.010748 0.010748 0.011514 0.012258  (.010514

0.727328  0.050119 0.017466 0.017466 0.010408 0.011364 0.011198

0.703483 0.041707 0.028396 0.028396 0.029057 0.020100 0.010899

12 0.652367 0.030547 0.026833 0.025695 0.030868 0.013223 0.011725

16 0.602927 0.036468 0.025579 0.025282 0.021844 0.023703 0.013031

90 0555108 0.039003 0.020943 0.016073 0.016707 0.018649 0.014758

24 0.508856 0.038621 0.035950 0.033264 0.038778  0.020327 0.015090

28 (0.464121 0.040024 0.047648 0.046217 0.033378 0.014541 0.012186

39 0.420852 0.034382 0.040091 0.035224 0.028558 0.028955 (0.021056

36 0.379002 0.038687 0.038705 0.032627 0.024534 (0.025196 0.020246

40 0.338524 0.039216 0.033176 0.031703 0.018827 0.018785 0.020041

44 0.200373 0.036923 0.030661 0.029778 0.016397 0.016493 (.019036

48 0.261505 0.032066 0.034348 0.028070 0.012122 0.011985 0.015513

59 0.224879 0.032286 0.020239 0.024721 0.010930 0.010593 0.013202

58 0.172178 0.018055 0.019527 0.016739 0.008487 0.008328 0.013007

60 0.155189¢ 0.025091 0.017532 0.014851 0.008543 0.008244 0.012686

64 0.122049 0.020786 0.011938 0.009577 0.007512 0.007255 (0.007565

68 0.089994 0.016379 0.008203 0.006601 0.007144 0.007018 0.007179

72 0.058991 0.011380 0.003599 0.002676 0.003447 0.003056 0.003915

76 0.020004 0.007554 0.002169 0.001707 0.001913 0.002054 0.001405

This table columns MSE.S, MSE.Z, MSE.W, MSE.MZ,MSE.MW ,MSE.MZW
are the MSE of the simple weighted estimator, the Zhao-Tsiatis estimator,
the Wang estimator, the monotonized Zhao-Tsiatis estimator, monotonized
Wang estimator and the monotonized Zhao-Wang estimator respectively.

Each entry comes from 1000 simulation.
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Tab. 5.10: This table to Compare the Biases for the follwing estimators: the Simple Weighted
estimator, the Zhao-Tsiatis estimator, the Wang estimator, the monotonized Zhao-
Tsiatis estimator, the monotonized Wang estimator and monotonized Zhao-Wang
estimator, n=40.

m tru-surv BIASS BIAS.Z BIASW BIAS.MZ BIASMW BIAS.MZW
0 0751081 -0.045875 -0.028013 -0.028913 -0.008276 -0.000670  -0.000670
4 0727328 -0.075411 -0.066116 -0.066116 -0.054657 -0.042283 -0.042283
8 0703483 -0.086313 -0.093463 -0.003463 -0.089291 -0.066108 -0.066109
12 0.652367 -0.081039 -0.096355 -0.096759 -0.091848 -0.056164 -0.056164
16 0.602927 -0.076623 -0.101562 -0.095217 -0.095211 -0.045229  -0.045229
20 0.555108 -0.064641 -0.100052 -0.080535 -0.095295 -0.028615 -0.028615
24 0.508856 -0.052166 -0.101862 -0.068311 -0.099042 -0.011756 -0.011712
28 0.464121 -0.036082 -0.100513 -0.040043 -0.100100 0.006726  0.006740
32 0.420852 -0.027472 -0.102466 -0.015789 -0.099774 0.024563  0.024629
36 0.379002 -0.108848 -0.099180 0.023081 -0.097621 0.043789  0.043877
40 0.338524 -0.193709 -0.096674 0.066825 -0.094760 0.060788  0.060989
44 0.299373 -0.171508 -0.088475 0.099506 -0.089606 0.079492  0.079824
A8 0.261505 -0.159382 -0.088548 0.126614 -0.089057 0.094942  0.095484
59 (.224879 -0.135580 -0.082484 0.156442 -0.084597 0.113068  0.114005
58 0.172178 -0.105768 -0.068961 0.183162 -0.062083 0.143227  0.145328
60 0.155189 -0.092870 -0.061269 0.193578 -0.072624 0.137050  0.141151
64 0.122049 -0.076001 -0.056062 0.202769 -0.068296 0.144081  0.150920
63 0.080004 -0.054767 -0.041548 0.204686 -0.061513 0.146556  0.1568822
72 0.058091 -0.037066 -0.031785 0202914 -0.051739 0.130974  0.159016
76 0.029004 -0.018578 -0.017330 0.002357 -0.028004 -0.028004  0.046784

This table columns are BIAS.S, BIAS.Z, BIASW, BIAS.MZ, BIAS. MW, BIAS. M ZW
which are the Biased of the Simple Weighted estimator, the Zhao-Tsiatis
estimator, the Wang estimator, the monotonized Zhao-Tsiatis estimator,

monotonized Wang estimator and the monotonized Zhao-Wang estimator

respectively. Each entry comes from 1000 simulation.
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Tab. 5.11: This table to campare the MSE for the following estimators: the Simple Weighted

estimator, the Zhao-Tsiatis estimator, the Wang estimator, the monotonized Zhao-
Tsiatis estimator, the monotonized Wang estimator and monotonized Zhao-Wang
estimator, n=>50.

m tru-surv  MSE.S MSE.Z MSEW MSEMZ MSEMW MSEMZW

0 0751981 0.061477 0.008350 0.008359 0.005140 0.006012  0.007148

4 0727328 0.049223 0.005983 0.005983 0.030570 0.008099  0.001642

8 (.703483 0.049472 0.016681 0.014681 0.013196 0.016004  0.015086

19 0.652367 0.036058 0.017122 0.014807 0.018074 0.012419  0.014895

16 0.602927 0.033070 0.020379 0.020132 0.031984 0.030823 0.013368

20 0.555108 0.031356 0.020950 0.020379 0.025809 0.023779 $.014609

24 0.508856 0.031208 0.021557 0.021310 0.020969 0.021813 0.014524

28  (.464121 0.031087 0.028629 0.024566 0.020725 0.021098 0.014123

32 0.420852 0.030795 0.029610 0.021080 0.015963 0.015224 (.014004

36 0.379002 0.030535 0.027519 0.020927 0.012219 0.014765 (.013235

40 0.338524 0.028138 0.024843 0.015081 0.011965 0.011848 0.013137

44 0.200373 0.027687 0.023960 0.014757 0.011024 0.010319 0.011143

48 0.261505 0.024984 0.022205 0.013392 0.010447 0.010291 0.011088

59 0.224879 0.025614 0.021000 0.012725 0.009124 0.009868  0.010944

56 0.172178 0.020075 0.018398 0.010213 0.007559 0.007864  0.010704

60 0.155189 0.019907 0.017008 0.010149 0.007116 0.007557 0.010224

64 0.122040 0.015578 0.010990 0.009159 0.005688 0.005905  0.007251

68 0.080904 0.014014 0.007784 0.006454 0.006143 0.006165 0.006724

79 0.058001 0.008084 0.003320 0.002602 0.003250 0.002821  0.003978

76 0.020004 0.006077 0.002065 0.001684 0.001934 0.002109  0.002749

This table columns MSE.S, MSE.Z, MSE.W, MSE.MZ ,MSE.MW ,MSE.MZW
are the MSE of the simple weighted estimator ,the Zhao-Tsiatis estimator,
the Wang estimator, the monotonized Zhao-Tsiatis estimator, monotonized
Wang estimator and the monotonized Zhao-Wang estimator respectively.

Each entry comes from 1000 simulation.
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Tub. 5.12: This table to Compare the Biases for the follwing estimators: the Simple Weighted
estimator, the Zhao-Tsiatis estimator, the Wang estimator, the monotonized Zhao-
Tsiatis estimator, the monotonized Wang estimator and monotonized Zhao-Wang
estimator, n=>50.

tru-surv  BIAS.S BIAS.Z BIAS.W BIASMZ BIASMW BIASMZW
0751081 -0.046007 -0.020667 -0.029667 0.048019  0.048019 {.019807
0.727328 -0.074083 -0.066575 -0.066575 -0.061187 -0.063421 -0.040709
0.703483 -0.091477 -0.097370 -0.007370 -0.013449 -0.015781 -0.075279
12 0.652367 -0.078859 -0.092218 -0.092179 -0.016403 -0.017756 -0.067375
16 0.602027 -0.075376 -0.001072 -0.001674 -0.013383 -0.012638 -0.010409
20 0.555108 -0.062305 -0.012613 -0.000317 -0.005806 -0.004342 -0.002840
24 0.508856 -0.051977 -0.012478 -0.093342 -0.096631 -0.094876 -0.029425
92 0464121 -0.041054 -0.011019 -0.086007 -0.087956 -0.083610  -0.011673
32 0.420852 -0.024066 -0.097660 -0.069117 -0.078763 -0.073310 0.004002
36 0.379002 -0.04018  -0.095126 -0.043158 -0.066107 -0.058117 0.020922
40 0.338524 -0.091970 -0.093839 -0.021971 -0.054210 -0.044899 (1.036605
44 0290373 -0.070344 -0.086932 0.016556 -0.039768 -0.029470 0.053466
48 0.261505 -0.055631 -0.087363 0.046970 -0.028198 -0.016302  0.067389
59 0.024879 -0.134451 -0.077679 0.034923 -0.113820 -0.010765 0.081055
58 0.172178 -0.108182 -0.069447 0.150881 -0.084423 -0.069546 0.009718
60 0.155180 -0.094154 -0.065692 0.171189 -0.086213 -0.070622 0.002502
64 0122049 -0.078373 -0.057523 0.002103 -0.073325 -0.057555 0. 105762
6% 0.0899094 -0.057379 -0.044399 0.035701 -0.059663 -0.043400 0. 103973
79 0.058991 -0.038570 -0.032364 0.068965 -0.047577 -0.032452 0.002204
76 0.020004 -0.017788 -0.016485 0.090327 -0.026277 -0.013821 -0.015584

OO%CDB

This table columns are BIAS.S, BIAS.Z, BIASW,BIAS MZ, BIAS. MW, BIAS MZW
which are the Biased of the Simple Weighted estimator, the Zhao-Tsiatis
estimator, the Wang estimator, the monotonized Zhao-Tsiatis estimator,
monotonized Wang estimator and the monotonized Zhao-Wang estimator

respectively. Each entry comes from 1000 simulation.

5.2 Conclusion

In this section, we will review some notation from our results.

The monotonized Zhao-Tsiatis Estimator, the monotonized Wang Estimator
and monotonized Zhao-Wang Estimator, performed better than the Simple
Weighted Estimator.

The monotonized Zhao-Wang estimator is closed to monotonized Zhao esti-
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mator and monotonized Wang estimator.

The monotonized Zhao-Wang estimator is monotonic as monotonized Zhao
estimator and monotonized Wang Estimator.

The MSE for the monotonized Zhao-Wang estimator is smaller than Simple

Weighted estimator, Zhao-Tsiatis estimator and Wang estimator.
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