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Abstract 

 

Water is an incomparable rare and strategic natural resource. It is one of the key elements for life 

and social development as well. Some people lack access to drinking water as a result of 

considerable leakages in water networks. Water losses and water supply demands are viewed as 

one of the most important problems facing the water sector in Palestine. More specifically, the 

municipalities and water utilities suffer from this problem in a manner that causes disruptions and 

low-quality water service, in addition to significant financial losses.  Therefore, accurate prediction 

of water losses and supply demands is considered as one of the essential remedies that offer 

efficient support for water resources. Applying a reliable prediction in urban areas could provide 

the basis for operational, tactical and strategic decisions for water utilities, which is crucial. The 

public utilities need to forecast water supply demands for the basic needs of people in addition to 

the requirements for manufacturing and agriculture, as well as for the development of new water 

sources. Prior knowledge real causes of water losses and proactive response to damages in water 

networks treatment could reduce losses, and, more importantly, it may save the financial resources 

in a manner that will strengthen the water sector.   

 The large difference between the amount of water supplied and water consumed is one of the most 

important issues affecting water facilities, also known as "non-revenue water" [NRW]. Large 

amounts of water lost through leaks, non-invoicing to customers, illegal connections, poor water 

meter performance and inaccurate reading seriously affects the financial viability of water utilities. 

Thus, prediction of water losses and water demands have become important tools for managing 

and operating water supply systems. So, it is necessary to provide an approach that will help 

anticipate water losses and demand using artificial intelligence techniques to ensure a reliable 

water distribution system and solve the cause of water losses. 

 Our research depends on historical data representing water supplies and consumptions in addition 

to the real water losses of Beitunia city. The main goal of this research is to explore, investigate 

and develop AI models that could be more efficiently used in predicting water losses as well as 

forecasting water demands in Palestine, and, more specifically, for Beitunia city. In this thesis, the 

work methodology consists of the evaluation of different aspects of the design of predictive neural 

networks, such as the inclusion of new learning algorithms in different neural networks 
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architectures.  Each neural network configuration is simulated and its predictions are compared 

with real data of NRW and demand for water.  

The obtained results show that the learning algorithm called Levenberg Marquardt which is used 

to optimize the MLPNNs-LM model has achieved the best scoring metrics when it is compared to 

another learning algorithm in different ANNs models like (RBFNN-Newrb and GAs-MLPNNs), 

while ARIMA model was less accurate than other NNs models. This is because the ARIMA model 

relies on linear data to be accurate. Hence, the municipality of Beitunia can employ an efficient 

system that will reduce cost as well as best utilize and manage water resources. More importantly, 

such success will help generalize our model for the municipalities and water utilities.   
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1.1 Introduction 

Water shortage is a major global problem that is especially concerning in the Arab world, where 

is rapid population growth, as is the situation in Palestine. Palestine, like the countries of the region, 

suffers from a water crisis. The primary responsibility for this crisis besides the lack of rainfall is 

the Israeli occupation, its control over the water, the denial of millions of Palestinian residents 

despite international conventions, which is supposed to be guaranteed by laws, human rights 

organizations and peace treaties [1].  This problem is one of the most serious issues. The amount 

of water losses is one of the most important problems facing the water sector in Palestine. It  

reached a high rate of up to 50% as indicated in studies [2, 3]. Therefore, the Palestinian 

government is working hard to reduce losses through rehabilitating networks in public drinking 

water systems; which limit the amount of water loss and provides the energy used to pump these 

quantities of water. 

Due to the increasing impact of water losses problem on the world, it has attracted the attention of 

many types of research in an attempt to finding (a) solution(s) on purpose of reducing losses of 

water amounts. In the past few years, considerable efforts have been made for the development of 

predictive models for better numerical and statistical systems for the better of forecasting losses of 

one of the main sources of people. Nonetheless, the development of these systems requires extra 

efforts of improvements to give more accurate results; as it will be shown and presented in this 

research.  Interestingly, in the field of Artificial Intelligence (AI) especially Artificial Neural 

Networks (ANNs) has shown the great capability of producing predictive models with excellent 

prediction results in the area of water losses and water demand[4, 5], which will be applied on the 

data set collected from  Beitunia city. Artificial Neural Networks has the ability to recognize 

patterns from historical data and used learning algorithms to produce an efficient result of time 
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series prediction[6]. The main objective of this research is to use models of ANNs with efficient 

learning algorithms to predict water losses and water demand in Beitunia city. Producing efficient 

prediction result of the future will help the Beitunia city municipality to improve its services in 

this sector.    

The data used in this thesis were gathered from Beitunia municipality and from JWU. The data are 

the quantities of water demands and water consumption related to the three regions of Beitunia 

city over the years 2005-2017. This data is composed of the input and the output attributes. The 

output variable is the target label, which represents real values of Water losses and consumption. 

The regions are, the Flash area, which is one of the largest areas of the city which supplies about 

125 cubic meters per hour, the Sunuqrot region which supplies about 14 cubic meters per hour and 

the third connection region is the College which supplies about 11 cubic meters per hour. Then, 

we collected the water demands quantities, which JWU provided to the municipality and we 

calculated the water losses for the whole city and for the other three regions. After that, we 

arranged the data and divided it into three parts each part related to one region of Beituna city.  

The target data is normalized as a range of continuous data between [0 and 1] to fit neural network 

activation functions that will be used in the applied NNs algorithms in our work. ANNs used to 

predict water losses and demands. Our aim is to introduce a more efficient AI model that can be 

used to forecast the coming future water losses and demands. 

In our research, by using ANNs models aiming at examining and selecting the best model with the 

accuracy that can deliver the best prediction depending on the threshold value resulted from the 

value of calculating the Mean Square Error (MSE), which is employed to reduce the error in 

prediction. Three different models of ANNs employed in the experiment phase of this research, 

which is Multilayer Perceptron Neural Networks Model (MLPNNs) with Levenberg–Marquardt 
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[7]    learning algorithm, Radial Basis Function Neural Networks (RBFNNs) with pseudo-inverse 

learning algorithms [8] and Hybrid model using genetic algorithms (GAs) and MLPNNs [9], we 

have used the statistical model the Autoregressive Integrated Moving Average (ARIMA) [10] to 

compare with the accuracy of Neural Networks Models result. These learning algorithms will be 

used to predict the water losses and water demands with the goal of decreasing the MSE values as 

much as possible between the expected and actual results. Besides the statistical (ARIMA) model, 

three applied models will be employed for the goal of our study. We will build a predictive model 

based on short-term time series forecasting methods. Short-term prediction approach will be used 

to predicting the next future period. Time series methods will be used to reorganize data 

sequentially; sequential time slots, using the proceedings as a target to forecast next slots. 

1.2 Thesis Objectives 

Predicting water losses and water demand has special importance and presence to researchers and 

decision makers; because of the importance of its great impact on the large increase in financial 

revenues, in addition to playing a prominent role in the process of strategic planning. Because the 

methods used to predict water losses and water demand in Palestine are simple statistical methods, 

we aim to explore, investigate and introduce an AI model that could be more efficiently used in 

forecasting water losses and water demands in Palestine, and specifically for Beitunia city. Several 

Neural Networks models including their architectures and variations of associated learning rules 

have been studied in order to obtain a predicting model for water loss and water demands. 

• We aim to compare the efficiency of the desired model against the current applied models 

using metrics such as error values and the number of neurons experienced in an attempt to 

find the best model with least error value. 
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• It is intended to determine a robust and reliable model that can be nationally generalized 

over the whole country; by providing solutions for water utilities and municipalities on the 

purpose of reducing water losses (NRW) and solve the problems of water demands.  

•  This work is primarily focused on the use of ANNs trained on historical water losses and 

water demands in order to perform the forecasting. This goal will be primarily achieved 

employing Learning algorithms on different Neural Networks models utilizing historical 

data of losses and demand. 

• Most importantly, we aim to investigate and introduce such a model could help implement 

and deploy one of the important systems in the real local water utilities and municipalities. 

Moreover, such a system will be a more efficient replacement of the current classical 

statistical models.  

1.3 Research Obstacles 

Data collection is one of the key steps in building predictive models. As known this phase is vital 

and such studies extremely depend on data at the beginning of the study. One of the most important 

obstacles encountered during this research is the lack of data. In the first stage, when we collected 

the data, we found that there were many quantities of water demanded which the Beitunia 

Municipality bought it from Jerusalem Water Undertaking (JWU) was missing, therefore, we 

searched for that data in the archive of the water department in the municipality, so we found that 

some data are not available, especially data between 2005 and 2008 and that it is necessary to 

request it from JWU. At first, JWU refused to provide us with the missing data, and after requesting 

it once again they handed it to us in hard copy and in an unarranged form, which took a great 

amount of time and effort to arrange it. 
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The second phase, where we encountered a lack of data, was in the file of the water network 

infrastructure and pipelines. The file contains information about the water network in terms of 

pipeline life, length, and diameter, as well as the conditions of the pipelines. Table 1.1 shows this 

information collected and arranged for subsequent use. We worked with the department of 

engineering in the municipality of Beitunia on the ARCGIS in order to obtain the necessary data 

where it requires a great effort.  

Table 1.1: Beitunia networks and Pips information 

Area Diameter Material Condition Surface Contractor Year Pipe Length 

Flash 2 Steel Bad Concrete Unknown 1985 85.7 

Flash 2 Steel Bad Concrete Unknown 1985 7.8 

Flash 3 Coated Black Steel Good Asphalt Al Amour 2004 249.8 

Flash 2 Steel Good Asphalt Mun. 2001 56.2 

Flash 2 Steel Good Asphalt Mun. 2001 36.8 

Flash 3 Coated Black Steel Good Asphalt Al Amour 2004 10.0 

Flash 3 Coated Black Steel Good Asphalt Al Amour 2004 184.6 

Flash 3 Coated Black Steel Good Asphalt Al Amour 2004 85.8 

Flash 3 Coated Black Steel Good Asphalt Al Amour 2004 13.3 

Flash 3 Coated Black Steel Good Asphalt Al Mahole/PICDAR 1998 62.3 

Flash 2 
Galvanized 

Polyethylene 
Good Asphalt Al Amour 2004 40.8 

Flash 3 Coated Black Steel Good Asphalt Al Mahole/PICDAR 1998 292.8 

Flash 3 Coated Black Steel Good Asphalt Al Mahole/PICDAR 1998 120.7 

Flash 3 Coated Black Steel Good Asphalt Al Mahole/PICDAR 1998 148.1 

Flash 3 Coated Black Steel Good Asphalt Al Mahole/PICDAR 1998 220.6 

 

The lack of data also was represented by the lack of information about water pressures and the 

lack of sufficient information about the pipeline’s leakages in terms of history and quantities of 

water that was lost due to these leakages. In addition to the inability to distribute the amounts of 

water losses and consumption data on the three areas of the city, which prevented us from 
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implementing the most important multiple regression analysis (MRA) model, through which we 

can calculate the amount of water loss and find out what are the most important factors such as 

pipeline age, length, and condition ....) Which have the prominent role in water loss for each area 

of Beitunia city and that certainly has the greatest impact on the water demands process. 

1.4 Contribution 

This research performs applying different learning algorithms and a statistical model that offer 

predictive models that can be enabled to predict water losses and water demands depend on the 

historical data of Beitunia city. The prediction will be performed for water losses and water 

demand of the whole city and for the 3 independent regions in this city.   The AI models will use 

the historical data to recognize patterns in the training phase and testing data to predict the future 

period of the water losses and water demand. In our experiment, the model will predict continuous 

data which requires to apply regression models through supervised learning.  The first model is 

MLPNNs with Levenberg Marquardt as a learning algorithm, Radial Basis Function neural 

networks with pseudo-inverse to optimize weights, and its use constructs identical symmetric 

Gaussians around each data point for centers, the radius varies depends on centers. The third model 

is a hybrid model of MLPNNs with use Genetic Algorithms to optimize the weights.  The result 

of applying these AI models in addition to the statistical model to predict water losses and water 

demands will allow selecting the best models for prediction. 

 

1.5 Thesis Structure 

This work is organized as follows, in chapter 2, we introduced the thesis background topics, we 

provided an introduction of the water in Palestine, and then we provide an introduction of Non‐
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Revenue Water, we provide the time series prediction concept. Then, we provide an introduction 

of ANNs and its types, then we presented the Radial basis function Neural Networks and newrb, 

and a hybrid model of MLPNNs and Genetic algorithm, also, we presented the Autoregressive 

Integrated Moving Average Model (ARIMA). And finally we show the related work of the several 

proposed approaches; we show numerous related works about water losses and water demand 

forecasting techniques using different learning methods.  Chapter 3 explained the applied models 

starting with a description of Dataset contents, the preprocessing process, and data normalization. 

Chapter 4 described the experiment and result. Finally, conclusion and future works are presented 

in chapter 5. 
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2.1 Background 

Water comprises nearly two-thirds of the Earth's surface, yet sadly, fresh water is limited in 

availability to humans. The focus is on freshwater resources as it is used for consumption, industrial 

and agricultural purposes. According to [11] Total fresh water available on earth constitutes only 

about 2.76 %, and less than 1% of this water can be accessed and used by humans.  In the Arab 

world, water shortage is a major problem due to the rapid population growth, limited freshwater 

resources, and poor water management. 

 In 2011, approximately 75% of the Arab population suffered from water shortage, and nearly half 

of them were under extreme water scarcity level of 500 m3 per capita per year, and this percentage 

is increasing significantly [12]. In order to predict water losses from water distribution networks, 

we must have a complete idea of the parts and structures of the networks. Water distribution 

networks are a wide range of water pipes with different sizes, which start from the main 

distributing meters which transport and distribute the water throughout the city and end with the 

points of consumption at houses, mosques, schools, industrial facilities, and others. Water loss or 

non-revenue water (NRW), has been a major challenge in managing water utility around the world 

and is even more challenging and dangerous in developing countries. In most developing countries, 

there are no resources to develop basic infrastructure to provide sufficient quality water to supply 

consumers continuously. This is aggravated by the lack of technical expertise and equipment to 

deal sufficiently with water loss in most water utilities, thereby reducing the availability of 

sufficient water for consumers [13]. 

water losses in most cities of developing countries are assuming alarming proportions of about 

40% to 60% of the total water supply [14] and Beitunia city is no exception. The water supply 

system in Beitunia is beset with a number of problems. According to the water department of 
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Beitunia municipality, among these problems are; low coverage, high non-revenue water, high rate 

of cut-offs (some areas get supply twice a week) and intermittent water supply. There are also 

frequent pipelines bursts (as a result of the old pipelines, some laid as far back as1971s) and 

leakages which also affect the quality of the water supplied.  It is therefore hoped that this   research 

would contribute for an efficient, effective and practical way to deal with the problem and reduce 

the NRW 

2.2 Water in Palestine 

Palestine, similar to other countries of the region, suffers from a water crisis. The primary 

responsibility for this crisis is the Israeli occupation, its control over the water, denial of millions 

of Palestinian residents. Palestine is actually very rich in water resources; the West Bank has an 

exceptionally high rate of groundwater recharge and a low rate of runoff. This means that it has a 

good reservoir of groundwater, but Israeli violations of the human right to water prevent 

Palestinians from getting access to clean water, affecting the daily lives of Palestinians as well as 

the long-term prospects of their viability [15]. 

According to International and regional standards, Palestinians have less access to 

freshwater resources. The West Bank is the lowest in terms of access to water. For example, 

the average West Bank uses about 70 liters per day [1]. In some rural areas, the amounts are 

20 liters per day, which is far below the 100 liters per day recommended by the World 

Health Organization (WHO) [1]. The United Nations has repeatedly found that Israel 

violates the human right to water, but Israeli violations are increasing. Israel controls access 

to Palestinian water, restricts the delivered amount which does not meet  the needs of life; It 

controls 90% of the water resources and sets procedures and obstacles for Palestinians to 
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take advantage of the remaining quantity, by controlling the resources of Water and land,  

restrictions on the movement of people and goods, besides the complex system of obtaining 

permits approval  from Joint Water Committee (JWC),From the Israeli army and other 

authorities, before the implementation of water projects in the territory of the Palestinian 

State; Which leads to delays in the implementation of water, as well as policies of the 

demolition of Palestinian water installations, such as: artesian wells, and rainwater 

harvesting wells in areas B and C [15]. 

Municipalities and other water utilities continue to provide water services in the West Bank, 

the largest and oldest multi-municipal utility in the West Bank is the Jerusalem Water 

Undertaking (JWU) in the Ramallah and Al Bireh area. JWU was established in  1966 when 

the West Bank was still part of Jordan, serving the two cities, as well as 10 smaller cities, 

more than 43 villages, and 5 refugee camps [16].  The second small multi-municipality is the 

Water Supply and Sewage Authority (WSSA)  Serving Bethlehem and neighboring towns of 

Beit Jala and Beit Sahour.[17] In other cities such as Tulkarm, Qalqiliya, Nablus, Jenin, Jericho, 

and Hebron, as well as in small towns, municipalities provide water and sewage services. Both 

utilities and municipalities rely to varying degrees on bulk water supplies by the Israeli water 

company Mekorot, which provides about 80 percent of the water used by the JWU [17]. In rural 

areas, water is provided by the water utilities of the village council. In the northeastern Jenin area, 

water is provided to the Joint Service Council (JSC), which is formed by six villages [18].  

 Gaza Strip In all 25 municipalities in the Gaza Strip, water supply responsibilities are assigned to 

Coastal Municipalities Water Utility (CMWU. However, the utility is still in the process of being 

established and exercising its legal functions. The intention is for municipalities to receive 

https://en.wikipedia.org/wiki/Coastal_Municipalities_Water_Utility
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technical assistance from the CMWU and to gradually transfer its staff and assets to it. According 

to the World Bank, this model has led to improvements such as faster leakage repair and economies 

of scale. However, the plan is far from fully implemented. This model has faced serious problems, 

mainly due to unstable political conditions in the Gaza Strip since 2008, including differences 

between municipalities controlled by Hamas and Fatah, with some municipalities refusing to 

transfer assets and employees to CMWU [18].  

2.3 Water Losses Problem 

Increased population growth and urbanization with inadequate water resources availability and 

frequent droughts have made drinking water as a scarce resource that managers of water networks 

have to provide water qualitatively and quantitative. The problem of water loss from water 

distribution networks is one of the most serious problems leading to water shortage in Palestine. 

Some studies showed that the rates of water loss resulting from it are higher than 30% [19], while 

other studies argued that in some Palestinian areas this percentage reaches up to 50% [2, 3]. 

According to Water Sector Regulatory Council (WSRC) in the West Bank as shown in the Table 

2.1, over the past three years, Tulkarm and Jenin still hold the highest rates of NRW (50% and 

49% consecutively), which reflects the weak efforts exerted towards improving the service, 

compounded by the mismanagement of available resources and its impact on the sector especially 

in light of limited available resources. In Qabatiya and Al ‘Auja the rate of NRW in 2016 increased 

to reach 49% and 45% consecutively, while the areas of South East Nablus, North West Jenin, 

Dura, and Salfit recorded the lowest rates of NRW: 11%, 11%, 15%, and 15% consecutively 

Service providers who registered a marked improvement in the rate of NRW is Deir al Ghusun 

municipality which was reduced to 27% after it was 44% in 2015, after the municipality replaced 

a large number of old meters with new ones, and rehabilitated some of the main lines. 
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Table 2.1: Percentage of Non-Revenue Water – West Bank 

# NRW 

(0%-21%) 

NRW 

(21%-30%) 

NRW 

(30%-37%) 

NRW 

(37%-50%) 

1 Halhul Beitunia Nablus Jenin 

2 Ya’bad AlFar’a Tubas Qabatiya 

3 Illar Attil Hebron Tulkarem 

4 Azzun Yatta Tuq’u Anaba 

5 Salfeet Arraba Al Sawahreh sl sharqia Al’Auja 

6 Kafr Ra’i Qalqelya  Al Ezareya 

7 Dura Bedia  Beit Ummar 

8 Jerico Maythalon   

9 Sa’er Abu Dies   

10 Tarqumia Za’tara   

11 Northwest Jenin Deir Al Ghuson   

12 Southwest Nablus    

13 Southwest Jerusalem    

14 Bani Na’em    
 

Tubas and  Mythaloun still need to follow up despite the fact that the rates of NRW still remain 

within the average, however reading the indicator for the last 3 years shows an increase which 

should urge the service provider to find out the causes of NRW and control it [20]. The high rates 

of water loss are due to illegal pipes connections, pipelines bursts, the depletion of network piping 

systems and poor functioning utilities. In particular, in the Gaza Strip, illegal pipe connections 

cause heavy losses. Water shortages and insufficient supplies are the main reason for the illegal 

use of water. In addition, the conditions of the water supply utilities suffer from serious 

shortcomings that cause high dropout rates and weak water pulse in the system, due to the 

institutional weakness and In addition to many restrictions by the occupation on the development 

of the water sector in the west bank and Gaza blockade [21]. 

2.4 Target Area: Beitunia City 

Beitunia, is a Palestinian City located in the center of the West Bank - Palestine, together with the 

neighboring city of Ramallah which is form one of the largest residential, commercial and 

https://en.wikipedia.org/wiki/Palestinian_territories
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industrial centers in Palestine, Beitunia city is located 3km South West the Ramallah city, and 

about 15 km North of Jerusalem. It is situated in the central high lands in the West Bank, on the 

western slaps of the middle mountains and overlooks the meditation coast. It represents an 

attractive residential center from all the West Bank as a result of the encouraging policy of the 

Municipality of Beitunia to attract the investments, in addition, the availability of the Palestinian 

Authority main Headquarters, and the ministries within the two neighboring Ramallah and Al-

Beireh According to the Palestinian Central Bureau of Statistics, the City had a population of 

36,000 in 2017, making it the third largest locality in its governorate after  al-Bireh and Ramallah 

[22]. 

The daily water supply per person according to Beitunia municipality is 62 L, and the water supply 

area is divided into three districts. The city has 1 reservoir. The total length of the network is 57 

km. DMAs were built in Beitunia that divide all water supply districts into separate ones. The 

DMA system of Beitunia consists of three DMAs or three main connection points which are Flash, 

Sunugrot, and college. JWU provides Beitunia municipality with water through these connection 

points. As the Israeli side has reduced the proportion of water supplied to the Palestinian side, 

Beitunia suffers from water scarcity, where the municipality has a great responsibility in securing 

sufficient quantities for its citizens; Figure 2.1 shows the study area.  

2.5 Water Resources  

 According to Municipally records, four springs are located in Beitunia, but only one of these is 

being used for the purpose of vegetable cultivation with a daily average-0pumping rate of 20 cubic 

meters, while the three other springs are not being used due to their location within area C. 

https://en.wikipedia.org/wiki/Palestinian_Central_Bureau_of_Statistics
https://en.wikipedia.org/wiki/Al-Bireh
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Figure 2.1: The study area. 

2.6 Non‐Revenue Water 

According to [23] Non-Revenue Water (NRW) can be described as “the difference between the 

volume of water put into a water distribution system and the volume that is billed to customers”. 

Loss of water is inevitable in any water distribution system; however, water losses should be 

reduced to the lowest economic levels especially if water utilities are to operate sustainably. NRW 

can be divided into several categories, leakage or technical losses, illegal communications, 

unbilled water, weak performance meters, inaccurate waters reading. Non-payment of bills cannot 

be considered NRW, but they are included in the strategies of reducing the losses because increase 
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billing process reduces NRW [23]. The World Bank recommends that NRW have to be less than 

25% [23]. Palestine’s target is 20%. A high percentage of NRW has a negative impact on the 

financial capabilities of water utilities, in addition to the significant impact on water quality 

service. American Water Works Association (AWWA) recommends that physical and apparent 

losses and the annual cost impacts of these losses must be tracked by water utilities.  

Increasing the financial revenues of the water sector, which is suffering from financial difficulties 

and increasing the access to scarce resources, are the objectives and advantages of the process of 

reducing NRW, which increase and improve the efficiency of services provided to customers. 

The existence of many illegal connections prohibits people who are committed to paying for from 

getting enough quantities of water, in addition, to pay for the water that is stolen, which is unfair.  

2.6.1 Components of Non‐Revenue Water  

Water losses should be reduced to the lowest economic levels if water utilities are to operate 

sustainably. In the early '90s in the distribution system, there was no normative term for the 

expression and evaluation of water losses. “International Water Association” (IWA) identified this 

problem and created its WLTF Working Groups. The Commission examined best international 

practices and developed standardized terminology for NRW. IWA identified this problem and 

created the water loss task force (WLTF) which explored the best practices and formulated 

standardized terminology for NRW[24].  

2.6.1.1 Physical Losses  

Physical losses, which is called real losses, are water extracted from natural resources then it is 

processed to be used in the distribution system, but customers never consumed this amount of 

water. Water losses occur in all distribution networks old and new ones, the distribution systems 

of the water in the developed countries are very old and they are built decennia ago. The systems 
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are presently degraded because of their age. Mostly the system is indeed leaking water before 

water utilities start with the rehabilitation or replace the current system [25] . The following are the 

components of Physical losses: 

•  Leakage of transmission and distribution pipes 

•  Leakage and flooding from utility tanks and storage tanks 

•  Leak on the service connections up to the customer's meter 

2.6.1.2 Apparent Losses   

Apparent losses or commercial losses are those found in metering data, whether through under-

reading meters, billing inaccuracies (mishandling or processing billing data) or illicit bypasses of 

meters, as water is delivered and consumed by customers, but is not paid for. Apparent losses are 

the most expensive losses within the water system, as they directly tie to sales revenue. The 

apparent losses can be greater compared to real losses, and often have greater value, because 

reducing commercial losses increases revenue, while real losses reduce the costs of 

production[26]. The component of the apparent loss in developing countries is nearly as high as 

the physical losses component, it is about 40% of the total water losses (NRW) [23]. This can be 

clarified by the corporation and management causes, such as fraudulent activities and rottenness 

[25].  The ratios of physical losses and apparent losses in developing and developed countries are 

illustrated in Figure 2.2  

2.6.1.3 Unbilled Authorized Consumption 

Unbilled authorized consumption includes water used by a utility for operational purposes, that 

used in firefighting, and that provided free to certain consumer groups such that mosques, public 

garden, and schools. The unbilled authorized consumption should be a small part of the water 

equilibrium, it's valued less than 1% of the system input volume. 
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NRW in developed countries NRW in developing countries 

Figure 2.2: Physical losses and Apparent losses ratios in developing and developed countries 

[27]. 

 

The first time the unbilled authorized consumption is measured, the value can be unduly high. As 

long as a utility does not compute the unbilled authorized consumption, the consumption cannot 

be administered to result in surpassing the normal part of less than 1% of the system input volume. 

Water utilities must be able to manage he unbilled authorized consumption and decrease it to the 

normal ratio by using appropriate measurements [28]. 

2.6.1.4 Non‐Revenue Water in the World 

The global volume of non-revenue water (NRW) is staggering. Each year more than 32 billion m3 

of treated water are lost through leakage from distribution networks. The global NRW percentage 

is around 35%, there is a volume of 32 billion m3 of real loss water and an additional volume of 

16 billion m3 of apparent loss water every year. The costs for these losses are estimated at the US 

$14 billion per year [29], while [23] has estimated the costs of water loss at approximately US 

$141 billion per year. Even though these values do not correspond with each other, it can be 

concluded that action is needed to diminish the water and money loss. Figure 2.3 shows the NRW 

(%) values for several countries and cities [30]. 
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2.7  Datasets Description  

The existence of water-related data is very important for use in the consumption and water loss 

forecasting process, as these data are arranged in usable time. Water service utilities seek to predict 

water demands and water losses through clear policies to promote and develop sustainable services 

for customers. The data used in this thesis were collected from Beitunia municipal records and 

databases and from JWU. The data are the quantities of water supplied by JWU and the 

consumption data that the municipality sold to the customers.  

As we mentioned before, Beitunia city was divided into three regions, the data of each region was 

processed separately. Initially, we collected the quantities of consumption in Excel tables 

containing columns; each column represents the consumption in cubic meters for a water cycle of 

two months (60 days). Quantities of consumption were distributed over the years from 2005 to 

2017, and the process of compilation and arrangement of this data was a difficult process that took 

a lot of effort and time. Table 2.2 contains the consumption amounts of water for the whole city. 

Figure 2.3: Non‐revenue water percentages over the world [30]. 
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We have collected the quantities of consumption in the same way for the Flash area and the 

Sunuqrot area as well as the College area. 

Table 2.2: Water consumptions quantities for the whole city in m3 

Year 

  

(Period 1) 

Months 

1+2  

 

(Period 2) 

Months 

3+4  

 

(Period 3) 

Months 

5+6  

(Period 4) 

Months 

7+8  

 

(Period 5) 

Months 

9+10  

 

(Period 6) 

Months 

11+12  

2005 59016 68649 80430 87237 83043 69072 

2006 62745 72336 82057 99141 90592 67089 

2007 71635 79149 93550 99470 98510 84833 

2008 74553 91374 100262 99120 100719 93288 

2009 83866 85515 107531 106853 96738 100256 

2010 88429 103411 111473 118665 112152 108182 

2011 95662 102436 116940 123073 129248 104028 

2012 100933 105153 124432 137532 135362 99975 

2013 101712 115391 119785 136460 128274 121072 

2014 109571 118272 110611 138020 130963 111666 

2015 125082 114718 130116 136009 134556 128647 

2016 129618 143524 147458 132133 142218 130177 

2017 134506 138960 142031 131873 140381 130031 

 

The second phase consisted of collecting the water demands that the municipality purchased from 

JWU, in Beitunia city there are three main meters. Each meter feeds (serving) a certain area of the 

city. The Flash meter supplies Flash area with an estimated capacity of 125 cubic meters per hour, 

and Sunuqrot meter supplies the area of  Sunuqrot with an estimated capacity of 14 cubic meters 

per hour, and the last meter is the College meter, which meter supplies College area with an 

estimated capacity of 11 cubic meters per hour. 

Table 2.3, shows water quantities purchased from JWU for the whole city, the data was collected 

and distributed over the years 2005-2017 and divided into 6 water cycles in order to facilitate the 

calculation of losses. We have taken this step to find the water losses for all three areas of Beitunia. 
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Table 2.3: Water quantities purchased from Jerusalem Water Undertaking for the whole city in m3 

Year 

  

(Period 1) 

Months 

1+2  

 

(Period 2) 

Months 

3+4  

 

(Period 3) 

Months 

5+6  

(Period 4) 

Months 

7+8  

 

(Period 5) 

Months 

9+10  

 

(Period 6) 

Months 

11+12  

2005 77440 116930 114120 135960 103180 114350 

2006 115280 129600 120000 177050 154560 109830 

2007 117590 127040 135151 160090 121241 111993 

2008 96907 135987 155287 130992 141562 155998 

2009 127360 131570 173874 124133 159484 133538 

2010 169428 117108 134450 131124 125843 139085 

2011 129591 121986 135107 136409 205401 148233 

2012 183390 118953 183003 163883 168066 148140 

2013 166747 145797 155718 173559 186824 141923 

2014 140305 166634 167383 165935 185028 157353 

2015 174980 148500 161255 180949 162299 165175 

2016 167237 173527 180029 178588 197524 186358 

2017 181611 180617 180749 164459 188976 174449 

 

In the third phase, we calculated the water losses of the city for the three areas, since the difference 

between the quantities of water purchased and the quantities of water pumped into the network is 

considered as water loss (NRW). Table 2.4 represents the amounts of losses in Beitunia city for 

the years 2005-2017. 

Figure 2.4 shows the ratio of water losses to the three areas of the city in cubic meters until 2017, 

calculated by using the data from Excel tables that were arranged in such a way that it is easy to 

carry out these calculations. It is important to mention that these steps are an important introduction 

to data processing for use in the models of this research (Neural Network models and ARIMA 

statistical model).  

As it is illustrated in figure 2.4, the Flash area is the most area of water loss since it is the largest 

areas in the city, followed by the College area where the loss of water is much less than the Flash 
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2. 4: Water losses quantities (NRW) for the whole city in m3 

Year 

  

(Period 1) 

Months 

1+2  

 

(Period 2) 

Months 

3+4  

 

(Period 3) 

Months 

5+6  

(Period 4) 

Months 

7+8  

 

(Period 5) 

Months 

9+10  

 

(Period 6) 

Months 

11+12  

2005 18424 48281 33690 48723 20137 45278 

2006 52535 57264 37943 77909 63968 42741 

2007 45955 47891 41601 60620 22731 27160 

2008 22354 44613 55025 31872 40843 62710 

2009 43494 46055 66343 17280 62746 33282 

2010 80999 13697 22977 12459 13691 30903 

2011 33929 19550 18167 13336 76153 44205 

2012 82457 13800 58571 26351 32704 48165 

2013 65035 30406 35933 37099 58550 20851 

2014 30734 48362 56772 27915 54065 45687 

2015 49898 33782 31139 44940 27743 36528 

2016 37619 30003 32571 46455 55306 56181 

2017 47105 41657 38718 32586 48595 44418 

 

 

 

Figure 2.4: : Ratios of water losses (NRW) for Beitunia regions 

 



24 
 

area. In terms of water losses, College is close to the Sunuqrot area, which lost 8% of water since 

2017. 

 

Figure 2.5: Ratios of water consumption for Beitunia regions 

The consumption ratio for the three regions of the city until 2017 was shown in Figure 2.5, 

which also shows that the largest consumption was for the main meter (Flash region), which 

supplies the largest area in the city, in Flash area, water consumption was 80% of the total 

consumption of all other regions. Note that the percentage of consumption in the College area is 

small compared to other regions. 

 

2.8 Time Series Prediction   

Time series modeling and prediction is of fundamental importance to various practical fields such 

as water prediction, physical science, daily temperature, control systems, engineering processes, 

bioengineering, and environmental systems. Therefore, many active research works have been 

going on in this subject for several years. Usually, researchers collect data in the time series form 

where issues such as description, data elements like periodicity and trend are very considerable. 

To improve the efficiency and accuracy of time series forecasting important models have been 
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proposed in the literature. ANNs and other learning methods are able to predict future values by 

understanding and learning from how the data are originated and how it is changing over time [31]. 

Time series is considered as one of the most valuable applications to learn prediction models. The 

main role of prediction is to extract the associated information related to time series data and utilize 

that to estimate future values, where the associated information contained in a time series data are 

typically based on trends and periodicity [32]. Simply, the predicted value x(t+1) (next value) is 

assumed to be related to the current value x(t). The conclusion in such a situation is that the 

estimated 𝑥(𝑡 + 1) matches 𝑥(𝑡) as in the following equation 2.1: 

 

For time series forecasting, this equation is useful because for majority actual environmental 

situations it can provide very good predictions. Therefore, this method is considered to be as a 

benchmarking method for which results achieved by other methods should be compared with the 

results of this method. This next time step for which the value x(t+1) needed to be predicted may 

be very far from the current time step x(t). Moreover, the more multiple time steps predictions the 

more complicated than single time step prediction [33].  

Estimating x(t+2) can be achieved in two scenarios: one is predicting x (t + 2) directly from x (tm) 

... x (t) where the predicted value is comparable to predicted x (t + 1). Nevertheless, in this 

situation, estimation of x(t + 2) takes in consideration estimation-error occurred in predicting x (t 

+ 1). The little slips in this step-by-step based forecasting method are weak, therefore it is 

considered to be a vulnerable prediction scenario. The other more advisable scenario is the direct 

approximation of x (t + 2) [33] based on x(t), however, it is also sensible to consider more previous 

time steps such as x(t-1) and x(t-2) beside considering x (t) in the approximation of x(t+2) point, 

figure 2.6 depicts this situation.  

𝑥(𝑡 + 1) = 𝑥(𝑡)      2.1 
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Figure 2.6: General time series prediction using ANNs 

The tendency in the dataset applied in this thesis is an upward and downward tendency, therefore, 

the process of discovering the non-linear dependencies in order is basically automated by using 

the NN model. The overall goal is setting up the prediction models in order to make predictions 

and estimate ahead elements based on the past time series. 

An advantage of such time series data is that it is known experimentally and in some other 

circumstances that the data is coming from a time series. Wherever the measured values are based 

and depend on another variable is considered similar to a time series situation. In such cases, the 

allocation of the data will bring nothing even it been taken into consideration, although plotting 

data against the index will not clarify the dependency of the data. Discovering the variable (or 

variables) that basis the dependency can be found through sometimes only by trial and error, 

wherein artificial neural networks this is evolved and guided during the learning phase by 

guesswork and experience through learning rate, weights, and weights re-adjustment [33]. 
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2.9 Autoregressive Integrated Moving Average Model (ARIMA) 

ARIMA is a model for statistical analysis of time series to predict future data. This model does not 

take the form of one equation or parallel equation models, but the emphasis on the analysis of the 

probability or random properties of the time series itself. The parameters of the ARIMA models 

are typically approximated by the method of least squares or the maximum likelihood 

approximation method. However, the ordinary least squares method requires imposing, strict 

assumptions on the model specifications during the approximation of the parameters to realize 

meaningful results and therefore it is ineffective to use with complex or nonlinear models.  

ARIMA model is based on the famous Box-Jenkins principle [34, 35], generally, ARIMA  called  

Box and Jenkins models or shortly Box-Jenkins model. There are two linear models that are largely 

used in time series, autoregressive (AR) and moving average (MA) [34, 35] models. By bringing 

these two models together, another model was proposed, called the ARMA. In ARIMA models, a 

non-stationary time series is performed by applying a restricted difference of data points. The 

mathematical formulation of ARIMA(p,d,q) model using  lag polynomials [35] is given below in 

equation 2.2: 

∅(L)(1 − L)d yt = θ(L)εt 

(1 −  ∑ ∅iL
i

p

i=1

) (1 − L)d  yt= (1 +  ∑ θjL
j

q

j=1

) εt 

 

2.2 

The value of the integers q, d and p are greater than or equal to 0. In 2.2 equation to refer to the 

order of the I, AR, and MA of the average model respectively. In the differencing process, we use 

“d” to control the level. So its value 1 or 0, when d=1 this is mostly enough the model is 

ARMA(p,d,q). When the value of d =0, then the model is ARMA(p,q). 
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Specifying (p,d,q) is the first step in estimating the ARIMA model, where p or AR refers to a 

number of automatic conditions, q or MA indicates a number of moving and intermediate terms 

and d  indicates the number of times that the string must be different to motivate the stationery. 

a useful generalization of the ARIMA models is an autoregressive model of the Fractionally 

Integrated Moving Average (ARFIMA), which allows the noninteger of the different parameter d. 

ARFIMA has a useful application in a modeling time series with long memory [36].  In this model, 

the expansion of the term (1- L)d   is to be done using the theory of “general binomial”. The 

researchers have contributed towards estimating general ARFIMA parameters. The final model is 

used to produce forecasts about future values and hence calculate the forecasting errors and 

developments of the new values of the time series and to control these errors. 

2.10 Artificial Neural Networks 

Artificial neural network (ANNs) is a network of units that are interconnected to each other. The 

study of neurobiological systems inspired the development and of this type of artificial networks. 

The concept on which artificial neural networks based is the simulation of the model to access data 

of these units in order for classification, prediction, analyzing or any other treatment of input data, 

Therefore, scientists and researchers have been attracted and interest in the study and application 

of ANNs in different disciplines. 

The first appearance of Neural Networks (NNs) was in the sixties of the last century as a model of 

human brain functionality. This model is depending on learning of a series of mathematical 

structures (known as neurons) that are arranged and interconnected in a particular way in order to 

solve sophisticated problems. The way in which these neurons are organized varies from simple 

to a more complex structure to finally form what is known as a neural network. Neural networks 

have shown the capability of solving problems in a wide range of research and applications fields 
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such as engineering, math, function approximation, communications, and water predictions. In the 

field of water prediction, it has tried for many years, to learn how future events could be predicted 

so that preventive actions could be taken to avoid losses of water resources [37].  ANNs can be 

introduced in two learning methods: supervised and unsupervised.  The supervised ANNs, on one 

hand, depending on the availability and comparability of ANNs output to the desired output. In 

this type of ANNs, the final output is found by processing input data through the series of neurons 

using special activation functions and weights, the outputs of these activation functions are finally 

summed linearly to achieve the final output. By comparing ANNs output to the desired output 

(which is known as a label) and finding the error, the weights used by neurons are updated 

iteratively to decrease the error rate of approximation. A training network as shown in Figure 2.7, 

consists mainly of three parts which are the input, hidden neurons, and output layers. A neuron is 

found in the hidden layer, where these neurons can be defined as elements with a state which is 

changed internally depending on the received signals based on a transition function (activation 

function) included in neurons. The activation function allows neurons to control the received 

signals from neurons, whether to be connected or disconnected from the outside [38].  

 

Figure 2.7: Feedforward backpropagation technique 

Contrary, unsupervised learning lack of such guidance while the learning process. Where in this 

type of learning the comparability of generated output from the neural network to the target or 
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desired output is missing. The learning process in such guidance fewer environments usually 

depends on the input data items and the commonly shared feature [37]. Figure 2.8 demonstrates 

the general structure of neural networks.   

 

Figure 2.8: General Structure of an Artificial Neural Network 

 

The neurons contained by the hidden layer determine the action to be made to the input data 

received from the input layer, the weights of these neurons which are developed by the learning 

process play the major role of the decision [39]. later, the data might be transferred to the output 

layer by applying the activation functions included in the neurons [40].  

Many proprieties of the neural networks can be summarized from the literature; Among of these 

properties is their capability of carrying out adaptive learning and the capability of performing 

tasks via training [41]. They are self-organizing which implies that the system is composed and 

altered so as to complete a particular goal. Moreover, neural networks can carry out its processes 

in tangible time, because of the parallel implementation, the concurrent execution of tasks is 

achievable, therefore saving the time of training and testing [42]. The data vector X is the data that 

every neuron gets to process. Every input data has a related estimation of weight W. This esteem 



31 
 

is a factor of significance since it updates itself within the training of the neural network with the 

goal that it shows signs of improvement conduct. The output of the NN 𝑓(𝑥) as shown in equation 

2.3 is determined by utilizing the accompanying general equation, which is utilized in most of the 

supervised kinds of NNs [43]. 

𝑦𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(∑(𝑋𝑗. 𝑊𝑗 + 𝑏𝑗))

𝑚

𝑗=1

 
2.3 

Where m is the number of inputs, Wj is the related weights vector, and Xj is the input vector and 

bj is the bias. The stimulation function f known also by activation function- is performed at each 

neuron in order to generate a non-linear output [43]. There are many types of activation function 

that are widely utilized by perceptron NNs including the step, identity, and logistic functions. The 

most common mathematical formula represents this function is shown in equation 2.4 [44]: 

                     𝑓(x) = 
1

1+𝑒−𝑥
        2.4 

Generally, the network consists of an input layer, hidden layers, and an output layer, as previously 

shown in Figure 2.8. In the input layer, the network receives the data vectors for processing, 

usually, the neurons in the input layer do not do any processing to the input data except forwarding 

of the data through the connections to the next layer which is first hidden layer. The number of 

hidden layers varies among NNs, the more hidden layers the more complicated NNs, a hidden 

layer is defined as the group of neurons, and these neurons are not directly connected to a previous 

layer and a next layer. In normal cases, a neuron in a layer has incoming connections from all 

neurons in the previous layer and outgoing connections to all neurons in the next layer without 

forming any type of loop [45]. Each neuron has one of the activations as described in equation 2.4. 

To make the representation of NNs in figure 2.8 simple, the neuron and its transfer function are 
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usually drawn together. Usually, the activations function is used as the multilayer perceptron 

transfer function for hidden layers while the output layer uses the linear transfer function. 

The general objective of using ANNs in this thesis is to utilize various types of artificial neural 

network (ANNs) and different forms of learning algorithms to produce a computational 

Intelligence model capable to predict the non-revenue water [NRW] and the actual water demands. 

Which aims to help water utilities to increase income and reduce losses in order to reach 

sustainable services. In literature, different types of ANNs were invented to be utilized by many 

applications and for the aim of optimizing the solutions (training algorithms), the following 

sections explains more about the most common types of  NNs including the single layer perceptron 

NNs, the multi-layer perceptron NNs, and the radial basis functions NNs, where usually the 

problem under consideration plays a major role in the determination of the suitable type to be 

utilized. 

2.10.1 Single Layer Neural Networks (SLNNs)  

This type of NN consists of one hidden layer of neurons. Although the hidden layer may contain 

one or more neurons (multi-neurons). As described earlier, the received input vector X is 

represented at the input layer by (x1, x2,.. xm) input nodes, each of these nodes is connected to 

neurons (n1, n2,…,nm) in the hidden layer. The vector of weights (w11, w12, …, w1m) represents the 

weights that x1 will be multiplied by before transferred to the corresponding neuron in the hidden 

layer, and so on. At the neuron in the hidden layer, the activation function is applied to determine 

the output of that neuron [32], figure 2.9 shows the architecture of SLNNs. 
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Figure 2.9: Single layer neural network (SLNNs). 

 

 

2.10.2 Multi-layer Perceptron Neural Networks (MLPNNs)  

To take care of complex issues that SLNNs were not able to handle such a complex problem, in 

this manner, we need progressively intricate and powerful NNs structure which composed of many 

hidden layers to change non-linear distinguishable problems into different areas where they 

became linear separable, the multilayer perceptron NNs, as shown in figure 2.10, includes an 

output and an input layer, in addition to more than one hidden layer. Usually, this ANNs structure 

is utilized for solving nonlinear systems.   

 

As in the SLNNs, the input nodes of the input layer are fully or partially connected to the neurons 

in the first hidden layer with their associated weights. The outputs of neurons in one hidden layer 

(a1, a2, … am) are considered as the inputs of the next hidden layer and it has its particular weights. 

The outputs of the last hidden layer are connected to a single neuron in the output layer.  
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Figure 2.10: Multi-layer Perceptron NNs 

 

In MLPNNs the sigmoid activation function is mostly used [46].  As the sigmoid function is 

applied, the following equations 2.5, 2.6 and 2.7 are used to find the vector of outputs of one hidden 

layer to be fed to the next layer, the equations show the calculation on the output of layer one to 

be used as inputs to layer two. 

𝑎1 = 𝑓1 (∑ 𝑥𝑗. 𝑤𝑗,1

𝑚

𝑗=1

+ 𝑏1) 

 

2.5 

𝑎2 = 𝑓2 (∑ 𝑥𝑗. 𝑤𝑗,2

𝑚

𝑗=1

+ 𝑏2) 

 

2.6 

𝑎𝑛 = 𝑓𝑛 (∑ 𝑥𝑗. 𝑤𝑗,𝑛

𝑚

𝑗=1

+ 𝑏𝑛) 

 

2.7 

 

Where W is the matrix of weight, X represents the inputs, b is the bias vector, and the output vector 

of a layer is ɑ. The error will be calculated between the output and target value and the weight will 

be updated during the learning phase to minimize the output cost function, which may be 
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calculated using different methods. In this thesis, the Sum of Square Error (SSE) method is 

used[47], as illustrated in equation 2.8: 

Esse  = 
1

2
∑ ∑(𝑌𝑖   −   𝑌𝑖

′)2𝑚
𝑖=1    2.8 

Where Y is the real value, 𝑌′is the output or the predicted value, and “m” is the number of inputs. 

To complete the weights updating process, the gradient descent algorithm is usually employed 

where it is computed based on the following equation 2.9: 

∆𝑤𝑗𝑘
𝑚 = −𝜇

𝑑𝐸(𝑤𝑖𝑘
𝑚)

𝑑𝑤𝑖𝑘
         

2.9 

Where µ which is usually a value ranges from [0 to 1] represents the learning rate, and the output 

of the final layer depends on different elements such as the outcome of all proceeding layers, 

weights vectors, and the training algorithm [48]. 

Usually, to stop the training process of forecasting we have used the Mean Square Error (MSE) 

as shown in the following equation: 

MSE  =∑(𝑌  −   𝑌′)2 / 𝑚   2.10 

Where Y is the real value, 𝑌′is the output or the predicted value, and “m” is the number of inputs 

2.10.3 Radial Basis Function Neural Networks (RBFNNs) 

Radial Basis Function Neural Networks (RBFNNs) is another type of NNs, that can be utilized for 

time series forecasting and function approximation. RBFNNs that uses a policy called "the 

problem of curve fitting in a space of high dimension", which comprises of creating a domain with 

a multidimensional space that creates the better adaptation of the network[49].  RBFNNs are a 

special form of ANNs, unlike to the MLPNNs; they take in their consideration the aggregate input 
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vector points, which are located in the proximity of the centers of the radially symmetric activation 

functions. In the hidden layers of RBFNNs systems, the activation function is a radially symmetric 

function where the reaction of the function increases or decreases according to the distance from 

a central point [8].  

As illustrated in Figure 2.11, in RBFNNs architecture there are three layers: the input layer, the 

hidden, and the output layers; every layer is connected with the next layer, for example, the node 

in the input layer is connected to all the nodes in the hidden layer. The complexity and the type of 

application (problem) determine the number of nodes in the input and the hidden layer. In RBFNNs 

the input layer, as usual, passes the feature values to the hidden layer, which is, in this case, is an 

RBF layer. 

 

Figure 2.11: RBFNNs Architecture of three layers. 

 

The hidden layer applies a non-linear multi-dimensional matrix transformation to the data coming 

from the input layer to take them to another vector space that usually has a larger dimension. The 

activation functions of RBF neurons are Gaussian functions, which rely on two parameters that 
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are center and radii, where the RBFNNs structural behavior is controlled by these two parameters. 

In the output layer, the values of the hidden neurons from the RBFs layer are linearly summed and 

multiplied by the weight, which is the third parameter of the RBFNNs [8]. The typical Gaussian 

function ℎ(𝑥) used in radial basis neurons is given in the following equation: 

ℎ(𝑥) = exp (
−(𝑠 − 𝑐)2

𝑟2
)                                        

2.11 

Where “r” is the radius of the Gaussian function, “c” is the center, and “s” is any specific point of 

input data [50].  

RBFNNs is utilized for curve fitting, regression, classification, and exact interpolation, where all 

data points must lay on the output function. The exact interpolation is performed by providing one 

function non-linear ɸ for each data sample given by the equation  ɸ‖x-xp‖, where the path function 

is a Euclidean distance based function between x and xp given by ‖x-xp‖ . The following equation 

2.12 represents the output of the RBFNNs system [44]:  

𝑓(𝑥) = ∑‖𝑥 − 𝑥𝑝‖

𝑁

𝑝=1

 

2.12 

Output using the Gaussian activation function is illustrated in equation 2.13. 

𝑓(𝑥) = ∑ 𝑊𝑝ɸ𝑝(𝑥) = 

𝑁

𝑝=1

   ∑ 𝑊𝑝𝑒𝑥𝑝𝑝 (−
‖𝑥 − 𝑥𝑝‖2

σ2
)

𝑁

𝑝=1

 

2.13 

Generally, the training process aims to generate the best weights associated with each input 

following the next steps [51].  

Selecting the number of RBF  ɸ  as a matrix based on either the random or learning methods where 

bad fitting outcomes may be resulted because of the random selection method; however, the aim 
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of matrix selection is to find the least count of radial basis functions from the data points. 

Moreover, randomness method may be used to determine the center of the basis function which 

also may cause the risk distribution of the centers; however, the K-mean clustering method is one 

of the learning algorithms which can be utilized for center determination.  Gaussian activation 

function requires the use of a proper value of σ, the use of low σ value causes narrow peaks, while 

high σ values cause wide peaks, and therefore, the following expression is utilized for the best 

value of σ:   

σ = 2𝑑𝑎𝑣𝑔   2.14 

“d” is referring to the average distance.  By the employment of Micchelli’s Theorem, the weights 

are updated. The aim of this process is to find the weight matrix w which based on xi, where i = 

1... N is the set of distinct points in Rd, and the interpolation matrix (N-by-N), where jith element 

of this matrix is a non-singular as depicted in equation 2.15:  

W  D-1   =  F 2.15 

The used function to calculate the error in Micchelli’s theorem illustrated in equation 5.16: 

𝐸 =  ∑ ∑ (𝑡𝑘
𝑝  −  𝑦𝑘(𝑥𝑝))

2𝑁

𝑘
𝑝

=  ∑ ∑ (𝑡𝑘
𝑝  − ∑ 𝑊𝑘𝑗  ɸ𝑗   (𝑥𝑝), 𝜇, 𝜎𝑗

𝑀

𝑗=0

)

2
𝑁

𝑘𝑝

 

2.16 

W represents the weight W and it is updated using the equation 2.17 and c represent the center 

and it is updated using equation 2.18, whereas r is the radii and it is updated using equation 2.19. 

∆𝑤𝑗𝑘  =  −𝜂́𝑤 
𝑑𝐸

𝑑𝑤𝑗𝑘
 2.17 
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∆𝜇𝑖𝑗  =  −𝜂́𝜇 
𝑑𝐸

𝑑𝜇𝑖𝑗
 2.18 

∆𝜎𝑗  =  −𝜂́𝜎 
𝑑𝐸

𝑑𝜎𝑗
 2.19 

RBFNNs in this thesis is used for time series prediction of water losses and water demands to get 

the future values of losses water and demands using the actual data of water losses and water 

demands collected from all regions of Beitunia city to guide the training of the RBFNNs. 

2.11 Genetic Algorithms (GAs) 

Genetic Algorithms (GAs) is an evolutionary computation search algorithms founded by John 

Henry in 1975 [52].  GAs state that individuals who are best adapted to their environment are more 

likely to survive and to reproduce. The next generation represented by their offspring will inherit 

a combination of parental characteristics, and generate improved and bad individuals. The 

improved ones are more likely to continue and to reproduce, whereas the bad ones will disappear. 

After several generations in this process, the population is expected to develop and find an 

individual whose characteristics permit the best individual to be adopted. 

The main characteristics of GAs include robustness to discontinuities of the fitness function; GAs 

does not require the fitness function to have a derivative and durability to a local minimum due to 

its global search characteristic. In addition, the GAs directed search does not require exploring the 

whole solutions space. The General steps of the genetic algorithm are depicted in figure 2.12: 

 
Figure 2.12:  General steps of genetic algorithms 
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The following are the details on using GAs for the optimization. 

• The initial population contains all the individuals that will be assessed by the fitness 

function and submitted to the genetic operators.  Usually, it is generated by random 

sampling, in this work, the weights from MLP will be used in the population.  

Usually, when we try to solve a problem, we have a solution every time, but unfortunately, 

this solution is often not the best one, but we can clearly see that if we could combine this 

solution with a previous one, we could find the best solution. Therefore, the existence of 

a mechanism to integrate these scattered solutions can give us the best solution. If we 

imagine each solution as a sequence of genes within a chromosome and this solution exists 

within a group of different chromosomes (solutions) to the problem in a group of the 

population, then we can use crossover and mutation to produce new solutions. 

• In Chromosomic representation, the binary chromosomic representation [52] is the most 

widely used representation and is applied to encoding genes’ information that can assume 

zero and one values. 

• Fitness function calculates a measure that is used to assess how adapted an individual is 

to the environment. This metric is used to direct the search for the characteristics that will 

result in a better-adapted individual, i.e., with better performance in a task.  

• Genetic Operators: these operators consist of Selection, crossover, and mutation, the 

selection operator chooses 2 individuals from the population based on the result of the 

fitness function value in order to be used by crossover operator. 

 

The process is repeated on another two individuals and the winner is selected. These two selected 

winner individuals are then submitted to the cross-over operator.  Cross-over interchanges the 
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chromosomic information between two individuals to create offspring with mixed characteristics. 

In figure 2.13 the general pseudo-code for a GAs is depicted. 

 

Figure 2.13: General GAs pseudocode. 

Through this hybrid model using genetic algorithms with MLPNNs algorithm, we aim to exploit 

the strength of genetic algorithms in the selection of best and appropriate weight and to use them 

in the MLPNNs algorithm to perform the forecasting of water losses and demands. 

 

The general steps of the genetic algorithm are illustrated in the following figure 2.14. 

 

Figure 2.14: General steps of the genetic algorithm 
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2.12 Literature Review 

In order to start with, it is considered as necessary as to surveying and reviewing the existing 

literature to establish a better view of the main issues involving water losses and water demands 

and what resolutions provided in regards. As presented in this study; that there is no official 

documentation on water losses and water demands for the water utility of Beitunia on the purpose 

of being able to access the situation in Beitunia through a scientific approach to forecast the water 

losses and water demands. 

In the literature, machine learning and machine learning techniques are employed to predict and 

estimate the volume of water losses and water demands. 

For instance, the authors, in [53], use Principal Component Analysis (PCA) and artificial neural 

network (ANNs). The outcomes of this hybrid model of PCA-ANNs with multiple hidden layers 

produces the best results of prediction. Authors in [9] recommend the addition of hyper-parameters 

for weight initialization and systemization to be enhanced in synchronization with the standard 

MLP topology and learning hyper-parameters. In addition, it analyses which hyper-parameters are 

more associated with categorized performance, allowing a decrease in the search area, which 

reduces the time and computation power needed to reach a satisfactory set of hyper-parameters. 

Results obtained with public datasets uncover an enhanced performance in comparison with 

comparable works. Likewise, the hyperparameters relevant to weights initialization and 

systemization are in the top 5 most relevant hyper-parameters to clarify the accuracy of 

performance in all datasets, emphasizing the importance of involving them in the enhancement 

process. 
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In order to surmounted the limitation of ARIMA/SARIMA which produce  incorrect water level, 

and rather than using Backpropagation  Neural  Networks (BPNNs)  and  Nonlinear  

Autoregressive Exogenous   (NARX) which similarly have difficulties to  set the  optimal  network  

and  regression weights Because their initial weights are random, researcher in [54] to  predict  the 

water  level  at  the  “Dungun  River”  they  suggested hybrid  Multiple  BPNN-GAs to cope with 

the  limitation  of ARIMA/SARIMA,  BPNN  and  NARX. The result displayed that M-BPNN-

GAs with mean substitution is better than ARIMA/SARIMA, BPNN and NARX, and noticeably 

M-BPNN-GAs enhanced the performance of those techniques.  Also, it was obvious that the 

performance of NARX is better than BPNN.   

 Moreover, the authors in [55], implemented a model by which it estimates the ratio of NRW using 

ANNs based on specific parameters that effecting leakages in water distribution systems in 

Incheon. This model was evaluated using “Scatter plot analyses” (SPA) to determine the best 

ANNs model. The experiment in this study shows that using the ANNs model produces more 

accurate predictions of NRW percentage compared to other algorithms such as “Multiple 

Regression Analysis” (MRA). Furthermore, it has been shown that the accuracy in the ANN model 

varies depending on the number of neurons in the hidden layer. Therefore, the optimum number 

of neurons in the ANNs model must be set. In addition, the accuracy of the “outlier removal” state 

was higher than that of the original data used state. 

For the sake of predicting water demand, authors in [56] generated RBFNN model for water 

demand forecasting, using Dynamic Clustering Learning (DCL) algorithm in order to select the 

center of the cluster. The output charts show that maximum errors at the end of learning give 

varying predictive accuracy. The maximum error should not be extremely small; else, the result of 

forecasting will be overfitting and poor. RBF Neural Networks model has good nonlinear 
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processing and estimation ability. The model features high computing speed, high forecasting 

accuracy, and appropriate application value. 

In [57] to forecast deficiency of intensity indicator for water, authors used two ANNs models: the 

multilayer perceptron and the RBF ANNs, the outcome was RBF ANNs show a lower convergence 

between the anticipated results and the experimental ones than MLP ANNs; also the result shows 

that the maximum relative error in MLP ANNs is much lower than RBF ANNs, the results showed 

the multilayer perceptron can be used to model the failure frequency of water conduits, unlike RBF 

ANNs which are mostly not recommended for forecasting  the failure rate indicator, 

 According to [58], it is necessarily required to develop and implement a strategy to manage NRW 

activities. This can be achieved by, prior, understanding the reasons and factors that could affect 

NRW components. Methods and techniques can be developed and adjusted to particular 

characteristics of the network and local factors; to handle each of the components according to its 

priority. Interestingly, the analysis in addition to the practical implementation of such an approach 

could be applied to other water supply companies, anywhere in the world. The development of a 

strategy; firstly, it starts with asking questions about network properties and Operating Practices. 

Then, the available tools and mechanisms can be used to propose the best fitting solutions to be 

employed in developing the strategy.  Another approach developed by authors in [59] who built 

an intelligent water technology model that can proactively discover losses in water in the 

University of Lille. Specifically, they developed a model of the minimum night flow method, based 

on the determination of flow thresholds. More importantly, the model of the enhanced method is 

enabled to detect 25 unreported losses, which helps decrease the NRW level by 36%. 

 While in[5], Artificial Neural Networks (ANNs) was employed. This algorithm was experienced 

and compared with “Multiple Regression Analysis” (MRA) to estimate the NRW ratio in water 
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distribution networks. The results in their study show that ANNs outperforms other conventional 

statistical methods. Likewise, ANNs models were also employed, as proposed in [60], to develop 

a model based on the amount of weekly rainfall, the weekly maximum temperature, and the amount 

of water demand for the last week, in addition to the occurrence or nonoccurrence of rainfall. The 

researchers compared their model performance with time series algorithms and other regression 

models. It was concluded that rainfall variable was a more significant factor than the amount of 

rainfall itself in short-term water modeling. ANNs models can also play the role of both time series 

and regression models.  

In order to compare the relative performing of short-term municipal water demands, three models 

were employed; Multiple Linear Regression (MLR), Simple Linear Regression (SLR), Univariate 

Time Series and three ANNs models. This helped determine form usable size and classification 

standards for development. It is concluded that ANNs models compared with regression and time-

series models attain the best performing [61]. In [6],  a model was built utilizing data gathered 

from readings of daily consumption of water in addition to weather. Specifically, the authors built 

an ensemble model combining two algorithms of ANNs and time series. Their research presents 

and discusses the following topics; forecasting daily water demand for Al-Khobar city, comparing 

the performance of the technique to time series models in predicting water consumption, and 

studying the ability of the combined technique to forecast water consumption compared to the time 

series technique alone. The results show an  model produces more accurate predictions compared 

to the results from using ANNs or time series models each separately. 

Moreover, household water consumption can be predicted by applying time series algorithms. 

These algorithms are used quarterly in order to compare the results of ARIMA with the predictions 

resulted from ANNs models. Neural network shows that it can generate predictions more accurate; 
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very close to the actual data of the testing dataset used in their experiment. It is also indicated that 

water demands for residential use will represent around 18% of the total water demand of the 

country by 2025 [62]. Similarly, in [63], the authors developed a neural network model of short 

term (monthly) and long term (yearly) water demand prediction for Mecca city in Saudi Arabia 

exercising historical data of both water production and estimated visitors’ distribution. For 

monthly and yearly predictions, the result also shows that the neural network predictions perform 

better than that of a regular econometric model. 

The water distribution network was also studied in the literature. For example, in  [19], the 

distribution network was investigated in order to evaluate and audit the levels of NRW of Hebron 

city. The research results show that the NRW ratio is more than 30%; due to unlawful consumption, 

inexactness in billing volumes, and incorrect meter readings. To improve and enhance the NRW 

ratio by reducing the losses in the water network, the research refers to two important issues, the 

first is that there is no appropriate staff qualified to execute activities for detecting water losses. 

The second issue is regarding providing of appropriate technologies that can help reduce (or stop) 

water losses.  While in [3], research efforts were made in order to detect and reduce water losses 

in the water supply networks. Precisely, the author conducted an approach based on tracking and 

repairing leaks of the supply areas in addition to highlighting the leaks using electro-acoustic 

techniques. Thus, the research result shows that the amount of water leaks in the study area was 

largely reduced; from 5.6 L/sec to 0.16 L/sec. 

For the water utility suppliers in Palestine, the authors in [64] performed an empirical evaluation 

of the factors that affect NRW. Furthermore, this was to evaluate the independent parameters of 

NRW and financial viability, in addition to investigating how the water stakeholders could 

successfully perform in order to decrease the NRW. More specifically, they applied two multiple 
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regressions; one of these is to find the factors that impact the NRW. The findings show that there 

are some parameters such as staff productivity, energy cost, average price, daily consumption, and 

the size of the service provider impact and cause NRW; where daily consumption and average 

price have a negative effect. 

 Another study conducted in n Gaza Strip employing the Box-Jenkins model, by which the 

researches of that study analyzed seasonal time series data to predict future monthly water 

production. The result shows that the seasonal model of lag 12 (SARIMA (1, 1, 1) × (1, 1, 1)12) 

is the best model for predicting. The developed model also shows more accurate predictions. This 

was shown by comparing the output results against the observed values during this time period 

[65]. 

The author in this work [66] suggests a method (G-Prop-11) that tries to solve that problem by 

using a hybrid model that combine genetic algorithms (GAs) and Back-propagation BP to train 

MLPs using single hidden layer. Genetic operators GAs is used perform three things, first set the 

initial weights and second determine the learning rate of the network, and third changing the 

number of neurons in the hidden layer through applying specific genetic operators. G-Prop-11 

brings together the advantages of the global search achieved by the GAs over the MLP parameter 

space and the local search of the BP algorithm. 
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3 CHAPTER THREE                      

THE APPLIED MODELS  
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3.1 The Applied Models  

This chapter focuses particularly on the process of preparing collected water datasets to fit with 

neural networks that are used to predict future water demand and water losses NRW on the 

previously collected data from Beitunia city, Palestine. For the collected data, different Neural 

Networks Models with different learning algorithms will be used to forecast the future values of 

water demand and water losses NRW. These models will be described in details.  

NRW and water demand prediction are performed by applying different types of ANNs models, 

which are widely used in such cases in an attempt to select the best model with the most accurate 

predictions. In our experiment of this research, for NRW and water demand we produce three 

prediction models; the first is MLPNNs model, the second is performed by using newrb Model 

using RBFNNs, and finally, a hybrid model using a genetic algorithm with MLPNNs is employed. 

The data used for the training as well as the testing are viewed as the input data collected from 

database sources of Beitunia municipality of water consumptions and water losses. Time series 

prediction takes a set of current data that is used to predict future data. The main goal of the time 

series is to build a model to derive future unknown data from current data by minimizing the error 

between input and output. To create an ANNs model for NRW and water demand prediction, the 

input data should be chosen from the city regions and it will be used to train and test the model, 

which will help produce more accurate predictions. It has been also shown that increasing the input 

data can help decrease the difference between the real and the predicted values of water losses; 

that is, it will provide results to the most close between the predicted and actual output data. The 

key point used to define the improvement of prediction, is to calculate the error value, which 

compares the target output of the NNs with the desired predicted output during training process; 

the computed error is usually expressed using equation 3.1: 
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Error  =  yjd – yjt 3.1 

Where yjd is the desired value of network output for each jth element of input pairs and yjt is the 

actual target value of the jth element of input pairs, usually, this standard is used as a break 

condition to stop the forecasting process. To measure the performance of the applied models of 

NN we used Mean Square Error (MSE) as performance function  [67] evaluated in equation 3.2. 

        MSE  = 
1

m
 ∑ (T − Y)m

i=1
2 3.2 

Where m is the number of input data, T is the target label output (of the utilized dataset) and Y is 

the desired output.  

In this thesis besides applying the ARIMA model, we have also applied three NNs learning 

algorithms as shown in figure 3.1 to evaluate the results generated by the employed NNs models. 

 

Figure 3.1: General method procedure flow chart. 
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3.2 ARIMA Models and Prediction using Box-Jenkins Approach 

 In chapter two, it has been presented and discussed how it could be the prediction of time series. 

It is a key point to select the most proper model that reflects the underlying structure of the series; 

in order to use the fitted model for future prediction. A time series can be an either linear or non-

linear problem depending on the form of the past observations of a series whether it is represented 

as a linear or non-linear relation. Moreover, ARIMA is composed of autoregressive (AR) with a 

moving average (MA) methods. This hybrid method is integrated with data of different process, 

which is important to make sure that data being analyzed can be represented as data with stationary 

characteristics. As a result, the combination is called “Autoregressive Integrated Moving Average” 

(ARIMA). An autoregressive (AR) model is a representation of a kind of random process, which 

can represent some time-varying processes as time series data. The autoregressive model pointed 

out that the target variable depends linearly on its own previous values and on a randomness term, 

hence, the model is in the form of a stochastic difference equation[68].  

Suppose that the series (Rt), t =... -1, 0, 1 ... is an evenly spaced feebly covariance stationary time 

series or stationary time series, Then the linear model for time series analysis can be expressed as 

follows:  

Rt  = 1Rt −1 + .. +  p Rt−p  +  t  − 1t −1 − ... − qt −q      3.3 

where the 's are the autoregressive parameters to be estimated, the θ's are the moving average 

parameters to be estimated, the R’s are the original series, and the ’s are a series of unknown 

random errors (white noise) which are assumed to follow the normal probability distribution. We 

say that (Rt) is a mixed “autoregressive moving average process of orders p and q and referred  
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simply as ARMA (p, q).  For the general ARMA(p, q) model, we say that εt, is independent of 

Rt−1, Rt−2, Rt−3,…, a stationary solution for the equation (3.4) the stationary solution exists if 

and only if all the roots of the AR characteristic equation, (x) = 0 are outside the unit circle [34]. 

For determinism we have to assume that the roots of  (x) = 0 are outside the unit circle. Where 

(εt) is a sequence of uncorrelated variables, it is also referred to as a white noise process, and 

 (1,………, p ,1,……..,q) are unknown constants or parameters. The Box-Jenkins model can 

then be expressed as the following equation: 

(ـــ 1Bـــ 2B
pB ـــ… ـــ2

p)Rt  =  (+ 1B+2B
2+…+qB

q)𝜀t 3.4 

where B is the backshift operator, that is BXt = Xt−1.  

     (B) = 1 -   −      −  −  pB
p 3.5 

     (B) = 1 +   +      +  +  qBq 3.6 

In general, the ARMA (p,q) is a combination of an AR(p), and a MA(q) and it can be written as 

follow: 

Rt = ∑ ∅𝑝
𝑖=1 i Rt-i  +  ∑ 

𝑞
𝑖=1 i 𝜀t-i                              3.7 

In reality, it is often challenging to apply an ARMA model directly to a specified time series; this 

is because of its nonstationary, and, it also requires a transformation process. Usually, this is the 

case that time series of differences is stationary despite the nonstationary of the basic process. This 

leads to the application of the (ARIMA) model. 

The series has a hybrid solution of Autoregressive and moving average, which results of a very 

general time series model [34]. More accommodated to our goal, the method of predicting water 

losses and demand using Box-Jenkins is shown in Figure 3.2. 
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The first step in the prediction cycle starts with the identification of the data model using ARIMA. 

This help determines the order of differencing required to produce a stationary time series. In this 

step, we identify the value of p (AR) and q (MA) components for both seasonal and non-seasonal 

series.  In developing the ARIMA model, analysis of autocorrelation function (ACF) and partial 

autocorrelation function (PACF) required to be performed. These are obtained by plotting original 

series in addition to the ACF and PACF. 

 

Figure 3.2: Statistical prediction procedure using Box-Jenkins methodology 

 

Then, it is required to estimate the parameter for chosen ARIMA model by using the data to train 

the parameters of the model. For validation, the model diagnostics checking is required to be 



54 
 

developed. The diagnostic (residual) is performed to identify whether the residuals from the model 

are independent and whether they are normally distributed. The residual is the difference between 

the observed value and the predicted one of the quantities of interest. The residual should be 

uncorrelated; results of zero means and zero variance as well. Afterward, the prediction and error 

checking stage can be performed. 

3.3 Multilayer Perceptron Neural Networks (MLPNNs) Model 

In this model, we have used Multilayer Perceptron Neural Networks (MLPNNs), which can predict 

every time series function by tuning the network with the most appropriate hidden layers structure 

and a suitable number of neurons.  It is known that the time series prediction is one of the most 

complex of the real-world applications. In addition, it is well known that the ANNs has a good 

characteristic of solving such complex problems. The training process is the mapping process 

between the input and output data of the NNs when the input patterns provided to the NNs with 

initial weights, the output of the NNs are given by the following equation: [40] 

1

( )

m

i ij j i

j

y f w x b

=

= +
 

 

3.8 

Where Wij is the connection of the weight, and Xj is the value of the ith inputs for a simple of the 

NNs, bi is the bias, m is the number of neurons and f is the activation function. The MLPNNs is 

one of the most vastly used as time series prediction model, although it is impossible to find a 

single configuration for each application. The choice of training patterns is performed depending 

on the explicit needs of the prediction, which will show on the output in addition to the quality of 

information available.  Any changes in the patterns of training will require different training 

parameters of the NNs, but the training process remains as the same [51, 69]. 
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Developing a methodology to forecast future values of NRW and water demands necessarily 

requires knowledge about the previously measured values of water losses and consumption. 

Regression of the future values of NRW and water demand can be performed using different 

techniques as; prediction by numerical models, prediction by statistical methods, and time series 

prediction based on the application of statistical techniques linear (or nonlinear). Multilayer 

feedforward with backpropagation neural networks model is used to predict the future values of 

NRW and water demand. Prediction future values using only numerical models could introduce 

high Mean Square Error, thus, we have applied Multilayer feedforward with backpropagation 

neural networks (MFFNNBP) in addition to utilizing data of different years; with each year divided 

into six periods two months for each period. Multilayer feedforward with backpropagation neural 

networks (MFFNNBP) is an MLPNN that passes the inputs and the weights from one layer to the 

next one through the feed-forward process. Then it performs the weights update to be back-

propagated to the previous layers in order to recalculate the weights [69].  Our proposed ANNs 

architecture for NRW and water demand regression for one year “2018” using historical data of 

losses and consumption of three regions in Beitunia city. The data processed and analyzing process 

flow is as displayed in figure 3.3. In MLPNNs, the output of a layer will be an input for the next 

layer passing from the input layer to the output layer; f1 is the sigmoid activation function [69]. 

The equation used the output is shown as in the following equation 3.9: 

output = 𝑓2 (∑  𝑜𝑢𝑡𝑝𝑢𝑡1. 𝑊𝑗𝑘
𝑛
𝑗=1 )  3.9 

Where the output of the first hidden layer (output1) is calculated using the following equation 3.10:   

output1 = 𝑓1 (∑ 𝑖𝑛𝑖. 𝑊𝑖𝑗
𝑛
𝑗=1  )  3.10 
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Figure 3.3: Proposed NRW and water demand Prediction using ANNs. 

 

Where f1 and f2 are the activation functions for both output layer and hidden layer that calculated 

as in equations 3.11 and 3.12:  

𝑓1    =  
1

1  +  𝑒− 𝑋
          3.11 

 

                               𝑓2   =   X  3.12 

Where x is the input vector. Depending on equations 3.11 and 3.12, weights are updated use 

equation the following equation 3.13: 

( )n
jkn

jk
jk

dE w
w

d w
 = −

 

 

3.13 

µ is the learning rate with a value between 0 and 1. The final output depends on all earlier layer's 

output, weights, and the algorithm of learning used [70].  

The backpropagation process calculates the gradient proper error between the desired and the 

predicted output by looking at the new weights each time.  The gradient proper error is the most 

used in the simple random gradient descent algorithm to find the weights that minimize the error. 

The backpropagation process tries to help the algorithm to get out of local minimums, making a 

more global search than the standard algorithm. Adjusting weights makes it depends not only on 

Input: time series period 

of two months 

 

MLPANN: 

N Neurons 

NRW /demands 

Predicted  
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the gradient value at the point where it is but also on the previous weight adjustment. The back-

Propagation step used to update the weights depends on the calculation of the gradient decent error 

between the target output and the predicted output considering the new weights. In this thesis, we 

use one of the fast converging training algorithms, which is the Levenberg Marquardt Algorithm 

(LM) [7], which train the NNs and reduce the prediction error values by adjusting and updating 

the weights. LM converges according to steepest descent methods with better generalization. 

Figure 3.4 illustrates the proposed MLPNNs model that uses the Levenberg-Marquardt training 

algorithm (LM), adjusted for the water demand and water losses prediction process. 

3.3.1 Levenberg Marquardt Algorithm (LMA)  

Levenberg Marquardt Algorithm is implemented to solve problems of nonlinear least squares. 

LMA is based on curve-fitting method which is a combination of two methods: the gradient 

descent and the Gauss-Newton. [7], in other words, the iterative update depends on the value of an 

algorithmic parameter; (λ) is a non-negative damping factor which simplifies the graph. The update 

is Gauss-Newton if (λ) is small and close to the optimal value while a gradient descent is used 

when the value of (λ) is large. Equation 3.14 describe the matrix “Hessian” of quadratic error 

𝐻𝑖𝑗 = 
𝜕2𝐸  

𝜕𝑤𝑖 𝜕𝑤𝑗 = ∑ [
𝜕𝑦𝑙

′

𝜕𝑤𝑖

𝜕𝑦𝑙
′

𝜕𝑤𝑗  +  (𝑦𝑙
′  −  𝑦𝑙)

𝜕𝑦𝑙
′

𝜕𝑤𝑖 𝜕𝑤𝑗]𝑍
𝑙=1  

3.14 

Where “E”  represents  the  error  function, the “ith”  element  of  input  layer  weight is represented 

by  “𝑤𝑖”, and  the jth element  of output layer weight is represented by (𝑤𝑗)  ,( 𝑦𝑙
′) is the derivative 

output of “lth” the neuron, (𝑦𝑙) is output othe f  “lth” the neuron. 

If we assume that errors are random and de-correlated with the second derivative, the second term 

of this expression can be neglected, as a result, it can be considered as white noise. Using the first 

edition of the  Hessian, the matrix in equation  3.15 can be built [71]. 
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𝐽𝑖𝑗 =  ∑ [
𝜕𝑦𝑙

′

𝜕𝑤𝑖

𝜕𝑦𝑙
′

𝜕𝑤𝑗  + 𝜆𝐼𝑀 ]𝑍
𝑙=1  

3.15 

Where )𝐼𝑀(is the identity matrix of order )M(, and )λ( is a parameter which is alike to learning in 

the algorithm of back-propagation.  The adjustment of the weights with the (LMA) in the 𝜇-ith 

learning cycle is calculated by one of the equations 3.16 and 3.17: 

𝑊(𝜇) = 𝑊(𝜇 − 1) −  𝐽−1 (𝜇 − 1)∇𝐸(𝜇 − 1) 3.16 

∆𝑊 = (𝐽𝐽𝑇 +  𝜆𝑙𝑀). 𝑗𝑇𝐸  3.17 

Matrix J is calculated using Equations 3.18 and 3.19:  

𝐽𝑎𝑙
𝑖 =  

𝜕𝑦𝑙
′

𝜕𝑤𝑖
  

3.18 

𝐽 =  𝐽𝑎𝑇  𝐽𝑎 +   𝜆𝑙𝑀 3.19 

As shown, we didn't need more sophisticated calculations excluding for the back-propagation 

algorithm. Therefore, the auxiliary matrix (Ja) likewise produces the error gradient [74] as shown 

in equation 3.20: 

∇𝐸𝑖 =  
𝜕𝐸

𝜕𝑊𝑖 =  ∑ 𝐽𝑎𝑙 
𝑖 (𝑦𝑙

′  −  𝑦𝑙)
𝑍
𝑙=1   3.20 

Levenberg-Marquardt Algorithm steps are summarized as follows: 

 

• Initialization process can be done either by the use of fixed weights or random weights, 

in this study we used random initialization. 

• Forward phase: in the hidden layer the Predicted output is calculated by using the 

sigmoid activation function. As a result; the hidden layer predicted output can be 

calculated. At the end of the forward phase, we will have the output value and the target 

value besides the error values which we need to reduce it as possible.    
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• backward phase: in this second phase, Mean Squared Error (MSE) is calculated, MSE  

is the difference between the network output values and target values, in this process we 

will use Levenberg Marquardt algorithms (LMA) in order to training the network and 

reduce the error by updating the weights, the phases of forward and backward is repeated 

several times until getting the minimum Mean Square Error (MSE) values, figure 3.4 

shows Pseudocode of the proposed MLPNN model 

 

Figure 3.4: The proposed MLPNN model pseudo code 

 

3.3.2 Cross-Validation 

Prior to moving a trained model to a production phase, it is necessary to verify and validate models 

to make sure that these models will forecast values with the lowest difference in case of regression 
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models to the most needed values as possible. Cross-validation is one of the largely popular 

statistical methods used to. It is usually used in applied machine learning to compare and select a 

model for a given predictive modeling problem. Cross-validation is easy to understand and 

implement, in addition, the results could usually have a lower bias than other methods.   According 

to [72], Cross-validation is considered as one of the better choices to avoid minimum over-fitting 

or underfitting. There are many different methods and techniques of cross-validation that can be 

used but, in the end, the core is similar. The holdout is a simple type of cross-validation based on 

dividing the dataset into two separate subsets, the first one is the training set and the second is the 

testing set which is used for testing. A prevalent approach is to divide the dataset into 70% of the 

training phase set and 30% to the testing phase. In order to train the model, first the model is trained 

on the training dataset partition, then the model is trained on the testing dataset partitions. 

Another method of validation that can be used is K-fold validation, in this type of validation the 

dataset is split into (K) number of subsets(folds), then we carry out the training process on the all 

folds except one (k-1) subset, then we will use this subset for the testing in order to evaluate the 

model  [73]. In the k-fold method in this method, we repeat (k) times with a different subset (fold) 

kept for testing phase every time. Hence every data point capture in a test set accurately. In order 

to verify and validate the used models, it is important to use the fastest and most accurate methods 

in order to obtain satisfactory results. Thus, in our thesis we split the water losses and water  

demands data into two randomly set(portions), for the training phase we used (70%) of the dataset 

and the remaining dataset (30%) is used for the testing phase [74]. 

3.4 Proposed RBFNNs Model Methodology 

RBFNNs were used for function approximation and time series prediction, in this thesis it is used 

for time series prediction of water losses and water demands. This method can be applied to several 
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applications areas such as image processing, voice recognition, and spam filtering [75]. The 

significance of the usage of such a method is to cluster dataset points around a set of popular 

highlighted points called centers. These points (center) are grouped to the centers based on another 

parameter for RBF network which is called radii (r); which agrees to the distances for each input 

data point to the center points of each cluster (or group) [76]. 

In this thesis, we have used newrb that was included in Matlab toolbox as standard training 

algorithm for RBFNNs neural network, in order to compare with ARIMA, MLPNNs, and GA-

MLPNNs. newrb repetitively creates a radial basis network by using one neuron at a time. Neurons 

are added to the network until the sum squared error falls beneath an error goal or a maximum 

number of neurons has been reached. The used newrb function is expressed as follow:    

net = newrb (Xt, Tt, Goal, Spread, M_N) 

where Xt is the input vectors, Tt is the target vectors and M_N is the maximum number of neurons.  

In newrb, in each iteration of the input vector which leads to reduce the network error is most used 

to create radbas neurons. Then the new error is verified, and if it is small enough then the newrb 

is stopped. Else, the subsequent neurons are added. This process is repeated until two conditions 

are achieved, first if the target of the error is achieved, second if the number of neurons is reached 

to the maximum. In newrb, it is significant that the spread is sufficiently large that 

the radbas neurons react to overlapping regions of the input space, however, the value of spread 

shouldn’t be so large that all the neurons react in essentially the same way [77]. 

In order to predict the water losses and water demands, we have collected actual data of water 

demands and water losses from all regions of Beitunia city, for this goal newrb Matlab function 

was used to train the RBFNNs. Newrb function creates an RBFNNs used for function 

https://au.mathworks.com/help/deeplearning/ref/newrb.html
https://au.mathworks.com/help/deeplearning/ref/newrbe.html
https://au.mathworks.com/help/deeplearning/ref/radbas.html
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approximation, where the new neuron is being added to realize the determined error or to realize 

the best fit, in general, and depending to newrb used in Matlab, the function newrb repetitively 

creates a radial basis network one neuron at a time. Neurons are added to the network till the sum 

of squared error falls under an error goal or the maximum number of neurons was gotten, this 

model has the number of steps illustrated in figure 3.5. 

 

Figure 3.5: RBFNNs- newrb model 

 

In RBFNNs, the newrb rely on spread value; when using too large value of spread that means  

requiring a lot of neurons in order to fit the fast-changing function, on the other hand  using too 

small value of  spread that means requiring  a lot of neurons to fit a smooth function, and the 

RBFNNs perhaps not popularize well [78]. 

3.5  Proposed Hybrid Genetic Algorithms and MLPNNs (GAs-MLPNNs) 

Model 

In the previous parts, we presented in details the MLPNN in addition to the training algorithm we 

used. Also, we presented GAs and how it works. Through the following subsection, we will explain 
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the relationship between GAs and MLPNNs, and we will explain the importance of using GAs in 

order to improve the results of MLPNNs and by choosing the best weights then we will explain 

the hybrid model used in this thesis using GAs and MLPNNs. 

3.5.1 Learning MLP with Genetic Algorithms  

It is difficult to select the best parameters in NNs for the training process, so it is possible that the 

results of the training are unacceptable or sometimes bad and this is not because the data is complex 

or noisy or the algorithm used in the training is weak, but this is due to the failure selecting of the 

parameters. Therefore, the process of selecting the appropriate parameters increases the success of 

the training process, in addition, to enhance the accuracy of ANNs [79]. Once each problem has 

specificities about its data, to choose the optimal weights of an MLP usually involves a trial and 

error approach, which consumes time, computational resources and requires the researcher to have 

great experience to properly tune the MLP. It is thus highly desirable to have a method to 

automatically search for the optimal weights efficiently [9]. 

In general, the training process using MLP can be improved by selecting the Optimum parameters 

such as a number of neutrons in the hidden layers and initial weights. So, we need such a method 

to solve this problem, therefore, the optimization process can be implemented using the GAs. 

Genetic algorithms (GAs) and ANNs have been both employed together in two significant 

approaches.  

First, GAs has been used in the training of ANNs.  More specifically, GAs have been used to 

search for the most appropriate learning parameters and to find the most significant features. 

Second, the major type of collaboration was introduced to use GAs to design that emerges issues 

that cannot be resolved (easily). It is well known that solving non-linearly separable problems will 

require that the network has at least one layer between inputs and outputs; with the notice that 
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tuning the number and size of the hidden layers can be achieved by experiment (trial and error). In 

other words, GAs is used to search for these parameters, as well as for the pattern of connections 

in addition to developmental guidelines for the network. Evaluating the fitting performance of each 

network involves measuring the quality of regression on the training set. Thus, for each fitness 

evaluation, the training set is passed through the network. However, this could be inefficient in 

case of large-volume training sets, but the fitness can be estimated using a sample of the training 

set according to [9].   In this thesis, we will focus on using GAs to optimize the network weights 

to use them in the MLPNN algorithm to perform the forecasting of water losses and water 

demands. 

3.5.2 MLPNNs with Genetic Algorithm Process 

The GAs is a stochastic optimization approach depending on the features of natural selection and 

biological evolution. It is better than other optimization algorithms and it has various advantages 

over them. GAs can be used to solve and optimize continuous and discrete issues. It is less probable 

to get trapped in local minima [13] if it is compared with other algorithms such as Backpropagation 

(BP). The idea behind GAs came from population genetics. It has been used mostly as function 

optimizers and it has been proved to be an efficient optimization algorithm, particularly for multi-

model and non-continuous functions. 

The GAs develops a population of individuals. GAs uses every individual Yj (j = 1,2,3,  , n(  (n , 

represents the  population size)  of population “Y” in order to solve  the problem. Individuals are 

typically represented by strings and each element of which is called a gene. The value of a gene is 

typically rage from (0 to 1). The GAs is qualified for optimizing the fitness function F(.) for every 

individual of the population. The following operators are used in GAs: 

• Initialization 
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Each gene is consists of a real vector of weights Xj,( j = 1,2,3, n ) where n is the initial 

population size. The following expression defines the variable length of the chromosomes: 

• Chrom   =  [{𝑤1}, {𝑤2} … … {𝑤𝑛}] 

In our model, the chromosome is generated initially by MLP and it consists of weights, 

notes that this chromosome of weights generated once by the algorithm of MLP. 

• Evaluation Function 

In every chromosome, an evaluation function is used to calculate the value of the error 

(fitness) where the fitness function is the error between the target output and the 

current output. In this model, we will use the fitness function to calculate the error value 

as depicted in the following equation 3.21: 

MSE =∑(𝑌  −  𝑌′)2 / 𝑛 3.21 

Where Y is the real value, 𝑌′is the output or the predicted value, and “n” is the number of 

inputs. 

• Process termination  

In order to select and reproduce parents, GAs develops from generation to generation until  

reaching the end. In this model as shown in the expression below, we use the maximum 

number of generations as a criterion to stop the algorithm. This will finish the process when 

the maximum number of achieved generations surpasses a particular number of 

generations. In some cases, GAs stop the optimization process before the maximum 

number of achieved generations surpasses the particular number of generations, such as 

when GAs jumps generation to another without any fitness improvement[80]. 

If the current Generation  ≥  Maximum Generation  → Stop the Optimization process 
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• Selection:  It is the process of selecting the parents, in this step a new generation Ynew is 

produced, which extracted from the replicating individuals of the old generation, Yold. The 

selection process plays important role in the development the genetic algorithm to select 

the best individuals, in the selection process, the individual with the smallest value of 

fitness (error) has the highest chance to be chosen. Extraction of a new generation can be 

done in several ways such as Roulette Wheel Selection, Elitism Selection, Rank Selection 

and Stochastic Universal Sampling [81]. The choice of the standard roulette wheel is used 

for selecting individuals in the current population of weights depending on the probability 

of every chromosome (PS). The probability of every chromosome (PS) is calculated as the 

following equation: 

𝑃𝑠(𝑥) = 
𝑓(𝑥)  

∑ 𝑓(𝑥)𝑚
𝑖=1

 3.22 

Where  𝑃𝑠(𝑥) is the probability of Individual x, 𝑓(𝑥) is the fitness of individual x, and m 

is the size of the population [82].  Figure 3.6 illustrate Roulette wheel example; we can see 

different sections with different sizes every section represents a chromosome. If we rotate 

the wheel randomly, it will point to one of the sectors (chromosome). This process is 

repeated until the preferred number of individuals is gotten. 

 

Figure 3.6: Roulette wheel selection example 
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It is visible that the individual that has a larger section size, will have the biggest chance to 

be selected for example chromosome 1 has the biggest chance to be selected. Therefore, 

the probability of choosing an individual depends directly on his fitness. 

• Crossover: in this step, the operator is implemented in probability. (Pcr) is the probability 

of crossover. Through parents chosen from the selection process, each parent is mated to 

produce two new children. This process continues until a new group of chromosomes is 

found in addition to the parent group. There are many techniques used in Crossover, the 

most popular and widely used is Single Point Crossover. This technique eventually 

produces the next generation of chromosomes that are different from the first generation.  

Crossover selects two parents P1 and P2 and executes an interpolation of the two parents. 

Consider c1 and c2 as the new children are produced by equations 3.23 and 3.24: 

C1 = P1 * n  +   P2 * (1 - n) 3.23 

C2= P1 * (1  - n)  +   P2 * n 3.24 

Where n is a random number, it is the probability of crossover between (0 and 1). Every 

couple is then recombined, and the new offsprings are founded by the interpolation of 

parents. The default crossover function used in this model is Crossover Scattered (CS), this 

function creates a random binary chromosomes, when the value of the chromosome equal 

to 1, CS function  select the genes from the first parent  P1, and when the value of  

chromosome equal to 0, CS function  select the genes from the second parent  P2 [83]. 

Figure 3.7 shows the scattered crossover. 
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Figure 3.7: the scattered crossover. 

. 

• Mutation: for every individual mutation operator adjusts one allele of the population in 

(Pmu) probability. In mutation, a new offspring is created using a single parent by reversing 

one or more randomly selected bits in the chromosomes of the parent as shown in figure 

3.8 [84]. The probability (Pmu) of mutation is responsible for deciding how recurrent will 

be the section of chromosome Exposed to mutation.   

• Replace: To put the new offspring (children) in the new population this operator is used 

and use the newly generated population for an additional algorithm.  

• Test: to get the better and fitted solution of the current population the end condition must 

be satisfied 

 

Figure 3.8: Single Point Mutation 
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The main steps of the proposed hybrid algorithm are depicted in Figure 3.9. This model describes 

a hybrid learning algorithm of MLPNNs by using the GAs to optimize the weights of the network. 

The procedure of the hybrid GAs- MLPNNs model is presented as follows. 

1. Start MLPNN: In this step, the data of water losses and water demands are loaded and 

divided using cross-validation into two parts, training and testing, then the initial Neuron 

number is set and finally, the Weights and Bias are randomly Initialized. 

2. Start Forward training phase: in this step the layers prediction output is calculated using 

the sigmoid activation function, then the if the error value is less or equal to threshold value 

this means the end of this phase, else the next step is to use GAs to optimize the weight in 

order to reduce the error. 

3. Start GAs:  

• Chromosome (individual) Representation : in this step initialize the population using 

weights generated by MLP. 

• evaluate of the fitness f(x) of each chromosome x (weight) 

• in order to get the new population, all GAs steps will be carried out  

• Selection 

• Crossover and Mutation 

• Compare: All the previous and current best individuals (weights) are added 

in the population. 

 



70 
 

 
Figure 3.9: The proposed GA-MLPNN model 
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• Move the next population to the current population to ready the algorithm for 

the next run. 

• Evaluate the fitness f(x) 

• Get the Optimized weight then calculate the output 
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4 CHAPTER FOUR   

 RESULTS AND DISCUSSION 
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4.1 RESULTS AND DISCUSSION 

As presented in the previous chapters, this academic work has made efforts in an attempt to build 

a predictive model that can forecast water demands and losses. This chapter shows and discusses 

a detailed description of the results produced. In addition, it presents the functional requirements 

by which our experiments have been conducted. 

4.2  Introduction 

In this research, experiments have been carried out to check and validate the developed predictive 

model. Different technologies and frameworks are applied to achieve the objectives of our study. 

For example, the models were designed and simulated using MATLAB 14a (8.3.0.532) under 

Windows 10 by computing machine with specifications; Intel Core (TM) i7-5600U, CPU @ 

2.60GHz, 16GB RAM memory. According to [85], MATLAB is viewed as a high-level language 

for technical computing, which can be used by people who have no sufficient skills in 

programming. Furthermore, MATLAB is an interactive system which allows non-programmers to 

solve many technical computing challenges, specifically, problems with matrix and vector 

formulations, in highly productive manner; that is, it takes a shorter time than it would take using 

programming languages such as C or JAVA. Moreover, MATLAB is a programming environment 

that enables executing operations from the command line such as advanced calculator. It also helps 

build programs that could execute complex jobs, with the power of any other programming 

languages.  

Most specifically, MATLAB provides libraries that support data visualization and processing. For 

instance, its environment is easy to use and tests algorithms immediately without recompilation 

and plotting of functions and data. It also provides Graphical User Interface (GUI) to help interpret 
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data easier in models and curves. Nonetheless, MATLAB is considered as memory and CPU 

consumer; because of its complexity in running real-time applications [86].  

There are several programs and applications that can be used to build ARIMA models such as 

SPSS, MATLAB, MINITAB, and EViews. In this work we have used EViews, it is a modern 

economic statistical application used in forecasting processes. We have used EViews because it 

provides us with important, effective and easy to use tools, in addition, to generate high-quality 

graphics and charts besides to the Innovative Design such as multiwindow design, full-featured 

analytic engine and specialized forecasting [87]. 

 In the beginning, prior to the experiment using the NNs models and ARIMA model, the historical 

data collected from Beitunia municipality databases, as well as from Jerusalem Water 

Undertaking. Data was prepared to suit NNs models and ARIMA models. As we have previously 

explained, Beitunia city has been divided into three main regions (Flash, Sunuqrot and College) 

and we have arranged the data for each region separately. Data in Flash area contains 66 readings 

representing 66 water cycles. This data represents the consumption of water in cubic meters from 

the years 2005-2017. In addition, and by using the quantities of demand for this region, we have 

calculated the water losses quantities, which are also 66 readings. Sunuqrot area also contains 66 

readings representing water consumption and water losses in cubic meters for the years 2005 - 

2017. Data in the College area contains 48 readings representing 48 of water cycles, which 

represent water consumption and water losses in cubic meters from the years 2010-2017. 

Data of water demands and water losses was normalized as a range of continuous data between [0 

and 1] to fit NNs activation functions that will be used in the applied NNs algorithms in this work 

as shown in equation 4.1, where (yi) is the normalized value  and (xi) is the real consumption, min 

and max are the maximum and minimum values for real consumption[72].  
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            𝑦𝑖
  = 

( 𝑥𝑖 −min(𝑥) )  

( max(𝑥)−min(𝑥) )
 4.1 

Table 4.1 represents a part of the water consumption values of the Flash area. The table shows the 

period column which represents the water cycle, in addition to the actual consumption quantities 

in cubic meters and the actual normalized consumption quantities. 

Table 4.1:  Consumption quantities for the Flash region 

No Period Normalized Consumption  No Period Normalized Consumption  No Period Normalized Consumption 

1 2007-03 0 66427  14 2009-05 0.2034 78836 
 27 2014-07 0.4777 95565 

2 2007-05 0.1159 73498  15 2009-07 0.5402 99378 
 28 2014-09 0.856 118640 

3 2007-07 0.3233 86149  16 2009-09 0.5395 99335 
 29 2014-11 0.7577 112643 

4 2007-09 0.4197 92028  17 2009-11 0.3747 89283 
 30 2014-01 0.4662 94863 

5 2007-11 0.4047 91109  18 2009-01 0.4289 92587 
 31 2015-03 0.7037 109349 

6 2007-01 0.2002 78640    .  
 32 2015-05 0.5346 99033 

7 2008-03 0.0519 69590    .  
 33 2015-07 0.699 109064 

8 2008-05 0.2935 84326    .  
 34 2015-09 0.868 119371 

9 2008-07 0.425 92351    .  
 35 2015-11 0.8038 115451 

10 2008-09 0.4184 91944    .  
 36 2015-01 0.7685 113298 

11 2008-11 0.4361 93026    .  
 37 2016-03 0.7442 111821 

12 2008-01 0.3211 86012  25 2011-03 0.3036 84943 
 38 2016-05 0.9182 122428 

13 2009-03 0.1787 77325  26 2011-05 0.4393 93221 
 29 2016-07 1 127420 

 

In the next sections, c result in the form of tables and graphics based on each region data for both 

water demand and water losses. Then, the results of conducted experiments will be presented in 

addition to performing comparisons among different ANN and learning algorithms employed for 

the goal of our research; water demands and water losses predictions. In the first model, we applied 

MLPNN, then, we used newrb model, and, finally, we experienced GAs-MLPNNs as a hybrid 

model, besides using the statistical model ARIMA. 

4.3 ARIMA (Box-Jenkins) Prediction Model  

In the following sections, we will show and discuss the result of the ARIMA model of water losses  
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and demands for the whole city and in all regions of Beitunia city using EViews.  

4.3.1 ARIMA NRW Prediction Model Result 

4.3.1.1 ARIMA NRW Result for the Whole City Region. 

 

 

Figure 4.1: ACF and PACF Function for Water Losses (NRW) for the whole city region 

 

As shown in figure 4.1, and according to the unit root test, that the whole city data series suffers 

from pattern interruption, which means that a unique ARIMA model can't be used for water losses 

data of the whole city region. In such a case, as we did, we usually fit what's known as "intervention 

model".  

Table 4.2: MSE of NRW for the whole City region using ARIMA intervention model. 

 

Tables 4.2 shows the best Mean Square Error (MSE) of the intervention model, based on MSE  

MSE Training  MSE Testing  

1.45E-01 2.23E-01 
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error values (training and testing) depicted on the table, we can say that the intervention model did 

not produce a good enough result for the future prediction of water losses. Furthermore, figure 4.2 

illustrates in a graphic way the comparison between the actual and prediction value according to 

the ARIMA intervention model based on EViews. In addition, as shown in the figure 4.2, we 

forecast future quantities of water losses of the whole city region for 6 periods (12 months) of the 

year 2018 as illustrated in the highlighted area in the graph, later we will use this result to compare 

with ANN models. 

 

Figure 4.2: Actual and predicted losses values using ARIMA for Whole City region. 

 

4.3.1.2 ARIMA NRW Result for the College Region. 

 

The unit root test shows that the water real losses data of the College region is stationary at the 

first difference, so we apply the correlogram of the first difference to identify the elements of 

ARIMA model (MA and AR). Figure 4.3 shows the values of ACF and PACF, it is clear that ACF 

is negative at the first lag and PACF is negative at lag 1 but does not have positive value, this 
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means the value of MA is 1 while the value of AR is 0, and by applying the second difference for 

stationarity; the best model in this area is ARIMA (0,2,1). 

 

Figure 4.3: ACF and PACF Function of Water Losses (NRW) for the College region. 

 

Tables 4.3 shows the Mean Square Error of the ARIMA model after selecting the fitted model. 

From this result, it’s apparent that the selected ARIMA model (0,2,1) produces good results based 

on the Mean Square Error of training and testing sets that obtained for the future forecasting of 

water losses in this Region.   

Table 4.3: MSE of NRW for the College region using ARIMA. 
 

 

Likewise, figure 4.4 shows the comparison between the real and prediction losses values produced 

by the ARIMA model after applying the best model.  

Also, in figure 4.4, we forecast future quantities of water losses of the College region for 6 periods 

(12 months) of the year 2018 using the best model ARIMA (0,2,1) as shown in the highlighted  

MSE Training  MSE Testing  

5.21E-02 1.64E-01 
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area in the figure.  

 

Figure 4.4 :Actual and predicted losses values using ARIMA for College region 

 

4.3.1.3 ARIMA NRW Result for the Flash Region. 

 

Figure 4.5: ACF and PACF Function of Water Losses (NRW) for the Flash region. 

 

The water losses data in Flash region is stationary this means that there is no need for the 

differencing process, so we will apply the Correlogram to identify the MA and AR terms. As 
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shown in figure 4.5 from the value of ACF and the PACF there is no ARIMA model, data series 

of Flash region suffers from pattern interruption, which means that a unique ARIMA model can't 

be used for the whole series. So we fit what's known as "intervention model", as we can see the 

series is significant at lag 9 or MA(9) of the ACF and for PACF values there is no suitable positive 

value above the dashed line. 

Table 4.4: MSE of NRW for the Flash region using the intervention model. 

 

Tables 4.4 shows the Mean Square Error of the intervention model. Furthermore, figure 4.6 

illustrates the comparison between the actual and prediction value produced. 

 

Figure 4.6: Actual and predicted losses values using ARIMA for the Flash region 

 

In addition, Figure 4.6 demonstrates the forecast future values of water losses for Flash region for 

6 periods of the year 2018. As shown in figures 4.5, 4.6 and table 4.4, it’s obvious that the proposed 
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intervention model gives some good results based on the values of MSE testing and training, which 

leads that the model is appropriate in such cases of water losses prediction in the Flash region. 

4.3.1.4 ARIMA NRW Result for Sunuqrot Region 

 

In Sunuqrot area, water losses data is stationary at the level, so there is no need for differencing, 

we will apply the correlogram to identify and select the elements of ARIMA (MA and AR). As 

shown in figure 4.7 the ACF is positive and has no negative significant values or lags and the 

PACF is positive at the first lag so the best and fitted model is ARIMA (1,0,0). 

 

Figure 4.7: ACF and PACF Function for Water Losses (NRW) for the Sunuqrot region. 

 

Tables 4.5 shows the Mean Square Error of the ARIMA model after selecting the best ARIMA 

model (1,0,0). moreover, as shown in in the highlighted in area 4.8, we forecast future quantities 

of water losses for the Sunuqrot region for 6 periods of the year 2018.   
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Table 4.5: MSE of NRW for the Sunuqrot region using ARIMA. 

 

The comparison between the actual and prediction value produced by the ARIMA model is 

illustrated in figure 4.8. As we can see in table 4.5 and figures 4.7 and 4.8 that ARIMA model 

(1,0,0) based on MSE values did not give good future prediction result of water losses in the 

Sunuqrot region. 

 

Figure 4.8: Actual and predicted losses values using ARIMA for Sunuqrot region 

 

As shown in figures and tables of using the statistical ARIMA model on the data of water losses 

for the whole city and for the other three regions (College, Flash and Sunuqrot), we can see that 

ARIMA in the whole city and Sunuqrot was unable to find a suitable model because in these 

regions data series sufferers from pattern interruption. While ARIMA was able to find a suitable 

model in the other regions.  Where, it can be concluded that ARIMA model gives good results in 
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the area of College and Flash which leads that the model is appropriate in such cases of water 

losses prediction in the College and Flash.   

4.3.2 ARIMA Demand Prediction Result 

In the following sections, we will show the result of the ARIMA model of water demands for 

all regions of Beitunia city. 

4.3.2.1 ARIMA Demand Result for the Whole City Region  

 

The unit root test shows that the whole city water demands data is nonstationary and this fact 

implies the necessity to use the first difference form data. So, we apply the correlogram of the first 

difference to identify the MA and AR terms, as shown in figure 4.9 the ACF is negative at lag 3 

MA(3) and the PACF  has the negative value at lag 3 and does not have a positive lag value. It is 

clear that the third lag autocorrelation is statistically significant while all following 

autocorrelations are not.  So, we will reduce the difference and the MA levels by one so the fitting 

ARIMA model will be ARIMA (0,1,2). 

 

Figure 4.9: ACF and PACF Function for Water demands for the whole city region. 
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Tables 4.6 shows the Mean Square Error of the ARIMA model after selecting the best model 

(0,1,2). Furthermore, according to these values of MSE, we can see that ARIMA (0,1,2) model 

gives a good result so we can use it in water demands prediction in the whole city region. Figure 

4.10 illustrates the comparison between the actual and prediction value produced by the ARIMA 

model.   

Table 4.6: MSE of demands for the Whole City region using ARIMA. 

 

 

Figure 4.10: Actual and predicted demands values using ARIMA for the whole city region. 

 

Additionally, using the best model, ARIMA (0,1,2) as shown in the highlighted area in the figure 

4.10, we forecast future quantities of water losses for the whole city region for 6 periods of the 

year 2018.  As shown in figures 4.10, 4.9 and table 4.6, it’s obvious that the proposed model gives 
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some good results based on the values of MSE testing and training, which leads that the model is 

appropriate in such cases of water losses prediction for the Whole City region. 

4.3.2.2 ARIMA Demand Result for the College Region. 

 

The unit root test shows that the water demands data of College is stationary at the first difference, 

this indicator to apply the Correlogram of the first difference in order to find and select ARIMA 

elements (MA and AR). The lag values as appear in figure 4.11, ACF is negative at the first term 

this means that MA=1, while the PACF is, has no positive values above the dashed line so AR=0, 

so the best ARIMA model according to these values is ARIMA (0,1,1).  Tables 4.7 shows the 

Mean Square Error of the ARIMA model after selecting the best model (0,1,1), which illustrate 

that the model gives a good result in water demand prediction for the Collage region.   

 

Figure 4.11: ACF and PACF Function for Water demands for the College region. 

 

Table 4.7: MSE of demands for the College region using the ARIMA model 
 

MSE Training  MSE Testing  

1.80E-02 1.82E-01 
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Figure 4.12: Actual and predicted demands values using ARIMA for College region 

 

Furthermore, figure 4.12 illustrates the comparison between the actual and prediction value 

produced by the ARIMA model.  Also, in the figure 4.12 as illustrated in the highlighted area, we 

forecast future quantities of water demands of the College region for 6 periods of the year 2018 

using the best model, ARIMA (0,1,1). 

4.3.2.3 ARIMA Demand Result for the Flash Region 

 

The unit root test shows that the water demands data of the Flash region is nonstationary and this 

fact implies the necessity to use the first difference form data. So, we apply the Correlogram of 

the first difference to identify the MA and AR terms, as illustrated in figure 4.13 the ACF is 

negative at lag 3 MA(3) and the PACF also has a negative value at lag 3 and does not have a 

positive lag value AR(0). It is clear that the third lag autocorrelation is statistically significant 

while all following autocorrelations are not.  So, we will reduce the difference and the MA levels 

by one so the fitting ARIMA model will be ARIMA (0,0,2). 
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Figure 4.13: ACF and PACF Function for Water demands for the Flash Region in 2018. 

 

Table 4.8: MSE of demands for the Flash region using ARIMA. 
 

MSE Training  MSE Testing  

7.24E-02 2.06E-01 
 

 

 

Figure 4.14: Actual and predicted demands values using ARIMA for the Flash Region in 2018. 
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Tables 4.8 shows the Mean Square Error of the ARIMA model after selecting the best model 

(0,0,2), it’s clear that the proposed ARIMA model gives some good results according to the values 

of MSE testing and training. Furthermore, figure 4.14 illustrates the comparison between the actual 

and prediction value produced by the ARIMA model.  

Using the best model, ARIMA (0,0,2) as illustrated in the highlighted area in the figure 4.14, we 

predict future quantities of water demands for the Flash for 6 periods (12 months) of the year 2018. 

4.3.2.4 ARIMA Demands Result for the Sunuqrot Region 

 

The unit root test shows that the Sunuqrot is stationary at the level so it is not necessary to perform 

differencing, we apply the Correlogram of the first difference to identify the MA and AR terms. 

As shown in figure 4.15, the PACF is positive at the first lag this means the value of AR=1 and 

the ACF is decaying so the best model is ARIMA (1,0,0) according to the value of AR, differencing 

and MA. 

 

 

Figure 4.15: ACF and PACF Function for Water demands for the Sunuqrot region. 
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Table 4.9: MSE of demands for the Sunuqrot region using ARIMA. 

 

Tables 4.9 shows the Mean Square Error of the ARIMA model after selecting the best model 

(1,0,0). Furthermore, figure 4.16 illustrates the comparison between the actual and prediction value 

produced by the ARIMA model.  

Using the best model, ARIMA (1,0,0) as shown in the highlighted area in figure 4.16, we forecast 

future quantities of water demands for the sunburst for 6 periods of the year 2018.  

 

 

Figure 4.16: Actual and predicted demands values using ARIMA for the Sunuqrot region 

 

As shown in figures and tables of using the statistical ARIMA model on the data of water demands 

for the whole city and for the other three regions (College, Flash, and Sunuqrot), we can see that 
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0

2000

4000

6000

8000

10000

12000

14000

16000

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

C
o

n
su

m
p

u
ti

o
n

 v
al

u
es

 in
 m

3

Period

Actual

Prediction

MSE Training  MSE Testing  

9.35E-02 2.54E-01 



90 
 

gives good results for regions of the city which leads that the model is appropriate in such cases 

of water demands prediction in Beitunia city. 

4.4 MLPNN-LM Prediction Model 

In this model, we have resulted in water losses and demands prediction for the whole city and for 

the other three regions. In order to predict the water losses (NRW) and water demands using the 

MLPNN-LM model, we obtained the real losses and consumption values from all regions of 

Beitunia city for 13 years. We have used MATLAB 14a to perform the predicting, the outcomes 

of values are given a number of neurons, epochs or number of Iterations that represent the number 

of the execution cycle, and the Mean Squared Error for the training and the testing (MSE Training 

and MSE Testing). We have divided the data into two sets based on cross-validation model, for the 

training part the value of the set is 70% and 30% for the testing set. 

4.4.1.1 MLPNN- LM NRW Prediction Result 

 

In this section, all predictions resulted from applying the MLPNN model of water losses (NRW) 

are illustrated for each region of Beitunia city. 

4.4.1.2 Water Losses (NRW) Prediction for the Whole City Region 

 

In experiencing different models on the purpose of selecting the best one, table 4.10 and diagram 

4.17 show the best results of predicting water losses of data which were preprocessed in prior. The 

table shows the Mean Square Error (MSE) calculations, a number of iterations, and the number of 

neurons; ranges from 5 to 90 neurons, with an incremental step of 5 neurons. 

According to table 4.10 and figure 4.17, it can be seen that MLPNN-LM produces a good result 

of NRW Prediction; by neuron 65, the model achieves the best (lowest) MSE training of value  
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Table 4.10: MLPNN-LM NRW Prediction for the whole city region. 

 

6.17E-07 this value can be viewed as small which results in high quality of prediction for the future 

of water losses. Having presented the model results, it can be noticed that the prediction process 

is not highly dependent on the number of iterations of the MLPNN-LM. For instance, with number 

of neurons = 45, the process duration is 14 iterations which achieved an MSE value acknowledged 

by 1.987E-03, which is not as good fit compared to the previous values. One more other 

observation is that the increase in the number of neurons does not necessarily generate more 

reasonable predictions (least error metrics). 

Moreover, as shown in figure 4.18 we can see the comparison produced by MLPNN-LM model 

between the real and predicted of water losses up to the year 2017, also the figure shows the 

Number of Neurons MSE Training MSE Testing Number of 

Iteration 

5 3.909E-02 7.108E-02 12 

10 3.019E-02 1.140E-01 11 

15 2.369E-02 1.111E-01 8 

20 2.681E-02 1.567E-01 13 

25 1.784E-02 1.520E-01 7 

30 2.263E-02 1.083E-01 7 

35 1.715E-02 1.401E-01 7 

40 9.971E-03 2.636E-01 8 

45 1.987E-03 2.897E-01 14 

50 2.126E-03 2.288E-01 10 

55 1.027E-02 2.387E-01 7 

60 9.826E-03 2.183E-01 7 

65 6.17E-07 2.75E-01 6 

70 8.208E-03 2.054E-01 7 

75 5.772E-05 1.592E-01 9 

80 4.370E-03 1.609E-01 5 

85 3.885E-03 1.855E-01 4 

90 3.613E-03 3.985E-01 4 
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Figure 4.17: MLPNN-LM Best NRW Prediction Result for the whole city region when number of 

neurons = 65. 

 

predicted water losses values of the year 2018 as shown in the highlighted area in the graph.  

 

Figure 4.18: Comparison between real and predicted water losses values for the whole city 

region when number of neurons = 65. 

Having such results shown in figures 4.17, 4.18 and table 4.10, which show that the model is one 

of the promising models for the future forecasting of water losses in the whole city region. 
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4.4.1.3 Water Losses (NRW) Prediction for the College Region.   

Table 4.11: MLPNN NRW Prediction for the College region 

Number of 

Neurons 

MSE Training MSE Testing Number of 

Iteration 

5 7.936E-03 4.938E-02 12 

10 1.050E-02 3.961E-02 7 

15 3.872E-03 9.725E-03 9 

20 4.999E-04 3.486E-02 9 

25 2.601E-04 3.014E-02 25 

30 2.04E-04 1.30E-01 11 

35 2.10-E-03 6.357E-02 7 

40 1.604E-03 1.213E-01 4 

45 2.534E-04 7.416E-02 6 

50 1.708E-03 9.650E-02 4 

55 4.051E-05 8.256E-02 5 

60 2.148E-05 2.509E-01 4 

65 4.873E-04 1.432E-01 3 

70 9.739E-04 1.587E-01 4 

75 6.334E-04 6.211E-01 3 

 

 

Figure 4.19: MLPNN-LM Best NRW Prediction Result for the College region when number 

 of neurons = 30 

As shown in table 4.11 and figure 4.19, it can be noticed that the MLPNN-LM model also generates 

highly accurate predictions with a suitable number of neurons in the hidden layer, this leads that 

the model is highly appropriate in such cases of water losses in the college region.  
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Figure 4.20 :Over-fitting Prediction NRW Result for the College region when number of neurons = 60. 

The MSE value, with a number of neurons = 30, has caused a precise result for the NRW. 

Therefore, increasing the number of neurons does not ultimately result in acceptable model 

performance; the model suffers from the over-fitting problem when increasing the number of 

neurons as shown in Figure 4.20. 

 

Figure 4.21: Comparison between real and predicted water losses values for the College region when 

number of neurons = 30 
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Furthermore, in this model, we have produced the predicted values of NWR for the year 2018 as 

illustrated in the highlighted area in figure 4.21. Also, the figure shows a comparison between the 

actual and predicted water losses. 

 

4.4.1.4 Water Loss (NRW) Prediction for Flash Region   

 

According to the result shown in table 4.12 and figure 4.22, it’s clear that the proposed MLPNN-

LM model produces accurate and fewer MSE values, which means that the model is suitable for 

NRW Prediction in the Flash region. As we mentioned before the prediction process does not 

depend on the number of iterations, although we have 13 iterations with number of neurons = 20, 

the captured MSE value is 1.517E-02 which could be not acceptable. 

Table 4.12: MLPNN-LM NRW Prediction for the Flash region 

 

Number of 

Neurons 

MSE Training MSE Testing Number of 

Iteration 

5 2.881E-02 1.426E-01 7 

10 2.709E-02 6.610E-02 11 

15 2.869E-02 4.025E-02 7 

20 1.517E-02 1.406E-01 13 

25 1.792E-02 2.373E-01 9 

30 1.698E-02 8.094E-02 9 

35 9.816E-04 1.849E-01 9 

40 1.663E-02 6.695E-02 7 

45 1.106-E-03 6.159E-02 10 

50 8.722-E-03 1.455E-01 7 

55 6.852E-04 4.322E-01 12 

60 2.711E-05 4.163E-01 5 

65 3.662E-04 3.265E-01 7 

70 2.277E-03 1.600E-01 4 

75 1.409E-03 1.574E-01 5 
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Figure 4.22: MLPNN-LM Best NRW Prediction Result for the Flash region when number of neurons = 60 

 

In order to forecast the losses values and comparing those values with the real losses in the College 

Region, the produced predicted values for the year 2018 are depicted in figure 4.23.Also, the figure 

shows the comparison produced by the MLPNN-LM model between the real and predicted water 

losses 

 

 

Figure 4.23: Comparison between real and predicted water losses values for the Flash region 

when number of neurons = 60. 
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4.4.1.5 Water Losses (NRW) Prediction for the Sunuqrot Region   

 

Table 4.13: MLPNN-LM NRW Prediction for the Sunuqrot region 

Number of 

Neurons 

MSE Training MSE Testing Number of 

Iteration 

5 1.910E-02 2.553E-02 26 

10 1.122E-02 7.534E-02 27 

15 7.012E-03 1.347E-01 24 

20 1.161E-02 3.206E-02 9 

25 6.857E-03 5.082E-02 9 

30 1.757E-03 8.016E-02 14 

35 7.155E-03 3.102E-02 8 

40 2.99E-04 3.87E-02 35 

45 3.967E-03 6.787E-02 7 

50 3.958E-04 1.650E-01 9 

55 2.402E-05 5.479E-02 6 

60 1.940E-05 1.169E-01 5 

65 1.541E-03 1.494E-01 4 

 

Likewise, as illustrated in table 4.13 and figure 4.24, it can be seen that with number of neurons = 

40; the model has shown the best performance with the least error value in prediction. 

 

Figure 4.24: MLPNN-LM Best NRW Prediction Result for the Sunuqrot region when number of neurons 

= 40. 
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On the other hand, the experiment shows that an increasing number of neurons does not cause 

more accurate result but overfitting as shown in Figure 4.25. 

 

Figure 4.25: Over-fitting Prediction NRW Result for the Sunuqrot region when number of neurons = 60. 

  

As illustrates figure 4.26, we can see the comparison produced by the MLPNN-LM model between 

the real and predicted water losses values for the Sunuqrot region, besides the predicted losses 

water values (NWR) for the year 2018 as shown in the highlighted area in figure 4.26.  

 

Figure 4.26: Comparison between real and predicted water losses values for the Sunuqrot region when 

number of neurons = 40. 
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each region of Beitunia city. 

4.5.1.1 MLPNN-LM Water Demand Prediction for the whole city Region 

 

Table 4.14: MLPNN-LM Demand Prediction for the whole city region. 

Number of 

Neurons 

MSE Training MSE Testing Number of 

Iteration 

5 1.06E-02 2.32E-02 22 

10 8.69E-03 2.37E-02 8 

15 4.87E-03 2.92E-02 26 

20 5.20E-03 1.88E-02 10 

25 2.45E-03 8.75E-03 14 

30 8.31E-04 1.74E-02 10 

35 2.82E-04 1.98E-03 12 

40 1.29E-03 1.06E-01 8 

45 2.87E-04 8.92E-02 11 

50 1.46E-04 2.89E-02 15 

55 4.69E-04 3.54E-02 9 

60 8.88E-05 7.29E-02 7 

65 7.30E-04 1.77E-01 7 

70 2.94E-05 7.25E-02 7 

75 3.88E-05 1.00E-01 5 

80 6.43E-05 6.61E-02 6 

 

 

Figure 4.27 :MLPNN-LM Best Demand Prediction Result for the whole city when number of neurons 70. 

 

Table 4.14 and figure 4.27 also show that MLPNN-LM produces highly accurate results of the 

forecasting of water demand for the whole city. As seen, the best model is achieved with number 
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of neurons = 70, by which the MSE obtained is 2.94E-05. As we mentioned before the prediction 

process does not depend on the number of iterations, although we have 26 iterations with neuron 

15, the captured MSE value is 4.87E-03 which could be not acceptable compared to the result of 

neutron number 70. 

 

Figure 4.28 :Comparison between real and predicted water consumption values for the whole city region 

when number of neurons = 70. 

 

In figure 4.28, we can see the comparison produced by the MLPNN-LM model between the real 

quantities of water consumption and the prediction values according to the adopted model, it is 

noticeable that there is a convergence in the results indicating the accuracy of the used model 

Moreover, we predicted water demands values for the year 2018 for the whole city region as shown 

in the highlighted area in figure 4.28. 

4.5.1.2  MLPNN-LM Water Demand Prediction for the College Region 

 

Water demand prediction result for the College as illustrated in table 54.1 and figure 4.29 shows 
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which leads that the model is highly appropriate in such cases of water demands prediction in the 

College region. A number of iterations with number of neurons = 35 is 46 iterations which could 

lead to the conclusion that raising the number of iterations could not necessarily result in more 

accurate results.  

Table 4.15: MLPNN Demand Prediction for the College region. 

Number of 

Neurons 

MSE Training MSE Testing Number of 

Iteration 

5 1.059E-02 2.315E-02 22 

10 9.332E-03 1.716E-02 8 

15 2.685E-03 4.845E-02 10 

20 2.941E-03 2.556E-02 8 

25 1.672E-03 1.027E-01 8 

30 4.611E-05 4.710E-02 14 

35 4.126E-05 1.163E-01 46 

40 1.749E-05 7.867E-02 6 

45 2.356E-05 1.459E-01 5 

50 4.371E-05 2.149E-01 5 

 

 

Figure 4.29: : MLPNN-LM Best water Demand Prediction Result for the College region when number of 

neurons = 40. 

 

Furthermore, in this mode, we have produced the predicted values of water consumption for the 

year 2018 the College region as illustrated in the highlighted area in figure 4.30. Also, the figure 

shows a comparison between the actual and predicted water consumption. 
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Figure 4.30: Comparison between real and predicted water consumption values for the College 

region when number of neurons = 40. 

As we have seen the accurate prediction results of MLPNN as shown in figures 4.29, 4.30 and 

table 4.15, which leads that the model is highly appropriate in such cases of water demands 

prediction in the college region. 

4.5.1.3 MLPNN-LM Water Demand Prediction for the Flash Region 

 

According to table 4.16 and figure 4.31, it is shown that the MLPNN-LM model produces a good 

result of the prediction of water demand for the Flash region with a specific number of neurons in 

the hidden layer. Furthermore, the MSE value with number of neurons = 40 generates a highly 

correct result for the water demands. The error values for training show that increasing the number 

of neurons does not cause acceptable results, but it can be seen that the model suffers from 

overfitting because we get overfitting when number of neurons = 60 as shown in figure 4.32. 
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future consumption quantities as shown in the highlighted area in figure 4.33.  Similarly, the figure 

shows a comparison between the actual and predicted water consumption. 

Table 4.16: MLPNN-LM Water Demand Prediction for the Flash region. 

Number of 

Neurons 

MSE Training MSE Testing Number of 

Iteration 

5 1.365E-02 2.940E-02 11 

10 1.422E-02 1.912E-02 17 

15 1.402E-02 4.048E-02 10 

20 6.256E-03 2.350E-02 11 

25 2.883E-03 5.519E-02 8 

30 2.402E-03 2.694E-02 8 

35 2.601E-04 2.318E-02 13 

40 2.82E-05 2.11E-02 7 

45 3.752E-03 4.413E-02 7 

50 3.311E-05 4.906E-02 7 

55 1.123E-04 6.615E-02 44 

60 2.868E-05 1.184E-01 5 

65 1.876E-04 6.096E-02 5 

70 2.020E-03 1.387E-01 4 

40 2.822E-05 2.106E-02 7 

 

 

Figure 4.31: MLPNN-LM Best water Demand Prediction Result for the Flash region when 

number of neurons = 40. 
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Figure 4.32: Over-fitting of water Demand Prediction Result for the Flash region when number of 
neurons = 60.. 

 

Figure 4.33: Comparison between real and predicted water consumption values for the Flash region when 
number of neurons = 40. 

  

4.5.1.4 MLPNN-LM Water Demand Prediction for the Sunuqrot Region 

 

As illustrated in table 4.17 and figure 4.34, the best predictions achieved by the MLPNN-LM in 

Sunuqrot region. When the model used number of neurons = 45 it produces 7.01E-05 MSE value, 

at which the prediction can be viewed as significantly accurate. 
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Table 4.17: MLPNN-LM Water Demand Prediction for the Sunuqrot region. 

Number of 

Neurons 

MSE Training MSE Testing Number of 

Iteration 

5 1.230E-02 1.450E-01 10 

10 9.442-E-3 1.327E-02 28 

15 7.377E-03 2.055E-02 11 

20 5.995E-03 1.988E-02 42 

25 1.345E-03 4.218E-02 19 

30 5.137E-02 2.716E-02 8 

35 3.568E-03 3.572E-02 8 

40 8.012E-04 1.790E-01 14 

45 7.01E-05 1.210E-01 9 

50 2.096E-03 6.156E-02 6 

55 7.949E-04 1.024E-01 7 

60 6.63E-04 6.20E-02 8 

65 3.175E-03 1.513E-01 5 

70 1.462E-04 1.459E-01 5 

75 1.801E-03 7.039E-02 4 

 

It can also be noticed that the prediction process does not depend on the iteration number of the 

MLPNN-LM;  

 

Figure 4.34: MLPNN-LM Best water demand Prediction Result for the Sunuqrot region when number of 

neurons = 45. 
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For instance, the model does not perform well with number of neurons = 45 and where number of 

iterations = 42. Another observation in which the increase in the number of neurons does not 

necessarily produce the least MSE value. 

 

Figure 4.35: Comparison between real and predicted water consumption values for the Sunuqrot region 

when number of neurons = 45. 

 

As shown in figure 4.35, we can see the comparison produced by the MLPNN-LM model between 

the Actual and predicted water demands values for the Sunuqrot region, in addition to the predicted 

water consumption values for the year 2018 illustrated in the highlighted area in the figure 4.35. 

It’s clear that using MLPNN in Sunuqrot region in order to predict water demands as shown in 

figures 4.34, 4.35 and table 4.17 produced good results based on the values of MSE testing and 

training. As a conclusion of using MLPNN-LM model in order to predict the water losses and 

water demands in Beitunia city as shown in figures and tables in the previous subsections, we 

observe that the model produced accurate results according to the main square error (MSE). 

Having such results show that the model is one of the promising models for the future forecasting 

of water losses and demands. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2
0

0
7

-0
3

2
0

0
7

-0
7

2
0

0
7

-1
1

2
0

0
8

-0
3

2
0

0
8

-0
7

2
0

0
8

-1
1

2
0

0
9

-0
3

2
0

0
9

-0
7

2
0

0
9

-1
1

2
0

1
0

-0
3

2
0

1
0

-0
7

2
0

1
0

-1
1

2
0

1
1

-0
3

2
0

1
1

-0
7

2
0

1
1

-1
1

2
0

1
2

-0
3

2
0

1
2

-0
7

2
0

1
2

-1
1

2
0

1
3

-0
3

2
0

1
3

-0
7

2
0

1
3

-1
1

2
0

1
4

-0
3

2
0

1
4

-0
7

2
0

1
4

-1
1

2
0

1
5

-0
3

2
0

1
5

-0
7

2
0

1
5

-1
1

2
0

1
6

-0
3

2
0

1
6

-0
7

2
0

1
6

-1
1

2
0

1
7

-0
3

2
0

1
7

-0
7

2
0

1
7

-1
1

2
0

1
8

-0
3

2
0

1
8

-0
7

2
0

1
8

-1
1

N
o

rm
al

iz
e

d
 c

o
n

su
m

p
ti

o
n

 v
al

u
e

s

Period

TARGET OUTPUT



107 
 

4.6  RBFNNs (Newrb) Prediction Model 

In order to predict water losses and water demands, we applied a proposed model using RBFNN 

(newrb) fed by real water losses and water consumption quantities of Beitunia city. In the following 

sections, we will show the result of RBFNNs (newrb) model of water losses (NRW) for all regions 

of Beitunia city. 

4.6.1 RBFNNs (Newrb) Prediction Model for Water Losses 

In this part of the result, we will present the prediction result of NRW for the whole city and for 

each region in the city  

4.6.1.1 Water Losses (NRW) Prediction for the Whole City Region 

 

The following table and diagram show the best performance results of applying the proposed 

model for the water losses for the whole city region. The tables below show the MSE (training and 

testing) values, and the number of neurons used in the experiment; ranging from 5 to 70 neurons, 

with an incremental step of 5 neurons. 

Table 4.18: Newrb NRW Prediction for the whole city region. 

 

 

 

 

 

 

 

 

 

Number of Neurons MSE Training MSE Testing 

5 4.43E-02 6.26E-02 

10 3.87E-02 7.31E-02 

15 3.45E-02 8.77E-02 

20 3.13E-02 8.74E-02 

25 2.79E-02 8.35E-02 

30 2.51E-02 8.44E-02 

35 2.34E-02 8.46E-02 

40 2.18E-02 8.44E-02 

45 2.01E-02 8.59E-02 

50 1.71E-02 8.48E-02 

55 1.27E-02 8.19E-02 

60 5.50E-03 9.35E-02 

65 3.78E-03 9.41E-02 

70 2.62E-03 9.83E-02 
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According to table 4.10 and figures 4.36, we can see that the behavior of the proposed model in 

the forecasting process of the nonlinear time series.it can be seen how the newrb model can 

perform well; achieving fair results for the prediction of water losses. That is, increasing the 

number of neurons show more accurate values, the model finished with MSE of 0.00262 when 

number of neurons = 70 in the hidden layer. 

 

 

Figure 4.37: Newrb Best NRW Prediction Result for the year 2018 in the whole city Region when number 

of neurons = 70. 
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Figure 4.36: Newrb Best NRW Prediction Result for the whole city region when number of neurons = 70. 
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Moreover, from the graph in figure 4.37, we can see the comparison produced by newrb model 

between the actual and predicted of water losses values (NRW), also the figure shows the predicted 

water losses values of the year 2018 in the whole city region as illustrated in the highlighted area 

in the figure. 

4.6.1.2 Water Losses (NRW) Prediction for the College Region   

 

Table 4.19: Newrb NRW Prediction for the College Region. 

 

 

 

 

 

 

 

Similarly, according to table 4.19 and figures 4.38 it is obvious that the newrb model can result  

in accurate results for the future prediction of water losses with an error goal equal to 0.001. 

According to the results, with a number of neurons more than 30, the prediction error will improve; 

by reducing the error to the minimum as possible, which consequently show the achievement of 

more accurate results for the future forecasting. therefore, in this prediction model MSE on neuron 

= 45 give the best result for the future water losses with (MSEtraining= 0.00108 and MSEtesting= 

0.0882). Therefore, it can be noticed that the higher the number of neurons, the less the value of 

the error. 

Number of Neurons MSE Training MSE Testing 

5 1.22E-02 8.01E-02 

10 1.13E-02 7.89E-02 

15 7.51E-03 8.36E-02 

20 4.51E-03 8.80E-02 

25 3.31E-03 8.91E-02 

30 2.07E-03 8.92E-02 

35 1.19E-03 8.80E-02 

40 1.27E-03 8.86E-02 

45 1.08E-03 8.82E-02 
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From the figure 4.39, we can see the comparison produced by the newrb model between the actual 

data which represent the real water losses and the prediction values of the College region according 

to the adopted model. 

 

Figure 4.38: Newrb Best NRW Prediction Result for the College Region when number of neurons = 45 

  

Also, figure 4.39 shows the predicted water losses values of College region for the year 2018 as 

shown in the highlighted area in the figure. 

 

 

Figure 4.39: Newrb Best NRW Prediction Result for the year 2018 in the College Region when number of 

neurons = 45. 
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4.6.1.3 Water Loss (NRW) Prediction for Flash Region   

 

Table 4.20: Newrb NRW Prediction for the Flash Region 

 

 

 

 

 

 

Moreover, figure 4.40 and table 4.20 show that the newrb model can produce fewer MSE 

values, which leads that the model is suitable for water losses forecasting in Flash region with 

an error goal equal to 0.001. It can be also seen that increasing the number of neurons give 

more acceptable and reasonable predictions. It can also be seen that the least error value was 

(0.00898) with number of neurons = 60.  

 

Figure 4.40: Newrb Best NRW Prediction Result for the Flash Region when number of neurons = 60. 
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40 1.80E-02 9.38E-02 

45 1.70E-02 9.29E-02 

50 1.60E-02 9.42E-02 

55 9.64E-03 9.98E-02 

60 8.98E-03 1.25E-01 
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Figure 4.41: Newrb Best NRW Prediction Result for the year 2018 in the Flash region when number of 

neurons = 60. 

 

Figure 4.41 illustrates the comparison between the actual and prediction value of water losses 

produced by the newrb model. In addition, this figure demonstrates as illustrated in the 

highlighted area the forecast future values of water losses for Flash region for 6 periods of the 

year 2018. 

4.6.1.4 Water Loss (NRW) Prediction for the Sunuqrot Region   

 

Table 4.21: Newrb NRW Prediction for the Sunuqrot Region. 
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Depending on the previous table 4.21 and figure 4.42 which show that the regression of water 

losses using newrb model can achieve good performance with a greater number of neurons. As 

illustrated in the given table, the error was at the minimum value when the network was built with 

number of neurons = 50.  

 

 

Figure 4.42: Newrb Best NRW Prediction Result for the Sunuqrot Region when number of neurons = 50. 

 

 

Figure 4.43: Newrb Best NRW Prediction Result for the year 2018 in the Flash Region when number of 

neurons = 50 
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As shown in figure 4.43 and illustrated in the highlighted area, we forecast future quantities of 

water losses for the Sunuqrot region for the year 2018.  The comparison between the actual and 

prediction value produced by the newrb model is illustrated in this figure. 

 

4.6.2 RBFNNs (Newrb) Prediction Model for Water Demands. 

 In the following sections, we will show the result of RBFNNs (newrb) model of water demands 

for all regions of Beitunia city. 

 

4.6.2.1 Water Demands Prediction for the Whole City Region 

 

In table 4.22 and figure 4.44, we can see that the behavior of the newrb model with an error goal 

of (0.001) in the forecasting process of the nonlinear time series. It is clear that the proposed model 

converges to the optimum value when the number of neurons equals 50 with better prediction 

error; the proposed approach performs very well.   

 

Table 4.22: Newrb water demands prediction for the whole city region. 

 

 

 

 

 

 

 

Number of Neurons MSE Training MSE Testing 

5 2.55E-02 7.97E-02 

10 1.26E-02 1.01E-01 

15 1.15E-02 1.15E-01 

20 9.26E-03 1.20E-01 

25 7.49E-03 1.23E-01 

30 3.63E-03 1.21E-01 

35 2.58E-03 1.21E-01 

40 2.16E-03 1.22E-01 

45 2.05E-03 1.22E-01 

50 1.66E-03 1.22E-01 
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Figure 4.44: Newrb Best NRW Prediction Result for the whole city region when number of neurons = 50. 

 

From figures 4.45 we notice the low difference between actual consumption of water and the 

predicted values for the whole city region. Also, the figure shows the predicted future values of 

water demands in the year 2018 as illustrated in the highlighted area.  

 

Figure 4.45 :Newrb Best water demand Prediction Result for the year 2018 in the whole city region when 

number of neurons = 50. 
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As shown in the figures 4.44, 4.45 and table 4.22, the newrb model can predict water demands 

for the year 2018 with good accuracy. Also, it’s obvious that newrb model gives a good result 

based on the values of MSE testing and training, which leads that the model is appropriate in 

such cases of water demands prediction in the whole city region. 

4.6.2.2 Water Demands Prediction for the College Region 

 

The behavior of the newrb model with an error goal of (0.001) is depicted in figure 4.46 and table 

4.23 as the number of neurons increases, we get a better fit for the function, and this also shows 

the best fit was captured when a number of neurons were 45 with MSE value (0.00254).   

Table 4.23: Newrb water demands prediction for the College region 

 

 

 

 

 

 

To predict the losses values and comparing those values with the actual losses vales in the College 

region, the produced predicted values for the year 2018 are depicted in the highlighted area in 

figure 4.47. Also, the figure shows the comparison produced by newrb model between the real and 

predicted of water losses, where it is noticeable convergence in the results indicating the accuracy 

of the model used. 

 

Number of Neurons MSE Training MSE Testing 

5 2.75E-02 5.23E-02 

10 1.12E-02 4.77E-02 

15 1.06E-02 5.10E-02 

20 7.89E-03 5.47E-02 

25 5.52E-03 5.95E-02 

30 3.92E-03 5.58E-02 

35 3.55E-03 7.08E-02 

40 2.55E-03 8.49E-01 

45 2.54E-03 6.56E-01 
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Figure 4.46 :Newrb Best NRW Prediction Result for the College Region when number of neurons =45. 

  

 

Figure 4.47: Newrb Best water demand Prediction Result for the year 2018 in the College region when 

number of neurons = 45. 

 

4.6.2.3 Water Demands Prediction for the Flash Region   

 

From table 4.24 and figure 4.48, using error goal (0.001) it can be noticed that the error was at the 

minimum of its values when the network was built with number of neurons = 45. Therefore, 

increasing the number of neurons does ultimately result in acceptable model performance. 
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Table 4.24: newrb water demands prediction for the Flash region. 

 

 

 

 

 

 

 

Figure 4.48: Newrb Best NRW Prediction Result for the Flash region when number of neurons = 45. 

  

To predict the losses values and comparing those values with the actual losses values in the Flash 

region, the produced predicted values for the year 2018 are depicted in the highlighted area in 

figure 4.49. Also, the figure shows the comparison produced by newrb model between the real and 

predicted of water losses. 
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Figure 4.49: Newrb Best water demand Prediction Result for the year 2018 in the Flash region when 

number of neurons = 45 

  

4.6.2.4 Water demands prediction for the Sunuqrot Region.   

 

Table 4.25: Newrb water demands prediction for the Sunuqrot region. 

 

 

 

 

 

furthermore, as illustrated in table 4.25 and figure 4.50, the process of prediction using newrb with 

error goal = 0.001 shows that by neuron number 50; the model has shown the best performance 

with least error value in prediction, the error was at its minimum value (0.00133), which is the best 

error value. 
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Figure 4.50: Newrb Best NRW Prediction Result for the Sunuqrot Region when number of neurons = 50 

  

   

Figure 4.51: Newrb Best water demand Prediction Result for the year 2018 in the Sunuqrot region when 

number of neurons = 50. 

 

To predict the losses values and comparing those values with the actual losses vales in the Sunuqrot 

region, the produced predicted values for the year 2018 are depicted as shown in the highlighted 

area in figure 4.51. Also, the figure shows the comparison produced by newrb model between the 

real and predicted of water losses, where it is noticeable convergence in the results indicating the 

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period

M
S

E

 

 

Output

Target

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2
0

0
7

-0
3

2
0

0
7

-0
9

2
0

0
8

-0
3

2
0

0
8

-0
9

2
0

0
9

-0
3

2
0

0
9

-0
9

2
0

1
0

-0
3

2
0

1
0

-0
9

2
0

1
1

-0
3

2
0

1
1

-0
9

2
0

1
2

-0
3

2
0

1
2

-0
9

2
0

1
3

-0
3

2
0

1
3

-0
9

2
0

1
4

-0
3

2
0

1
4

-0
9

2
0

1
5

-0
3

2
0

1
5

-0
9

2
0

1
6

-0
3

2
0

1
6

-0
9

2
0

1
7

-0
3

2
0

1
7

-0
9

2
0

1
8

-0
3

2
0

1
8

-0
9

N
o

rm
al

iz
e

d
 P

re
d

ic
te

d
 V

al
u

e
s

Period

Output TARGET



121 
 

accuracy of the model used. As a conclusion of using the newrb model in order to predict water 

losses and water demands in Beitunia city as illustrated in figures and tables in the previous 

subsections, we observe that the model produced good results according to the main square error 

(MSE). Which leads that the model is highly appropriate in such cases of water demands and water 

losses prediction in Beitunia city. 

4.7   GAs-MLPNNs Prediction Model 

In the following section, we will discuss the result of GAs-MLPNNs model for each region of 

Beitunia city. 

4.7.1 GAs-MLPNNs Prediction for Water Losses (NRW)  

First, we will discuss the result of GAs-MLPNNs model for Prediction for Water loss (NRW) 

for each region of Beitunia city. 

4.7.1.1 Water loss (NRW) Prediction for the Whole City 

 

Table 4.26: GAs-MLPNNs NRW Prediction for the whole city. 

Number of 

Neurons 

MSE Training MSE Testing 

5 4.32E-02 6.22E-02 

10 3.80E-02 4.60E-02 

15 3.76E-02 6.20E-02 

20 3.62E-02 6.11E-02 

25 3.47E-02 7.80E-02 

30 2.79E-02 1.31E-01 

35 2.51E-02 1.81E-01 

40 2.67E-02 1.11E-01 

45 2.22E-02 1.56E-01 

50 2.60E-02 1.56E-01 

55 2.31E-02 1.74E-01 

60 1.85E-02 2.08E-01 

65 1.73E-02 2.02E-01 

70 1.80E-02 3.47E-01 

75 1.92E-02 2.02E-01 

80 1.81E-02 2.16E-01 
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Figure 4.52: GAs-MLPNNs Best NRW Prediction Result for the whole city region when number of 

neurons = 65. 

As shown in figure 4.52 and table 4.26, while the number of neurons increases, the model performs 

with fewer MSE values. The best result was achieved with number of neurons = 65 with value 

(0.0173). However, the model shows that the model does not perform well with neurons number 

more than 65; that is, the MSE value increases with more than 65 neurons. 

 

Figure 4.53: GAs-MLPNNs NRW Prediction Result for the year 2018 in the whole city region when 

number of neurons = 65. 

  

By using the graph and as illustrated in the figure 4.53, we can see a good comparison result 
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prediction values according to the adopted model. Moreover, in this model, we predicted water 

losses values for the year 2018 as depicted in the highlighted area in figure 4.53. 

4.7.1.2 Water Loss (NRW) Prediction for the College  

 

Table 4.27: GAs-MLPNNs NRW Prediction for the College Region. 

Number of 

Neurons 

MSE Training MSE Testing 

5 7.10E-03 1.27E-02 

10 7.70E-03 7.90E-02 

15 4.80E-03 5.40E-03 

20 2.90E-03 8.00E-03 

25 3.10E-03 8.10E-03 

30 2.80E-03 3.50E-03 

35 2.60E-03 8.00E-03 

40 2.40E-03 3.90E-03 

45 1.90E-03 3.40E-03 

50 2.00E-03 8.00E-03 

55 1.60E-03 2.70E-03 

60 2.50E-03 5.20E-03 

65 2.30E-03 6.00E-03 
 

 

Figure 4.54: GAs-MLPNNs Best NRW Prediction Result for the College Region when number of neurons 

= 55. 
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as shown in figure 4.54 and table 4.27, where the MSE training was at the minimum of its values  

(0.0016) and MSE testing (0.0027) when the network was built when number of neurons = 55. 

 

Figure 4.55: GAs-MLPNNs NRW Prediction Result for the year 2018 in the College region when number 

of neurons = 55. 

  

Furthermore, in this model, we have produced the predicted values of water losses for the year 

2018 as illustrated in the highlighted area in figure 4.55. Also, the figure shows the comparison 

between the actual and predicted of water losses where it is noticeable convergence in the results 

indicating the accuracy of the model used. 

4.7.1.3 Water Loss (NRW) Prediction for Flash Region   

 

Figure 4.56: GAs-MLPNNs Best NRW Prediction Result for the Flash Region with number of neurons = 65. 
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Table 4.28: GAs-MLPNNs NRW Prediction for the Flash Region. 

Number of Neurons MSE Training MSE Testing 

5 3.92E-02 6.54E-02 

10 3.83E-02 5.05E-02 

15 3.23E-02 6.33E-02 

20 2.82E-02 9.94E-02 

25 2.91E-02 8.75E-02 

30 2.71E-02 9.51E-02 

35 2.15E-02 1.27E-01 

40 2.06E-02 1.41E-01 

45 1.78E-02 1.49E-01 

50 1.40E-02 3.04E-01 

55 1.60E-02 3.55E-01 

60 1.27E-02 3.88E-01 

65 1.01E-02 1.93E-01 

70 1.48E-02 1.93E-01 
 

As shown in table 4.28 and figure 4.56, the result shows that GAs-MLPNNs gives an improvement 

in training errors values as the number of neurons increased while testing error value become worst 

after number of neurons =30 . It’s clear that the proposed GAs-MLPNNs model produces some 

good results to some extent based on the Mean Squared Error of training that obtained for the 

future prediction of water losses. 

 

Figure 4.57: GAs-MLPNNs NRW Prediction Result for the year 2018 in the Flash region with number of 

neurons = 65. 
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To predict the water losses in the year 2018 in the Flash region, GAs-MLPNNs model produced  

the future losses quantities as shown in the highlighted area in figure 4.57. Similarly, the figure 

shows the comparison between the actual and predicted of water losses, as we can see the results 

are close, which indicate the accuracy of the model. 

  

4.7.1.4 Water Loss (NRW) Prediction for the Sunuqrot Region   

 

Table 4.29: GAs-MLPNNs NRW Prediction for the Sunuqrot Region. 

Number of Neurons MSE Training MSE Testing 

5 1.95E-02 5.56E-02 

10 1.89E-02 4.97E-02 

15 1.51E-02 1.24E-01 

20 1.34E-02 1.91E-01 

25 1.04E-02 1.56E-01 

30 1.01E-02 1.36E-01 

35 5.60E-03 3.33E-01 

40 9.30E-03 5.13E-01 

45 7.90E-03 4.08E-01 

50 2.70E-03 4.28E-01 

55 7.00E-03 4.24E-01 

60 6.00E-03 4.53E-01 

65 7.90E-03 1.14E-01 

70 6.80E-03 1.60E-01 

75 6.00E-03 1.14E-01 

 

From table 4.29 and figure 4.58 the process of water losses prediction using GAs-MLPNNs gives 

good errors values for MSE training when using more number of neurons. It’s clear that after 

number of neurons = 50 we do not get good training values of MSE, also we noticed that by adding 

more neuron we did not get good testing values of MSE. 

As shown in figure 4.59, we can see the comparison produced by the GAs-MLPNNs model  
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between the real and predicted water losses values for the Sunuqrot region, we can see that the 

model performs well in the prediction.  

 

Figure 4.58: GAs-MLPNNs Best NRW Prediction Result for the Sunuqrot Region when number of 

neurons = 50. 

 

 

Figure 4.59: GAs-MLPNNs NRW Prediction Result for the year 2018 in the Sunuqrot region 

when number of neurons = 50. 
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shown in the highlighted area in figure. 

As shown in figures 4.58, 4.59 and table 4.29, it’s obvious that the proposed GAs-MLPNNs 

model gives some good results based on the values of MSE and comparison values, which leads 

that the model is appropriate in such cases of water losses prediction in the Sunuqrot region. 

4.7.2 GAs-MLPNNs Prediction for Water Demands  

In the following section, we will discuss the result of GAs-MLPNNs model for water demands 

for each region of Beitunia city 

4.7.2.1 Water Demand Prediction for the Whole City Region 

 

Table 4.30: GAs-MLPNNs NRW Prediction for the whole city. 

Number of Neurons MSE Training MSE Testing 

5 1.14E-02 2.34E-02 

10 1.12E-02 8.50E-02 

15 8.00E-03 7.22E-02 

20 7.50E-03 2.02E-02 

25 4.20E-03 5.43E-02 

30 3.60E-03 4.53E-02 

35 3.80E-03 2.07E-01 

40 3.20E-03 7.67E-02 

45 3.00E-03 1.39E-01 

50 4.90E-03 2.40E-01 

55 2.30E-03 1.76E-01 

60 3.60E-03 3.51E-01 

65 6.80E-03 1.45E-01 

70 5.90E-03 2.56E-01 

 

Water Demand Prediction Result for the whole city region as illustrated in table 4.30 and figure 

4.60 shows that the proposed GAs-MLPNNs model produces accurate predictions with fewer MSE 

values, which leads that the model is highly appropriate in such cases of water demands prediction 

in the whole city region. The error was at the minimum of its values (0.0023) when the network  
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was built with number of neurons = 55. 

 

Figure 4.60: GAs-MLPNNs Best demand Prediction Result for the whole city region when number of 

neurons = 55. 

  

 

Figure 4.61: GAs-MLPNNs demands Prediction Result for the year 2018 in the whole city region when 

number of neurons = 55. 
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2018 for the whole city region as illustrated in the highlighted area in figure 4.61. Also, the figure 

shows a good comparison result between the real and predicted water consumption. 

4.7.2.2 Water demand Prediction for the College Region 

 

According to Table 4.31 and Figures 4.62, it can be seen how the GAs-MLPNNs model can 

achieve good performance prediction results of water demand with a specific number of neurons 

in the hidden layer. The best result of the prediction which was achieved when we applied the 

proposed model with number of neurons = 40 in the hidden layer with MSE for training did not 

exceed the (0.0025). 

Table 4.31: GAs-MLPNNs NRW Prediction for the College region. 

Number of Neurons MSE Training MSE Testing 

5 8.90E-03 3.58E-02 

10 7.80E-03 9.38E-02 

15 5.90E-03 1.87E-01 

20 4.20E-03 6.59E-02 

25 3.50E-03 2.52E-01 

30 4.60E-03 1.12E-01 

35 3.20E-03 1.41E-01 

40 2.50E-03 3.39E-01 

45 7.70E-03 3.55E-01 

50 3.90E-03 2.07E-01 

55 2.90E-03 2.54E-01 

60 2.60E-03 3.57E-01 

65 7.30E-03 3.57E-01 

 

By using the graph and as illustrated in the figure 4.63, we can see the comparison produced by 

the GAs-MLPNNs model between the actual quantities of water consumption and the prediction 

values according to the adopted GAs-MLPNNs model for the College region. Also, as shown in 

the highlighted area in figure 4.63 we can see the predicted values of water demands in the College 

region for the year 2018. 



131 
 

 

Figure 4.62: GAs-MLPNNs Best demand Prediction Result for the College region when number of 

neurons = 40. 

  

 

Figure 4.63: GAs-MLPNNs demands Prediction Result for the year 2018 in the College region when 

number of neurons = 40. 

  

Having such results as shown in figures 4.62, 4.63 and table 4.31, it’s obvious that the GAs-

MLPNNs model for water demand in prediction the College region is one of the promising models 

for the future forecasting of water demands in this region. 
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4.7.2.3 Water demand Prediction for the Flash Region 

 

Table 4.32: GAs-MLPNNs NRW Prediction for the Flash region. 

Number of Neurons MSE Training MSE Testing 

5 2.02E-02 6.90E-03 

10 1.94E-02 4.64E-02 

15 1.14E-02 1.20E-01 

20 8.30E-03 3.58E-02 

25 5.40E-03 5.22E-02 

30 4.70E-03 8.21E-02 

35 4.10E-03 2.00E-01 

40 4.20E-03 1.81E-01 

45 3.90E-03 1.71E-01 

50 5.90E-03 2.28E-01 

55 4.40E-03 3.30E-01 

60 4.30E-03 1.80E-01 

65 4.20E-03 3.80E-01 

 

 

 

Figure 4.64: GAs-MLPNNs Best demand Prediction Result for the Flash region when number of neurons 

= 35. 

 

Water demand prediction result for the Flash region as illustrated in table 4.32 and figure 4.64 

shows that the proposed model produces more accurate predictions with fewer MSE values, which 

leads that the model is highly appropriate in such cases of water demands prediction in the Flash 

region, thus the prediction Mean Square Error on 35 neurons achieves great result for the future of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Period

N
or

m
al

iz
ed

 D
em

an
ds

 P
re

di
ct

ed
 V

al
ue

s

 

 

Target

Output



133 
 

water demand. From figure 4.65, we can see the comparison produced by the GAs-MLPNNs 

model between the actual and predicted water demands values for the Flash region, also we can 

see the future predicted water demand values for the year 2018. 

 

Figure 4.65: GAs-MLPNNs demands Prediction Result for the year 2018 in the Flash region when 

number of neurons = 35. 
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Likewise, as illustrated in table 4.33 and figure 4.66, it can be seen number of neurons = 45; the 

model has shown the best performance with the least error value (0.0035) in prediction. On the 

other hand, the experiment shows that an increasing number of neurons does not cause a more 

accurate result. 

 

Figure 4.66: GAs-MLPNNs Best demand Prediction Result for the Sunuqrot region when number of 

neurons = 45. 

  

 

Figure 4.67: GAs-MLPNNs demands Prediction Result for the year 2018 in the Sunuqrot region when 

number of neurons = 45. 
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Furthermore, in this model, we have produced the predicted future values of water demand for the 

year 2018 as illustrated in the highlighted area in figure 4.67. Also, the figure shows a comparison 

between the actual and predicted water demand. As a conclusion of using GAs-MLPNNs model 

in order to predict the water losses and demands in Beitunia city as illustrated in figures and tables 

in the previous subsections, we observe that the model produced good results according to the 

main square error (MSE). Which leads that the model is highly appropriate in such cases of water 

demands and losses prediction in Beitunia city. 

4.8 Comparison and Discussion 

In this section, we show a complete comparison depending to the performance from the viewpoint 

of the error value against the number of neurons employed of all the results obtained for NN 

models used in this thesis for NRW and water demands for all Beitunia regions. 

4.8.1 Comparison of Water Losses (NRW) for All Regions  

Figure 4.68 presents the error values and the number of neurons for the three Models; MLPNN-

LM, newrb, and GAs-MLPNNs to observe the performance of each built network using the 

mentioned models. The supremacy of the MLPNN-LM model can be seen over all models and this 

has been shown from the first Neuron (5) to last one approximately. It can also be seen that the 

newrb model performs better than the GAs-MLPNNs model. 

Error values are displayed in Figure 4.69 with specific neurons for the three Models; MLPNN-

LM, newrb and GAs-MLPNNs, it is noticed that there is a fluctuation in behavior with an 

advantage to the MLPNN model in overall at the end of the prediction experiments 
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Figure 4.68: MSE Result values of NRW for the Whole City. 

  

 

Figure 4.69: MSE Result values of NRW for the College Region. 
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Figure 4.70: MSE Result values of NRW for the Flash Region. 

  

 

While Figure 4.70 displays the error values and the number of neurons for the three Models; 

MLPNN-LM, newrb, and GAs-MLPNNs. It can be seen that the MLPNN-LM model clearly 

surpass the other models. It is also clear that there is a convergence behavior between newrb and 

GAs-MLPNNs models, but the newrb model can perform better when increasing the number of 

neurons. 

Moreover, MSE values are illustrated in Figure 4.71 which shows that there is fluctuation behavior 

among the three models, but the MLPNN-LM achieves the best performance when the number of 

neurons increases. And it is clear that the newrb model can perform better than GAs-MLPNNs 

when increasing the number of neurons. 
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Figure 4.71: MSE Result values of NRW for the Sunuqrot Region. 

  

4.8.2 Comparison of Water Demands for All Regions  

 

 

Figure 4.72: MSE Result values of water demands for the Whole City. 
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with an advantage to the MLPNN-LM model in overall at the end of the prediction 

experiments. 

 

Figure 4.73: MSE Result values of NRW for the College Region. 

  

 

Figure 4.74: MSE Result values of NRW for the Flash Region. 
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MSE values are illustrated in Figure 4.73 which shows that there is fluctuation behavior among 

the three models, but the MLPNN-LM achieve the best performance when the number of neurons 

increases. 

 Furthermore, error values are displayed in Figure 4.74 with specific neurons for the three Models; 

MLPNN-LM, newrb and GAs-MLPNNs, it is noticed that there is a fluctuation in behavior with 

an advantage to the MLPNNs model in overall at the end of the prediction experiments. 

 

Figure 4.75: MSE Result values of NRW for the Sunuqrot Region. 
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In the previous results and comparison, we have made a comparison between the NNs models as 

shown in the figures (4.68 - 4.75) in terms of error values in order to predict water losses and 

demands. The supremacy of the MLPNNs model can be seen approximately over all models and 

this has been shown from the first Neuron (5) to last one where the error values were decreased as 

the number of neurons increase. Also, newrb model performing better than GAs-MLPNNs, where 

the error values in newrb model decreased with the increase in the number of neurons. In addition, 

we present a comparison of all the results obtained for NN models used in this thesis. In the 

following two tables (table 4.34 and table 4.35) show the best MSE values for both water losses 

(NRW) and water demands. 

Table 4.34: Comparison of MSE for the four models of NRW. 

 MLPNN-LM Newrb 
GAs-

MLPNNs 
ARIMA 

Whole Neuron 65 70 65 - 

City MSE 6.17E-07 2.62E-03 1.73E-02 1.45E-01 

College 
Neuron 30 45 55 - 

MSE 2.04E-04 1.08E-03 1.60E-03 5.21E-02 

Flash 
Neuron 60 60 65 - 

MSE 2.71E-05 8.98E-03 1.01E-02 4.40E-02 

Sunuqrot 
Neuron 40 50 50 - 

MSE 2.99E-04 1.83E-03 2.70E-03 1.31E-01 

 

Table 4.34 shows the best MSE performance values of the function produced by all models 

MLPNNs, newrb and GAs-MLPNNs which have been applied for the water losses (NRW) 

prediction. While Table 4.35 shows the best MSE performance values of the function produced by 
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all models MLPNNS, newrb and GAs-MLPNNs which have been experienced for the water 

demands prediction 

Table 4.35: Comparison of MSE for the Four Models of Water Demands.  

 MLPNN-LM Newrb 
GAs-

MLPNNs 
ARIMA 

WholE-0 Neuron 70 50 55 - 

City MSE 2.94E-05 1.66E-03 2.30E-03 9.12E-02 

College 
Neuron 40 45 40 - 

MSE 1.749E-05 2.54E-03 2.50E-03 1.79E-02 

Flash 
Neuron 40 45 60 - 

MSE 2.82E-05 4.30E-03 4.10E-03 7.24E-02 

Sunuqrot 
Neuron 45 50 45 - 

MSE 7.01E-05 1.33E-03 3.50E-03 9.35E-02 

 

Result depicted in tables 4.34 and 4.35 of water losses (NRW) and water demands show the 

achievement of the best performance with the MSE values produced by MLPNN, newrb, GAs-

MLPNN, and ARIMA models. According to the MSE values observed, it can be noticed that the 

MLPNN model outperforms the others in terms of the forecasting of water losses and demands. 

While the newrb model is the second-best model, which performs better than the hybrid GAs-

MLPNN model. On the other hand, the statistical model achieves the worst performance in terms 

of MSE values when compared to the rest of the models experienced in this study, this is because 

the ARIMA model relies on linear data to be accurate. 

The following tables (4.36-4.37) illustrate the prediction results of water losses and water demands 

in the year 2018 of all models employed in the experiment of our research. 
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Table 4.36: Model of water Losses (NRW) Prediction of the year 2018. 

Prediction  

2018 

Whole-city 

/MLPNN-LM 

College  

 /MLPNN-LM 

Flash 

/MLPNN-LM 

Sunuqrot 

/MLPNN-LM 

03/2018 48218 4124 36062 3387 

05/2018 47409 4907 28361 2818 

07/2018 42001 6299 28640 4193 

09/2018 38243 6943 25380 5301 

11/2018 35617 5879 30175 4867 

01/2018 44627 4348 35016 5408 

 

 

Prediction  

2018 
Whole-city 

/newrb 

College  

 / newrb 

Flash 

/ newrb 

Sunuqrot / 

newrb 

03/2018 47959 3846 42436 3442 

05/2018 35698 3943 27410 3220 

07/2018 41615 5859 32167 4843 

09/2018 35622 5976 21744 5576 

11/2018 45613 5052 35618 4892 

01/2018 40282 4075 32921 5211 

 

 

 

Prediction  

2018 

Whole-city 

/GAs-MLPNNs 

College  

 / GAs-MLPNNs 

Flash 

/ GAs-MLPNNs 

Sunuqrot              

/ GAs-MLPNNs 

03/2018 44833 3702 39434 4367 

05/2018 39092 4116 30747 3702 

07/2018 44884 5458 28363 4816 

09/2018 38826 5390 22480 5015 

11/2018 47441 3521 30955 4385 

01/2018 48988 4513 30143 3354 

 

 

 

Prediction  

2018 

Whole-city 

/ARIMA 

College  

 /ARIMA 

Flash 

/ARIMA 

Sunuqrot              

/ ARIMA 

03/2018 25959 5153 15902 4904 

05/2018 44386 4979 34645 4762 

07/2018 36270 4801 26763 4706 

09/2018 55368 4620 46064 4684 

11/2018 43613 4436 34502 4675 

01/2018 45591 4248 36671 4672 
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Table 4.37: Model of water demands Prediction of the year 2018. 

Prediction  

2018 

Whole-city 

/MLPNN-LM 

College  

 /MLPNN-LM 

Flash 

/MLPNN-LM 

Sunuqrot 

/MLPNN-LM 

03/2018 92730 5213 90143 7999 

05/2018 102656 5462 98169 8882 

07/2018 115384 6005 106145 9925 

09/2018 122319 5247 109119 10231 

11/2018 117659 6975 107802 10015 

01/2018 107101 5979 99606 9415 

 

 

Prediction  

2018 

Whole-city 

/newrb 

College  

 / newrb 

Flash 

/ newrb 

Sunuqrot 

 / newrb 

03/2018 95003 5191 89534 8041 

05/2018 102294 5891 95388 8583 

07/2018 113455 5869 105467 9507 

09/2018 119193 6317 109790 9215 

11/2018 115958 6874 106889 9675 

01/2018 104829 6537 97220 9304 

 

 

Prediction  

2018 

Whole-city 

/GAs-MLPNNs 

College  

 / GAs-MLPNNs 

Flash 

/ GAs-MLPNNs 

Sunuqrot              

/ GAs-MLPNNs 

03/2018 97697 6091 38500 7685 

05/2018 101365 5759 41519 8276 

07/2018 112641 6665 52799 8722 

09/2018 118873 6287 52844 8587 

11/2018 113596 6697 50691 9879 

01/2018 105356 6596 41613 9581 

 

 

Prediction  

2018 

Whole-city 

/ARIMA 

College  

 /ARIMA 

Flash 

/ARIMA 

Sunuqrot              

/ ARIMA 

03/2018 123735 10421 102891 10423 

05/2018 119703 10491 99108 10104 

07/2018 121241 10560 100804 9877 

09/2018 121150 10629 100804 9717 

11/2018 121105 10698 100804 9603 

01/2018 121093 10767 100804 9522 
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4.9 Beitunia Water Distribution Network 

In this regard, we will talk about the water network in Beitunia city, in terms of the components 

and infrastructure, related to the pipelines used to supply water in the city, in addition, we will talk 

about data collected from the GIS system, especially on pipeline data and obstacles encountered 

in the process of building an important model for predicting water losses based on factors and 

components present in the pipeline. 

4.9.1 Water System in Beitunia 

Jerusalem Water Undertaking (JWU), is responsible for providing water for Beitunia and part of 

Ramallah & Al Bireh Governorate and Jerusalem Governorate. Beside technical operation and 

maintenance of the water supply systems, it is partly in charge of the revenue collection and other 

financial issues too. JWU provides and manages the water system for Ramallah and Al Bireh cities 

besides other municipalities within the Ramallah governorate. JWU also provides water to 

Beitunia Municipality as a bulk supply via 3 main connection points as follows: 

Flash is the main connection point is locating near Al Tari Station which supplies about 125 cubic 

meters per hour (17 hours/day supply). The second connection point locates near Sunuqrot 

Company and supplies about 14 cubic meters per hour (24-hour supply) and the third connection 

point is the College which locates near Al Asryeh collage which supplies about 11 cubic meters 

per hour (24-hour supply). 

According to the water department in Beiutnia municipality, the existing main transmission 

pipelines supplying the area has different sizes and segment lengths along the main line. The 

transmission main starting from 24” welded steel pipeline constructed in 2007, reduced to 12” 

welded steel pipeline constructed in 2013, reduced to 8” welded steel pipeline constructed in 2013 
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and reduced finally to 6” welded steel pipeline. Figure 4.76 shows the current bulk water system 

supplies Beitunia City 

 

Figure 4.76: Existing water supply system. 

4.9.2 Distribution Networks 

The Distribution networks cover most of Beitunia City and consist of various sizes and lengths; 

6”, 4”, 3”, 2”, 1” and ¾” for the house connections. The pipe material is threaded and galvanized 

steel pipes for 2” and less, welded and black steel with internal cement lining for 3” and more. 

Table 4.38 shows the Sizes, types, and lengths of the existing distribution networks. 

 

The construction phases for the Beitunia distribution network could be divided into the following 

phases; 

 • Construction of 4”, 2” and 1” pipelines in the year 1971. 

 • Construction of 2” pipelines in the year 1986 during the Israeli civil administration control. 
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 • Construction of 500 CM elevated reservoir, 4” and 3” pipelines in the year 1998 by BECDAR.  

• Construction of different types of 2” pipelines and less by Beitunia municipality during the 

years (1995-2016) 

 

Table 4.38: Sizes and lengths of the existing distribution networks 

Diameter Coated Black Coated Galvanized Galvanized Steel, Total, 

(inch) Steel, length (m) Steel, length (m) length (m) length (m) 

(3/4")   307 307 

1"  4,491 2,188 6,679 

1.25"   669 669 

2"  12,364 21,866 34,230 

3" 13,291   13,291 

4" 3,593   3,593 

6" 2,537   2,537 

Grand Total 19,421 16,855 25,030 61,306 

 

4.9.3 Pipelines Network in Beitunia 

By working on the ArcGIS program, which contains all the information about the water network 

and all the details of the pipes, and a lot of meetings with the water technicians and municipal 

engineers, we collected the data related to the water network and pipelines we have divided the 

data and distributed it by region in order to use it in water losses and demand prediction, at the end 

of this work we had an Excel file contains data such as, pipeline diameters, pipeline length, and 

also we got important information about the status of these pipes (good, very good or excellent), 

in addition to information related to the surface above these pipes,  also the file contains data 

related to the age of the pipelines and the year of installation. However, there is some important 

information that we cannot obtain, such as water pressure, since water pressure is an important 
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factor needed to build a model for predicting water loss and demand. Another important 

information that we could not obtain is the information about the leakages in the pipelines such as 

quantities of water lost due to the leakages, places of leakages and the amount of time it took to 

repair each leakage. 

Table 4.39 shows a sample of the pipelines data, and table 4.40 shows the water losses in cubic 

meters per area. Looking at these tables, we observe that the data in table 4.39 are spatial data 

related to information of pipelines, and the information in table 4.40 are temporal data. 

Table 4.39: Beitunia pipelines network 

Area Diameter Material Condition Surface Contractor Year 
SHAPE 

Length 

Flash 3 
Coated Black 

Steel 
V.Good Asphalt Al Mahole/PICDAR 1998 310.0 

Sunuqrot 3 
Coated Black 

Steel 
V.Good Asphalt Al Mahole/PICDAR 1998 8.1 

Sunuqrot 2 Steel Good Asphalt Mun. 1998 166.4 

Flash 4 
Coated Black 

Steel 
Bad Asphalt Al Amour 1971 253.4 

Flash 3 
Coated Black 

Steel 
V.Good Asphalt Al Mahole/PICDAR 1998 4.9 

Flash 3 
Coated Black 

Steel 
V.Good Asphalt Al Mahole/PICDAR 1998 2.8 

Flash 6 
Coated Black 

Steel 
V.Good Asphalt Al Mahole/PICDAR 1998 724.3 

Flash 4 
Coated Black 

Steel 
Bad Asphalt Al Amour 1971 185.8 

Flash 4 
Coated Black 

Steel 
Bad Asphalt Unknown 1971 240.4 

Sunuqrot 3 
Coated Black 

Steel 
Good Asphalt Al Mahole/PICDAR 1998 1.0 

 

  

If we want to build multiple regression analysis (MRA) model to determine which parameter 

(parameters)  in table 4.39 or in another word, what is the most parameter (parameters)  causing 

water losses in a given region,  we need to link the spatial data with the temporal data by adding  

the amount of loss as a column we need to link the spatial data with the temporal data by adding  

the amount of loss as a column in table 4.39 (adding the amount of losses to the table of spatial 
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data), after a long search and investigation we could not find a suitable solution even after 

consulting with experts, this issue prevented us to implement  MRA Model. 

 

Table 4.40: water losses quantities (m3) for Beitunia regions 

Flash        

2005 214533       

2006 332360  Sunuqrot     

2007 232261  2007 13697    

2008 237294  2008 20123    

2009 245436  2009 23764  College  

2010 119873  2010 37199  2010 17654 

2011 172554  2011 18882  2011 13904 

2012 224837  2012 16685  2012 20526 

2013 204133  2013 23121  2013 20620 

2014 194795  2014 48505  2014 20235 

2015 168583  2015 35023  2015 20424 

2016 186114  2016 22859  2016 49162 

2017 146414  2017 39164  2017 67501 

Total 24126  Total 299022  Total 230026 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



150 
 

 

5 CHAPTER FIVE  

 CONCLUSION AND FUTURE 

WORK 
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5.1 Introduction 

In this chapter, we show and summarize the conclusions achieved by what we have experienced 

in addition to the findings obtained. The conclusions are based on the goal of this research, the 

research assumptions, in addition to the discussion and analysis of the results obtained from the 

conducted experiments on different NNs and statistical models. This chapter also offers some 

recommendations for researchers, the municipality of Beitunia city, water utilities and the local 

government authority. Finally, it will present important directions for future work. 

5.2 Conclusions 

This study has drawn some conclusions that can be expressed as follows:  

• In this thesis, we have addressed one of the main challenges facing the local governments 

in Palestine. Water losses problem is concerning the municipalities and water utilities; 

leading to, sometimes, disruption of services, in addition to affecting the quality of water 

distribution service. Most importantly, such a problem has caused significant financial 

losses which has an impact on the development process either on improving water services 

or developing other important areas. The significance of studying and offering solutions in 

regards to minimizing (or avoiding) such problems led to building a forecasting tool for 

the prediction of water losses and water supply demands.  

• This research has been supported with an in-depth review in the literature; surveying what 

research efforts have been made in regards. It can be found that many researchers were 

motivated to conduct studies in an attempt to predict water loss and water demands; 

employing different techniques and algorithms such as a statistical and artificial neural 

network (ANNs).  
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• This academic work has presented an exploration and investigation in addition to 

experiencing various AI models. Nonetheless, the importance of resulting of least loss 

value as possible (approaches to zero), this research finds it important to experiencing 

models and building what it could be more efficient in forecasting water losses and water 

demands in Palestine for the scope of this academic work, and, specifically, for the interest 

of Beitunia city.  

• The historical data of water loss and consumption quantities from Beitunia database were 

used for all models over the period between the years 2005 and 2017. It can be seen that 

the data changing over time Series. 

• In this study, various experiments were conducted, in which different and various ANNs 

models were used. Three models were used; MLPNN-LM, RBFNNs (newrb) and GAs-

MLPNNs, utilizing real data. More importantly, it has been presented how the employed 

models resulted in highly accurate and precise results. In other words, the models have 

shown good performance in a form that regression could be done achieving highly precise 

values compared to the actual readings (data label). This success is led to the conclusion of 

the success of the prediction experiments concerning the achievement of the goal of this 

research.  

• After a number of modeling iterations, ANNs models can fit better than the ARIMA model 

for the prediction of water demand and water losses. While the MLPNN-LM model has 

achieved the best results when it is compared to other ANNs models (newrb and GAs-

MLPNNs). Going through results, it has been found that MLPNNs using the Levenberg-

Marquardt algorithm revealed great results of water losses and water demands with small 

Mean Square Error values. The results of the newrb model were also highly precise, despite 
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being less accurate compared to the MLPNN-LM model. While the GAs-MLPNNs model 

could also generate predictions with small Mean Square Error value, but it was the least 

accurate model when it is compared with the other models applied in our experiment. The 

ARIMA model was less accurate than other NNs models. This is because the ARIMA 

model relies on linear data to be accurate. 

• The evaluation of our experiments was not only conducted using the Mean Square Error 

calculations as metric for judging the performance and quality of the experienced AI 

models, but it has also been supported with some statistical methods such as the ARIMA 

model. This enabled to perform comparisons with the results of the employed NNs models.  

• Most importantly, this research has introduced a proof of concept in an attempt to construct 

a robust and reliable model that can be nationally generalized; over the whole country. This 

can be achieved by providing such solutions, proposed in this study, for the interest of 

water utilities and municipalities on the purpose of reducing (or avoiding) water losses 

(NRW) Thus, it will definitely improve the quality of service and will save one of the key 

resources. 

5.3 Recommendations 

In order to improve the efficiency of NNs models, we recommend further studies to be undertaken 

exploiting more historical water data to validate the obtained results of our model. On a wider 

level, the dataset should include the complete data of water supply and demands from the JWU, 

which could help better estimate water losses that will improve the target variable values. In 

regards, pipe leakages information should also be recorded, thereby, it will improve the accuracy 

of prediction of water losses. 
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For the decision makers in the municipality of Beitunia city and the JWU, this study recommends 

the renewal of the water distribution networks, specifically, in the three regions; Flash, the College, 

and Sunuqrot. It is believed that this will help reduce (or avoid) water leakages, in one hand. In 

the other hand, it will increase the municipality revenues by reducing the water losses, discovering 

illegitimate use of water, replacing broken meters, and employing prepaid water meters.  

5.4 Future Work 

As future work, we aim to use these models for many municipalities and water services facilities. 

For the municipality of Beitunia city, we will work together with the municipality staff, who are 

experts in the domain of water supply services, on purpose of doing more in-depth investigations 

about the factors that cause water losses in each region. After understanding the most effective 

factors, we will collect the important information that will work as the dataset. Multiple regression 

analysis will also be employed in our future models.  

It is also possible to work with the municipality to create a smart application to control the pipes 

leakages in the city in order to reduce NRW quantities, the smart application can monitor the 

condition of the pipes and alert the control center of the municipality. 

Another important future work will be the prediction of unwanted substances in the water. This 

will be achieved by more cooperation between the municipality of Beitunia city and the Jerusalem 

Water Undertaking. In other words, we will develop other applications for the prediction of the 

amounts of chemical substances such as water chlorine for the suitability of human use.   
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  بيتونيا، مدينةالمياه في  للفاقد منيعتمد بحثنا على البيانات التاريخية لإجمالي استهلاك المياه والبيانات الفعلية 

التي يمكن استخدامها بكفاءة أكبر  (AI)الهدف الرئيسي من هذا البحث هو استكشاف نماذج الذكاء الاصطناعي 

تتكون ،  الرسالةفي هذه   ياه في فلسطين وبالتحديد لمدينة بيتونيا.في التنبؤ بفقدان المياه والتنبؤ بالطلب على الم

منهجية العمل من تقييم الجوانب المختلفة لتصميم الشبكات العصبية التنبؤية ، مثل تضمين خوارزميات تعلم جديدة 

بالبيانات الحقيقية  تم مقارنة تنبؤاتهامن ثم يلشبكة العصبية وا يتم محاكاة  في أبنية الشبكات العصبية المختلفة.

 .للفاقد والاستهلاك من المياه

والتي تستخدم  Levenberg Marquardt، وجدنا أن خوارزمية التعلم التي حصلنا عليهامن خلال النتائج 

ومقارنة  صغيرة قيم خطألفقدان المياه والطلب عليها مع  واعدةنتائج  قد اعطت MLPNNs-LMلتحسين نموذج 

أقل دقة  ARIMAبينما كان نموذج ، (RBFNN-Newrb and GAs-MLPNNs)بالنماذج الاخرى مثل 

البيانات خطية لتكون ان تكون يعتمد على (  ARIMA)وذلك لأن نموذج  الأخرىالشبكات العصبية من نماذج 

عن الاستفادة المثلي  قليل التكلفة فضلابيتونيا ستستخدم نظامًا فعالًا من شأنه ت ةوبالتالي ، فان بلدي.دقيقةنتائجه 

في العديد من البلديات من الموارد المائية وأدارتها. والأهم من ذلك ، فإن هذا النجاح سيساعد في تعميم نموذجنا 

 ومرافق خدمات المياه.
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 ملخص  6

تضاهى، فهو العنصر الاساسي للحياة والتنمية يعتبر الماء من الموارد الطبيعية الاستراتيجية النادرة التي لا 

 في المياه خسائرالتعُتبر  الاجتماعية. يفتقر بعض الناس إلى مياه الشرب نتيجة التسربات الكبيرة في شبكات المياه.

تعاني  وبشكل أكثر تحديداً ،والطلب على المياه واحدة من أهم المشكلات التي تواجه قطاع المياه في فلسطين. 

، بالإضافة  الخدمة المقدمةؤدي إلى انقطاع الخدمة وانخفاض جودة ي ممايات ومرافق المياه من هذه المشكلة البلد

أحد المهام الأساسية التي يها فقدان المياه والطلب عللخسائر مالية كبيرة.لذلك ، يعتبر التنبؤ الدقيق التسبب بإلى 

ر التوقعات الموثوقة على الطلب والخسائر للمياه في المناطق توفر الدعم الفعال لإدارة الموارد المائية. ان توف

 الحضرية هو الأساس لاتخاذ القرارات التشغيلية والتكتيكية والاستراتيجية لمرافق المياه، وهو أمر حاسم

للناس لتلبية الاحتياجات الأساسية  كمية الطلب على المياه  من اجل معرفةالمرافق العامة   تحتاجه وضروري

الاسباب الحقيقية معرفة ان  بالإضافة إلى متطلبات التصنيع والزراعة ، وكذلك لتطوير مصادر مياه جديدة.

قلل من الخسائر ، والأهم من ذلك أنها قد توفر ييمكن أن في معالجتها الاستباقية سبقة لفقدان المياه والاستجابة مال

 .المياه الموارد المالية بطريقة من شأنها أن تعزز قطاع

يعتبر الفارق الكبير بين كمية المياه التي يتم توفيرها وكمية المياه التي يتم استهلاكها والمعروفة أيضًا باسم "المياه 

يتم النظر في كميات كبيرة من  .[NRW] "من أهم القضايا التي تؤثر على مرافق المياه  "غير المدرة للدخل

التسريبات، وعدم إصدار الفواتير للعملاء، والوصلات غير القانونية، وعدم عمل عدادات المياه المفقودة من خلال 

 .المياه بالشكل الصحيح، والقراءة غير الدقيقة. مما يؤثر بشكل خطير على الجدوى المالية لمرافق المياه

مدادات المياه. والذي له الاثر التنبؤ بالخسائر المائية والطلب على المياه اصبحت أداة مهمة لإدارة وتشغيل أنظمة إ

على تطوير النظام وتوسيعه وتقدير حجم وتشغيل الخزانات ومحطات الضخ وسعات الأنابيب، لذلك من 

الضروري إيجاد آليات تلقائية لتوقع الخسائر في المياه والطلب عليها من خلال استخدام تقنيات الذكاء الاصطناعي 

 .من جهة ومن جهة اخرى يساعد في حل مشكلة فقدان المياه ن الاعتماد عليهتوزيع المياه يمكللضمان وجود نظام 


