Arab American University — Palestine

Faculty of Graduate Studies

Software Protection Framework based on Code
Obfuscation Technigques

By
Ihab “Mohammad Zuhdi” Abed Nassra
Supervisor

Prof. Adwan Yasin

This thesis was submitted in partial fulfillment of the requirements
for

the Master’s degree in
Computer science
Feb, 2018

© Arab American University — Jenin 2018. All rights reserved.

Software Protection Framework based on Code
Obfuscation Techniques

By
Ihab “Mohammad Zuhdi” Abed Nassra

This thesis was defended successfully on 24/2/2018 and approved by:

Committee members Signature

1. Prof. Adwan Yasin (Supervisor) e

2. Dr. Mujahed Eleyat (Internal Examiner)

3. Dr. Rushdi Hamamreh (External Examiner)

DECLARATION

The work provided in this thesis, unless otherwise referenced, is the

researcher's own work, and has not been submitted elsewhere for any other

degree or qualification.

DEDICATION

To whom who have entrusted me to God and taught me life ... Her great
heart and generous tenderness

My dear mother

To the partner of life and the leader of the tender

My beloved wife

To those who waited for my success and strengthened my dreams

Dear brothers and sisters and friends

To his great credit

My supervisor Prof. Adwan Yassin

To my distinguished teachers and colleagues

Dedicate this research

ACKNOWLEDGMENT

This thesis would not be possible without the kindly support of my supervisor Prof. Adwan
Yasin, who was abundantly helpful and offered invaluable assistance, guidance and support.

| wish to express my gratitude also to the committee members for their effort and time in
discussing and reviewing this thesis, where without their assistance and knowledge this
research would not be successful.

| wish to express my sincere gratitude to my family whom extremely encourage and
support me all the time.

Special respect and appreciation to my colleagues at work for their support. 1 am also
grateful to all people who assisted in achieving my work successfully.

Finally, | extended my thanks to Arab American University, especially faculty of graduate

studies and faculty of engineering and information technology for their support.

Abstract

Protecting intellectual property against tampering and reverse analysis is an urgent issue to
many software designers, where illegal access to sensitive data is a form of copyright
infringement. Software owners apply various protection techniques in order to address this
issue. Many of used techniques are weak, since they are vulnerable to both dynamic and static
analysis, where the other are very costly since they impose considerable performance penalties.
Moreover, these techniques are often not good as they rely on “security through obscurity”
which may deter some impatient adversaries, but against a dedicated adversary they offer little
to no security. Thus, if an adversary succeeds in extracting and reusing a proprietary algorithm,
the consequences will be significant. Moreover, reverse engineering remains a considerable
threat to software developers and security experts.

In this thesis, we proposed a software protection framework based on code obfuscation
techniques in order to protect software against reverse analysis and unwanted modifications.

First, we presented an obfuscation technique for java programs in order to protect software
against static reverse analysis. The proposed technique integrates three levels of obfuscation;
source code, data transformation, and bytecode transformation level. By combining these
levels, we achieved a high level of code confusion, which makes the understanding or
decompiling the obfuscated programs very complex or infeasible.

Second, we proposed an obfuscating technique based on integrating encryption mechanism
within recurrent neural network (RNN) in order to enhance the software protection level
against dynamic analysis. Neural network provides a robust security characteristic in software
protection, due to its ability of representing nonlinear algorithms with a powerful
computational capability. The system is designed to enable the neural network generating of

different encryptions for the same protected data. This creates a many to one relationship

Vi

between the keys and the encryption. In order to complicate the reverse analysis of the software
and hindering the Concolic testing attack, we train the neural network to simulate conditional
behaviors of a program. Consequently, we replace the critical points of program’s data and
control flow with a semantically equivalent neural network. Our method is designed to enable
the neural network to execute conditional control transfers where the complexity of neural
network ensures that the protected behavior is turned to a complicated and Incomprehensible
form, making it impossible to extract its rules or locating the accurate inputs which lead to the
execution paths behind the network.

Third, we proposed a tamper resistance mechanism based on obfuscation and diversification.
The proposed mechanism combined call graph obfuscating, stack obfuscating, diversification,
memory layout obfuscating, randomization, and basic blocks reordering in order to thwart
tampering and increase the difficulties of static reverse analysis and dynamic stack tracing
analysis. A random mapping table is used for mapping the addresses of call and return
instructions during the runtime of program. Moreover, a complex call graph of functions is
generated to make the obfuscated program harder to attacker analyses and understanding due
to a complex dependency of the obfuscated graph. Additionally, a hash mapping table are
applied for encoding and decoding of the data stack frames during the runtime of program.

The protection presented by our techniques is immune against static analysis, dynamic
analysis, and tampering. Most tampering and revers analysis tools cannot easily undo the
obfuscation effects of our techniques, as the attacker will consume a lot of time removing the
bugs of the decompiled buggy program. Furthermore, our evaluations confirm that obfuscation
effects in our system significantly increase the difficulties in revealing the obfuscated software.
On the other hand, the performance evaluation confirms that our techniques protect software

efficiently with an acceptable excess in execution time and memory usage.

Vii

TABLE OF CONTENTS
Chapter 1 : INTrOUCTIONc.oeeeeeieeceseee ettt e ae e sseesreenne s 1
11 INEFOAUCTION ...ttt 1
1.2 OVEIVIEW .ottt ettt b ettt sttt ettt b et 1
1.3 Problem STAtEMENT........ccoiriiiricc s 3
1.4 Significance of the RESEAICNooiiiiiiiee e 3
15 Research Aims and ODJECTIVES........cccviririiieieieee e 4
1.6 RESEAICN QUESTIONSc.eeeiieiieieie sttt sttt s st estesreensesteeneeseeneensenns 4
1.7 ReSEArCh HYPOTNESES......ooovieieiicteeece ettt sttt et st aa et et esbeesaenne s 5
1.8 Research ContribDULIONS ..ot 6
1.9 Research Organizationccccoeeeeeirereneneeee sttt eaen 7
110 PUBIICALIONS. ..ottt sttt st ss et nae 8
Chapter 2 : Research Methodologyccceeeeeieiieieiieceee e 10
2 INEFOAUCTION ...ttt sttt ettt e b e eb e sb bbb et nneneenenaens 10
2.1 OVEIVIBW ..ttt sttt ettt ettt b bbbt s et e e st ebe bt sbe b e st et et et eneenenbens 10
2.2 RESEAICN DESIGN....ueiiiitieiecieceeteetete ettt et st e st e e e e besteenaesbeenaesreernentens 10
2.3 DAL SOUFCEScoveiieiiirieeenteeee ettt st sttt sr e e sr e e e sn e s nnes 10
2.4 Data ColleCtion STrategiS.....cciieierierieierieseeriseereese et esteseestesteseessesseessesseessessesseesens 11
24.1 Literature REVIEW STFategycccceevverieieiesieeie e seeste e steste et e e esnesseenne s 11
24.2 Experimental Results and Experience Strategyccoceeeveveevesenceeneeeeieseeeene 11
2.5 Quantitative and Qualitative ANAIYSIScccoiieieiiiiieiecececcese e 12
2.6 Issues of Reliability and Validitycccoveieiiiieiiceceeeeeee e 12
Chapter 3 : LItErature REVIEW..........ccccvvieiieieeeereete ettt sae e enee e e 14
3 LITErature REVIEW......eieiieiieeieet ettt 14
KT8 A = 7= Tod (o 011 T RSP 14
3.2 Threats to Software APPLICALIONSccevvirieiirieiereeere e 17
3.2.1 T T SRR 17
3.2.2 Reverse ENGINeering ANAIYSISc.eeiiiiiiererieierie ettt eas 18
3.2.3 =T 0] o1 T o TSRS 20

3.3 Protection Techniques AgaiNSt PIiFACYccccivievierieierieieesieseseesie e e sae e seneeens 21

viii

3.4 Protection Techniques Against Reverse Engineering Analysis.........ccccoceveverveienennne 22
341 COdE ENCIYPLION. ...ttt 24
3.4.2 White-BoX Cryptographyccecieeeviiiieiese ettt et s a e nas 28
3.4.3 Self-MOIfYING COUE.....c.eeiieeeeceee et s 32
3.5 Tampering ResiStance TEChNIQUEScoueveiriririeriesterieieee ettt 36
351 SOFtWATE GUAKTS....c.eeeeieieieiee ettt 36
352 Code SigNiNg TECANIQUES........c.oriiirirteteieeeeee st 39
3.5.3 ODbBIIVIOUS HASNING ..ottt sttt 40
354 Software DIVErSifiCAtION...........ccovueirieiineirccee e 41
Chapter 4 : Code Obfuscation Models & TeChNIQUES.........cccceeveririeienieneneneneaees 47
4 INEFOTUCTION ..ottt be e 47
4.1 Code Obfuscation Techniques to Thwart Static Analysisccccecvverenerenerienenenne. 47
4.2 Code Obfuscation Techniques to Thwart Dynamic Analysis..........cccoceveveneieenenne. 52
421 Control FIOW ODTUSCALIONc.coeiiriirieiiieieeeeesese e 53
4.2.2 Bytecode and Intermediate Code Obfuscationccecceviveevieiecveececececeeee, 57
4.2.3 Binary Code Obfuscation TEChNIQUES.........ceccveviieieieiecececeee e 62
4.3 Hybrid Obfuscation TEChNIQUEScccoviiiirieirircrereeeee s 65
4.4 Other Code Obfuscation Models & TeChNIQUES........c.cccvveeieriieieiereeeere e se e 69
4.5 Summarization and Critical DISCUSSIONcceerieirieririeirieinieereeeeee e 71
A6 CONCIUSION ...ttt ettt b et 73
Chapter 5 : Proposed Software Obfuscation Modelccocveiieieiieniecieceeeee, 76
5 INEFOAUCTION ..ottt ettt sttt e ettt 76
5.1 TRIrEAE IMOUEN ...ttt 77
5.2 Proposed Model ArChItECTUIEcocveiieeieieeeeeereeee et 78
5.3 Static Analysis Prevention (SAP) MOGUIE.........ccoeverieiereceeeseeeee e 79
53.1 RS = L (o g T 12T 80
5.3.2 D TF= TS3:=T 0 0]] 1] o U 80
5.3.3 [TC R ofo 0] 011 F- U o] o 1SR 80
5.3.4 Overview of Proposed MOGUIEccovveieiieeeeeeeereeee e 81
535 Source Code Obfuscation SUD ModUIE............ccoeiiiniiniiinccececees 83
5.3.6 Data Obfuscation SUD MOAUIEcc.ccveieiiirieec e 88

5.3.6.1 Description of used encryption algorithmscccevirieieninien e, 90

5.3.6.2 Permutation AIGOrtNM (PA) ..ot 91
5.3.6.3 Substitution AIGOrthM (SA)......coiiirereeiee e 92
5.3.7 Bytecode Obfuscation (BO) SUb MOAUIEcoouieeeviiieeeeeeeeee e, 94
5.4 Dynamic Analysis Prevention (DAP) Module..........ccoovevieieceiieiereceeeceeese e 96
541 DYNAMIC ANGAIYSIS ...ttt e 96
54.2 Overview of Proposed ModUIE...........c..coeieieiiinieecee e 97
543 Data Obfuscation Using Neural Network............cocoeveenennneneeceeeeeee 98
5.4.4 Control Flow Obfuscation Using Neural NetworK........c.cccoeevevevieveneeceesieceeeee, 102
545 Neural NetWOrK TraiNiNgcccceceieeieceeeeeeetere e eee e sae e aesresrneneens 104
5.4.6 Neural Network Implementationccoceevereneneneneeeeesese e 105
5.4.7 Error Detection and Correction MechaniSmc.ccoeveieerineneneneneeeeeeeeniens 107
5,5 Tampering Resistance (TR) MOAUIE..........ccoooieviiiieieceseeece e 109
55.1 Overview of Diversification and Call Stack Analysis........c.ccccoevveveiieceeveneenenne. 109
55.2 Overview of the Proposed MOdUIE..........c.ooveveiieieceieeeeceeee e 111
55.3 Call Graph Obfuscation sub module............ccoovviririnineieeee 112
554 Stack Obfuscation SUD MOTUIE..........ccooveiiiririreeeee s 116
555 DIVEISITICALION ...ttt 118
Chapter 6 : Evaluation & Experimental ReSUItSc.ccceeveeievieiiceceeeee 121
B INEFOAUCTION ...ttt sttt 121
6.1 Evaluation & Experimental Results of Proposed Static Analysis Prevention (SAP)
121

6.1.1 EXPErimental RESUILSoouiiieieceeeceeeee ettt ettt st eve e 122
6.1.2 Performance EVAlUtioN ..ot 126
6.1.2.1 StOrage (COUL SIZE) ..ocvevieriieierieeeeeciesteeteste st e ettt e ste st e e stesreebesre e s e seeseensesseensenes 126
6.1.2.2 EXECULION THME ..ottt st 128
T T \V/ =T 0 [0 RS URSTS 129
6.1.3 Comparative Evaluation and IMpProvemMents...........ccceeceveeeereeeeieeseseeneesreenenes 130

6.2 Evaluation & Experimental Results of Proposed Dynamic Analysis Prevention.... 133

6.2.1 Evaluate the Performance of the Proposed Neural Networkccccceceveeeennne 134
6.2.2 Evaluation Against Runtime Execution Monitoring and Memory Analysis 135
6.2.3 Evaluation Against Pattern Matching and Reverse Engineering Attack............. 137

6.2.4 PerformanCe EVAIUATIONoooviiiieeeeeeeee ettt ettt e e e e e e e eeeaee e e e e s s e s esneaeeeas 139

6.2.5 Comparative EValUALIONccoiiiiiieeieieeeeseteee s 141

6.3 Evaluation & Experimental Results of Proposed Tamper Resistance Mechanism. 143

6.3.1 Evaluation Against Disassembly and Control Flow Analysis..........cccccveeevereennen. 143
6.3.2 Evaluation Against Stack Tracing and AnalysiSccecveeeeveveeiereneecese e 145
6.3.3 Performance EValUAtIONccooiviiiiiiiieereseeeeeeee e 146
6.3.4 Comparative EValUALIONccoiiiiiieeieieeeeseteee s 153
Chapter 7 : Conclusions and FUture WOrKccoovevevininineninieeceneeesee 157
RETEIEINCES. ...ttt 161
YA o] 011 o [TSR R SR STURSR 175

Xi

LIST OF TABLES
Table 5.1 : Transformation Table (Yasin & Nassra, 2016)........ccccceveeveeceereesieeieeneennens 90
Table 5.2 : Example of Permutation Vector using 8 size encryption key (Yasin & Nassra,
2016). vttt ettt et ettt e et et R e s et e Rt Re et e st eseetete st etesaenteneetenean 91
Table 5.3: Example of Permutation Vector using 8 size encryption key. (Yasin & Nasra,
2006) .ttt sttt ettt et et et et et Rt h et e Rt ese et e st eseetese st etenaenteneeteean 99
Table 6.1: De-compilation testing reSUILS.ooveieieiininin s 124
Table 6.2: Storage size of original and obfuscated COUES.cccceverciereeniecienienieeene 127
Table 6.3: Execution time of original and obfuscated codes.cccevveeveenieeireennnnne. 128
Table 6.4: Memory usage of original and obfuscated COdes..........cccccueveeveeciereesieenene. 129
Table 6.5: Comparative evaluation with other related approaches (Yasin & Nassra,
2006). vttt ettt e ks et et e et et e Reebe s e neesente e eseetenseneetensens 132
Table 6.6: Memory usage of original and obfuscated benchmark programs................. 140
Table 6.7: Comparative evaluation with related techniques in terms of execution
TiMe aNd MEMOTY USAQE.veeveereeeieeieeieetiesteeteseesteestesseesteesesseesseesesssesseessesseesseessasssenses 142
Table 6.8: Performance of original and obfuscated programs............ccccceevveiereesieenee. 152
Table 6.9: Comparative evaluation with related algorithms in terms of execution

TIME aNd MEMOIY USAGE.eivieiiriietieiieiteiete ettt sttt ettt st be bt et ettt sbe b sae b 153

Xii

LIST OF FIGURES

Figure 3.1. Reverse engineering analysis stages (Cappaert, 2012).......cccccccevvervevrerreenne. 20
Figure 3.2 (a) A guard’s graph (b) placement of guard’s graph in a control flow
(02T o] o LT R I) TSRS 36
Figure 3.3 Code Signing MOGelooiiiiiiieee e 39
Figure 3.4 Oblivious hashing are interweaved with original code (Cappaert,2012)........ 40
Figure 5.1 1 Threat MOccvoouiiieeeeeee et 77
Figure 5.2: Proposed Model ArchiteCture..........oeeveieieienenisereee e 79

Figure 5.3: Source code obfuscation algorithm flow chart (Yasin & Nassra, 2016)....... 84
Figure 5.4 : Random generation and shuffle nonsense names (Yasin & Nassra, 2016). .86
Figure 5.5 : Employee class original source code before obfuscation (Yasin & Nassra,

pL0) PO OSSP 87
Figure 5.6: Employee class source code after the first level of obfuscation (Yasin &

NN Fe R 0 1) RSSO 88
Figure 5.7: Flow chart of data encryption process (Yasin & Nassra, 2016).................... 90
Figure 5.8: String obfuscation process & applying sliding window technique. 92
Figure 5.9: Employee class source code after the second level of obfuscation (Yasin &

AN PR - T 0 1) SRS 94
Figure 5.10: Proposed Encryption based on RNN ..o 99
Figure 5.11: Dynamic creating and updating the data used by the neural network....... 101
Figure 5.12: Relationship between conditional branching and classification 102
Figure 5.13: Neural Network MSE During TraiNing..........ccceevevveereeviesieseeie e s 105
Figure 5.14: Hamming code of 16-bits integer data typeccceeveveeeieveeciecieseenen, 108
Figure 5.15: Example of Hamming Code Implementation...........c.ccccevevenenencnenenne. 109
Figure 5.16: Call graph obfuscation; (a) Call graph, (b) Call stack............ccccceveveruenen. 114
Figure 5.17: An example of complex call graph obfuscation............ccccecevvererveneennnns 115
Figure 5.18:Software diversification and reordering of functions.............ccccecevererenne. 119
Figure 6.1: Portion of code from employee class (without obfuscation) (Yasin & Nassra,

2006). ettt b h ettt e b s bt bt a e bt st et et et e b naeeheeaeenes 121
Figure 6.2: Disassembly results of code in figure 4.8 (Yasin & Nassra, 2016)............. 122
Figure 6.3: Equivalent obfuscated code of the code in figure 4.8 (Yasin & Nassra, 2016).

.. 122
Figure 6.4: Disassembly results of the code in figure 4.10 (Yasin & Nassra, 2016).....123
Figure 6.5 : Evaluation of original and obfuscated code in term of Storage size.......... 127

Figure 6.6 : Evaluation of original and obfuscated code in term of Execution Time.... 129
Figure 6.7 : Evaluation of original and obfuscated code in term of Memory Usage..... 130
Figure 6.8: Expected vs. Actual of Neural Network OUEPULccceeveverienenerencnene 135

xiii

Figure 6.9 (a): Original code and the results of disassembling and tracking its execution.

.. 137
Figure 6.10: Reverse the neural network to extract itS rules.........cccecvevvevevenerenennenne. 139
Figure 6.11: Execution time (in seconds) of selected benchmark programs.................. 140
Figure 6.12 : Evaluation of original and obfuscated benchmarks in term of Memory

L0 L7 [0[RP 141
Figure 6.13 : Comparative Evaluation with related techniques in term of Execution Time

.. 142
Figure 6.14 : Comparative Evaluation with related techniques in term of Memory Usage

.. 143
Figure 6.15: (a) Disassembly results of original program; (b) Disassembly results of

ODTUSCALEA PrOGIAM ..veiteteeterteet ettt sttt ettt b bt 145
Figure 6.16: (a) Stack tracing of original program; (b) Stack tracing of obfuscated

[C10T | = o PSSR SRSPPRR 145
Figure 6.17: (a) Function recognition of original program; (b) Function recognition of

ODTUSCALEA PrOGIAM ..veiteteeterteet ettt sttt ettt b bt 146
Figure 6.18: : Evaluation of original and obfuscated programs in term of Execution Time

.. 152
Figure 6.19 : Evaluation of original and obfuscated programs in term of Memory Usage

.. 153
Figure 6.20 : Comparative evaluation with related algorithms in terms of execution time

.. 154

Xiv

CHAPTER ONE
INTRODUCTION

Chapter 1 : Introduction
1.1 Introduction

This chapter presents an overview of the research title, problem statement, significance of
the research, research aims and objectives, research questions and research hypotheses.
Moreover; the research contribution , research organization, and publications are presented

in this chapter.

1.2 Overview

Over the last years, a lot of software and programs have been suffering from copyright
violations, as well as these software required a hard work, a lot of time , intelligence, and a
lot of money. The costs of software protection against piracy is estimated billions of dollars,
where a lot amount of copyright and intellectual property are included and protected within
the software.

Software piracy is not the only mechanism of copyright violations, since there are many
tools that can provide an access control to software’s data and makes it easier for the
adversaries and reverse engineers to anlyse the software and steal the intellectual property.
(Rasch & Wenzel, 2013). In which, an illegal access could be obtained when the software is
compromised. Furthermore, such stealing is difficult to reveal or tracking easily, which
increase the challenges of software protection process.

The major problem of software protection is the distribution of software over the client
devices, in which the owners lose the control on their software. Over the last years, client
devices became more powerful (Gu, et al., 2011), where an attacker with a malicious intent

can violate the copyrights and tampering the software via applying many analysis and reverse

engineering tools such as de-compilers, disassemblers, dynamic tracing and dynamic
debugging. An illegal access could be obtained when the software is being cracked, where
illegal copying and distributing of cracked software is a form of copyright infringement.

Attacking the client software by malicious users is called a white-box attack model, where
the attacker has a full access to the software (De Mulder, et al.,2010). Furthermore, the
malicious users can run the program, as well as, observe the memory, and change bytes
during execution (Bos, et al., 2016).

Many Efforts have been introduced to thwart software analysis and tampering, but most of
them are failed due to the prevalence of a healthy software monoculture and the inherently
open architecture of current computer systems. The ideal software protection technique is the
one that achieve the concept of “one machine, one code” (Khan, et al., 2015). The earlier
proposed techniques include: physical tamper-resistant devices such as dongles and
cryptographic techniques (Schrittwieser, et al., 2016). Software cryptographic techniques
involve running encrypted code while the program instructions are being decrypted on the
fly prior to their execution (Gautam & Saini, 2017). Software tamper-resistance such as code
obfuscation techniques attempt to make the code more difficult to analyze and understand

(Schrittwieser, et al., 2016).

This research aims to develop a framework for protecting software against tampering and
reverse engineering analysis by integrating multi-levels of protections with the construction

of many to one protection.

1.3 Problem Statement

Many studies have investigated one to one protection, where there is a clear lack of studies
that are constructing the many to one protection, in which most of these approaches protect
the intellectual property and seen as trade secrets. Therefore, the need for robust software
protection techniques against many form of tampering, analysis and other means of
exploitation is highly recommended nowadays, in which these techniques should address the
lack of trustworthy software in an untrusted environment.

Software protection techniques serve as a binding to glue source codes into one monolithic
software, in which without these protections the software become susceptible to attack,

analyze and identify.

1.4 Significance of the Research

Software protection becomes more and more crucial and an urgent requirement to many
software designers. In this context, we design a software protection framework based on code
obfuscation techniques as a main contribution of this thesis. The proposed framework
provides a robust security characteristic in software protection against tampering and reverse
engineering analysis that attempts to analyze the embedded logic of the obfuscated software
routines.

Furthermore, this study will fill a knowledge gap in one of the significant constituents of
software security, since it provides an empirical model that can be implemented to protect
software against analysis and unwanted modifications. The proposed framework will provide
the researchers and practitioners with a new perspective of software protection. Thus, this

research will help to improve the security level of software obfuscation without affecting the

performance of obfuscated software. The authors think that an interesting and new
approaches can be opened from this research; therefore, researchers can utilize this research

as a starting point for further researches.

1.5 Research Aims and Objectives

The first aim of this research is to explore the current state of software protection
techniques in order to highlight the major limitations and deficiencies of these techniques.

Second, it aims to improve the level of software protection by integrates many levels of
obfuscations and combines different protection techniques in order to complicate the process
of reverse engineering analysis and make decompiling of the programs infeasible.

Third, it aims to indicate that employing the neural network with software protection
provides a robust security characteristic, due to its ability of representing nonlinear
algorithms with powerful computational capability.

Finally, the research aims to develop a model that satisfies all levels of obfuscations and
provides a robust protection against many forms of tampering and reverse engineering

analysis that attempts to analyze the embedded logic of the obfuscated software routines.

1.6 Research Questions
This researches aims to answer the following research questions:
» What is the best techniques that can be employed to obtain a robust software
protection against tampering and reverse engineering analysis?
» Towhat extent the using of neural network can provide a robust security characteristic

in software protection?

» To what extent the construction of many to one protection can protect the intellectual
property and seen as trade secrets?
» To what extent the using of call graph and stack obfuscation can deter the tampering

of software?

1.7 Research Hypotheses

The study addresses the relationship between the level of obfuscation and the potency of
obfuscated software against tampering and reverse engineering analysis. The following
hypotheses will be tested to address the research objectives:

» H1: Integrating multi-levels of obfuscations have a significant impact in achieving a
high level of software protection and making the decompiling of software infeasible.

» H2: Introducing the neural network with software protection provides a robust security
characteristic in software protection.

» H3: The construction of many to one protection protects the intellectual property and
seen as trade secrets, as well as increasing the difficulties in revealing the obfuscated
software.

» H4: Embedding the encryption and decryption functions inside the structure of the
neural network increases the potency of the obfuscated software against reverse
engineering analysis.

» Hb5: Combining of call graph obfuscating, stack obfuscating, diversification, memory
layout obfuscating, randomization and basic blocks reordering thwart call stack tracing

and analysis and also deter the tampering of software.

1.8 Research Contributions

The findings of this research are important to researchers since it resolves the main problems

that other approaches have been suffering from by introducing the following contributions:

1.

Developing a framework that integration multi-levels of obfuscations since
depending on one level will not be sufficient to deter reverse engineering from
analyzing the software.

The proposed framework protects software against static analysis, dynamic analysis,
tampering, and call stack tracing and analysis. Therefore, the proposed obfuscator
will protect the software at all levels, which consider as advantage over other
proposed approaches.

Using advanced programming techniques such as compile time reflection and
metaprogramming that give us the ability to inspect classes, interferes fields and
methods at runtime, which enable us to develop and design encryption/decryption
algorithms that can access and modify the obfuscated program during the runtime.
Introducing the neural network with software protection in order to provide a robust
security characteristic in software protection due to its complexity and powerful
computation capability.

Embedding the encryption and decryption functions inside the structure of the
neural network to increase the potency of the protected software against reverse
engineers.

The proposed obfuscator embeds the neural network function inside the software
instructions, thus the neural network function merged with other program operations

which make it harder to be located. Furthermore, it cannot easily separate the

network form the software correctly, because it is embedded in complex dynamic
data dependencies.

7. Introducing the neural network to execute the conditional control transfers, where the
complexity of neural network ensures that the protected behavior is turned to a
complicated and Incomprehensible form, making it impossible to extract its rules or
locating the accurate inputs which lead to the execution paths behind the network.

8. The proposed obfuscator makes the software parts depend on each other in order to
force the adversary to investigate a larger part of the software to analyze a specific
fragment of code.

9. A call graph and stack tracing obfuscator is proposed to protect the software from
any tampering, and prevent attacker form detecting the behavior of obfuscated

program.

1.9 Research Organization

The rest of this thesis is organized as follows:

Chapter two explains the research design, data sources, data collection strategies,
quantitative and qualitative analysis, issues of reliability and validity methodology, and
measurements and evaluation metrics.

Chapter there provides a literature review of software protection techniques. First we
provide a background of software protections and obfuscations. Second, we explore the
threats to software applications. Third, we clarify the software protection techniques against

piracy. After that we present the tampering resistance techniques.

In chapter four, we explore the code obfuscation models & techniques that are used against
static and dynamic analysis. At the end of this chapter, we provide a summarization and
critical discussion.

Chapter five provides a detailed description of the proposed software obfuscation model.
Chapter six presented the evaluation and experimental results of the proposed model.
Moreover, this chapter presents a comparative evaluation with related models in terms of
execution time and memory usage.

Last chapter is about conclusions and recommendations. Moreover, it presents the future

works.

1.10 Publications

1. Yasin, A., & Nassra, I. (2016). Dynamic Multi Levels Java Code Obfuscation
Technique (DMLJCOT). International Journal of Computer Science and Security
(CSS), 10(4), 140.

2. Yasin, A., & Nassra, I. (2018). Software Obfuscation Technique based on
Recurrent Neural Network™. International Journal of Intelligent Systems and
Applications (IJISA).

3. Nassra, ., & Yasin, A. (2018). Software Tamper Resistance Mechanism Based on

Obfuscation and Diversification. Journal of Computer Security.

CHAPTER TWO
RESEARCH METHODOLOGY

10

Chapter 2 : Research Methodology
2 Introduction
The aim of this chapter is to present the research methodology that is used in this research.
In this chapter we will explore the research design, data sources, data collection strategies,
quantitative and qualitative analysis, issues of reliability and validity, and measurements and

evaluation metrics.

2.1 Overview
Methodology is the method or style where the researchers follow when they conduct their
research. Researchers choose the methodology of their research according to the research

nature. Each research has its properties and uniqueness (Christensen et. al., 2011).

2.2 Research Design

Selecting the research design is a very important decision, where it depends on the research
problem, objectives and assumptions. In this study, a combined qualitative and quantitative
methodologies are used to analyze and evaluate the results that obtained from the experiments
and evaluations. This research is an empirical research, where it aims to ensure that the
proposed techniques provide a robust security characteristic in software protection.
Furthermore, it aims to ensure that the security offered by the proposed techniques have a
strong resistance against disassembling and de-compilation tools that attempts to analyze the

embedded logic of the obfuscated software routines.

2.3 Data Sources
The main data sources of this research are: literature review, conducting of an experiments,

and authors' experiences and skills.

11

2.4 Data Collection Strategies

Several data collection techniques are used in this research that describe how the research
maintained a chain of evidence. First a general literature research is set off, and then
contributes to a more focused literature review is conducted which contributed in conducting
the experiments and analyzing the results. The following sections will describe the data

collection strategies that are employed.

2.4.1 Literature Review Strategy

A continuous literature review is conducted through this research based on publications,
articles and E-books. First, a review of software protection techniques is conducted, then the
authors focus their review in code obfuscation techniques. At an early stage, the information
gathered is used to study the shortages and limitations of the current software protection
techniques. After that, a concentrated literature search is conducted in order to carry out the
experiments, and compare the obtained results with others. The Information that gathered
through the literature review and the experiments is used to develop the proposed code

obfuscation techniques.

2.4.2 Experimental Results and Experience Strategy

The authors experience about the software security and their skills in programming,
especially programming with Java and .NET Languages is used to describe and interpret the
results of experiments. In addition, authors experience and the experiential results assistant

in developing the software protection techniques.

12

2.5 Quantitative and Qualitative Analysis

The authors use both quantitative and qualitative analytical techniques as a mixed data
analysis, where these techniques are used sequentially at different times. For instance, initial
qualitative data might be interpreted, analyzed, and used to inform a quantitative phase of the
study, after which quantitative data are analyzed.

This study followed a sequential and concurrent experimentally strategy. The steps toward
finding the research results are: determining the level of protection, conducting the
experiments; evaluating the proposed techniques, conducting a qualitative comparison, and
conducting a quantitative comparison with other related techniques. Furthermore, the

researchers evaluate the proposed techniques at each level of software protection.

2.6 Issues of Reliability and Validity

Credibility of any research is relying on the validity of their finding, not only on the
reliability of their data. Therefore, this research systematically and consistently defines the
subject of the study; and also measures and identifies the trueness of the data sources that
relevant to the study subject. The authors are adopted a significant measure in order to avoid
this study from any bias either when evaluating the proposed techniques or when selecting

the test sample.

13

CHAPTER THREE
LITERATURE REVIEW

14

Chapter 3 : Literature Review

3 Literature Review

This Chapter aims to discuss the research conceptual framework and the previous literature
studies in software protection. It firstly reviews the definitions and concepts related to
software security and protection. Secondly, it discusses the threats to software applications.
Thirdly it presents an overview of software protection techniques. Fourthly, it presents an
overview of code obfuscation techniques. Fifthly, it reviews the software piracy protection
schemes. Sixthly, it reviews the schemes that have been proposed to thwart software analysis.

Seventhly, it reviews the tamper resistance schemes.

3.1 Background

Software protection plays a significant role in protecting copyright and intellectual
property that is embedded within the software (Sasirekha, et al., 2012). Hence, the issue of
software security is the major challenge that disturbed software designers for many years and
still continue doing so, where the attackers struggle every new technique via adapting their
methods. The potential threats of piracy, tampering and reverse engineering analysis become
a matter of prime concern.

The term software protection means protect the software against piracy, tampering,
analysis, unauthorized use, and other ways of exploitation (Hosseinzadeh, et al., 2016). It aims
to address the lack of trustworthy software in an untrusted client environment. Software
protection falls between the gaps of security, cryptography, and engineering.

Several mechanisms are applied to protect software property. As instance, watermarking

can be used to protect ownership via embedding the copyright into the software (Hamilton &

15

Danicic, 2011). On the other hand, software fingerprinting considers as a relevant mechanism,
in which it can facilitates the tracking of copyright infringers via embedding a message into
each copy of the software (Chroni & Nikolopoulos, 2013). Code obfuscation seems to be a
promising one of them, where it is an attempt to transform the application to an equivalent
one which is harder to analysis by reverse engineers and difficult to understand by human
(Hosseinzadeh, et al., 2016). However, most of the available code obfuscation techniques just
parsing the source code according to the compiler’s language lexical and syntax rules (Popa,
2011). Therefore, it is easily for the De-compilation tools to de-compiling the software back
to the source code. Tamper resistance according to Junod et al., (2015) is a technique that is
aimed to make the program unmodifiable. As well as, tamper resistance and code obfuscation
can be used to reinforce other mechanisms.

On the other hand, advances in reverse engineering mechanisms with the help of dynamic
code analysis make the software tampering and analysis more powerful (Moser, et al., 2007).
Furthermore, it helps the attacker to track the software execution and monitor its information
along the trail. According to Sivadasan et al., (2009), reverse engineering can be defined as
the process of analyzing and extracting the proprietary structure elements from the software.

The main goal of reverse engineering analysis is to search for security breaches or
loopholes in the software, either to steal the embedded logic or algorithm behind the
functionality of the software (Yasin & Nasra, 2016).

There are several tools either commercial or free ones that can be used to perform software
reverse engineering process. These tools are generally classified as de-compilers, de-
obfuscators, disassembler, debuggers, hex editors, un-packers, and program executables (PE)

editors (Amankwah, et al., 2017).

16

De-compiler is a technique that used to retrieve the source code of a software from its
machine code or intermediate bytecode. (Khan, et al., 2015; Buzatu, 2012). However, if a de-
compiler fails to retrieve the source code, it produces its equivalent assembly code. De-
compilers which can retrieve a better readable source code for the binaries files are
considered as reality de-compilers. On the other hand, De-obfuscators is a relevant technique
that is design to reverse or remove the obfuscation effects that are applied on source code as
an attempt to regenerate the original source code (Uppal, et al., 2014). Furthermore, it can
operate on either bytecode files or binary files. A disassembler is a technique that generates
an assembly language code from executable or binary code, while the debuggers work as
disassemblers with the ability of providing a view of the registers and stacks current state.
Moreover, advanced debuggers allow to illustrate the runtime state of the software by setting
breakpoints into the assembly code in order to help adversary in editing the software
(Amankwah, et al., 2017). Disassemblers and debuggers can be used to unpacking software,
decoding password, revealing software structure, and identifying faults in a program.

Hex editors is also another technique that can be used to edit and view the binary files in
hexadecimal format. Hence, the adversary can easily edit instructions of a given executable
file using a basic hex editor. Some hex editors provide file comparison utility that can be
used to search for specific instructions that are need to be modified. However, if search
facility in a hex editor is not available, the adversary can use a disassembler or debugger in
order to locate the wanted instruction position in the binary file. Furthermore, some advanced
hex editors are able to edit the memory, carry out hash calculations, and manipulate logical

and physical drives (Sasirekha, et al., 2012).

17

The unpacker is a tool that can be used to convert a packed file into its original source
code, where the packed file is a file that is compressed to occupied a low storage region.
Additionally, it can be used to reverse commercial protection schemes via removing the
obfuscation affections that are applied on it. On the other hand, program executables (PE)
editors can be used to extract the binary files’ headers in order to change or remove any
hidden secret code (Khan, et al., 2015). Whereas the programs that are designed to modify

themselves in the memory can be debugged using memory dumpers.

3.2 Threats to Software Applications

Software have been suffering from three major threats: piracy, reverse engineering
analysis, and tampering. Piracy concerns unauthorized copy and use of software, reverse
engineering analysis involved techniques to inspect the internal structure of software, while
tampering represents techniques to tamper the software. Tampering attacks aim to modify
the functionality of the software while reverse engineering techniques attempts to analyze
the embedded logic of the software.

In this thesis, we don't focus on piracy prevention. We focused our work to protect software
against reverse engineering analysis and tampering attacks, because piracy protection relies
on the same techniques that are used to protect software against tampering and analysis. The
following sections elaborate the software threads in details.

3.2.1 Piracy
It involves unauthorized use or copying of software instances either by individuals for use

for themselves or by companies whom then sell the illegal copies to users (Kulkarni & Lodha,

18

2012). Moreover, crackers may pirate a software to steal its features and include these features

in their own products.

Software piracy take several forms as follows (Gomes, et al., 2015):

Softlifting: this form of piracy is considered as the most common type, in which
someone purchasing a single licensed copy, then installing it on other colleagues’
computers in a violation of licensing terms.

Client-server overuse: Violate the number of copies that are licenses for.
Hard-disk loading: typically involves installing an unauthorized copy of software
onto a computer being sold to buyer. This makes the deal more attractive to the
buyer, and without any additional costs to the dealer. The dealer commonly doesn’t

provide the buyer with the original disks or manuals. An example of this form is

the piracy of operating systems as Windows.

Counterfeiting: this form of piracy involves generating fake copies of a software,
making it look authentic. The dealer provides manuals and dikes to the buyer in
order to make the product looks as much the original product. The copies of
software are made using a CD-burner.

Online piracy: it involves downloading pirated or illegal software from the
Internet, auction or blog, or peer-peer network. Currently, there are thousands of

websites that providing unlimited downloads of pirated software to any user.

3.2.2 Reverse Engineering Analysis

As mentioned previously that the reverse engineering analysis can be used to

inspect the inner workings of software, where it can extract the secret keys, hidden

19

algorithms, and other information embedded in the software. Moreover, it can be

applied on non-executable code, assembly code, and executable code. The reverse

engineering process is shown in figure 3.1.

This type of attack take two forms as follows:

Static analysis: These techniques is applied on static code or non-executable
code. In involves two stages: disassembling and debugging (Cappaert, 2012).
Disassembling is usually preformed using either recursive traversal or linear
sweep. Linear sweep scans the software’s code, then disassembling its
instructions one by one, assuming that every instruction is followed by
another instruction (Debray, et al., 2010). On the other hand, recursive traversal
derives and disassembles the control flow. De-compilation step could return
source code from low-level code. In some programming languages such as
Java or .NET, it is easy to decompile bytecode to source code.

Dynamic analysis: these techniques is implemented on executable code. In
which it traces the executed instructions, data values, and register contents.
This form of analysis has more powerful than a static analysis; however, it
requires more analyzing time and more complex work (Canfora, et al., 2011).
Furthermore, it requires a platform similar to the target code’s platform. In
some cases, a program may be equipped with anti-debugging techniques

which may inhibit the dynamic analysis process

20

parsing

intermediate
code
generation and
control flow
analysis

Compilation

final code
generation

assemble

Source code

Syntax tree

Control flow graph

Assembly code

disassembly

Machine code

decompilation

. Reverse
. Engineering

Figure 3.1. Reverse engineering analysis stages (Cappaert, 2012)

3.2.3 Tampering

Tampering attacks typically analyses the binary file. The adversary in such attack needs

information about the program internals before he can tamper the software successfully

(Uppal, et al., 2014). Therefore, tampering attacks usually preceded by applying several

reverse engineering techniques. Tampering techniques can be classified as follows (Cappaert,

2012):

called a static tampering attack.

Static tampering techniques: these techniques modify a static binary file such
image. It assumed that the code is not loaded into memory and modified there.

Furthermore, downloading a crack and applying it to open and read binary file is also

21

e Dynamic tampering techniques: these techniques alter the software at runtime.
First, debuggers load the code into the memory. After that it traced the software
instructions one by one, which enable the adversely to monitor and modify the code
of the loaded program. A dynamic tampering attack is commonly implemented by

hand similar to software debugging attack.

3.3 Protection Techniques Against Piracy

Over the last years, many protection techniques are proposed to battle software piracy such
as watermarking and fingerprinting. Software watermarking is a property or value that is
embedded into the software in order to prove ownership (Imran, et al., 2015). The owner can
extract this hidden message from the software to obtain an evidence of piracy. Watermarks
can be categorized into static and dynamic, where the static watermarking techniques work
by embedding a watermark into the program’s code, while the dynamic watermarking works
by embedding a watermark into the program’s execution state (Hamilton & Danicic, 2011).
Software fingerprinting is another technique that embeds a unique identifier into