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Abstract— Economic dispatch is one of the mathematical 

optimization problems in power system operation and planning. 

It aims to find the most efficient output for generating units that 

meets the demand of the load at the lowest possible cost while 

satisfy all operational constraints. This paper examines 

numerous methods to address the economic dispatch problem, 

including deterministic approaches like the Lagrange multiplier 

method, metaheuristic optimization algorithms such as the 

Genetic Algorithm, the Firefly Algorithm, the Harris-Hawks 

optimization algorithm, and their hybridizations. The study also 

utilizes PowerWorld Simulator, a software package that solves 

economic dispatch problems using sequential linear 

programming. Two different case studies have been conducted 

on IEEE 5-bus and 30-bus test systems for demonstrating the 

effectiveness of the proposed algorithms. The results of various 

case studies showed that the deterministic methods are the most 

effective for solving the economic dispatch problem. It was also 

shown that the hybrid algorithms, which combine the strengths 

of different optimization techniques, can achieve a significant 

enhancement in total cost compared to the conventional 

metaheuristic methods. 

Keywords—Economic Dispatch, Firefly Algorithm, Harris 
Hawks Algorithm, Genetic Algorithm, PowerWorld Simulator. 

I. INTRODUCTION  

Power generation and distribution systems must be cost-
effective in order to be sustainable and reliable. To achieve 
this, it is essential to schedule the real and reactive power 
output from each generation unit in order to minimize 
operating costs within power networks [1]. Economic dispatch 
(ED) involves finding the optimal output levels for power 
generation units within power networks. The aim is to reduce 
the generation cost while fulfilling load demand and 
operational constraints such as power balance constraint and 
generation capacity constraint [2].  

Recently, many researchers have paid more attention to 
address the ED problem under different operational 
constraints for power networks. Different mathematical 
programming and optimization techniques have been utilized 
to address the ED problem, including classical deterministic 
numerical methods, metaheuristic algorithms, and hybrid 
methods [3]. The classical deterministic numerical methods 
include the Lagrange multipliers method (LMM) [4], the 
lambda-iteration method [5], the interior point method [6], 
linear programming algorithm [7], nonlinear programming [8] 
algorithm, the quadratic programming algorithm [9], the 
dynamic programming method [10], and the decomposition 
technique [11]. 

To obtain the optimal solution to the nonlinear equations 
of ED problem, many metaheuristic optimization methods 
have been proposed in the literature [12]–[20]. These 
techniques include Particle Swarm Optimization (PSO) [12], 

Genetic Algorithm (GA) [13], Differential Evolution (DE) 
[14], Biogeography-Based Optimization [15], Simulated 
Annealing [16], Firefly Algorithm (FA) [17], Cuckoo Search 
Algorithm [18], Teaching Learning Based Optimization [19], 
and Gravitational Search Algorithm [20]. These approaches 
are able to effectively handle non-differentiable and 
discontinuous cost curves while obtaining global or near-
global solutions. 

Various hybrid optimization techniques have also been 
utilized to optimize the ED problem. These approaches 
combine the strengths of different optimization techniques to 
achieve better performance, such as evolutionary 
programming with sequential quadratic programming 
(EPSQP) [21], particle swarm optimization with sequential 
quadratic programming (PSO-SQP) [22], hybrid GA-DE [23], 
and hybrid Artificial Bee Colony and Artificial Rabbits 
Optimization [24].  

In this study, we focus on solving the conventional ED 
problem by using various approaches, including the Lagrange 
multiplier method (LMM), the Genetic Algorithm, the Firefly 
Algorithm, the Harris-Hawks Optimization algorithm (HHO), 
and the hybrid combinations of these metaheuristic 
algorithms. Furthermore, the PowerWorld Simulator (PWS), 
which utilizes sequential linear programming, is used to 
address the problem. To show the effectiveness of these 
approaches, two different case studies have been conducted on 
IEEE 5-bus and 30-bus test systems. The main contributions 
of this work can be summarized as follows: 

• Compare various optimization algorithms and 
simulation software to explore which algorithm 
provide the most optimal solution for conventional 
economic dispatch problem. 

• Evaluate the performance of the proposed algorithms 
and simulation software on two different power 
systems. 

The rest of this paper is organized as follows. Section II 
describes the economic dispatch problem and its mathematical 
formulation. Section III provides an overview of the proposed 
algorithms used to address the problem. Section IV presents 
analysis the obtained results with the proposed algorithms for 
each test system. Finally, Section V concludes the paper. 

II. PROBLEM FORMULATION 

Economic dispatch is the process of obtaining the best 
output of a set of power generation units to meet the total 
forecasted load at the minimum cost, given operational 
constraints. The cost function of power generation in a power 
system is usually modeled as a quadratic function as given by 
[25], [26]: 



 ������ = ����
� + 
��� + �� (1) 

where ��  represents the output of the i-th power generator. ��, 

�  and �� are the coal consumption characteristic coefficients 
of the i-th generator. The optimal power output dispatch aims 
to minimize the overall cost of the power grid by finding the 
most suitable output levels for all generators within the 
system, as defined in the following equation [27]: 

 �
 = min ∑ �������
���  (2) 

where n is the number of power generation units in the system. 
The ED optimization algorithm solves the optimization 
problem in (2) to determine the optimal output power levels 
for all generators in the system. This ensures that the power 
grid operates efficiently and meets the load demand, while 
minimizing the total cost of generation. 

The objective function in (2) has two constraints. The first 
constraint refers to the power balance constraint, ensures that 
the total power generated by all power plants in the system 
matches the total power demand. This can be expressed as 
follows [28]. 

 ∑ ��
�
��� − �� = 0 (3) 

where ∑ ��
�
���  is the total power generation, and  ��  is the 

system load. The second constraint is the generation capacity 
constraint, which limits the generation capacity of each unit so 
that it is not exceeded. This can be expressed as follows [29]: 

 ��
��� ≤ �� ≤ ��

��� (4) 

where ��
���  and ��

���  are the minimum and maximum 
generation limit of i-th generator, respectively. 

III. OPTIMIZATION ALGORITHMS AND SIMULATION 

SOFTWARE 

The next step after formulating the ED problem is to solve 
it using optimization algorithm, mathematical approach, or 
simulation software. The techniques utilized to solve the ED 
problem are introduced and discussed in the following 
sections. 

A. Lagrange Multiplier Method (LMM) 

LMM is a mathematical approach that can successfully 
resolve optimization problems with constraints. It is 
particularly useful for finding local maxima and minima for 
functions while satisfying equation constraints [30]. To 
achieve this, the LMM adds a penalty term to the objective 
function for each constraint. The Lagrange multiplier is a 
constant that ensures that the new objective function is 
minimized when the constraints are satisfied [31]. In 
applications such as ED, the LMM proves beneficial in 
determining optimal generation levels for each generator 
within a power system. 

B. Genetic Algorithm (GA) 

GA is a metaheuristic optimization algorithm that was first 
proposed by John Holland in the 1960s [32]. It is inspired by 
natural evolution process, where organisms with the best 
characteristics are more likely to survive and reproduce. A 
random population of solutions is first generated by the 
algorithm. A vector of generation levels for each generator 
makes up each solution. Based on the value of its objective 

function, each solution's fitness is evaluated. The solutions 
with the highest fitness are more likely to be selected for 
reproduction. The algorithm then selects two parents from the 
population based on their fitness. The parents reproduce to 
produce offspring. The offspring inherit their genes from their 
parents. Some of the offspring are mutated. Mutation is a 
process that changes the genes of an offspring [33]. Mutation 
introduces new genetic material into the population and 
prevents the population from converging to a local optimum 
[34]. The offspring are then evaluated and added to the 
population. The process is repeated until a solution with the 
desired fitness is found [35]. The proposed algorithm is 
terminated under various conditions, such as when a 
maximum number of iterations is reached, after a certain time, 
or when the fitness threshold is reached. The algorithm can 
also be terminated if the objective function has not 
significantly improved over a certain period of time. 

C. Firefly Algorithm (FA) 

FA is a nature-inspired algorithm that mimics the flashing 
behavior of fireflies to solve complex optimization problems 
[36], [37]. It was developed by Yang et al. in 2007 and has 
been shown to be effective in solving several optimization 
problems [38], [39]. It works by simulating the movement of 
fireflies in a dark environment. Each firefly has a brightness 
that is inversely proportional to its distance from other 
fireflies. The higher the brightness of a firefly, the more 
appealing it becomes to other fireflies. This means that 
fireflies are more likely to move to the brighter fireflies, which 
are also the solutions with the optimal objective function 
values [40]. In minimization problems, the firefly with the 
highest light intensity has the smallest objective function. In 
other words, the firefly with the best solution is the most 
attractive to the other fireflies. This process of attraction and 
movement continues until a firefly obtain a solution with a 
sufficiently small objective function [36]. In comparison to 
other optimization techniques, one of the FA key advantages 
is its ability to simultaneously find all local optima as well as 
the global optimum. This is because fireflies are not restricted 
to moving to the nearest brighter firefly. Instead, they can 
move to any firefly that has a better solution, regardless of its 
distance. This makes FA a good choice for problems with 
multiple local optima. Another advantage of FA is that it is 
relatively simple to implement. It does not require any 
complex mathematical concepts or algorithms, making it a 
good choice for engineers and scientists who are not experts 
in optimization. Finally, FA is well-suited for parallel 
implementation, meaning that different fireflies can work 
almost independently of each other. This makes FA a very 
efficient algorithm for solving large optimization problems 
[41]. 

D. Harris Hawks Optimization Algorithm (HHO) 

HHO is a recent nature-inspired optimization technique 
that simulates the cooperative hunting strategies of Harris's 
hawks to solve complex optimization problems [42]. One of 
the unique features of HHO is its time-varying rule, which 
allows it to flexibly shift from exploration to exploitation as 
the algorithm progresses. This makes HHO more adaptable to 
difficult problems. Another advantage of HHO is its 
progressive convergence process. The algorithm starts with a 
exploration phase, where it searches for a wide range of 
solutions. As the algorithm progresses, it enters an 
exploitation phase, where it focuses on improving the best 
solutions it has found so far. HHO has been shown to produce 



high-quality results on a variety of problems. It is also 
relatively easy to implement and use. The exploitation phase 
of HHO is particularly effective because it greedily picks the 
best solutions explored so far and ignores low-quality 
solutions. This helps HHO to quickly converge to the best 
solution [43], [44].  

E. Hybrid Algorithms 

Hybridization is used to improve optimization results by 
combining the discussed metaheuristic algorithms. The 
following sections describe each of the hybrid algorithms 
proposed in this study. 

1) Hybrid Harris Hawks – Genetic Algorithm (HHO-

GA): It combines the strengths of the HHA and GA to 

optimize power generation levels more effectively and 

efficiently. The optimization process alternates between HHA 

and GA in each iteration. During even iterations, HHA 

initializes the population of candidate solutions, represented 

by hawks' positions in the search space. The update rule of 

HHA guides the hawks to explore the search space by 

adjusting their positions based on random vectors and the 

current best solution. This exploration phase helps the 

algorithm cover a wide range of potential solutions, enabling 

it to escape local optima and discover promising regions. 

During odd iterations, GA introduces a new population of 

candidate solutions, utilizing genetic evolution mechanisms 

like selection, crossover, and mutation. The fitness evaluation 

drives GA towards improved solutions, making use of 

information from previous iterations to fine-tune the results. 

By combining HHA and GA alternately, this hybrid approach 

benefits from efficient exploration and exploitation, leading to 

better convergence towards the optimal solution for power 

generation levels. 
 

2) Hybrid Firefly – Genetic Algorithm (FA-GA): Similar 

to HHS-GA, the FA-GA combines the strengths of FA and 

GA to optimize power generation levels more effectively. The 

optimization alternates between FA and GA, where FA 

initializes the population of potential solutions using fireflies' 

positions. Fireflies' positions are updated using attraction and 

light absorption coefficients, facilitating exploration and 

escaping local optima. In odd iterations, GA introduces a new 

population, employing genetic operations for refining 

solutions based on historical information. This sequential 

combination of algorithms enables the hybrid FA-GA 

algorithm to find better solutions than either FA or GA alone. 
 

3) Hybrid Harris Hawks – Firefly Algorithm (HHO-FA): 

Converting the current solution into one or more enhanced 

solutions can improve the performance of the optimization 

algorithm. A combination between the HHS and FA 

algorithms is utilized to perform this improvement. HHA 

explores the search space, identifying promising regions, and 

the best solution obtained is used to initialize FA. FA 

improves the solutions, encouraging further exploration while 

avoiding local optima. By combining these algorithms 

sequentially, the hybrid approach aims to achieve high-quality 

solutions for power generation level optimization. 

F. PowerWorld Simulator(PWS) – Sequential Linear 

Programming 

PWS is a powerful and user-friendly power system 
simulation software [45]. It can efficiently solve power flow 
problems for systems with up to 100,000 buses [46]. PWS 
also has a wide range of other features, including integrated 
ED, economic analysis of area transactions, power transfer 
distribution factor calculation, short circuit analysis, and fault 
analysis [47]. Furthermore, PWS has the capability to 
simultaneously solve the ED problem to optimally allocate 
generation in an area. This is conducted using sequential 
linear programming (SLP). SLP works by linearizing the 
problem around an operating point and then solving the 
resulting linear problem. This process is repeated until the 
solution converges. SLP is a powerful tool for solving the ED 
problem, as it can handle complex systems with multiple 
constraints [4].  

IV. SIMULATION RESULTS 

This section presents the results of using the proposed 
algorithms for solving the ED problem. These algorithms 
were tested on two case studies. The results were obtained 
using a precise simulation program developed in MATLAB 
software version 2021a. 

A. IEEE 5-bus test system  

The proposed algorithms' efficiency in minimizing the 
total system cost is evaluated using IEEE 5-bus test system 
with 3 generation units. The examination has been conducted 
on the IEEE 5-bus test system as depicted in Fig. 1. It shows 
its component parts, which consists of 3 thermal generation 
units.  

 

Fig. 1. Single line diagram of the 5-bus test system. 

The generator parameters for the system under study are 
shown in Table 1. The case considered three generating units 
to meet the demand of 392 MW. 

TABLE I.  COST COEFFICIENTS AND POWER LIMITS FOR THE 3 UNITS. 

Unit 
Generation Limit Fuel Cost Coefficients 

Pmin 
(MW) 

Pmax 
(MW) 

A 
 ($/MW) 

B 
($/MWh) 

C 
($/h) 

1 100 400 0.016 10 373.5 

2 150 500 0.018 8.0 403.6 

3 50 300 0.018 12 253.2 
 

 



The actual power generation by each unit is presented in 
Table II. It is shown that the PWS and LMM methods 
achieved the lowest total system cost, followed by the HHO-
GA, FA-GA, HHO-FA, HHO, GA and FA algorithms. The 
FA algorithm achieved the highest total system cost. The PWS 
and LMM algorithms are both deterministic methods, while 
the other algorithms are metaheuristic methods. This 
demonstrates that deterministic methods can be effective for 
solving the ED problem. The comparative tests performed on 
IEEE 5 bus test system have illustrated the effectiveness of the 
proposed hybrid methods as shown in Fig. 2, which shows that 
the improvement in total cost achieved by the proposed 
methods. The hybrid methods achieved significant 
improvements in total cost over the metaheuristic methods on 
the IEEE 5-bus test system. The HHO-GA algorithm achieved 
a 0.8% reduction in total cost over the GA algorithm, from 
5730.57$/h to 5724.37$/h. The FA-GA algorithm achieved a 
1.1% reduction in total cost over the GA algorithm, from 
5730.57$/h to 5725.93$/h. The HHO-FA algorithm achieved 
a 0.3% reduction in total cost over the FA algorithm, from 
5732.46$/h to 5729.50$/h. These improvements in total cost 
may seem small, but they can lead to significant savings for 
power utilities, especially over the long term. 

TABLE II.  SIMULATION RESULTS FOR TEST SYSTEM I. 

Method 
P1 

(MW) 

P2 

(MW) 

P3 

(MW) 

Total Cost 
($/h) 

PWS 141.12 180.99 69.88 5724.30 

LMM 141.12 180.99 69.88 5724.30 

HHO-GA   139.39   181.78  70.82 5724.37 
FA-GA   133.34  186.76    71.89 5725.93 

HHO-FA   131.22   194.69   66.08 5729.50 

HHO 131.34 195.37 65.29 5729.90 

GA 149.23   165.59    77.17 5730.57 

FA 159.05 173.95  59.01 5732.46 
 

 

Fig. 2. Improvement of the proposed hybrid algorithms compared to the 
metaheristic algorithms for test system I. 

B. IEEE 30-bus test system  

Fig. 3 depicts the single-line diagram of the IEEE 30-bus 
network, which consists of 6 thermal generation units. The 
aim is to optimize the generation levels of the generation 
levels, with the main goal of minimizing the total cost of 
generation. The generators data and line and bus data of test 
bus system have been taken from [48], the generators power 
production cost and its power generating limits are given in 
Table III. The load demand of 500 MW is connected with the 
6- generating power system. 

TABLE III.  COST COEFFICIENTS AND POWER LIMITS FOR THE 6 UNITS. 

Unit 
Generation Limit Fuel Cost Coefficients 

Pmin 
(MW) 

Pmax 
(MW) 

A 
 ($/MW) 

B 
($/MWh) 

C 
($/h) 

1 10 125 0.15247 38.53970 756.7989 

2 10 150 0.10587 46.15916 451.3251 

3 35 225 0.02803 40.39655 1049.998 
4 35 210 0.03546 38.30553 1243.531 

5 130 325 0.02111 36.32782 1658.569 

6 125 315 0.01799 38.27041 1356.659 
 

The results of the simulation for IEEE 30-bus test system 
are demonstrated in Table IV. The table shows the production 
of each generating unit in MW and the total system cost for 
each algorithm. 

The results show that the LMM and PWS methods 
achieved the lowest total system cost of $26,970.4 and 
$27,003.5, respectively. This indicates their effectiveness in 
solving the ED problem for this case study. The hybrid 
methods HHO-GA, HHO-FA, and FA-GA also achieved very 
good results, with total system costs of $27,016.8, $27,022.2, 
and $27,005.3, respectively. These hybrid methods are able to 
combine the strengths of different metaheuristic algorithms, 
which enables them to find better solutions than the individual 
metaheuristic algorithms. The GA algorithm also achieved 
good results, with a total system cost of $27,019.7. However, 
the hybrid methods were able to achieve slightly better results 
than the GA algorithm. The FA and HHO algorithms achieved 
the highest total system costs, with values of $27,028.0 and 
$27,041.3, respectively.  

 

Fig. 3. Single line diagram of the IEEE 30-bus system [49]. 
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TABLE IV.  SIMULATION RESULTS FOR TEST SYSTEM II. 

Method P1 P2 P3 P4 P5 P6 

Total 

Cost 

($/h) 

PWS 16.62 10.00 61.56 77.99 178.1 154.93 26970.4 

LMM 17.39 10.00 61.51 78.12 178.1 154.93 27003.5 

FA-GA 17.10 10.00 60.76 73.83 185.2 153.08 27005.3 

HHO-GA 18.43 11.05 47.15 75.56 181.9 165.83 27016.8 

GA 18.24 10.02 60.07 67.01 199.7 145.00 27019.7 

HHO-FA 21.64 12.57 69.22 72.56 176.9 147.12 27022.2 

FA 24.17 10.03 51.64 63.69 175.6 174.89 27028.0 

HHO 18.92 13.19 52.19 59.10 182.4 174.18 27041.3 
 

To show the effectiveness of the proposed hybrid 
approaches, Fig. 4 presents the enhancement in total cost 
achieved by these hybrid techniques. It is shown that the 
HHO-GA algorithm achieved a 0.08% reduction in total 
system cost over the GA algorithm, from $27019.70 to 
$27016.80. The HHO-FA algorithm achieved a 0.10% 
reduction in total system cost over the FA algorithm, from 
$27028.00 to $27022.20. The FA-GA algorithm achieved a 
0.05% reduction in total system cost over the GA algorithm, 
from $27019.70 to $27005.30. It clearly depicts that the 
hybrid algorithms, have achieved an improvement in the total 
cost compared to the conventional metaheuristic methods. 
This highlights the efficiency of these hybrid approaches in 
finding solutions that lead to significantly reduced overall 
costs. 

 

Fig. 4. Improvement of the proposed hybrid algorithms compared to the 
metaheristic algorithms for test system II. 

V. CONCLUSION 

This study investigated the application of various 
optimization algorithms to address the economic dispatch 
(ED) problem in power systems. The study used different 
methods, including deterministic techniques (LMM and PWS) 
and metaheuristic approaches (GA, FA, and HHO), both 
individually and in hybrid configurations(FA-GA, HHO-FA, 
and HHO-GA). The proposed algorithms were applied to the 
IEEE 5-bus and IEEE 30-bus test systems. The results showed 
that the deterministic methods were effective for solving the 
ED problem. The proposed hybrid methods achieved 
significant improvements in total cost over the conventional 
metaheuristic methods. Future research could investigate the 
performance of these hybrid methods on other power system 
test systems, including those with renewable energy sources 
and energy storage devices. Additionally, the proposed hybrid 
methods could be adapted to solve other power system 
optimization problems, such as unit commitment. 
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