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Abstract

If G is a non-abelian group and Zg is the center of G. The non-commuting graph
of G is defined to be the graph I'¢ where G — Zg is set of vertices such that any
two vertices x and y are adjacent if and only if zy # yz. In this work, we will
investigate the non-commuting graph of the special linear group SL(n,q) where
n = 2,3 over the Galois filed of order g. We will find the clique number w(I'si(n,q)),
the independent number a(I'si(n,q)), the minimum size of vertex cover B(Isi(n,q))

and the vertex chromatic number X(I'si(n,q))-
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Symbols and Notation

r The graph.

I'e The non-commuting graph of group G.
V(I'g)  The vertices set of non-commuting graph I's.
E(I'g)  The edges set of non-commuting graph I'g.
deg(z)  The degree of a vertex z in Ig.
w(l'¢)  Clique number of I'.
x(I'¢)  Chromatic number of I's.

a(l'g)  Independent number of Ig.
B(Ig) Vertex cover of I'g.
7(I'¢)  Dominating number of I
diam(I'¢) Diameter of I's.
girth(I'g)  Girth of I'g.
e The center of a group G.
Ce(g) The centralizer of an element ge qG.
Cs(g) The conjugacy class of g.

kE(G) The class number.



Introduction

Many researches were published on assigning a graph to a group, and use prop-
erties of graphs to study algebraic properties of groups [2].

The non-commuting graph of a group G is the graph I'¢ where the vertex set is
G — Zg, denoted by V(I'g), such that any two vertices z,y € V(I'q) are adjacent
if and only if zy # yz. And we denote the edge set by E(I'g).

In chapter one, we give preliminaries of graphs, groups and finite fields. First, we
give some important definitions and properties of graphs, such as connected graph,
distance, clique number, independent number, covering number and chromatic num-
ber. Then we introduce some definitions and theorems on groups and finite fields.

In part one of chapter two, we define non-commuting graph and consider some
examples by using sagemath program, then we give some general properties and
theorems of I'g, we also find diam(I'g) and girth(I'¢). In second part, we consider
some properties and theorems of I'c that we need in the last chapter.

Chapter three is the aim of this research. First, we define the general linear
group GL(n, q), special linear group SL(n,q) and projective special linear group
PSL(n, q), and we give some properties of these groups. In the second section of
this chapter, we consider I'sy(e,q). At the beginning we use sagemath program to
draw the graph I'sy(s,q) Where ¢ = 2,3,4,5 and 7, after that we find some properties
of these graphs, such as the clique number w(I’ SL(2,q))p chromatic number x(Isz(z,q))
the independent number a('sy(s,q) and the vertex cover 8 (I'sz(2,q))-

In the last section, we draw the graph I'sy(s 2y and find some properties of this

graph. We prove if I'g = Igys,q) then |G| = |SL(8, q)|. Also we find the clique



number of I'sy(s,s), an upper bound of the independent number of I's(s,4), a lower
bound of B(I'sy(s,q)) and we conjecture the exact formula of the independent number
of I'sy(s,q) and number of vertex cover of I'sy(s,q). Finally, we prove if I'g = g3,
and |Zgy(s,p| = 1, then G = SL(3, q).

Finally, the sagemath programs that we use in this research are presented. In
program 1, we find the non-commuting graph of some groups such as symmetric
group S3, Dihedral group D4 and Quaternion group Qs. Program 2 determine wither
a given group is an AC-group or not. In program 3, we draw the non-commuting
graph of SL(2,q) for ¢ = 2,3,4,5 and 7, we also find some properties of I'g(s,q)
such as independent number, chromatic number, number of vertex cover and clique
number. In program 4, we find the set of order of centralizers of groups. In program
5, we find the independent number and the number of vertex cover of SL(3, q) where
g =2,3,4,5,7,8,9 and 11 without finding the graphs. Finally, in program 6, we

find the clique number of SL(3,2).



Chapter 1

Preliminaries

1.1 Graphs

In this section we give some important definitions and properties of graph.

Definition 1.1. [20] A graph I consists of a non-empty finite set V(") of elements
called vertices of I', and a finite family F(I") of unordered pairs of elements in

V(I') called edges of I'.

If v and w are two vertices in I', and if the unordered pair {v,w} is an edge
denoted by e, we say e joins v and w, and we say that v and w are adjacent. We

say two edges are adjacent, if they have a common vertex.
Definition 1.2. [20] A loop in I' is an edge, that joins a vertex to itself.

Definition 1.3. [20] Two or more edges that join the same pair of distinct vertices

are called multiple edges.

Definition 1.4. [20] A path in I’ is a finite sequence of distinct edges of the

form vive, wavs, vsV4, ..., Un—1Un, in which any two consecutive edges are
1

3



adjacent, v, is called initial vertex and v, terminal vertex, such that all vertices of

these edges are distinct except possibly the initial vertex and terminal one.
A path in which the initial vertex is equal to the terminal vertex is called a cyclic.

Definition 1.5. [20] A graph I is said to be a connected graph if and only if

there is a path between each pair of vertices.

Definition 1.6. [20] The distance between two vertices v and w In a graph is
defined to be the length of the shortest path from v to w, and it is denoted by

d(v, w).

Definition 1.7. [20] If I’ is a graph without loops, then the number of vertices
adjacent to a vertex v € V(I') is called the degree of v, denoted by deg(v). And
the sum of degrees of all vertices is:

p(I) == Y deg(q)

geV(I)

Definition 1.8. [9] The number of vertices in I’ is called the order of I. While

the number of edges is its size.

Theorem 1.1. [20] (Hand-Shaking Lemma) In any graph I', the sum of all
the vertex-degrees is equal to twice the number of edges, if |E(I")| is the number of

edges in I', then

> deg(z) =2|B(I)]

zeV(I')

Definition 1.9. [20] If all vertices in a graph have the same degree, then we say

the graph is regular.



Definition 1.10. [20] A graph I' is called simple if and only if it contains no loops

or multiple edges.

Definition 1.11. [20] A simple graph I is called complete, if any two vertices in

I’ are adjacent.

Definition 1.12. [9] If a subgraph of a graph I" has the same vertex set as I', then
it is a spanning subgraph of I'.
Definition 1.13. [9] A cycle in a graph I" that contains every vertex of I' is called

a Hamiltonian cycle of I". Thus a Hamiltonian cycle of I is a spanning cycle of

I'. A Hamiltonian graph is a graph that contains a Hamiltonian cycle.

Theorem 1.2. [20] (Dirac’s theorem) If I' is a simple graph on n vertices (n > 3)

in which deg(z) > % for all z € V(I'). Then I is Hamiltonian.

Definition 1.14. [12] A diameter of a graph I' is defined to be the largest distance

between any two of the vertices in I', we denote it by diam(I").

Definition 1.15. [12] The shortest cycle in a graph I' is called a girth of I', we
denote it by girth(I").
Definition 1.16. [20] A graph I is called planar graph if and only if it can be

drawn without intersection of edges.

Definition 1.17. [12] A clique of a graph I' is defined to be a complete subgraph
of I'. The clique number of I is defined to be the maximum size of clique of I', we

denote it by w([l").

Definition 1.18. [12] Two distinct vertices are said to be independent if they

are not adjacent.



Definition 1.19. [12] In a graph I', if I C V(I') and any two distinct vertices in

I are independent, then I is called an independent set.

Definition 1.20. [12] An independent set I in a graph I' = (V, E) is called a
maximum independent set provided that no other independent set in I' has
larger cardinality, we say an independent set I is maximal if it is contained in no

larger independent set. We say V — I is a covering set of I'.

Definition 1.21. [12] The number of vertices in a maximum independent set in I’

is called the independent number of I', and it is denoted by ().

Definition 1.22. [12] A covering of a graph I' is called minimum covering of I'
if and only if no other covering of I' with less number of vertices. The number of

vertices in a minimum covering of a graph I is called the covering number of I’

and is denoted by 8(I).

Definition 1.23. [20] If I" is a graph without loops, then I' is k-colourable if we
can assign one of k colours to each vertex so that adjacent vertices have different
colours. If I is k-colourable, but not (k — 1)-colourable, we say that the chromatic

number of I is k, the chromatic number of I is denoted by x(I') = k.

Theorem 1.3. [20] The graph Kj is not a planar where K is a complete graph

with 5 vertices.
Theorem 1.4. [9] If I' is any graph of order n, then
X(I) = (D).
Definition 1.24. [20] Let I'y and I's be two graphs. If there exists a bijection

¢': V(FJ) s V([‘g)

6



such that for any two vertices v, w that are adjacent in I';, then ¢(v), ¢(w) are

adjacent in I's, then these two graphs are said to be isomorphic.
Proposition 1.1. [12] In any graph I' on m vertices, we have
a(l’) + B(I") = m.
Definition 1.25. [12] Let I' = (V, E') be a graph, a subset H of V such that every
vertex not in H is adjacent to at least one vertex in H, is called a dominating set.

The number of vertices in a smallest dominating set for I" is called a dominating

number, and it is denoted by v(I).

Theorem 1.5. [20] Let I be a simple planar graph, then there exists z € V(I)

such that deg(z) < 5.

1.2 Groups

In this section, we introduce some definitions, properties and theorems about groups.
Definition 1.26. [11] The order of a group G is defined to be the number of
elements in G if G finite, and if G is infinite then G has infinite order. We will use
|G| to denote the order of a group G.

Definition 1.27. [11] The center of a group G is denoted by Zg, and it is defined

as follows:
e

Zg={9e€ G| gz==9 forall zec G}
Definition 1.28. [11] Let H < G. The left coset of H containing an element a € G
is denoted by C?H and defined as:
aH = {ah| he H}.

i



We call the number of left cosets of H in G, the index of G over H, and it is
denoted by [G : H].
It can easily be proved that, if G is finite then [G : H] = |G|/|H]|.

Definition 1.29. [11] Let H be a subgroup of a group G. If zH = Hz forallz € G,

then H is called normal subgroup. It is denoted by A < G.
It can be easily shown that, the center of G is normal subgroup of G.

Theorem 1.6. [11] (First Isomorphism Theorem) Let G and H be two groups.
If $ : G — H is homomorphism with kernel K then G/K = ¢(H), where kernel K

of ¢ is defined as follows:
K={zeG| ¢@)= fl;f},
where ey is the identity in H.
Theorem 1.7. [11] (Second Isomorphism Theorem) If G is a group and

] _ |HN|

< < = :
H‘G’N—Gthenlﬁ’mm i

Theorem 1.8. [11] If G is a group with prime order, then it is a cyclic group, that

is G is generated by one element.

Definition 1.30. [11] If a group G has exactly two normal subgroups, itself and

the trivial subgroup, then it is called simple group.

Theorem 1.9. [5] Every simple finite non-abelian group can be generated by two

elements.

Definition 1.31. [11] Let G be a group and @ an element in G. The order of a,
denoted by |al, is defined to be the least positive integer m such that a™ = e, where
e is the identity of G. We say that a has infinite order if no such integer exists.

8



Proposition 1.2. [11] If G is a finite group and z € G, then |z| is a divisor of |G|.

Theorem 1.10. [11] If p is a prime factor of the order of a finite abelian group G,

then G contains a nontrivial element of order p.

Definition 1.32. [11] (P-Group) If p is a prime number, and G is a group of

order p™ for some integer n > 0. Then we say that G is a p—group.

Definition 1.33. [11] Let g1 and g» be two elements of a group G. We say that g;
and g, are conjugates in G (and call g, a conjugate of g) if zg1z™ = go for some

z € G. The conjugacy class of g is the set given as follows:

Ci(g1) = {zg:1z7| z € G}

Theorem 1.11. [11] If G is a finite group and =z is.an element of G. Then,
|Cs(2)] =[G : Ce(2)]-
Corollary 1.1. [11] In a finite group, |Cs(z)| divides |G/.

Proposition 1.3. [11] If G is a group and A subgroup of G, then the number of

conjugates of A is [G : Ng(A)] where Ng(A) is the normalizer of A in G, that is
Ng(A) ={z € G| zA= Az}

Note that Conjugacy is an equivalence relation. We call the equivalence classes

of this relation conjugacy classes.
Corollary 1.2. [11] (Class Equation) If G is a finite group. Then
1G] =[G : Co(z)] = Y 1Cs(2)l,

where the sum runs over one element z from each conjugacy class of G.

9



Definition 1.34. The class number of a group G is the number of distinct con-

jugacy classes, and it is denoted by k(G).

Definition 1.35. [11] If G is a group, and a,b € G, we define the commutator
[a, b] as follows:
[a,b] = aba~'b7t.
Proposition 1.4. [11] If G is a group. Let G’ be the subgroup of &' which is
generated by the set
{oyz™ly7Y 2,y € G}

Then G’ is called the commutator subgroup of G.

Theorem 1.12. [11] If the order of a group G is equal to 2p, where p is a prime

number and p > 2 . Then G & Zy, or D,, where D, is the p-dihedral group.

Theorem 1.13. [11] If G is a group of order p?, where p is a prime number. Then
G = Zpe or Zp @ Zy.

Theorem 1.14. [8] Any non-abelian group of order 8 is isomorphic to D; or Qs.
Definition 1.36. [11] Suppose that G is a finite group and let p be a prime. If

p* divides |G| and p**! does not divide |G|, then any subgroup of G of order p* is

called a Sylow p-subgroup of G.
Definition 1.37. [8] A normal series for a group G is a finite chain of subgroups
A; beginning with G and ending with the identity subgroup {e}

GDAyDA; DA DD {e}

in which each A;,; is a proper normal subgroup of A;. The factor groups A;/A;;;
are called the factors of the series.

10



Definition 1.38. [8] A group G is called solvable if it has a normal series with

abelian factors, that is A;/A;4; is abelian for all i =0,1,...n.

Theorem 1.15. [8] A group G is solvable if and only if G™ = {e} for some n > 0,

where G° = G, G% =[G, G], G = [G,GY).

1.3 Finite Fields

The Galois field is a finite field with p™ elements, where p is a prime number and n

is a positive integer, we denote it by Fj, where ¢ = p™.

Proposition 1.5. [15] For every element 3 of a finite field F' with ¢ elements, we

have B9 = 8. That is 87! = 1.
Proof. If B = 0 then 87 = 0.
Let F* be the nonzero elements of F'; that is

F* = {ﬁ1,ﬁ2,---:ﬁq—1}

Now, we need to prove 8¢ = 8. Assume 3 # 0 where f is an element in F**. Thus

F* = {861,BB2, .., BBe-1}
So,
B1Bz2- . By—1=BB1BPs... 8841
= BB . . . By1)
This shows that §7! = 1. O

Theorem 1.16. [15] Given any prime p and integer n > 1, then there exist a unique
finite field of p™ elements.

11



Definition 1.39. [15] An element v in a finite field Fy is called a primitive element

(or generator) of Fy if Fy = Mo

12



Chapter 2

Definition and General Properties

of Non-commuting Graph

2.1 Definition, Examples and Some Properties of

Non-commuting Graphs

In this section, we introduce the definition of non-commuting graph(I'g), and we
give some examples. Then we give some general properties and theorems of non-

commuting graphs.

Definition 2.1. [2] Non-commuting graph of a group G is defined to be the graph
I'¢ where the vertex set is Vr, = G — Zg, such that two distinct vertices x and y

are adjacent if and only if zy # yz.

Exzample 2.1. The non-commuting graph of the symmetric group S; (done by pro-

gram 1 in sagemath):

13
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Figure 2.1: Non-commuting graph of Ss.

Exzample 2.2. The non-commuting graph of dihedral group D, (done by program

1 in sagemath):

Figure 2.2: Non-commuting graph of Dy

Where R, denotes the identity, R and R, denote counterclockwise rotations by

120° and 240° respectively, and Sy, S1 and Sz denote reflections.

Ezxzample 2.3. The non-commuting graph of Quaternion group Qs (done by pro-

gram 1 in sagemath):

14



Figure 2.3: Non-commuting graph of Qs

Proposition 2.1. [16] The non-commuting graph I'g is connected for any group

2

Proof. Let g, h be any two non-adjacent vertices in V(I'g), that is gh = hg and
g,h & Zg then

ge Cg(h)={z € G| hz=azh}

and

he Cslg)={z € G| gv=nzg}.

Since g, h ¢ Zg, there exist a,b € V(I'¢) such that ga # ag and hb # bh.

If g, b are adjacent then there exist a path g —b— h.

If h,a are adjacent then there exist a path h —a —g.

In these two cases g and h are connected by a path of length 2.

If gb = bg and ha = ah then ab is adjacent to both g and h, otherwise, gab = abg,

gab = agb. Hence, ga = ag so we get a contradiction. Thus g — ab — h. O

Proposition 2.2. [2] If G is any non-abelian group, then diam(I'¢) = 2 and

girth(Fg) = 3.

Proof. Let a, b be two distinct vertices in I'¢.
If a, b adjacent then d(a,b) = 1. If not, that is ab = ba. Since a,b € G — Zg, there

15



exist ¢,d € G — Zg, such that ac # ca and bd # db. If a, d are adjacent, then
ad # da and by assumption bd # db.

So, there is a path a — d — b, then d(a,b) = 2.

If ¢, b are adjacent, then ¢b # bc and by assumption ac =& €l

So, diam(I'g) = 2.

If a, d is not adjacent and a, b not adjacent then cd adjacent to both a and b. Then

d(a,b) = 2. Hence, dim(I'g) = 2.

For the second part, let a, b be two adjacent vertices in I'g, then ab # ba.

Hence,

a(ba) # (ab)a and b(ab) # (ab)b

Thus {a,b,ab} is a triangle in I'c. Thus the girth of I'g is 3. O
Lemma 2.1. If G is any group then the degree of any vertex in I'g is
deg(z) = |G| — |Ce(2):

Proof. By definition, deg(z) is the number of vertices adjacent to z.

So, if y € V(I'c) = G — Zg, then

zy € E(I'g) <+ zy#yz and ye V(lg)=G—2Z¢g

Then y ¢ Cg(x).

So the deg(z) is the number of all vertices in G that are not in Cg(z). Then

deg(z) = |G| — | Ca(z)|-

Proposition 2.3. [2] The non-commuting graph of a group G is Hamiltonian.

16



Proof. By previous lemma, if z € V(I'g) where G is non-abelian group, then
deg(z) = |G| — | Ce(2);

since z € V(I'¢) = G — Zg, and we know that Zg = (e Cc(z) then Zg < Ce(z),
and Cg(z) < G but Cg(z) # G since Ig is connected so [G: Cg(z)] > 2, then

|G| = 2|Ce(s)], so |G| — |Ca(w)| 2 |Ce(2)|

|G| - |Z¢| = |G| — |Ce(z)| + | Ca(z)| — | Z¢l

but
|Ce(2)| ~ 1Z6] < | Oo(@)] < 1G] — | Cola)
then
161~ 1261 < (161 - 1Ca(@)]) + (161 - 16a(e)) = 2(1¢1 = 1Cat=)])
o
Gl_Val < 1) - |Cato)] = dea(z) (21)
By Dirac’s theorem 1.2, I'c is Hamiltonian. m]

Proposition 2.4. [16] If G is a group, then
p(G) = |G|(IG| — k(@)

Also, we have

17



Proof.

p(I'g)= D deg(a)

aeV(lg)

= > |G| -|Cs(a)l
aeV{I'g)

= 3 6= > [Cslo)l
acV(I'g) aeV(lg)

e

aeV(Ig)  aeV(I'g)

=lef =16l

a€V(le)

| Cs(a)]
= |GI* - |GIk(G)

and by Hand-Shaking Lemma we get:

p(G) _ |GI(GI - K(G))
2

|E(I'g)| = 5

O

Proposition 2.5. [16] There is no non-abelian finite group G with a normal sub-

group N # {e} such that I'c = I'g/n.

Proof. We use contradiction. Let G be a non abelian group and N < G, |[N| # {1}

such that I'g = I'g/n. Let 7= |G|, f = [N|, e=1Z¢|, s = |N N Zg|

It
g =Tgn Then |Vrgl=|Vrgl
that is
|G — Zg| =|G/N — Zgn|
50

G
1G] - (26| = {;;'l— \Zyl

18



INI|Zg| , 61 = INII€]

%6/l = [N [N
As
|N||Zg| _ INZg|
> >

then by second isomorphism theorem 1.7

|NZg| _ _1Z¢l _ ¢
N [ZenN| s

and
1G] _|ZeN| _ |Gl |Z¢|
16~ Zel = |6/N = Zo| < 771 = W]~ 1A~ TZann A1
e
e RAL NS ot
r-elz—3
r e
Tl
r-fs -
1
T S
(1-7)=<a-3)
AL
. s
£ e
i
From the assumption that |N| # {1} then we can assume that f > 2 so
1
=
eier R $ s
2

Thus |G|/|Z¢| = 1, this implies that G is abelian, which contradicts the assumption.

O

Proposition 2.6. [16] No finite non-abelian group G exists with H < G and

o — -

Proof. We use contradiction. Given a finite non-abelian group G and H < G (proper
subgroup) such that I'g = I'y then |G| — |Z¢| = |H| - | Zx|.

19



By assumption Z¢ $ G, if [G : Zg] = n, then

'

|G| _ |G|
7 A R 7& 1
l Gl T 2 3 n
Since H is a proper subgroup of G, we get |H| = 16l | for some m # 1.

G|

Hence, |H| < 5> 50 We have
1 1
|G| = |H| = |Zr| + |Z6| < 5|G| - |Zu] + Z16l <16l
So we get a contradiction. O

Proposition 2.7. [2] Let G be a finite non-abelian group. Then I'g is planar if

and only if G =2 83, Dy or Qs.

Proof. (=) The non-commuting graphs of S3, D; and Qs are all planar as shown

respectively below, where program 1 was used to draw them.

Figure 2.4: I,

20



Figure 2.5: I'g,

Figure 2.6: I'p,

(«==) Now if I'g is planar. By theorem 1.3 the complete graph of order 5 is not
planar, thus we have w(I'¢) < 5. Now we prove [Zg| < 5.
By contradiction suppose that | Zg| > 5. Since G is not abelian, thereexist z,y € G
such that zy # yz. Let

T = $ZG U ’y’ZG
where 12, yZ¢ are two distinct left cosets and hence disjoint. The induced subgraph
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I of I'c by T is a planar graph. Since I'r is planar graph, by theorem 1.5 there exist
a vertex v € T such that degr,.(v) < 5. But for every vertex w € T, degr,(w) > 5,
which is contradiction.

Since I'¢ is planar, there exist z € G — Z¢ such that deg(z) < 5. We know that

1Ca(@)] < 18 and deg(s) = 161 = Co()], so0

2
|G| |G|
> — > —_—— = —
521G = |Ce(a)| 2 1G] = 5~ ==
|G|
L e
5 <
|G| < 10

If |G|'= 10 or 6, that is of the form 2p where p is prime then by Theorem 1.12 is
isomorphic to Djy and Dg respectively, and the non-commuting graph of Dy, is not
planar, and I'p, & Is, is planer. Then G isomorphic to Ss .

If |G| = 8, then G = Qs or G = Dy by theorem 1.14.

If |G| = 9 or 4, then by Theorem1.13, G is abelian. Hence |G| # 9,4

If |G| = 7,5,3 or 2. By Theoreml.8 G is cyclic group, then G abelian, hence

|G| #7,5,3 or 2. O

Proposition 2.8. [2] If G is a non-abelian group and {g} is a dominating set for

I'g, where g € G, then Zg is the trivial subgroup, g =1 and < g >= Cs(g).

Proof. By contradiction, suppose that Zg 7 {e}. So there exists a non-trivial
element z € Zg then zg € Zg. Otherwise, if zg € Zg, then zgz = x29 forall z € G.
Then

(zg)r=zzg = gz =14,
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hence g € Zg which is a contradiction, then zg is a vertex in I'g, since zg # g,
otherwise z = e. Hence zgg = gzg, then zg also is not adjacent to g, which is a
contradiction to the definition of dominating set.

Now, we prove g°> = 1, also by contradiction. Let g% # 1, then g # ¢~*. So g7! is
not adjacent to g. Which is a contradiction, since g is adjacent to all vertices in ['g.
Finally, since Zg = {e} and g adjacent to all vertices in I'g, then by definition of

centralizer Cg(g) = {e, g} O

Proposition 2.9. [2] Let G be a non-abelian group. Then the dominating set for

I'cis X — Zg where X is a generating set for G.

Proof. Let G =< X > then Y = X — Zg # ¢ since G is non-abelian. From the
definition of centralizer and that X is a generating set of G, then Cg(Y) = Zg.
Now we claim that Y is a dominating set. Let a ¢ Zg then a ¢ C¢(Y). So, there
exists y € Y such that ay # ya, hence there exists y € Y such that a is adjacent to

y. O

2.2 Further Properties of Non-commuting Graphs

of Groups

Now, we introduce some properties of non-commuting graphs that we need in chapter
3. We consider two non-abelian groups G and H such that I'¢ = I'y. Then we study

the properties of the groups that are preserved by this isomorphism.

Proposition 2.10. [2] If G and H are two finite non-abelian groups, where I'c = I'y.
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Then | Zy| is a divisor of gcd([G] —Zg|, |1G|=|Cc)], |Celv)|— |ZG|). That is
1l ged (|61 - 121, 1G] = 1Ce ()], | Co(v)| — |Zal),
for allv € V(Ig).

Proof. Since I'g & I'y, |G — Zg| = |H — Zg|. Now, since I'c = I'y, there exists a
bijection
¢: V(Ig) — V(I'n)
Such that, if v € V(I'g) and ¢(v) := h,
deg(v) = deg(hv)
|G| = Ca(v)| = |H| ~ | Ca(hw)
Since IZH\“HI and |zH|\cH(h,,)| then 1zH|\deg(hv), thus |ZH|]deg(u),

where deg(v) = |G| — |Cg(v)|. That is

1241|161 - |Ca(v)) (2:2)

and since
|Gl ~ 170l = |H| — |Za]
Then
1241|161~ 1Z6) (23)

Then by 2.2 and 2.3,

1241/(1G] - 126) = (161 = [ Ca(v)])-

Then
12xl|(1Co(v) = |Zel), Woe G
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Hence, by the definition of greatest common divisor
|Zy| is a divisor of  ged (|G| — |Zgl, |G| — | Ca(v)l, |Ce(v)| — | Za])-
O

Definition 2.2. [2] If Cg(a) for all a in a group G is abelian then this group is

called an AC-group.

Proposition 2.11. [1] If I'c & I'y where G and H are two finite non-abelian

groups. Then

1. If |G| = |H| then {|Cs(9)| : g € G — Z¢} and {|Cu(h)| : h € H — Zy} are

equal.

2. H is an AC-group, if G is an AC-group.

[
Proof. Let I'g = Iy, hence ¢ : V(I'g) = V(I'y) is a bijection, such that for any
two distinct vertices z,y € V(I'g) are adjacent if and only if ¢(z), #(y) are adjacent
in FH.

If ¢(g) = h where g € G and h € H, then
1. deg(g) = deg(h), that is |G| — |Cg(g)| = |H| — |Cu(h)|. Since |G| = |H| then
|Ca(g)| = |Cu(h)].
2. Let h € H — Zy, then there exist g € G such that ¢(g) =h
Cu(h) — Zn = $(Ccl9) — Zc) (2.4)

Now since G is an AC-group, Cg(g) is abelian for all g € G — Zg. To show
Cy(h) is abelian let z,y € Cr(h), z = ¢(z’) and y = ¢(y'), where z',y/ €
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Ce(g) — Zg. Then o'y’ = y'x’.
Hence, «’,y' are not adjacent in I'g, then ¢(y), ¢(z’) are not adjacent in I'y.

Hence,
#(a")o(y') = o(y)¢(z")
Y = Y%
Then z,y are not adjacent in 'y that is zy = yz. Hence H is also an AC-

group.
O

Proposition 2.12. [2] If G is an AC-group and z,y € G — Zg with zy = yx then

Ce(z) = Ce(y)-
Proposition 2.13. [2] If G is a non-abelian group and I'c = I's,. Then G = 5;.

Proof. Since I's, is planar, then I'g is also planar. Hence by proposition 2.7, G = Ss.

|
Lemma 2.2. Every finite non-abelian group has order greater than or equal to 6.

Proof. If |G| = 1 then the group is the identity so it is abelian groups.
If |G| = 2, 3 or 5, then by theorem 1.8, it is abelian group.
If |G| = 4 by theorem 1.13 G2 Z; or G = Z2 @ Z,, so in both cases G is abelian

group. O

Theorem 2.3. [2] If G and H are two finite non-abelian groups, with g & I'y,

then |G| = |H]|.
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Proof. By induction on |G|.

Since G is finite non-abelian by lemma 2.2, |G| > 6.

If |G| = 6 then G = Sy and by proposition 2.13, |G| = |H].

If |G| > 6, and A is a finite non-abelian subgroup of G, then |A| < |G|. fHisa
finite non-abelian group such that 'y = I'y, then |A| = [H]|.

Now, if ¢ is a graph isomorphism where
¢: V(I'e) — V(I'n)
Then, for all z € G — Zg,
|Ca(@) — Zogw)| = |Cu(é(x)) — Zea(s@)|
If Cg(z) is non-abelian and I'cg(z) = Tey(s(z)), by last induction step
|Ca(2)| = | Cu (=)
By definition of graph isomorphism, |Ce(z)| = [Zs| = |Cu(¢(z))| — | Zx ], so
|Z6| = |Zul-
But we know ['¢ = 'y, Then we have
|G|~ |Ze| = |H| — ||

So,
|G| = |H]|.
O
Lemma 2.4. [3] If G is a finite non-abelian group and H is non-abelian subgroup
of G. Then w(I'y) < w(l'g)-
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Proof. Since H is a subgroup of G, then I'y is also a subgraph of I'c.
Hence,

w(lg) < w(lg).
O

Proposition 2.14. [3] If G is a finite non-abelian group and Hy,...,H, are non-
trivial subgroups such that G = |Ji_, H; and H; N H; = Z for i # j. If, in addition

Ce(g) < H; for all g € H; — Zg, then w(lg) = Y1, w(lm)-
Proof. If C is any clique of I'g, then

C‘=UC,; where C;C H;—Zg forall i€ {l,...,n}

=1

By hypothesis,
[EE
1=1
and since |C;| < w(I'g,), it follows that

ICl <) w(lw)
i=1

Now, if M; is a maximum clique of 'y, for all i € {1,... ,n}. Let

We show that M is a maximum clique for I'g.
First, we show that M is a clique for G.

We use contradiction, assume that there exist a,b two commuting elements where

a,be 0M1

i=1
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such that ab = ba. Thus there exist ¢ # j where
a € H; and be H;

Therefore

a€ Cg(b) < H; and so a€ H;NH; =Zg,

which is a contradiction.
Second, we show that the clique M is a maximum clique for I'g.

If not, then there exists z ¢ M such that za # ax for all a € M. Then
za #axr Ya € M; Vi

Then M; is not a maximum clique for H;, we get a contradiction. So
n
M| =" w(Tw)-

2=

That is,

&)(Fg) = iw(FH,.).

a

Proposition 2.15. [2] If G is a finite non-abelian group. Then x(I'¢) = minimum

number of abelian subgroups of G, where their union is G.

Also, w(I'g) < x(Tg) £ |G : Zg].

Proof. Let X1, X5, ..., X, be abelian subgroups of G such that G = UL, X; wheren

is the minimum number of abelian subgroups with such property. Then the vertices

of I'p in X; are independent. Then x(I'¢) < n.

Let k = x(I'¢), so there exist k independent subsets of V(I'g). Say, Ni,Na, ..
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such that V(I'g) = U?lei. The subgroup generated by < Nj, Zg > is an abelian
subgroup of G for each j. So, £ > n. Then
x(I'e)=n

By theorem 1.4, x(I'¢) > w(I'g). Now, let [G : Zg] = m then G = U, 9:2¢ for
g; € G and < gi, Z¢ > for 1 <4 < m is an abelian subgroup of G so by part one of

the proof x{(I'g) < m. O
Theorem 2.5. [2] If G is a finite non-abelian AC-group, then x(I'e) =w(lc)

Proof. Let

w=w(lg) and k=x(Ic)
and let {ay,as,...,a,} be a maximal clique in I'¢. So each a; ¢ Zg and Cg(a;) is
abelian. Then G =Y, Cg(a:), and k < w. By last proposition x(I'c) = w(l'¢).
Hence,
x(I'e) = w(l'¢)
]

Proposition 2.16. [3] If G is a finite non-abelian group. Then w(I'g/n) < w(Tg)

where G/N is any non-abelian factor group.

Proof. Let C/N be a maximum clique of I'g/y. Then for all cN, ¢c*N € C/N, we
have cNc*N # ¢*NeN. So (¢*) "' ec* ¢ N, then (c*)"'ctec” # e. Then cc* # ¢*c,

thus C is a clique of I'c. So |C| < w(l'g). Hence

w(l'g/n) = |C/N| £ |C| £ w(l¢).
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Proposition 2.17. [2] If G is finite non-abelian simple group. Then YI'g) = 2.

Proof. Since G is a finite simple non-abelian group, G is generated by two elements,

by theorem 1.9, X — Zg is a dominating set of I'c. So ¥(Ig) = 2. O

Theorem 2.6. [18] Let G be a finite group and S a finite non-abelian simple group

with I'¢ = I's. Then G = S.

The proof is long and done by Salomon and Woldar in [18].
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Chapter 3

Non-commuting Graph of SL(n,q)

where n = 2,3

In this chapter we present the main goal of this research. In section 1, we give the
definition and the structure of the special linear group SL(n,g) and some generic
properties. In section two, we consider the non-commuting graph of SL(2, q), we
find the clique number w(I'sr(2,q)), chromatic number x(Tsi(2,q)), independent num-
ber a(Isz(z,q) and the minimum size of vertex cover B(Lsriz,q))-

In last section, we prove |G| = |SL(3, q)| if I'c = I'si(s,q)- We also prove if I'g = I'sys,q)
and | Zsg(s,q| =1, then G = SL(3, ¢). Finally, we find an upper bound of the inde-

pendent number a(I'sz(s,q)) and the minimum size of vertex cover B(Isi(s,q)-

3.1 Definition and Some Properties of SL(n, q)

The general linear group GL(n,q) is a non-abelian group of all invertible n X n

matrices over the Galois field Fj.
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We consider the determinant function :
det : GL(n, q) =+ Fy,

that assign to each matrix in GL(n, q) its determinant. It is a group homomorphism.

The kernel of this homomorphism is the special linear group SL(n,g). That is
SL(n,q) = {M € GL(n,q)| det(M)=1}

The factor group PSL(n,q) = SL(n, q)/Zsi(n,q) is called the projective special

linear group.
Theorem 3.1. [17] The center of SL(n, ¢), denoted by Zsr(n,q), is given by
Zsiinyg) = {mla] m*=1in Fg}.

~ Proof. (C) If m™ = 1 then any matrix of the form mI, belongs to Z 5L, q)-
(D) Let M = (my;) € Zsi(n,g) and consider Ej2()) where E;;(A) is the n x n

matrix formed from the n xn identity matrix I, by replacing 0 with A at the (¢, j)—th
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location [17], A # 0.

AR O miy1 MMz Mz ... Mip
O} BN S ] SN () Moy MMoa T2z ... Moy
Bigl)M= (g 0 1 ... 0| |msi mas msz ... mag
[ES RS [ae=|| Mp1 Mp2 Mp3 ... Mpp
mi + Amar Mz + Aoy maz + Amoz ... Myn + Ama,
ma1 Mag Mag e Mon
= mai M3 M3 ‘e M3n
Mn1 My Mp3 S Mnn
and
M1y AMi+Mi2 Mag ... My,
M1 AMoy +Mga Moz ... May
ME; 5(A) = M3y Amg+Mzg M3z ... Man
Mn1 )\mnl T Mp2 Mp3 - - mnnj

If E12(A\)M = ME; 2(A). Then we have
Mo =m23:m24=...=m2n=0

and
Mg = M3y =My =+ =My =0

and we have also

Mg + TMoy = Amy; +mye  which lead to  my; = mag
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Apply for E; ;(A) for 2 < j < n. Then we get

mi1 0 0 0
0 Moo 0 0
M= 0 0 m33 0
0 0 ORI
and
m11=m22="‘ =mnn:m
So, M =mi; O

Corollary 3.1. | Zsy(n,q| = gcd(n, g — 1)

Proof. Let F, ={0,a,...,a% '}, then Zsy(n,q) = {o'l, | @) =1}

(@ff=1 = dd"=1

Then, by proposition 1.5

Hence,
(g—1)|tn

By theorem on linear congruences ([6] Let g = ged(n,q — 1). Then the linear
congruence cx = d mod m has a solution if and only if g(d. If g'd then cx = d
mod m has exactly g incongruent solutions.), if nt = 0 mod (g — 1), then it has d

solutions where d = ged(n,q — 1).
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Theorem 3.2. [14]
1. |GL(n, g)| = ¢*F2(@* = V(g™ — 1)@ = V(g — 1)-
2. |SL(n, g)| = ¢ (¢" = 1)(¢" = 1)..(® = 1.

Proof. 1. Let A € GL(2, q)- So,

there exist (¢ — 1) choices for first row,
there exist (¢ — ¢) choices for second row,

there exist (¢" — ¢*) choices for third row,

there exist (¢* — ¢"2) choices for (n-1)-th row,

there exist (¢" — ¢"~!) choices for (n)-th row.

Second row is independent from row 1. Third row is independent from row 1
and row 2.(That means row 3 ¢ span{row 1, row 2}).
On the other side, if A is a matrix with linearly independent rows, then A is

invertible matrix. Thus

IGL(n, ¢)| = (" = 1)(¢" - Q)(g" = &) ... (" — " )"~ a"7")
— (=Dl P U Deed il - U e 1)

= (" =D -1 %-1)...(¢ - Vig- ) e )

n(n—1)
— (=t O e —~Dle-1)g 2
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2. Define the function
¢: GL(n,q) — F, such that #(A) =: det(A)
Then ¢ is a group homomorphism and onto. Since ker¢g = SL(n, q), by first
isomorphism theorem GL(n,q)/SL(n, q) = Fy.
Then we have the following:

|GL(n, q)/SL(n, q)| = |Fgl =¢—1

|GL(n, q)| _
B

Then,

B CU e VA Cld,
g1

=¢"7 (" -1 - 1..(¢ - D).

SL(n, g)| = 2

O

Lemma 3.3. [14] Let E;()\) be the elementary matrix with 1 on main diagonal
and X at the (i,j)-th position and zero elsewhere. Then E;;(\) generates SL(n,q),
form =2, 1E;Q0| sielZn AEEL

Proof. Let A be any matrix of SL(n,q) for n > 2, it is sufficient to reduce A to the

identity matrix by elementary matrix operations. Assume a;; = 1 So,

1 ap ... Qin
g1 A2z ... O2n

A=
Lanl Qop ... Opp
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If ag; = 0, multiply A from left by Es(a) to get a matrix with nonzero element in

the (2,1)-position. If ag % 0, we multiply A by Eo1(—ag) from left and Ey3(—aj2)

from right, we get

s Sl 0
—an 1 0
b g L 1

L u

ag1

an1

aiz

Qo2

Aon

1n

1500

an‘n

1

0

—az21

0

1

where B € SL(n — 1,¢) is a produet of elementary matrices by induction on n. [
Proposition 3.1. [19]

1. The generators of SL(2, q) for ¢ =2 or 3 are:

11 J A

XN= and w

Gl

2. The generators of SL(2, q) for ¢ > 3 are:

and
=0 0 o

XA —

3. The generators of SL(3, ¢) for ¢ < 3 are:

5 ) Faema
FSC Nl andi o ST g g
|_0 0 1- i 0 -1 0 |
4. The generators of SL(3, q) for ¢ > 3 are :
-—1 0 1- _a 0 0—
X=1-1 0 0 A AR O e O
g =1 D LU 0 1_

38



Proof. By previous lemma enough to show that each E;;()\) is generated by {X, W}

1. For SL(2,2). Let

Elg(l) = X and Ezl(l) = X""WX.
So, Eh2(1) and Ex (1) generate SL(2, 2) by lemma 3.3.

For SL(2,3). Let

il 0 1
Ni= and W =
Bl 20
Epa(1) = X and Era(2) = B (1)
Eg]_(].) = XWX and E21(2) = Ez_ll(l)

So, E12(1), F12(2), E51(1) and E5;(2) generate SL(2,3) by lemma 3.3.

2. For SL(2,q) where ¢ > 3. we may proceed in the same manner to show that

—1 1 o U
X = and W =
-1 0 0 ot
generate all elementary matrix of SL(2,49) and hence generate SL(2,q) by

lemma 3.3.

3. For SL(3,2).

£t 00 1
X=1010 W=1100
LO(}lJ \_010

The elementary matrices are generated by X and W as follows:
Elg(l) = X
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Eas(1) = WXW-L,

B (1) = WIXW.

En(1) = Bn(1) Bsi (DB (1) Bz (1)
Ean(1) = WEx (1)X 1,

Eia(l) = WEn ()W.

Now for SL(3,3).

X=1010 and W =N 0

The elementary matrices E;;(\) are generated by X and W as follows:
E13(1) = X and Ep(2) = X1

Ey3(1) = WXW™! and Ea3(2) = Ez'(1).

E3(2) = W 1XWand Es (1) = X Eas(1) X1

B (1) = Eas(1)Esi (1) Ex (1) Ex*(1) and Bz (2) = E3'(2).

Esp(1) = WExn ()W and Es(2) = Ex'(1).

Es(1) = WlEy; (2)W and Eys(2) = Ej3'(1).

. For SL(3,q) where ¢ > 3 we may proceed in the same manner to show that

k1

g - < 2
— | (| eyt ()
X=1_9"9 1D and W=10 o« 0
0 -1 0 B0 .

generate all elementary matrix E;;()).
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Definition 3.1. [14] If a group G is equal to its commutator subgroup i.e G = G'.

Then it is called perfect.

Lemma 3.4. [14] The elementary matrices {E;;(X)| A € Fy} are commutators in

SL(n,q) except with n =2 and ¢ =2 or 3.

Theorem 3.5. [14] The group SL(n, g) is perfect. That means, it is equal to its

commutator subgroup, except in the cases SL(2, 2) and SL(2, 3).
Proof. We use lemma 3.4 and proposition 3.1 to get the conclusion. O

Corollary 3.2. [14] SL(n, q) is not solvable for n > 2, except in the cases of

SL(2,2) and SL(2, 3).

Proof. Since SL(n, q) is perfect, except in the cases SL(2, 2) and SL(2,3). Then by

theorem 1.15, SL(n, q) is not solvable except forn=2and g=2 or 3. O
Proposition 3.2. [7] If n > 2 and ¢ > 3 then PSL(n, g) is simple.
Proof. The proof is long, and stated in theorem 2.10 in [7]. O

Proposition 3.3. If | Zsy(n,q| = 1, then the special linear group SL(n, q) is simple

group except SL(2, 2) and SL(2, 3).

Proof. By definition of PSL(2, )
!

PSL(2,q) = SL(2, 9)/ Zsw(2,0)

If | Zsi(n,q)| = 1 then SL(n, ¢) = PSL(n, g), and by proposition 3.2 the group PSL(n, q)
is simple group for every ¢ > 3. So, SL(n,gq) is simple for every ¢ > 3 and
| Zstn,0)| = 1- O
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Proposition 3.4. [2] If G = GL(2, q), then G is an AC-group.
Proof. The proof of this proposition is done by Abdollahi, lemma 3.1 in [2]. a

Lemma 3.6. [1] Let G be a finite non-solvable group. If G/Zs = PSL(2,q) and

G' = SL(2, q), where g > 3, then G is an AC-group.
Proof. The proof of this lemma is done by Huppert [13], satz 3.9. O
Theorem 3.7. SL(2, ¢) is an AC-group.

Proof. For SL(2, 2) and SL(2, 3) we use program 2 in sagemath to show that these
groups are AC-groups. For SL(2, q) where g > 3, it is non-solvable perfect group

and by lemma 3.6, it is an AC-group. [51]

Proposition 3.5. [2] Let G = GL(2, ¢) and z ¢ G — Zg. Then Cc(z) is conjugate
to exactly one of the following subgroups of G:

1. D={D e G | where D is diagonal matrix}, |D| = (¢—1)? and D = Cg(D)

q(g+1)

for every D € D — Zg. Also the number of conjugates of D is 5

2. A cyclic subgroup Z of order ¢> — 1, T = Cg(X) or any generator X of I, and

glg—1)

the number of conjugates of Z is 5

3. SZg, where S is the Sylow p-subgroup, where ¢ = p™ such that for all a € Fq,

1l a
€S,
SENal
|SZa| = ¢ —¢q, and SZg = Cg(X), where X is any non-trivialelement in SZg.

Also, the number of conjugates of SZ¢ is ¢ + 1.
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Moreover, each of the above subgroups is equal to the centralizer of an element in

G and the union of all conjugates of the above subgroups is G.

Abdollahi proved this proposition in [2] by using satz 7.2 in [13].

3.2 The Non-commuting Graph of SL(2, q)

In this section, we give some examples of the non-commuting graph of SL(2, q).
We give the independent number a(Isp(2,q)), vertex chromatic number X(Lsiiz,9))s
clique number w(Isr(z,q)), Minimum size of vertex cover B(Lsri2,q) of the non-

commuting graph of SL(2, g).

Ezample 3.1. The non-commuting graph of SL(2, 2):

By sagemath program 3 in appendix we get:

Figure 3.1: Non-commuting graph of SL(2, 2)

The group SL(2, 2) is finite non-abelian group of order 6. |Zsr(2,2)] = 1. The
Non-commuting graph of SL(2, 2), as shown in figure 3.1, is connected graph and

diameter 2 and girth 3. It is Hamiltonian graph, planar and not regular graph. We
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find also by using sagemath that:

a(FSL{2,2)) =2, W(FSL(Q,E)) =4, JB(FSL(Z,z)) =3, X(FSL(Q,E)) =4.

Ezample 3.2. The non-commuting graph of SL(?, il

Figure 3.2: Non-commuting graph of SL(2, 3)

The group SL(2, 3) is finite non-abelian group of order 24. | Zsp(2,3)| = 2. The
Non-commuting graph of SL(2, 3), as shown in figure 3.2, is connected graph, di-
ameter 2 and girth 3. It is Hamiltonian graph but not planar and not regular graph.

By using sagemath program 3 we get that:

a(Fspee,9) = 4, w(Tsres) = 7 Blspz.9) = 18, x(TsLiz,3) =7

Example 3.3. The non-commuting graph of SL(2, 4):
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Figure 3.3: Non-commuting graph of SL(2, 4)

The group SL(2, 4) is finite non-abelian group of order 60. | Zsri2.4y) = 1. The
Non-commuting graph of SL(2,4), as shown in figure 3.3, is connected graph, di-
ameter 2 and girth3. It is Hamiltonian graph but not planar and not regular graph.

By using sagemath program 3 we get that:

o Tsp.p) = 4 w(Tszzp) = 21, B(Tsue,) = 55 9 lsuzp) = 21

Ezample 3.4. The non-commuting graph of SL(2, 5):
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Figure 3.4: Non-commuting graph of SL(2, 5)

The group SL(2,5) is finite non-abelian group of order 120. | Zsrqe,5| = 2.
The Non-commuting graph of SL(2, 5), as shown in figure 3.4, is connected graph,
diameter 2 and girth 3. It is Hamiltonian graph but not planar and not regular

graph. By using sagemath program 3 we get that:

a(Tsye,5) = 8, w(Isz(2,5) = 3L, B(Tsree,5)) = 110, Xx(I'srz,5)) = 31.

Example 3.5. The non-commuting graph of SL(%’,%?)

cd

46



Figure 3.5: Non-commuting gra.I;h of SL(2,7)

The group SL(2,7) is finite non-abelian group of order 336. |Zspe,m| = 2.
The Non-commuting graph of SL(2,7), as shown in figure 3.5, is connected graph,
diameter 2 and girth 3. It is Hamiltonian graph but not planar and not regular
graph. By using sagemath program 3 we get that:

a(Lspez,m) = 12, w(Isye,m) = 57, B(Lsrie,m) = 322, x(I'sz(z,m) = 57.
Note that, from corollary 3.1, the order of the center of SL(2, q) is given by:

1 if q even
| Zsp(2,0)| =

2 if q odd
Hence, if g = 2" is even then PSL(2, q) = SL(2, q)

Proposition 3.6. [2] The dominating number of I'sy(z,q), Where g is a power of

prime, is equal to 2.

Proof. SL(2, q) is a finite non-abelian group.
Case 1: If | Zsy(2,| = 1 then SL(2, q) = PSL(2, q), thus SL(2, g) is simple group,
so by proposition 2.17, ¥(Lsz(n.q) = 2-
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Case 2: If | Zgp(2,9)| = 2, let X be the generating set for SL(2, q), then by propo-
sition 2.9, X — Zgy(2,q) is the dominating set, also by proposition 3.1 we know that

|X| =2 and X N Zsg(e,q) = ¢- Then (Isr(z,q) =2

O
Lemma 3.8. 2] If ¢ > 2. Then
w(Teus.g) = X(Tareq) = ¢ +a+1
Proof. By proposition 3.5,
¢ +4q
1. The number of conjugates of D = 5
&
2. The number of conjugates of any cyclic group is 5
3. The number of conjugates of SZg = (¢+ 1)
Then the class number of G is
+1 -1
q(q2 )Jrq(q2 e e T,
Thus,
?+g+1
@= |J Cceles) and Cole:)NColg)=2c for i#j
i=1
Since G is an AC-group, then gi,...,gg24q41 are pairwise non-commutative. So

w(l'g) = ¢> + ¢+ 1. On the other hand, since G is covered by ¢% + g + 1 abelian
subgroups,

w(l¢) g +q+1.
Hence,

w(Tenez.q) = XTerezg) = +a+1
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Lemma 3.9. [2] The clique number of the non-commuting graph I'pgy2,q) is given

as follows: ]
@ tg--l 9f ¢>5
21 if g=4ord
w(Tpsiiz,g) = ﬁ
5 if ¢g=3
L4 if g=2

Proof. We consider the following cases:
1. If ¢ = 2. Using program 3 in sagemath, we find that, w(lpsi(z,2)) = 4.
2. If ¢ = 3. Using program 3 in sagemath, we find that, w(I'psr(2,3)) = 5.

3. If ¢ = 4 or 5. Using program 3 in sagemath, we find that, w(Ipsi(s,y)) =

w(Fng{g'g)) =21

4. Now, if ¢ > 5. By the definition of the clique number and the partition of
PSL(2, q), the size of the partition set is equal to w(I'psr(2,q)) @S given in

([13], Theorem 8.5 ). Then, if k := | Zpsriz,q)|
(g+ (g —Dg/k | (g+1)(g—1)a/k
2(¢—-1)/k 2(¢+1)/k

(g+1)g , (g—1g
S bbicaey

w(Tpsp(z,g) = (¢ +1) +

= Uil

=g+1+¢°

354

O

Theorem 3.10. The clique number of the non-commuting graph I'sp(2,q) is given

49



as follows:

!

f+qg+1 if ¢>3

w(Fsz,0) = j 4 if ¢g=2

k? i_f q= 3
Proof. If ¢ = 2 or 3 we get the clique number by program 3 in sagemath.

If ¢ > 3, by lemma 2.4 w(I'y) < w(l'g), where H < G. We know that SL(2,q) <

GL(2,q), so

w(Tsys,g) < w(leusg) =C +a+1
w(lsrz,qg) S ¢ +a+1 (3.1)

Now, PSL(2, q) is the factor group of SL(2, ¢) and by lemma 2.16,
w(Tpsr(e,q) < w(T SLd )
w(lspie,g) = ¢ +q+1 (3.2)
From equation (3.1) and (3.2), we get
w(Tspz,q) = +q+1
O

Theorem 3.11. The chromatic number of non-commuting graph I'sy(z,q) is given

by:

,

@?+q+1 if g>3
x(Fsi(e,0) = § 4 iff ¢=2

7 if g=3
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Proof. By theorem 3.7 the group SL(2, ¢) is an AC-group, then by proposition 2.5,

X(Tszz.0) = w(Tsuz,0)- O
Lemma 3.12. [10] The centralizers of SL(2, g) have the following orders:
1. If g is even, then

g, org-+1 if g=2
| Csie.0(2)] =

g org+1, org—1 if g#2

2. If g is odd, then

2q, org-+1 if g=3
| Cspiz,0(2)| =

2g, org+1, org—1 if ¢+#3
Lemma 3.13. [4]

1. If § is maximal independent set of I'¢, then SU Zg is a maximal abelian

AT

subgroup of G.

9. Tf X is maximal abelian subgroup of G, then X — Zg isa maximal independent

set of I'g.

The proof of the lemma is easily done by definition of maximal independent set

and definition of maximal abelian subgroup.

Lemma 3.14. Let S € V(I'g), then S is the maximal independent set in I'g if and
only if

S = C¢(S) — Ze
That means

Ce(S)=SUZg
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Proof. (C) Let z € S, so for all s € S, s is not adjacent to z.

rs = ST forall se S

So,

z € Ce(S) — Zg

Hence,

SE @5 — .
(2) Let g € Og(S) — Zg, then g §é Zg. And,
gs = sg¢ Vse S

Since g € V(I'g), then g is not adjacent to all s € S. That is SU{g} is independent

set. Since S is the maximal independent set, then g € S. a

Theorem 3.15. The independent number of the non-commuting graph I'syz,q) 18 :

q if g even
a(Lspes,q) =

2(¢g—1) if ¢ odd
Proof. Let .S be a maximum independent set of I'sy(s,q). By lemma 3.13, SU Zgs(2,q)
is maximal abelian subgroup of SL(2, q). Since SL(Z2, q) is an AC-group, then for

all z € SL(2, q) the centralizer Csy(z,q)(2) is abelian. So,
| Csr2.0)(2)| < |SU Zsp(z,9)] forall =z € SL(2,9) (3.3)
On the other hand. From lemma 3.14
S U Zsy(2,90= Csriz,q)(S) = {g € SL(2,q), gr==zg, foralze 5}
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S U ZSL(E,Q) — ﬂxeSCSL(z'q)(x) S 055(2‘,;)(51’3) for &11 r e S
Then,

|S U Zsp2,9)] < |Cspe,qy(z)l forallz e S (3.4)

Hence, by equation 3.3 and equation 3.4 we have:
|SU Zsp(e,99| =n where n is the maximum among all orders of centralizers.

By lemma 3.12 we have two cases:

Case 1: If ¢ is odd, then n is equal to one of the followings:

2(g —1)
1g—1
(e

Case 2: If ¢ is even, then n is equal to one of the followings:

g—1

14 |
)

g

Since S is the maximum independent set, n is equal to maximum number. Then,

g if ¢ iseven
2(q—1) if ¢ isodd

O

Corollary 3.3. The vertex cover of the non-commuting graph I'sp(g,q) is given as
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follows:

P —2¢—1 if g iseven
B(siz,q) =

q(q® — 3) if ¢ isodd

Proof. By proposition 1.1,

B(Lsriz,9) = |V (Fsree.0)| — e(Isri2.0)
and we know that

®—qg-1 if gq even
|V (Isuep)l =

@—q—2 if ¢ odd
Therefore, we have the following cases:

Case 1: If g even:

ﬁ(FSL(z,q)):qs—q—l—q=q3—29'—1
Case 2: If q odd:
B(Tsyog) =¢* —q—-2—2¢+2=¢"—3¢=a(d" —3).
O
Proposition 3.7. Let G be a group such that I'c = I'si(2,q)- Then |G| = |SL(2, q)|.

Proof. By Theorem 3.7, SL(2, q) is an AC-group, and I'g = Isi(2,q), since the clique

number w(Isyz,q9)) < n where n = |V (I'sz(z,q)|- Then by proposition 2.3,

|G| = |SL(2, 9)!.
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The following theorem is proved by Abdollahi in [1].

Theorem 3.16. [1]If ¢ > 2, G is a group, and I'g = Is(2,q)- Then G is isomorphic

to SL(2,q).

3.3 The Non-commuting Graph of SL(3, q)

In this section, we consider the non-commuting graph of SL(3, q), we introduce some
properties of this graph.

Example 3.6. The non-commuting graph of the SL(3, 2) is done by program 3 in

sagemath.

Figure 3.6:
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The group SL(8, 2) is finite non-abelian group of order 168. [Zsys,q| = 1.
The non-commuting graph of SL(8, 2) as shown in figure 3.6 is connected graph,
diameter 2 and girth 3. It is Hamiltonian graph but not planar and not regular

graph. We used a program 3 in sagemath to find that:

a(Tsria2) = 6, w(Tsres,2)) = 57, B(Tsres,2)) = 161, X(I's(s,2)) = 57

Note that by corollary 3.1, |Zgy(s,q| = 1 or 3, since :

I it e 1)
| Zst(3,0)] = gcd(3,9 — 1) =
g iE 3g 1]
Lemma 3.17. [?] The table of the order of centralizers of SL(3,q) is given as

follows:
*lg—1*g+1)(¢+g+1)
¢*(g—1)
glg—1)*(g+1)
glg—1)
(¢—1)?
-1
@F+g+1
¢ if ged(3,q—1) L
3¢> if ged(3,g—1)=3

Proposition 3.8. [2] The dominating number of I'si(s,q) where ¢ is a power of

prime is equal to 2.
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Proof. SL(3, q) is a finite non-abelian group.
Case 1: If |Zsys,q| = I then SI(3,q) = PSL(3,q) and hence, it is the simple
group, so by proposition 2.17, (I’sy(s,q)) = 2.
Case 2: If | Zsy(s,g)| = 3, let A be the generating set for SL(3, ¢) then by proposition
2.9, A — Zgy(s,q) is the dominating set for I's(s,q), also by proposition 3.1 we know

that |A| = 2 and AN Zgr(s,q) = ¢- Then Y syes,q)) = 2- O
Theorem 3.18. The upper bound of independent number of the non-commuting

graph Isr(s,q) is given as follows:

¢ —-¢—1 if |Zsysgl=1
a(Tsris,9) <

¢'—¢ -3 i |Zsysgl=3
Proof. Let S be a subset of V(SL(3,q)), where S = {s1,52,...,5n} maximum

independent set of I'sr(s,q) such that |S| = n.
T T s e R s IS

So the degree of x is

deg(z) < |V (I'srs,q) — IS

= |SL(3, 9)| — | Zsrs.pl — 1 (3.5)
But from lemma 2.1 , we know that

deg(z) = |SL(3, q)| — | Csrs,0) ()] (3.6)
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From 3.5 and 3.6, we have
ISL(3, )| = | Zsz3,0| = n = |SL(3, g)} — | Csi(s,0) ()]

| Zsp(s,q| + 1 < | Cs3,9)(2)]
So,
n < |Csiis,g)(2)| — | Zs(s,q)|

By lemma 3.17 there are two cases as the following:
Case 1: If | Zgy(s,q)| = 1. Then the independent number is less than the maximum

number of the following:

4

g U—l=g -1
gg=1g+1) 1= -~ +g-1
glg—1)-1=g*—q—1
V(@-1)*-1=¢*—¢

Frl—T=g>—2
F+qg+l-1=¢+¢q

il

\

The maximum number is ¢* — ¢* — 1

Case 2: If |Zgy(s,q)] = 3. Then the independent number is less than the maximum
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number of the following:

r

Plg-1)-3=¢"-¢-3
glg—1*g+1)-3=¢"—¢® -’ +q¢—3
glg—1)—3=¢"—q-3
W(Q—U2ﬂ3=qW—q—2
P?—-1-3=¢"—14

F+q+1-3=¢*+q-2

3¢% —3=3(¢" - 1)

\

The maximum number is ¢* — ¢® — 3 O

Corollary 3.4. The lower bound of vertex cover of the non-commuting graph

Isi(3,q) 1s given as follows:
B(Tsys) 2P —* - —¢* +2¢°
Proof. By proposition 1.1,

B(Tspis,6) = IV (Tsreg)| — ¢(Tsrea)
and we know that

- -+ -1 if Zgpg=1
|V (Tsus.a)l =

F-* -+ -3 i Zsyee =3
Therefore we have the following cases:

Case 1: If | Zsys,q| = 1t

B(TsLs,g) = E-Ff-F+PF-1- (" —¢-1)
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> —®—2¢° —¢' +2¢°

Case 2: If | Zsp(s,q) = 3:

BTsLeg) >~ -+ —3—(¢* —¢*—3)

zqs_qﬁ_qfv_q4+2q3

The following table gives the independent number and number of vertex cover

for SL(3, q) by using program 5 in sagemath as follows:

q | e(Isusg) | B(Tsies.q)
2 6 161

3 12 5603

4 45 60432

) 30 371969

7 144 5630541
8 2 16482743
9 90 42456869
ikl 132 212427467

From the table, we may expect that for ¢ = 2,3,4,5,7,8,9,11L:
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1. The independent number of the non-commuting graph (Psi(a,q)) is given as

follows:

q2 +4q if IZSL(s,q)| =1l
a(Tsis,q9) =

32 —1) if |Zsyzgl =3

2. The vertex cover of the non-commuting graph (I'si(s,q)) is given as follows:

- -+ —F—qg-1 if |Zseel=1
B(I'syis,q)) =

¢ - -+ -3¢ if  [Zspegl=3

Theorem 3.19. [3] The clique number of the non-commuting graph of SL(3,3) is

w(I'sis,8) = 1067,

Proof. Let A;, As, As, Ay be subsets of SL(3, 3) such that A;NA; = Zgy(s,5) where
i # 7, be given as follows:

Ay ={Csr5.5(9) | g€ 8L(3,3), |Csyss(9)l=06}and A= 468.

A ={Csr3,9(9) | 9€5L(3,3), |Csus.s(9)l = 8} and |Ag| = 351.

Az ={Csrs,9(9) | 9€8L(3,3), |Csps,zs(9)l =9} and 4] =104.
As={Csys(9) | g€ SL(3,3), |Csis,s(9)l= 13} and [Ay| = 144.

Where the orders of centralizers of SL(3, 3) are calculated in program 4, {5616, 54,
48,13, 9, 8, 6}.

Let X = {as, bj, ¢k, ds} such that:

a; € A 1<1i<468
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Bcids Lo 351
ceE Ay L= he 0l
dre A, 1<5i<14

Then,

SL(3,3) = U Csr(s,s)(z)
zeX

Now, by proposition 2.14 we have
w(sr(s,9) = | X| = |Ay| + |Aa| + |As| + |A4] = 468 + 351 + 104 + 144 = 1067

O

Theorem 3.20. Let G be anon-abelian group such that I'g & I'y where M = SL(3,q).

Then |G| = |M|.

Proof. Since G, M are two non-abelian groups and g = I'yy. Then we have by

theorem 2.3, |G| = |M|. O
Note That: If G is any non-abelian group and I'c & I'si(n,q), then |G| = |SL(n, g)|-

Theorem 3.21. If G is a group such that I'c = I'sy(s,q) where |Z¢| = 1. Then

G = S1(3, q)-

o4
Proof. Since |Zsr(s,g| = 1, then it is simple group (see proposition 3.3 ). By theorem

2.6, G = SL(3, q) O
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Appendix

Sagemath Programs
Program 1. We find I'g use the following program:

# 1- G=Symmetric Group (S3).

sage: (=SymmetricGroup(3)

# 2—- element=Set of all elements.

sage: element=G.list()

# 3- Z=Center of Group G.

sage: 7=G.center ()

# 4- AM=adjacent matrix.
sage: AM=matrix(G.order())
sage: for i in range(G.order()):
for j in range(G.order()):

if element[i]*element[j]<>element [j*element[i]]:
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AM[i,jl=1

# 5- graph= Non-commuting graph of a group G.
sage: graph=Graph (AM)
sage: for i in range(G.order()):
for j in range(Z.order()):
if element[i] .matrix()==Z[j].matrix():
graph.delete_vertex(i)

sage: graph.show(vertex_size=50, vertex_labels=False)

# Now, the planar graph of a Symmetric Group (S3).
sage: void= graph.1ayout(layout="p1anar",save_pos=True)

graph.plot (vertex_size=50, vertex_labels=False)

# Now, if G=Dihedral Group (D4).

sage: G=DihedralGroup(4)

# element=Set of all elements.

sage: element=G.list()

# Z=Center of Group G.

sage: Z=G.center()

# AM=adjacent matrix.
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sage: AM=matrix(G.order())
sage: for i in range(G.order()):
for j in range(G.order()):
if element[i]*element[jl<>element [j*element[i]]:

AM[i, j1=1

# graph= Non-commuting graph of a group G.
sage: graph=Graph(AM)
sage: for i in range(G.order()):
for j in range(Z.order()):
if element[i] .matrix()==Z[j] .matrix(:
graph.delete_vertex(i)

sage: graph.show(vertex_size=50, vertex_laﬁels=False)

# Now, the planar graph of a Dihedral Group (D4).
sage: void= graph.1ayout(layout=“planar",save_pos=True)

graph.plot (vertex_size=50, vertex_labels=False)

# Now, if G=Quaternion Group (Q8).

sage: G=QuaternionGroup()

# element=Set of all elements.

sage: E=G.list()
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# Z=Center of Group G.

sage: Z=G.center()

# AM=adjacent matrix.
sage: AM=matrix(G.order())
sage: for i in range(G.order()):
for j in range(G.order()):
if element [i]*element[jl<>element [j*element[i]]:

AM[i,jl=1

# graph= Non-commuting graph of a group G.
sage: graph=Graph(AM)
sage: for i in range(G.order()):
for j in range(Z.order()):
if element[i] .matrix()==Z[j].matrix():
graph.delete_vertex(i)

sage: graph.show( vertex_size=50, vertex_labels=False)

# Now, the planar graph of a Quaternion Group (Q8)
sage: void= graph.layout (layout="planar",save_pos=True)

graph.plot(vertex_size=50, vertex_labels=False)

Program 2. To verify if the special linear group SL(2 ,2) and SL(2,3) are AC-

groups in sagemath use the following program:
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# First: Define The group G=SL(2,2).
sage: G=SL(2,GF(2))
G1=G.as_matrix_group()

G2=G1.as_permutation_group()

# E= Set of all elements in G.

E=G2.1list()

# Z = Center of a group G.

7Z=G2.center()

# Second: Define V equal the number of vertices in a graph.
sage: V=G.order()-Z.order();V

5

# Finally: We check if C_G(x) for all x in G-Z(G) is abelian to
know if the group is an AC-group.
sage: C=[]
forid in b:
if G2.centralizer(i).is_abelian()==True:
C.append(i)

if len(C)==V:
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print’G is an AC-group’

G is an AC_group

# First: Define The group G=SL(2,3).
sage: G=SL(2,GF(3))
G1=G.as_matrix_group()

G2=G1.as_permutation_group()

# E is the set of all elements in G.

E=G2.1list()

#Z is the center of a group G.

Z=G2.center()

# Second: Define V to be the number of vertices in a graph.
sage: V=G.order()-Z.order();V

22

# Finally: We check if C_G(x) for all x in G-Z(G) is abelian to
know if the group is an AC-group.

sage: C=[]

for i in E:

if G2.centralizer(i).is_abelian()==True:
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C.append (i)
if len(C)==V:
print’G is an AC-group’

G is an AC_group

Program 3. The following program is to find Isp(n,q) Where g is the power of prime.

# First, Define the group G=8SL(2,2).

sage: G=SL(2,GF(2))

# FElement=The gset of all elements in G.

sage: Element=G.list()

# The center Z(G) is Z.

sage: Z=G.center()

# Find the order of G.
sage: G.order()

6

# Define adjacent matrix of a graph G as follows:
sage: A=matrix(G.order())
sage: for i in range (G.order()):

for j in range (G.order()):
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if Element[i)*Element [j]<>Element[j]*Element[i]:

Ali,jl=1

# The non-commuting graph of a group G is:
sage: graph= Graph(A)
sage: for i in range(G.order()):
for j in range(Z.order()):
if Element[i] .matrix()==Z[j] .matrix():

graph.delete_vertex(i)

# Now, we find the properties of this graph as follows:

# I is the independent set of graph.
I= graph.independent_set(); print’Independent number=",len(I)

Independent number= 2

# CV is the set of vertex cover of graph.
CV=graph.vertex_cover () ;print’Minimum size of vertex cover=’,len(CV)

Minimum size of vertex cover= 3

# W is the clique number of graph.

W=graph.clique_number() ;print’Clique number=’,W
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Clique number= 4

# X is the chromatic number
X=graph.chromatic_number () ;print’Chromaric number=’,X

Chromaric number= 4

We can use this program to find the non-commuting graph for SL(2, 3), SL(2, 4), SE(2,.5)

and SL(2, 7)
Program 4. We can find the set of order of all Csi(s,q)(z) by the following program.

# Defind the group G=SL(3,2).
sage: G=SL(3,GF(2))
G1=G.as_matrix_group()
G2=CG1.as_permutation_group()
E=G2.1list ()

7=G2.center()

# Find order of the C_G(x).
sage: C=[]
for i in E:
C.append (G2.centralizer(i).order())
set(C)

set(l16s, 8. 3, 4, [l)
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# Defind the group G=SL(3,3).
sage: G=SL(3,GF(3))
G1=G.as_matrix_group()
G2=G1.as_permutation_group()
E=G2.1list ()

Z=G2.center()

# Find order of the C_G(x).
sage: C=[]
for i 1n E:
C.append (G2.centralizer(i).order())
set(C)

set([48, 6, 8, 9, 13, 5616, 54])

Program 5. To find the independent number and minimum vertex cover of a group

G = SL(3, q) where g is a power of prime.

# G=SL(3,2)
sage: G=SL(3,GF(2))
G1=G.as_matrix_group()

G2=G1.as_permutation_group()

# Z the center of a group G.
Z=G2.center()
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# Also, let A be the maximum number of order of conjugacy classes
subgroup such that is commutative.
A= max([H.order() for H in G2.conjugacy_classes_subgroups ()

if H.is_commutative()])

# I be the number of independent set.
I= A-Z.order(); print’The independent number=’,I

The independent number= 6

# B be the number of vertex cover.
B= G2.order()-A; print’The minimum size of vertex cover=’,B

The minimum size of vertex cover= 161

# G=SL(3,3)
sage: G=SL(3,GF(3))
G1=CG.as_matrix_group()

G2=G1.as_permutation_group()

# Z the center of a group G.

Z=G2.center()

# Also, let A be the maximum number of order of conjugacy classes
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subgroup such that is commutative.

A= max([H.order() for H in G2.conjugacy_classes_subgroups ()
if H.is_commutative()])

# I be the number of independent set.

I= A-Z.order(); print’The independent number=’,I

The independent number= 12

# B be the number of vertex cover.
B= G2.order()-A; print’The minimum size of vertex cover=’,B

The minimum size of vertex cover= 5603

# complete in the same maner for g=4,5,7,8,...

Program 6. This program find the w(l'¢) G = S5(3, 2]

# G=SL(3,2).

sage: G=SL(3,GF(2))
G1=G.as_matrix_group()
G2=G1.as_permutation_group()
E=G2.1list()

7=G2.center()

# First, If H is the set of all subgroups in G.

sage: H=G2.subgroups();print’ number of subgroups in G is equal

-
13
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to ’,len(H)

number of subgroups in G is equal to 179

# If H1 is the set of all cyclic subgroups in G.

sage: H1=[]

for i in H: 24

if 1.is cyclic()==True:

H1.append(i)

print’Number of cyclic subgroups in G is equal to ’,len(H1)

Number of cyclic subgroups in G is equal to 79

# H2 be the number of cyclic subgroups, whose the intersection between
any two of them is the center of group.
sage: H2=[]
fors i dn Hi:
for j in H1:
if i.intersection(j)==Z:
H2.append(j)
len(H2)
H3=set (H2) ,len(H3)
6121
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# If C is the set of all centralizers of a group G.
sage: C=[]
for i dn E:

C.append(G2.centralizer(i))

# If C_G(x) subgroup of i where i in H2 put it subgroup in H4.

sage: H4=[]

for i in H3:

for j in C:
if j.is_subgroup(i)==True:
H4.append (i)

print’number of subgroup such that C_G(x)subgroup of i is equal to’,
len(set (H4))

number of subgroup such that C_G(x)subgroup of i is equal to 57

# Let A be the set of all C_G(x) such that |C_G(x)|=8
sage: A=[]
for i in range(len(H4)):
if G2.centralizer(H4[i]).order ()==8:
A.append(G2.centralizer (H4[i]))
print’ |A|=",len(set (A))

[Al= 0
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# Let B be the set of all C_G(x) such that [C_G(x)|=3
sage: B=[]
for i in range(len(H4)):
if G2.centralizer (H4[i]).order()==3:
B.append (G2.centralizer (H4[i]))
print’|B|=’, len(set(B))

[B|= 28

# Let D be the set of all C_G(x) such that |C_G(x)|=4
sage: D=[]
for i in H4:
if G2.centralizer(i).order()==4:
D.append(G2.centralizer(i))
print’|D|=’,len(set(D))

|Bl= 21

# Let X be the set of all C_G(x) such that |C_G(x) =7
sage: X=[]
for i in H4:
if G2.centralizer(i).order()==7:
X.append (G2.centralizer(i))
print’ |X|=’,len(set (X))

[X]= 8

i



# Finaly, the clique number of non-commuting graph of G is:
sage: print’cliqu number=’ ,
len(set(4))+len(set (B))+len(set(D))+len(set (X))

clique number= 57
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