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Abstract

The survival function of restricted quality adjusted lifetime (RQAL) has become

more important in studies nowadays than survival function of overall lifetime. The

reason is due to the fact that the researcher needs real-time for the observations

under the conditions of his or her life.

In this work we will estimate efficient estimators for the survival function of restricted

quality adjusted lifetime if the data has left and right censorship. Also, we derived

a class of estimators for the cumulative hazard function based on estimations of

the survival function of (RQAL). Simulation study using R-programming has been

conducted to compare the efficiency of the estimators of the true survival function.
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1 INTRODUCTION

Survival analysis is used to analyze data in which the time until the event is of

interest [4]. The response is often referred to as a failure time, survival time, or

event time.

Examples:

� Time until tumor recurrence.

� Time until cardiovascular death after some treatment. intervention.

� Time until AIDS for HIV patients.

� Time until a machine part fails.

Estimation of survival functions and hazard function, have been studied by several

researchers under several assumptions. In simplest type, it is assumed that there

is no censored data of a random sample are a available. In this case we use an

empirical distribution function.

Definition 1.1. Let X1, X2, ..., Xn, be an independent nonnegative with distribu-

tion function F (x) = P (X ≤ x). An empirical distribution function Fn(x) =

1

n

∑n
i=1 I(Xi ≤ x)

Where I(Xi ≤ x) is the indicator function which is equal to one if Xi ≤ x,

zero otherwise. The properties of the empirical distribution as an estimation of

survival function have been studied by many researchers. In general, studies contain

censoring data and there is three types of censored data [8] [9] [20] [14].

Definition 1.2. Censoring:

Censoring occurred when missing data in a certain period of the study about the

item due to some uncontrolled circumstances [5] [15] [19].

Types of censored data:

� Left censoring : It occurs upon allowing new item into the study, though
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inadequate data about the item from the beginning of the study until the time

of entry into the study.

� Interval censoring : It occurs when a person exists the study and then comes

back in, with no data to have about their absence period.

� Right censoring : It occurs when the item takes part in the study, but then

gets out and never be back in .

We note that here, when there is no censored data, the empirical distribution func-

tion is the best estimate function for the survival function. But it is not good enough

if there is censoring data. On the other hand, the most popular estimators estimate

survival function taking into account missing data, Kaplan-Meier estimator and the

Nelson-Aalen estimator. Kaplan-Meier (1958) derived the estimator through the

nonparametric maximum likelihood approach. Efron (1967) was the first one recog-

nize the self consistency of the Kaplan-Meier estimator. Breslow and Crowley (1974)

showed that the Kaplan-Meier estimator is weakly consistent. The asymptotic nor-

mality of this estimator was established by Meier(1975). Peterson(1977) showed

that the Kaplan-Meier estimator can be expressed as a function of empirical sub-

survival functions. Aalen (1978) established the strong consistency of the estimator.

Gillespie and Fisher (1979) derived confidence bands, and Gill (1983) studied some

of the large sample properties of this estimator. The small sample size properties of

the Kaplan-Meier estimator have been studied by Guerts (1987). Fleming and Har-

rington (1991) studied the properties of this estimator using martingale theory. The

strong and weak representations of the Kaplan-Meier estimator of survival function,

which are valid up to a given order statistics of the observations, are derived by Stute

(1996). Cai (1998) established the asymptotic properties of this estimator for the

censored data. Satten and Datta (2001) showed that the Kaplan-Meier estimator

can be represented as a weighted average of identically distribution terms.
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The second popular estimator used to analyze censored data is the Nelson-Aalen

estimator which is an estimator for the cumulative hazard function. The first one

who suggested this estimator, is Nelson (1972). Aalen (1978) derived this estima-

tor using modern counting process techniques. He also found an estimator of the

variance of this estimator. Klein (1991) suggested an alternative estimator of the

variance and studied the small sample properties of the variance estimator. The

derivation of the Nelson-Aalen estimator using counting processes can be found in

Anderson et al (1993) and in Fleming an Harrington (1991). Kaplan-Meier and

Nelson-Aalen estimators are considered to be the best estimators when the param-

eters of interest are the survival function and the cumulative hazard functions for

the overall lifetime respectively.

Cox(1972) pointed out that in the evaluation of treatments for chronic diseases

expanding overall survival time is not the only goal of the therapy. We want to have

a new measure which combines both the quality and the quantity of the patient’s

life. One such measure is called quality-adjusted lifetime. Studying the quality

adjusted survival time, in the recent days, has received much attention because

of its ability to take in to consideration both the quantity and the quality of the

patient’s life. The researchers who studied quality adjusted lifetime include Van der

Laan and Hubbard(1999), Gelbre, Gelman and Goldhirsch (1989), Glasziou, Gelbre

and Simes (1990) and Gelbre et al (1995).

Gelbre et al (1989) pointed out that the use of the Kaplan-Meier estimator with

censored quality adjusted life data will lead to biased and inconsistent estimation. A

number of different estimators have been proposed to solve this difficulty. One such

estimator was studied by Korn (1993). Zhao and Tsiatis (1997) proposed a clever

method to find an estimator of the survival function of the restricted quality adjusted

lifetime for censored data. This estimator is a member of a class of inverse probability

of censoring weighted (IPCW) estimators. They also showed that their estimator
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is consistent and asymptotically normal. Huang and Louis (1998) proposed an

estimator of the distribution function of the unrestricted quality adjusted lifetime

using (IPCW) technique. Zhao and Tsiatis (1999) discussed the efficiency of the

weighted estimators for the survival function of the quality adjusted lifetime. They

derived a modified estimator, which is more efficient than the one proposed before.

Zhao and Tsiatis (2000) considered the problem of estimating the mean of the quality

adjusted survival time.

Wang (2001), proposed an improved version of the Zhao and Tsiatis estimator.

He showed that his estimator is more efficient than the original Zhao and Tsiatis

estimator in terms of asymptotic variance.

An estimator of survival function is not considered to be a true survival function

if it assigns negative mass to some points. Survival function assign negative mass

to a point b, if S(b+) > S(b−). Dabrowska (1988) pointed out that the bivariate

Kaplan-Meier estimator may not be survival function because this estimator may

fail to be monotonic. Pruitt (1991) studied the Dabrowska estimator in details and

found all points assigns negative mass, under the assumption that the observations

follow an absolutely continuous distribution. He pointed out that the number of

points assigned negative mass does not vanish as n goes to infinity [21] [22] [13] [1].

Mean Squared Error

The Mean Squared Error (MSE) or Mean Squared Deviation (MSD) of an estimator

(of a procedure for estimating an unobserved quantity) measures the average of the

squares of the errors or deviations—that is, the difference between the estimator

and what is estimated.

The MSE is a measure of the quality of an estimator—it is always non-negative,

and values closer to zero are better.

Definition 1.3. If Ŷ is a vector of n predictions, and Y is the vector of observed
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values corresponding to the inputs to the function which generated the predictions,

then the MSE of the predictor can be estimated by

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2

Biasness

The bias of an estimator is the difference between the expected value of the estimator

and the true value of the parameter being estimated. An estimator is said to be

unbiased if its bias is equal to zero for all values of parameter γ. Otherwise, the

estimator is said to be biased [16] [10]..

Definition 1.4. The bias of γ̂ which is an estimator to the parameter γ is defined

as

Bias[ γ̂ ] = E[ γ̂ ]− γ = E[ γ̂ − γ ]

Monotonic Function

A function f defined on a subset of the real numbers with real values is called mono-

tonic if and only if it is either entirely non-increasing, or entirely non-decreasing.

Definition 1.5. A function is called monotonically increasing if for all x and y such

that x ≤ y then, f(x) ≤ f(y).

Definition 1.6. A function is called monotonically decreasing (also decreasing or

non-increasing) if, whenever x ≤ y then, f(x) ≥ f(y).
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2 PRELIMINARIES

Almanassra [1] [2], considered two types of survival time. The first one which is over

all lifetime, the second which is with restricted quality adjusted lifetime(RQAL). In

this part, we will review survival functions in the case of right censored data, and

how to find a jump point of the two types of survival time, and which of these

points assigns negative mass. Then, we will also consider the way of Almanassra et

al (2005) on how to get a monotonic function to the second type of survival time.

Also, in this chapter we will introduce the Kaplan Meir estimator(1958), Nelson

Aalen estimator (1978), Zhao-Tsiatis estimator (1997), Wang estimator(2001), and

the monotonized Wang and Zhao-tsitis estimators (2005).

2.1 Notations

LetR = (R1, R2, ..., Rn) be a continuous failure time which is overall life time random

variables with hazard function λR and survival function S(.). Let Di = Ri ∧ L be

a truncated failure times, where L is an artificial end point of studies and ∧ is the

minimization operator.

Definition 2.1. Zhao and Tsiatis(1997) defined restricted quality adjusted lifetime

N(Di) =

∫ Di

0

U(THi(t))dt

,

where THi is the health status function of the ith item at time t, and U(.) is a

quality function which maps THi(t) to the interval [0, 1].

Definition 2.2. The survival function of restricted quality adjusted lifetime(RQAL)

is

Sr(b) = Pr(N(Di) > b),
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where 0 ≤ b < L

Now, let censoring time be denoted by C = (C1, C2, ..., Cn) which are continuous

random variables with hazard function λC(.) and survival function K(.)

In the case of being a censored data in the study, we will consider the following

assumption on the data. Assume that {Di, Ci, N(r), r ∈ [0, Di], i = 0, 1, ...}. The

observed data with sample size n is given by

{Xi = Di ∧ Ci,Γi = I(Di ≤ Ci), Ni(r), r ∈ [0, Xi], i = 1, 2, ..., n.}

Definition 2.3. The possible censored RQAL is

N(Xi) =

∫ Xi

0

U(THi(t))dt

The purpose is to find consistent estimators for the survival function of restricted

quality adjusted lifetime. In the following sections, we will consider some estimators

for the survival function Sr(b)

� Kaplan Meire Estimator

� Korn Estimator

� Simple weighted estimator

� Zhao and Tsiatis estimator

� Wang estimator

also, we will consider Nelson–Aalen Estimator.
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2.2 Kaplan Meire Estimator

In all fields of studies; viz medical , economical, etc., researchers interested in medical

studies or others, predict a certain occurrence to happen to the targeted sample;

that is, death. As observed through long-term studies, a loss/damage may occur

to the polled items/individuals; thus causing a problem in estimating the survival

estimation.

The time starting a certain point to the occurrence of a given event, for instance,

the effectiveness of a certain drug on patients, death, or machine malfunction, is

called a survival time.

Studies are generally influenced by some things that are normally out of researcher’s

control such as loss of one or more in the elements of the study during the course of

study.

With the above in mind, the simplest way to estimate the survival over time is

Kaplan-Meir estimator [11] [7].

Definition 2.4. The estimator is given by:

Ŝ(t) =
∏
ti≤t

(1− di
ni

),

where Ŝ(t) is the estimated survival probability for any particular one of the t

time periods; ni is the number of subjects at risk at the beginning of time period ti;

and di is the number of subjects who die during time period ti.

Definition 2.5. The Kaplan–Meier estimator is statistic, and several estimators

are used to approximate its variance. One of the most common estimators is Green-

wood’s formula

V̂ ar(Ŝ(t)) = Ŝ(t)2
∑
ti≤t

di
ni(ni − di)
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Example 2.1. Consider the following data in table with 100 subjects enrolled at

beginning of study.

In this table, we will calculate the Kaplan-Meier estimator and Standard Error

Time t1 t2 t3 t4 t5

At Risk 100 95 90 81 75

Censored 2 1 3 4 1

Died 3 4 6 2 4

Ŝ(t) 0.97 0.9291 0.8672 0.8458 0.8007

Std.Error 0.0171 0.0258 0.0338 0.0366 0.0407

9



2.3 Nelson–Aalen Estimator

The Nelson–Aalen estimator is a nonparametric estimator which may be used to

estimate the cumulative hazard rate function from censored survival data. Inde-

pendently of Nelson, Altshuler (1970) [3] derived the same estimator in the context

of competing risks animal experiments. Later, by adopting a counting process for-

mulation, Aalen extended its use beyond the survival data and competing risks

setups, and studied its small and large sample properties using martingale methods.

The estimator is nowadays denoted by the Nelson–Aalen estimator, although other

names (the Nelson estimator, the Altshuler estimator, the Aalen–Nelson estimator,

the empirical cumulative hazard estimator) are sometimes used as well [12].

Definition 2.6. The Nelson–Aalen estimator for the cumulative hazard rate func-

tion then takes the form

Â(t) =
∑
tj≤t

dj
nj

where nj is the number of individuals at risk ( alive and not censored) just prior

to time tj . Thus the Nelson–Aalen estimator is an increasing right continuous step

function with increments
dj
nj

at the observed failure times.

Definition 2.7. The variance of the Nelson–Aalen estimator may be estimated by

ˆvar(Â(t)) =
∑
tj≤t

(nj − dj)dj
(nj − 1)n2

j

Example 2.2. In this example, we will calculate the Nelson-Aalen cumulative haz-

ard estimator and Standard Error for Nelson-Aalen.

Consider the following data such that:

Total: Number of observations.

Died: Number of observations that died coses the disease.

Censored : Number of people lost during the study.
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Time Total Died Censored Nelson-Aalen Std. error

t1 20 1 0 0.05 0.05
t2 19 2 0 0.1552 0.0879
t3 17 1 1 0.2140 0.1057
t4 15 1 0 0.2807 0.1250
t5 14 1 0 0.3521 0.1440
t6 13 0 1 0.3521 0.1440
t7 12 2 0 0.5188 0.1826
t8 10 0 1 0.5188 0.1826
t9 9 3 0 0.8521 0.2472
t10 6 0 1 0.8521 0.2472
t11 5 1 1 1.0521 0.3180
t12 3 0 1 1.0521 0.3180
t13 2 1 0 1.5521 0.5926
t14 1 0 1 1.5521 0.5926

Relationship Between Nelson-Aalen and Kaplan-Meire Estimators

The relationship between the two estimators is given by the following function

Ŝ(t) = exp−Â(t)
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2.4 Korn Estimator

Korn(1993) [13] suggested another method to calculate a survival function, but the

method he suggested with quality of life for item. Korn’s method(1993) depends on

area under the curve (AUC)for every item.

Definition 2.8. (Korn Estimator)

Let 0 = t0 < t1 < ... < tJ = ∞ , and let U(tj) ≥ 0 be the quality of life measured

at time tj(j < J).

Let R be the death time. Assume that U(tj) ≡ 0 for all tj ≥ R. Let

U(tj) ≡ (U(t0), U(t1), ..., U(tj))

Korn(1993) defined the area under the quality of life curve up to time z by

A(z) = U(tj(z))(z − tj(z)) +

j(z)∑
j=1

U(tj) + U(tj − 1)

2
(tj − tj−1)

where j(z) is such that tj(z) < z < tj(z)+1. The AUC quality of life is then U ≡ A(R).

Because of administrative censoring, we do not always get the observe R or U .

Let C be the potentially unobserved censoring time. We observeX = minimum(R,C)

and the indicator ζ that equals 1 if the observation was a death, 0 if the observa-

tion was a censored. We also observe the potentially censored quality of life AUC,

U ≡ A(X). We assume that C is jointly independent of (R,U(tJ−1)). Let SR(.) and

SC(.) be the survival functions of R and C which are assumed to be continuous.

P (U > x) =
J−1∑
j=0

pr(U > x,R ∈ [tj, tj+1])

=
J−1∑
j=0

Âj + B̂j

ŜC(tj)
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where,

Âj =
1

n

n∑
i=1

I{Xi ∈ (tj, tj+1), Ui > x, ζi = 1}

B̂j =
1

n

n∑
i=1

[I{Xi ∈ (tj, tj+1), Ui > x, ζi = 0} ŜR(Xi)− ŜR(tj+1)

ŜR(Xi)
]

+
1

n

n∑
i=1

[I{Xi ∈ (tj, tj+1), Ui < x, ζi = 0, tj+1 > Ti}
ŜR(Ti)− ŜR(tj+1)

ŜR(Xi)
]

Ti = Xi + (x− Ui)/Ui(tj) , Ŝ is the product-limit estimator. Also, define 0/0 = 0

13



2.5 Some Estimators of the Survival Function of Restricted

Quality Adjustd Lifetime

A single item from observations whether censored or uncensored can be sorted into

one of the exclusive classes. We can determine if this item belong to one of these

classes if we answer these two questions:

1) Can the value of I(N(D) > b) be determined from observation?

2)If the value of I(N(D) > b) can be determined, what is the first time point at

which the value can be determined?

Now, let us consider the four cases. In every case we will define a new variable.

These variables will be used later in this chapter.

Case (1): If I(N(X) > b) = 1

since D ≥ X, N(D) ≥ N(X). Thus, the value of I(N(D) > b) = 1. Now, to find

the first time point at which this value can be determine, consider the following

m(b) = inf{e : N(X ∧ e) > b}

Where, m(b) is the first time t at which N(t) exceeds b. Notice that here, N(t) is a

nondecreasing function, thus I(N(t) > b) is equal to 1 for all t greater than or equal

to m(b).

Now, let us define the new variables, if N(X) > b, D(b) = m(b) and D̂(b) = m(b).

Let X(b) = D(b)∧C and X̂(b) = D̂(b)∧C. We noticed from this case, if C > D(b),

we know that from the above I(N(D) > b) = 1

Case(2): I(N(X) > b) = 0 and N(X) + L−X < b.

Since U(.) ≤ 1, D ≥ X and

N(D) =

∫ D

0

U(.)dt

14



We can be sure that I(N(D) > b) = 0.

Now, to find the first time point at which this value can be determined, consider

the following formula

z(b) = inf{z : N(z) + (L− z) ≤ b}

Where, z(b) is the first point t at which N(t)+(L− t) ≤ b. And since N(t)+(L− t)

is a non-increasing function of t, N(t) + (L − t) is less than or equal to b for all

t ≥ z(b).

Now, if N(X) < b and N(X) + (L−X) < b, define

D(b) = D and D̂(b) = z(b).

X(b) = D(b) ∧ C and X̂(b) = D̂(b) ∧ C.

In this case, for an observation if C > D̂(b), we can be sure that I(N(D) > b) is

equal to zero.

Case (3) : I(N(X) > b) = 0, (N(X) + (L − X) ≥ b and C < D. Here, we

can not determine the value of I(N(D) > b), because the value of the expression

N(D) + (L−D) could be greater than b.

Now, define

D(b) = D, and D̂(b) = D.

Also, let X(b) = D(b) ∧ C and X̂(b) = D̂(b) ∧ C.

Case(4): I(N(X) > b) = 0, (N(X) + (L−X) ≥ b and D ≤ C.

In this case, D = X therefore, I(N(D) > b) = 0.

Define D(b) = D, and D̂(b) = D Also, let X(b) = D(b) ∧ C and X̂(b) = D̂(b) ∧ C.

The indicator functions for a complete observation are:

Γ(b) = I{D(b) ≤ C}

Γ̂(b) = I{ ˆD(b) ≤ C}

15



Almanassra(2005) extended a class of estimators to include the Wang estimator.

The new class of estimators is given by:

δ̂b(s, k) =


1
n

∑n
j=1 βs,j(b)I(Nj(Xj) > b) if k = 1

1
n

∑n
j=1

βs,j(b)

βs(b)
I(Nj(Xj) > b) if k = 2

Where s is used to explain which method of estimation is used to estimate the

Kaplan-Meier estimator K(.).

Also, the index k is used to indicate whether the estimator renormalized k = 1 or

not k = 2 .

The weights function βs,j(b) are defined by:

βs,j(b) =



Γj/K̂(Xj) if s = 1

Γj(b)/K̂(Xj(b)) if s = 2

Γj(b)/K̂b(Xj(b)) if s = 3

Γ̂j(b)/K̂ ′b(X̂j(b)) if s = 4

Let βs(b) = 1
n

∑n
j=1 βs,j(b) be the mean of the estimated weights.

Note that, β1(b) = β2(b) = β3(b) = β4(b) = 1 for each b as long as the largest

observation is not censored.

Hence, we have δ̂b(1; 1) = δ̂b(1; 2), δ̂b(3; 1) = δ̂b(3; 2) and δ̂b(4; 1) = δ̂b(4; 2).

Let, Â(C)(.), Â(C,b)(.) and Â′
(C,b)

(.) be the Nelson and Aalen estimators for the

cumulative hazard functions obtained from the data (Xi, 1− Γi), (Xi(b), 1− Γi(b))

and (X̂i(b), 1− Γ̂i(b)) for i = 1, ..., n. We can estimate Kaplan-Meier estimator K(.)
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by using Nelson and Aalen estimator by:

K̂(t) =
∏
u≤t

(1− dÂ(C)(u))

K̂b(t) =
∏
u≤t

(1− dÂ(C,b)(u))

K̂ ′b(t) =
∏
u≤t

(1− dÂ′
(C,b)

(u))

Definition 2.9. When we use the data (Xi,Γi) to find K̂(Xi), we get

δ̂b(1; 1) =
1

n

n∑
j=1

Γj

K̂(Xj)
I(Nj(Xj) > b)

This is a definition of simple weighted estimator for the survival function of restricted

quality adjusted lifetime (RQAL).

Definition 2.10. When we use the data (Xi(b),Γi(b)) to find K̂b(Xi(b)), we get

δ̂b(3; 1) =
1

n

n∑
j=1

Γj(b)

K̂b(Xj(b))
I(Nj(Xj) > b)

This is a definition of Zhao and Tsiatis (1997) estimator for the survival function of

restricted quality adjusted lifetime (RQAL).

Definition 2.11. When we use the data (X̂i(b), Γ̂i(b)) to find K̂ ′b(X̂i(b)), we get

δ̂b(4; 1) =
1

n

n∑
j=1

Γ̂j(b)

K̂ ′b(X̂j(b))
I(Nj(Xj) > b)

This is a definition of Wang estimator for the survival function of restricted quality

adjusted lifetime (RQAL).

Strawderman (2000) [18] mentioned that the estimator δ̂b(2; 1) sometime exceeds

one, which means that it may not be a proper survival function.
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2.6 Jump Points

Pruit(1991) discussed the jump point of the bivariate survival estimator and which of

these points assigned a negative mass. Almanssra(2005) identified the jump points

of univariate survival estimators for the simple weighted estimator, Zhao- Tsiatis

estimator and the Wang estimator. Also he identified and discussed which of these

points are assigned a negative mass.

Definition 2.12. Points assigned negative mass

The survival function S(.) assigns negative mass at the point b if and only if

S(b−)− S(b+) < 0

2.6.1 Jump Points Of The Simple Weighted Estimator.

The simple weighted estimator has a jump point at a point b if and only if there

exist an item i such that b = N(Xi) and Γi = 1, for i = 1, 2, ..., n. Which means

that, this estimator has jump points just at points of death.

These jump points are not assigned a negative mass. It is a monotonically decreasing

estimator.

2.6.2 Jump Points Of The Zhao And Tsiatis Estimator.

Zhao and Tsiatis estimator may not be monotonic. This estimator has three types

of jump points.

(i) If there exists an index i such that b = N(Xi) with Γi = 1, for i = 1, 2, ..., n,

then b is a jump point.

This kind of jump point is not assigned a negative mass.

(ii) If there exists an index i such that b = N(Xi) with Γi = 0, for i = 1, 2, ..., n,

then b could be a jump point.

Also, these jump points are not assigned a negative mass.
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(iii) If there exists an index i such that Γi = 0, for i = 1, 2, ..., n, N(Xi) < b and

there exists another index j such that

b =

∫ Xi

0

Uj(TH(t))dt

and Xj > Xi then b is a jump point.

These jump points are assigned a negative mass.

2.6.3 Jump Points Of The Wang Estimator.

In general, Wang estimator has more jump points than Zhao and Tsiatis estimator.

This estimator is a modified version of Zhao and Tsiatis estimator, and it sometimes

reduces the number of the negative mass jump points of the third kind in Zhao and

Tsiatis estimator. The Wang estimator has four types of jump points.

(i) If there exists an index i such that b = N(Xi) with Γi = 1, for i = 1, 2, ..., n,

then b is a jump point.

This kind of jump point is not assigned a negative mass.

(ii) If there exists an index i such that b = N(Xi) or b = N(Xi) + L − Xi with

Γi = 0, for i = 1, 2, ..., n, then b may be a jump point.

This kind of jump point is not assigned a negative mass.

(iii) If there exists an index i such that Γi = 0, for i = 1, 2, ..., n,

N(Xi) < b < N(Xi) + L−Xi.

And there exists another index j such that

b =

∫ Xi

0

Uj(TH(t))dt

and Xj > Xi. Then, b is a jump point.

This kind of jump point is assigned a negative mass.
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(iv) If there exists an index i such that Γi = 0, for i = 1, 2, ..., n,

N(Xi) < b < N(Xi) + L−Xi.

And there exists another index j such that

b =

∫ Xi

0

Uj(TH(t))dt+ (L−Xi)

Xj > Xi and N(Xj) + L−Xj < b. Then b is a jump point.

This kind of jump point is assigned a negative mass.
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2.7 Cumulative Hazard Function

In this section we will talk about the relationship between hazard function and

the simple weighted estimator, Zhao-Tsiatis estimator and the Wang estimator. We

mention in 2.3 the relationship between the survival function and the hazard function

which is given by

Ŝ(t) = exp−Â(t),

then

Â(t) = − ln(Ŝ(t))

Definition 2.13. When we use the data (Xi,Γi) to find K̂(Xi), we get

Â(t)b(1; 1) = − ln(
1

n

n∑
j=1

Γj

K̂(Xj)
I(Nj(Xj) > b))

This is a definition of hazard function for the simple weighted estimator .

Definition 2.14. When we use the data (Xi(b),Γi(b)) to find K̂b(Xi(b)), we get

Â(t)b(3; 1) = − ln(
1

n

n∑
j=1

Γj(b)

K̂b(Xj(b))
I(Nj(Xj) > b))

This is a definition of hazard function for the Zhao and Tsiatis estimator.

Definition 2.15. When we use the data (X̂i(b), Γ̂i(b)) to find K̂ ′b(X̂i(b)), we get

Â(t)b(4; 1) = − ln(
1

n

n∑
j=1

Γ̂j(b)

K̂ ′b(X̂j(b))
I(Nj(Xj) > b))

This is a definition of hazard function for the Wang estimator.
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2.8 Applications

Example 1

In this example, we will illustrate the differences among the simple weighted esti-

mator, the Zhao-Tsiatis estimator, and the Wang estimator [1].

Consider the following table:

Table 1: Quality of life
i 1 2 3 4 5 6
U(THi(t)) 0.04 0.9 0.04 0.04 0.9 0.9

Let L = 8 which is an artificial endpoint. We want to estimate the survival

function at b = 4.

Now, consider the following table which shows the data that will be used to show

the differences among the simple weighted estimator, Zhao-Tsiatis estimator and

the Wang estimator. First, let us evaluate the possibly censored quality adjusted

i Xi Γi

1 3 0

2 4.2 0

3 4.5 0

4 5 1

5 5 0

6 6 1

lifetime for each item, which is defined by

N(Xi) =

∫ Xi

0

U(THi(t))dt

depending on the data in the tables above, we get:
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N(X1) = 0.12, N(X2) = 3.78, N(X3) = 0.18, N(X4) = 0.2, N(X5) = 4.5 and

N(X6) = 5.4

Now, we will find the estimators of the survival function by using three different

estimators.

A) The Simple Weighted Estimator.

To evaluate the simple weighted estimator

δ̂4(1; 1) =
1

n

n∑
j=1

Γj

K̂(Xj)
I(Nj(Xj) > 4)

i Xi Γi N(Xi)
I(Ni(Xi) > 4)

1 3 0 0.12
0

2 4.2 0 3.78
0

3 4.5 0 0.18
0

4 5 1 0.2
0

5 5 0 4.5
1

6 6 1 5.4
1

Table 2: Data summary for the simple weighted estimator

Now, Both I(N(Xi) > 4) and Γi are equal one only for i = 6. So, we need to

evaluate Kaplan-Meier estimator K̂ at the point X6 only. Then, we have

K̂(X6) = (1− 1

6
)(1− 1

5
)(1− 1

4
)(1− 1

2
) =

1

4

Then,

δ̂4(1; 1) =
1

6
(0 + 0 + 0 + 0 + 0 + 1/

1

4
) =

2

3
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B) The Zhao and Tsiatis estimator.

To evaluate the Zhao and Tsiatis estimator

δ̂4(3; 1) =
1

n

n∑
j=1

Γj(4)

K̂4(Xj(4))
I(Nj(Xj) > 4)

Now, we need to find the value of Xi(4).

Since I(Ni(Xi) > 4) = 1 only for X5 and X6, the value of Xi(4) = Xi for

i = 1, 2, 3, 4.

U(THi) = 0.9 for X5 and X6 so we have :

X5(4) = X6(4) = 4.45

i Xi Γi N(Xi)
I(Ni(Xi) > 4)

1 3 0 0.12
0

2 4.2 0 3.78
0

3 4.5 0 0.18
0

4 5 1 0.2
0

5 4.45 1 4.5
1

6 4.45 1 5.4
1

Table 3: Data summary for the Zhao and Tsiatis estimator

The Kaplan-Meier estimator for X5(4) and X6(4) is

K̂4(X5(4)) = K̂4(X6(4)) = (1− 1

6
)(1− 1

5
) =

2

3
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Therefore,

δ̂4(3; 1) =
1

6
(0 + 0 + 1/

2

3
+ 1/

2

3
+ 0 + 0) =

1

2

C) The Wang estimator.

To evaluate The Wang estimator:

δ̂4(4; 1) =
1

n

n∑
j=1

Γ̂j(b)

K̂ ′b(X̂j(b))
I(Nj(Xj) > b)

Now, we want to find the set of values X̂i(b).

I(N(Xi) > 4) = 1 for X5 and X6 then, X̂5(4) = X̂6(4) = 4.45.

I(N(Xi) > 4) = 0 for X1, X2, X3 and X4. The value of X̂i(b) for i = 1, 2, 3, 4

are given in the table.

i X̂i(4) Γ̂i(4) N(Xi) I(Ni(Xi) > 4)

1 3 0 0.12 0

2 4.2 0 3.78 0

3 4.17 1 0.18 0

4 4.17 1 0.2 0

5 4.45 1 4.5 1

6 4.45 1 5.4 1

Table 4: Data summary for the Wang estimator

The Kaplan-Meier estimator for X̂5(4) and X̂6(4) is

K̂ ′4(X̂5(4)) = K̂ ′4(X̂6(4)) = (1− 1

6
)(1− 1

3
) =

5

9
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Therefore,

δ̂4(4; 1) =
1

6
(0 + 0 + +0 + 0 + 1/

5

9
+ 1/

5

9
) =

3

5
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Example 2.

In this example, we will investigate the negative mass jump point of the Zhao and

Tsiatis estimator and of the Wang estimator.

We will follow the way in 2.6 to find a jump point. Also, we will find the value of

each estimator just before and just after each point [1].

Now, Consider the following data given in table

i Xi Γi U(.)
Ni(Xi)

1 9 0 1
9

2 38 0
1

4

9.5

3 45 1
1

2

22.5

4 50 1 1
50

Table 5: Data used to investigate the jump points and which of these jump points
assigns a negative mass for the Zhao and Tsiatis estimator and The Wang estimator

(I) The Simple Weighted Estimator Jump Points.

This estimator has jump points only when b = 22.5 and b = 50 Now, the value

of the simple weighted estimator just before and after these jump points is

shown in the following table.

(II) The Zhao-Tsiatis estimator jump points. As mentioned in 2.6.2 this estimator

has three kind of jump points.

In the first kind, the jump points when b = 22.5 and b = 50.

In the second kind, the jump points when b = 9 and b = 9.5.

In the third kind, the jump points when b = 19 and b = 38.

Now, the value of the simple weighted estimator just before and after these

jump points is shown in the following table.
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b δ̂b(1; 1)

22.5− 1

22.5+ 1
2

50− 1
2

50+ 0

Table 6: The value of the simple weighted estimator just before and after jump
points

b δ̂b(3; 1)

9− 1

9+ 1

9.5− 1

9.5+ 2
3

19− 2
3

19+ 1

22.5− 1

22.5+ 1
3

38− 1
3

38+ 1
2

50− 1
2

50+ 0

Table 7: The value of the Zhao-Tsiatis estimator just before and after jump points

(III) The Wang Estimator jump points.

As mentioned in 2.6.3, this estimator has four kind of jump points.
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In the first kind, the jump point is when b = 22.5 and b = 50.

In the second kind, the jump point is when b = 9, b = 9.5, b = 21.5 and b = 50.

In the third kind, the jump point is when b = 21.5.

Finally, the jump points of this kind are when b = 43.25, b = 45.5. Now, the

value of the simple weighted estimator just before and after these jump points

is shown in the following table.

.
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b δ̂b(3; 1)

9− 1

9+ 1

9.5− 1

9.5+ 2
3

19− 2
3

19+ 1

21.5− 1

21.5+ 2
3

22.5− 2
3

22.5+ 1
3

43.25− 1
3

43.25+ 3
8

45.5− 3
8

45.5+ 1
2

50− 1
2

50+ 0

Table 8: The value of the Wang estimator just before and after jump points. The
Wang estimator increases the number of jump points with negative mass. For ex-
ample the points 45.5, and 43.25 are jump points only for the Wang estimator. Both
of them assigned negative mass.

.
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3 SOME ESTIMATORS WITH LEFT AND

RIGHT-CENSORSHIP DATA

3.1 Introduction

In this chapter, we will consider estimation of three types of survival time. The

first one is a simple weighted estimator. This estimator is overall times. The second

estimator is Zhao-Tsiats estimator. Finally, Wang estimator. The two estimators

have restricted quality adjusted lifetime (RQAL).

In this chapter, one of our purposes is to identify the three estimators (Simple,

Zhai-Tsiats, Wang) in left and right-censorship case. Also, we will give two numeric

example. The first one is to interpret the difference through the simple weighted

estimator, the Zhao-Tsiats estimator and the Wang estimator.

In chapter four, we will define the jump point of the simple weighted estimator,

Zhao-Tsiats estimator and the Wang estimator. Also, we will illustrate when these

points assign negative mass to the estimate. We use the second example to explain

the calculation of these jump point and to identify the jump points that assigned

negative mass.

3.2 Notations

Here we will introduce some notations for left and right-censorship data. Let Rl =

(Rl1, Rl2, ..., Rln) be a continuous failure time (over all time) random variables with

hazard function λRl
and survival function S(.).

Also, let Dli = Rli ∧ L be truncated failure times , where ∧ is the minimization

operator and L is an artificial end point.

Now, let censoring time, be donate by Cl = (Cl1, Cl2, ..., Cln) which is continuous

random variables with hazard function λCl
and survival function Kl(.).
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Assume that

{Dli, Cli, Nl(r), r ∈ [αi, Dli], i = 1, 2, ...}

where αi = 0 ∨ spi, ∨ is a maximization operator and spi is a start point.

The observed data with sample size n is given by

{Xi = Dli,Γli = I(αi = 0), Nl(r), r ∈ [αi, Xi], i = 1, 2, ..., n.}

Definition 3.1. The possible censored restricted quality adjusted lifetime (RQAL)

is

N(Xi) =

∫ Xi

αi

U(THi(t))dt

The target is to find consistent estimators for the survival function of restricted

quality adjusted lifetime in left censorship. In the next section we will consider three

estimators for Sl(b). The three estimators are

� Simple weighted estimator

� Zhao and Tsiatis estimator

� Wang estimator
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3.3 Some Weighted Estimators Of The Survival Function

Of RQALT For Left and Right-Censorship

In this section, we will introduce a class of estimators for Su(a).Three important

members of this class of estimators are the simple weighted estimator, the Zhao-

Tsiatis estimator and the Wang estimator. A single (censored or uncensored )

observation can be classified into four categories or cases. The cases depend on the

answers to the following two questions:

A) Can the value of I(N(Dl) > b) be determined from observation?

B) If the value of I(N(Dl) > b) can be determined, what is the first time point

at which the value can be determined?

We now consider each of the four cases in turn. For each case, we will define

variables Dl(b), D
′
l(b), X(b) and X ′(b).

These variables will be used later in this chapter to define new estimators.

Case(1):

I(N(X) > b) = 1

Since Dl ≥ X, N(Dl) ≥ N(X). Therefor, the value of I(N(Dl) > b) is 1.

To find out the first time point at which this value can be determined, consider

ml(b) = inf{e : N(X ∧ e) > b}

ml(b) is the first point time t when N(t) exceeds b.

Since N(t) is a nondecreasing function, I(N(t) > b) = 1 for all t ≥ ml(b).

If N(X) > b,

Define Dl(b) = ml(b) and D′l(b) = ml(b).

Let X(b) = Dl(b) ∧ Cl and X ′(b) = m′l(b) ∧ Cl

Notice that for an observation in this case, if Cl > Dl(b), we know that I(N(Dl) >

b) has to be 1
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Case (2):

I(N(X) > b) = 0 and N(X) + (sp− 0) + (L−X) < b.

Since U(.) ≤ 1, Dl ≥ X and

N(Dl) =

∫ Dl

αi

U(.)dt,

here we can be sure that I(N(Dl) > b) = 0

Now, to find out the first time at which this value can be determined, consider

zl(b) = inf{z : N(z) + sp+ (L− z) ≤ b}

zl(b) is the first time point t when N(t) + (sp− 0) + (L−X) ≤ b.

SinceN(t)+(sp−0)+(L−X) is a decreasing function of t, N(t)+(sp−0)+(L−X) ≤ b

for all t ≥ zl(b).

If N(X) < b and N(X) + (sp− 0) + (L−X) < b, define

Dl(b) = Dl , D′l(b) = zl(b)

Let X(b) = Dl(b) ∧ Cl and X ′(a) = D′l(b) ∧ Cl

For an observation in this case if Cl > D′l(b), we can be sure that I(N(Dl) >

b) = 0

Case (3):

I(N(X) > b) = 0, N(X) + (sp− 0) + (L−X) ≥ b and Cl < Dl. In this case, we

can’t determine the value of I(N(Dl) > b) because N(Dl) + (sp− 0) + (L−Dl) can

be greater than b. Let

Dl(b) = Dl, D′l(b) = Dl

X(b) = Dl(b) ∧ Cl, X ′(b) = D′l(b) ∧ Cl
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Case (4): I(N(X) > b) = 0 , and N(X) + sp+ (L−X) ≥ b and Dl ≤ Cl, in this

case Dl = X and hence I(N(Dl) > b) = 0

Dl(b) = Dl, D′l(b) = Dl

X(b) = Dl(b) ∧ Cl, X ′(b) = D′l(b) ∧ Cl

N(Xi) =

∫ Xi

spi

U(THi(t))dt
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3.4 Example

This example illustrates the difference among the simple weighted estimator, the

Zhao-Tsiatis estimator, and the wang estimator. Also, we will find the value of

cumulative hazard function. Here, we will depending on the definitions of these

estimators in the 2.5 and 2.7 to calculate it.

Now, consider the following table:

Table 9: Quality of life for the items
i 1 2 3 4 5 6
U(THi(t)) 0.1 0.9 0.5 0.6 0.8 0.7

Now, consider the following table which shows the data that will be used to show

the differences among the simple weighted estimator, Zhao-Tsiatis estimator and

the Wang estimator,

i Xi Γli

1 [1− 6] 0

2 [1.5− 7.5] 0

3 [0.5− 7] 0

4 [0− 7] 1

5 [0− 7.5] 1

6 [1− 9] 0

First, let us evaluate the possibly censored quality adjusted lifetime for each item,

which is defined by

N(Xi) =

∫ Xi

αi

U(THi(t))dt
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depending on the data in the tables above, we get:

N(X1) = 0.5, N(X2) = 5.4, N(X3) = 3.25, N(X4) = 4.2, N(X5) = 6 and N(X6) =

5.6

The artificial endpoint L = 9+, here we want to estimate the survival function

at b = 5

1. Simple weighted estimator:

To evaluate simple weighted estimator

δ̂lb(1; 1) =
1

n

n∑
j=1

Γlj

K̂(Xj)
I(Nj(Xj) > b)

First, we have to calculate the values of N(Xi) and I(N(Xi) > b). These values

are given in Table.

i Xi Γli U(THi(t)) N(Xi) I(N(Xi) > b)

1 [1-6] 0 0.1 0.5 0

2 [1.5-7.5] 0 0.9 5.4 1

3 [0.5-7] 0 0.5 3.25 0

4 [0-7] 1 0.6 4.2 0

5 [0-7.5] 1 0.8 6 1

6 [1-9] 0 0.7 5.6 1

Both I(N(Xi) > 5) and Γli are equal to 1 is only for i = 5.

Therefore, we need the value of the function ˆK(.) at the point X5 only. We have

K̂(X5) = (1− 1

6
)(1− 1

5
)(1− 1

4
) =

1

2

Then,
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δ̂l5(1; 1) =
1

6
(0 + 0 + 0 + 0 +

1
1
2

+ 0) =
1

3

The cumulative hazard function

Â(t)5(1; 1) = 1.09

2. Zhao-Tsiatis estimator:

To evaluate the Zhao and Tsiatis estimator

δ̂lb(3; 1) =
1

n

n∑
j=1

Γlj(b)

K̂b(Xj(b))
I(Nj(Xj) > b)

We have to find the set of values Xi(b).

Since N(Xi) > 5 only for X2, X5 and for X6, we have Xi(b) = Xi, for i = 1, 3, 4.

Note that :

ml(b) = inf{e : N(Xi ∧ e) > 5}

Now want to find Xi(5) for i = 2, 5 and 6.

X2(5) = [1.5− 7.1],

X5(5) = [0− 6.25],

X6(5) = [1− 8.2].

Now, we need the value of the function ˆK(.) at the point X2, X5 and X6.

Then,

K̂a(X2(b)) = K̂a(X5(b)) = (1− 1

6
) =

5

6

K̂a(X6(b)) = (1− 1

6
)(1− 1

3
) =

5

9
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Table 10: Data for Zhao-Tsiatis Estimator
i Xi(b) Γli(b) U(THi(t)) N(Xi) I(N(Xi) > b)
1 [1-6] 0 0.1 0.5 0

2 [1.5-7.1] 1 0.9 5.4 1

3 [0.5-7] 0 0.5 3.25 0

4 [0-7] 1 0.6 4.2 0

5 [0-6.25] 1 0.8 6 1

6 [1-8.2] 1 0.7 5.6 1

δ̂l5(3; 1) =
1

6
[0 +

1
5
6

+ 0 + 0 +
1
5
6

+
1
5
9

] = 0.7

The cumulative hazard function

Â(t)5(; 1) = 0.36

3. Wang Estimator :

To evaluate the Wang estimator

We have to find the set of value of values X ′i(b).

Here we need to study a cases of :if N(Xi) < b and N(Xi) + (spi− 0) + (L−Xi) < b

N(Xi) < b = 5 for X1, X3 and X4

N(X1) + (sp1 − 0) + (L−X1) = 0.5 + (1− 0) + (9− 6) = 4.5 < 5 ; So Γ′l1(b) = 1

N(X3) + (sp3− 0) + (L−X3) = 3.25 + (0.5− 0) + (9− 7) = 5.75 > 5 ; Here we can

not be sure

I(N(Xi) > b) = 0; So Γ′l3(b) = 0

N(X4) + (sp4 − 0) + (L−X4) = 4.2 + (0− 0) + (9− 7) = 6.2 > 5 ; Here spi = 0 ,

so it stays the same Γ′l4(b).
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Table 11: Data for Wang Estimator
i X ′i(b) Γ′li(b) U(THi(t)) N(Xi) I(N(Xi) > b)
1 [1-5.4] 1 0.1 0.5 0

2 [1.5-7.1] 1 0.9 5.4 1

3 [0.5-7] 0 0.5 3.25 0

4 [0-7] 1 0.6 4.2 0

5 [0-6.25] 1 0.8 6 1

6 [1-8.2] 1 0.7 5.6 1

We need to find Kappa estimator for Wang estimator

K̂b

′
(X ′2(b)) = 1

K̂b
′
(X ′5(b)) = 1

K̂b
′
(X ′6(b)) = (1− 1

3
) =

2

3

δ̂b(4; 1) =
1

6
(0 + 1 + 0 + 0 + 1 +

1
2
3

) = 0.6

The cumulative hazard function

Â(t)5(4; 1) = 0.5
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3.5 Jump Point for Left and Right-Censorship:

In this section, we will define a jump point in simple weighted estimator, the Zhao-

Tsiatis estimator and the Wang estimator. Also, we will define which of these point

(jump point) is assigned negative mass.

3.5.1 Jump Point Of The Simple Weighted Estimator In Left And Right-

Censorship

Simple weighed estimator has a jump point at b if and only if there exists an index

i such that b = N(Xi) and Γli = 1, i = 1, 2, ..., n.

In this estimator, the jump point is only at points of deaths. No negative mass

is assigned to any point by this estimator. It is monotonically non- decreasing

estimator.

3.5.2 Jump Points of the Zhao-Tsiatis Estimator in Left And Right-

Censorship

Almanassra (2005) [1] mentioned that Zhao-Tsiatis estimator may not be monotone.

In this section, we will identify the jump points in left and right censorship of the

Zhao-Tsiatis. Also, we will investigate which of these points are assigned negative

mass.

The Zhao-Tsiatis has three kinds of jump points:

A) Suppose that there exists an item i such that b = N(Xi) and Γli = 1, i =

1, 2, ..., n, then b is a jump point.

This kind of jump point is not assigned a negative mass.

B) Suppose that there exists an item i such that b = N(Xi) and Γli = 0, i =

1, 2, ..., n, then b could be a jump point.

This kind of jump point is also not assigned a negative mass.
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C) Suppose that there exists an item i such that Γli = 0, i = 1, 2, ..., n, and there

exists another item j such that

b =

∫ Xi−spi+spj

spj

Uj(TH(t))dt

such that N(Xi) < b and Xj − spj > Xi − spi, then b is a jump point.

This kind of jump point is assigned a negative mass at this point.

3.5.3 Jump Points of the Wang Estimator in Left And Right-Censorship

As mentioned before, this estimator has, in general more jump points than Zhao-

Tsaitis estimator.

This estimator has four kind of jump points.

A) If there exist an index i such that b = N(Xi) with Γli = 1, for i = 1, 2, ..., n,

then b is a jump point.

This kind of jump points not assigned a negative mass.

B) If there exist an index i such that b = N(Xi) or b = N(Xi)+(spi−0)+(L−Xi)

with Γli = 0, for i = 1, 2, ..., n, then b may be a jump point.

This kind of jump points not assigned a negative mass.

C) If there exist an index i such that Γli = 0, for i = 1, 2, ..., n,

N(Xi) < b < N(Xi) + (spi − 0) + (L−Xi).

And there exist another index j such that

b =

∫ Xi−spi+spj

spj

Uj(TH(t))dt

and Xj − spj > Xi − spi. Then b is a jump point.

This kind of jump point is assigned a negative mass.
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D) If there exists an index i such that Γli = 0, for i = 1, 2, ..., n,

N(Xi) < b < N(Xi) + (spi − 0) + (L−Xi).

And there exist another index j such that

b =

∫ Xi−spi+spj

spj

Uj(TH(t))dt+ (spi − 0) + (L−Xi)

Xj − spj > Xi − spi and N(Xj) + (spj − 0) + (L−Xj) < b. Then b is a jump

point.

This kind of jump point is assigned a negative mass.

3.6 Example

In this section we will illustrate how to find the jump points of simple weighted

estimator, Zhao-Tsiatis estimator and for the Wang estimator. We will find the

value of estimators just befor and just after each jump point.

Also, we will investigate which of these jump point is assigned negative mass.

Now, consider the following table,

Table 12: Data with quality of life
i 1 2 3 4
Xi [10 - 19] [6 - 44] [0-45] [0-50]
U(THi(t)) 1 0.25 0.5 1
Γli 0 0 1 1

(I) Simple weighted estimator jump points

The simple weighted estimator has jump points only at points of death, where

b = N(Xi) , Γli = 1.

The jump points are at b = 22.5 and at b = 50
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Table 13: The simple weighted estimator just before and after b = 22.5
i Xi Γli N(Xi) I(N(Xi) >

22.5−)
I(N(Xi) >
22.5+)

1 [10− 19] 0 9 0 0

2 [6− 44] 0 9.5 0 0

3 [0− 45] 1 22.5 1 0

4 [0− 50] 1 50 1 1

ˆδl22.5−(1; 1) =
1

4
(0 + 0 +

1

0.5
+

1

0.5
) = 1

ˆδl22.5+(1; 1) =
1

4
(0 + 0 + 0 +

1

0.5
) =

1

2

Table 14: The simple weighted estimator just before and after b = 50
i Xi Γli N(Xi) I(N(Xi) >

50−)
I(N(Xi) >
50+)

1 [41− 50] 0 9 0 0

2 [12− 50] 0 9.5 0 0

3 [0− 45] 1 22.5 0 0

4 [0− 50] 1 50 1 0

ˆδl50−(1; 1) =
1

4
(0 + 0 + 0 +

1

0.5
) =

1

2

ˆδl50+(1; 1) =
1

4
(0 + 0 + 0 + 0) = 0

(II) The Zhao-Tsiatis estimator’s jump points
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This estimator has three kind of jump points.

(i) When b = N(Xi) and Γli = 1.

Then, the jump points are b = N(X3) = 22.5 and b = N(X4) = 50

This jump point is not assigned a negative mass.

(ii) When b = N(Xi) and Γli = 0

Then, the jump points are b = N(X1) = 9 and b = N(X2) = 9.5

Table 15: The Zhao-Tsitis estimator just before and after b = 9
i Xi(9−) Γli(9−) I(N(Xi) >

9−)
Xi(9+) Γli(9+) I(N(Xi) >

9+)

1 [10−19−] 1 1 [10− 19] 0 0

2 [6− 42−] 1 1 [6− 42+] 1 1

3 [0− 18−] 1 1 [0− 18+] 1 1

4 [0− 9−] 1 1 [0− 9+] 1 1

ˆδl9−(3; 1) =
1

4
(1 + 1 + 1 + 1) = 1

ˆδl9+(3; 1) =
1

4
(0 +

1

3/4
+

1

3/4
+

1

3/4
) = 1

(iii) When Γli = 0, s.t

b =

∫ xi−spi+spj

spj

Uj(TH(t))dt

, b > N(Xi) where Xj − spj > Xi − spi.

The jump points for this kind when b = 19 and b = 38.
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Table 16: The Zhao-Tsitis estimator just before and after b = 19
i Xi(19−) Γli(19−)I(N(Xi) >

19−)
Xi(19+) Γli(19+) I(N(Xi) >

19+)

1 [10− 19] 0 0 [10− 19] 0 0

2 [6− 44] 0 0 [6− 44] 0 0

3 [0− 38−] 1 1 [0− 38+] 1 1

4 [0− 19−] 1 1 [0− 19+] 1 1

ˆδl19−(3; 1) =
1

4
(0 + 0 +

1

3/4
+

1

3/4
) =

2

3

ˆδl19+(3; 1) =
1

4
(0 + 0 +

1

3/8
+

1

3/4
) = 1

Table 17: The Zhao-Tsitis estimator just before and after b = 38
i Xi(38−) Γli(38−)I(N(Xi) >

38−)
Xi(38+) Γli(38+) I(N(Xi) >

38+)

1 [10− 19] 0 0 [10− 19] 0 0

2 [6− 44] 0 0 [6− 44] 0 0

3 [0− 45] 1 0 [0− 45] 1 0

4 [0− 38−] 1 1 [0− 38+] 1 1

ˆδl38−(3; 1) =
1

4
(0 + 0 + 0 +

1

3/4
) =

1

3

ˆδl38+(3; 1) =
1

4
(0 + 0 + 0 +

1

1/2
) =

1

2

(III) The Wang estimator jump points

This estimator has three kinds of jump points.
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(i) When b = N(Xi) with Γli = 1. The jump points are b = 22.5 and b = 50

The Wang estimator just before and after b = 22.5

δ̂lb(4; 1) =
1

n

n∑
j=1

Γ′lj(b)

K̂ ′b(X̂j(b))
I(Nj(Xj) > b)

δ̂l22.5−(4; 1) =
1

4
(0 + 0 +

1

3/4
+

1

3/4
) =

2

3

δ̂l22.5+(4; 1) =
1

4
(0 + 0 + 0 +

1

3/4
) =

1

3

The Wang estimator just before and after b = 50

δ̂l50−(4; 1) =
1

4
(0 + 0 + 0 +

1

1/2
) =

1

2

δ̂l50+(4; 1) =
1

4
(0 + 0 + 0 + 0) = 0

(ii) When b = N(Xi) or b = N(Xi) + (spi − 0) + (L−Xi) with Γli = 0.

The jump points are b = 9, 9.5, 21.5, 50.

(iii) When Γli = 0, and N(Xi) < b < N(Xi) + (spi − 0) + (L−Xi).

And there exist another index j such that

b =

∫ Xi−spi+spj

spj

Uj(TH(t))dt

and Xj − spj > Xi − spi. Then, b is a jump point.

The jump point is at b = 19.
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Table 18: The Wang estimator just before and after b = 19
i Xi(19−) Γli(19−) I(N(Xi) >

19−)
Xi(19+) Γli(19+) I(N(Xi) >

19+)

1 [10− 19] 0 0 [10− 19] 0 0

2 [6− 44] 0 0 [6− 44] 0 0

3 [0− 38−] 1 0 [0− 38+] 1 1

4 [0− 19−] 1 1 [0− 19+] 1 1

δ̂l19−(4; 1) =
1

4
(0 + 0 +

1

3/4
+

1

3/4
) =

2

3

δ̂l19+(4; 1) =
1

4
(0 + 0 +

1

3/8
+

1

3/4
) = 1

(iv) Γli = 0 and N(Xi) < b < N(Xi) + (spi − 0) + (L−Xi).

And there exist another index j such that

b =

∫ Xi−spi+spj

spj

Uj(TH(t))dt+ (spi − 0) + (L−Xi)

Xj − spj > Xi − spi and N(Xj) + (spj − 0) + (L−Xj) < b. Then, b is a

jump point.

The jump points for this kind is at b = 43.25 and b = 45.5
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Table 19: The Wang estimator just before and after b = 43.25
i Xi(43.25−) Γli(43.25−)I(N(Xi) >

43.25−)
Xi(43.25+) Γli(43.25+) I(N(Xi) >

43.25+)

1 [10− 19] 0 0 [10− 19] 0 0

2 [6− 15+] 1 0 [6− 15−] 1 0

3 [0− 13.5+] 1 0 [0− 13.5−] 1 0

4 [0 −
43.25−]

1 1 [0 −
43.25+]

1 1

δ̂l43.25−(4; 1) =
1

4
(0 + 0 + 0 +

1

3/4
) =

1

3

δ̂l43.25+(4; 1) =
1

4
(0 + 0 + 0 +

1

2/3
) =

3

8

Table 20: The Wang estimator just before and after b = 45.5
i Xi(45.5−) Γli(45.5−) I(N(Xi) >

45.5−)
Xi(45.5+) Γli(45.5+) I(N(Xi) >

45.5+)

1 [10− 19] 0 0 [10− 19] 0 0

2 [6− 12+] 1 0 [6− 12−] 1 0

3 [0− 9+] 1 0 [0− 9−] 1 0

4 [0− 45.5−] 1 1 [0− 45.5+] 1 1

δ̂l45.5−(4; 1) =
1

4
(0 + 0 + 0 +

1

2/3
) =

3

8

δ̂l45.5+(4; 1) =
1

4
(0 + 0 + 0 +

1

1/2
) =

1

2
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4 MONOTONIC QUALITY ADJUSTED

LIFETIME SURVIVAL FUNCTION

4.1 Introduction

Almanasra et al (2005) [2] noted that the Zhao-Tsiatis estimator for the quality

adjusted life data, is not a monotonic estimator, and hence it is not a suitable

survival function. Also the Wang estimator, which is a modified version of the Zhao-

Tsiatis estimator, is not a monotonic estimator. Both the Zhao-Tsiatis estimator

and the Wang estimator are consistent and reasonable efficient estimators. But, we

noticed that the simple weighted estimator is monotonic and consistent, but it is

less efficient than the Zhao-Tsiatis and Wang estimators.

In this chapter, we will propose two monotonic estimators for the survival func-

tion of RQAL , this procedure is similar to the procedure given by Almanassra et

al [2] . We will call the first one the monotonized Zhao-Tsiatis estimator, and the

second one the monotonized Wang estimator. The two new estimators are linear

combinations of other consistent estimators.

4.2 Monotonizing The Zhao-Tsiatis Estimator For The Left

and Right Censorship

In this section, we will give a procedure for monotonizing the Zhao-Tsiatis estimator

δ̂Z(b). The new estimator is a linear combination of the simple weighted estimator

δ̂S which is a monotonic function, and the Zhao-Tsiatis estimator δ̂Z . As mentioned

above, both the simple weighted estimator and the Zhao-Tsiatis estimator are con-

sistent estimators. The procedure for monotonizing the Zhao-Tsiatis estimator is

given in the following steps:

(I) Let W0 = 0.
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(II) Find all possible jump points for simple weighted estimator and Zhao-Tsiatis

estimator, denote these jump points by W1,W2,W3, ...,WN−1.

(III) Let P1 = W0 and P2 = W1, ..., PN = WN−1, be the possible ordered jump

points.

(IV) Find the values of the simple weighted estimator and the Zhao-Tsiatis estima-

tor at all of these points.

(V) The suggested estimator is a step function. The value of this function between

the jump points which is mentioned before is defined by :

δ̂MZi(b) = Kiδ̂Z(Pi) + (1−Ki)δ̂S(Pi).

Such that, i = 1, 2, ..., N, Pi ≤ b < Pi+1, Ki’s are random numbers such that

0 ≤ Ki ≤ 1,

and

1 ≥ K1δ̂Z(P1) + (1−K1)δ̂S(P1)

K1δ̂Z(P1) + (1−K1)δ̂S(P1) ≥ K2δ̂Z(P2) + (1−K2)δ̂S(P2)

K2δ̂Z(P2) + (1−K2)δ̂S(P2) ≥ K3δ̂Z(P3) + (1−K3)δ̂S(P3)

...

KN−1δ̂Z(PN−1) + (1−KN−1)δ̂S(P1) ≥ KN δ̂Z(PN) + (1−KN)δ̂S(PN)

KN δ̂Z(PN) + (1−KN)δ̂S(PN) ≥ 0

(VI) We expect the Zhao-Tsiatis estimator is more efficient than the simple weighted

estimator. Therefore, we want to find a monotonic survival function estimate
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that is close as possible to the Zhao-Tsiatis estimator. We will get the mono-

tonic survival function estimate by maximizing the objective function

N∑
i=1

qiKi

Where qi’s are known weights (positive). The constraints are given by,

Q Y ≥ A,

where

Y =



K1

K2

...

KN



A =



δ̂S(P1)− 1

δ̂S(P2)− δ̂S(P1)

...

δ̂S(PN)− δ̂S(PN−1)

−δ̂S(PN)



and the matrix Q is as given as follows,
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               −
(δ̂
Z

(P
1
)
−
δ̂ S

(P
1
))

0
0

..
.

0
0

(δ̂
Z

(P
1
)
−
δ̂ S

(P
1
))
−

(δ̂
Z

(P
2
)
−
δ̂ S

(P
2
))

0
..
.

..
.

0

0
(δ̂
Z

(P
2
)
−
δ̂ S

(P
2
))
−

(δ̂
Z

(P
3
)
−
δ̂ S

(P
3
))

. .
.

..
.

0

. . .
. .

.
. .

.
. .

.
. .

.
0

0
..
.

0
0

(δ̂
Z

(P
N
−
1
)
−
δ̂ S

(P
N
−
1
))
−

(δ̂
Z

(P
N

)
−
δ̂ S

(P
N

))

0
0

0
0

0
(δ̂
Z

(P
N

)
−
δ̂ S

(P
N

))

               
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(VII) Use linear programming to find the matrix Y . Note that the linear program-

ming problem has a known feasible solution given by the simple weighted

estimator.

The montonized Zhao-Tsiatis estimator is given by:

δ̂MZi(b) =



K1δ̂Z(P1) + (1−K1)δ̂S(P1) P1 ≤ b < P2

K2δ̂Z(P2) + (1−K2)δ̂S(P2) P2 ≤ b < P3

...
...

KN−1δ̂Z(PN−1) + (1−KN−1)δ̂S(PN−1) PN−1 ≤ b < PN

0 PN ≤ b

4.3 Monotonizing The Wang Estimator For The Left and

Right Censorship

In this section, we will give a procedure for monotonizing the Wang estimator ˆδW (b).

The new estimator is a linear combination of the simple weighted estimator δ̂S which

is a monotonic function, and the Wang estimator ˆδW . As mention above, both the

simple weighted estimator and the Wang estimator are consistent estimators. Now,

the procedure for monotonizing the Wang estimator is given in the following steps:

(I) Let W0 = 0.

(II) Find all possible jump points for simple weighted estimator and Wang estima-

tor, denote these jump points by W1,W2,W3, ...,WN−1.

(III) Let P1 = W0 and P2 = W1, ..., PN , be the possible ordered jump points.

(IV) Find the values of the simple weighted estimator and the Wang estimator at

all of these points.
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(V) The suggested estimator is a step function. The value of this function between

the jump points which were mentioned before is defined by :

δ̂MWi(b) = Kiδ̂W (Pi) + (1−Ki)δ̂S(Pi).

Such that, i = 1, 2, ..., N, Pi ≤ b < Pi+1, Ki’s are random numbers such that

0 ≤ Ki ≤ 1

, and

1 ≥ K1δ̂W (P1) + (1−K1)δ̂S(P1)

K1δ̂W (P1) + (1−K1)δ̂S(P1) ≥ K2δ̂W (P2) + (1−K2)δ̂S(P2)

K2δ̂W (P2) + (1−K2)δ̂S(P2) ≥ K3δ̂W (P3) + (1−K3)δ̂S(P3)

...

KN−1δ̂W (PN−1) + (1−KN−1)δ̂S(P1) ≥ KN δ̂W (PN) + (1−KN)δ̂S(PN)

KN δ̂W (PN) + (1−KN)δ̂S(PN) ≥ 0

(VI) We expect the Wang estimator is more efficient than the simple weighted

estimator. Therefore, we want to find a monotonic survival function estimate

that is close as possible to the Wang estimator. We will get the monotonic

survival function estimate by maximizing the objective function

N∑
i=1

qiKi
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Where qi’s are known weights (positive). The constraints are given by,

Q Y ≥ A

Also,

Y =



K1

K2

...

KN



A =



δ̂S(P1)− 1

δ̂S(P2)− δ̂S(P1)

...

δ̂S(PN)− δ̂S(PN−1)

−δ̂S(PN)



and the matrix Q is as given as follows,
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               −
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δ̂ S

(P
1
))
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..
.

0
0

(δ̂
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)
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δ̂ S

(P
1
))
−

(δ̂
W

(P
2
)
−
δ̂ S

(P
2
))

0
..
.

..
.

0

0
(δ̂
W

(P
2
)
−
δ̂ S

(P
2
))
−

(δ̂
W

(P
3
)
−
δ̂ S

(P
3
))

. .
.

..
.

0

. . .
. .

.
. .

.
. .

.
. .

.
0

0
..
.

0
0

(δ̂
W

(P
N
−
1
)
−
δ̂ S

(P
N
−
1
))
−

(δ̂
W

(P
N

)
−
δ̂ S

(P
N

))

0
0

0
0

0
(δ̂
W

(P
N

)
−
δ̂ S

(P
N

))

               
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(VII) Using linear programming to find the matrix Y .Note that the linear program-

ming problem has a known feasible solution given by the simple weighted

estimator.

The montonized Wang estimator is given by:

δ̂MWi(b) =



K1δ̂W (P1) + (1−K1)δ̂S(P1) P1 ≤ b < P2

K2δ̂W (P2) + (1−K2)δ̂S(P2) P2 ≤ b < P3

...
...

KN−1δ̂W (PN−1) + (1−KN−1)δ̂S(PN−1) PN−1 ≤ b < PN

0 PN ≤ b
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4.4 Some General Result On the consistency Of A Convex

Linear Combination Of Estimator

Amanassra(2005) [1] proved the consistency of the monotonic efficient estimator for

the Zhao-Tsiatis estimator and Wang estimator.

4.4.1 Weak consistency

Definition 4.1. Let δ̂1, δ̂2, ..., δ̂n, ... be a sequence of estimators of a real valued

parameter δ. The sequence {δ̂n} is defined to be weakly consistent estimator of δ if

for every ε > 0

lim
n→∞

P [ ˆ|δn − δ| < ε] = 1

∀ δ in the parameter space

Remark.

If δ̂n is a weakly consistent estimator of δ the estimators then δ̂n converges in prob-

ability to the constant parameter δ

δ̂n → δ

Definition 4.2. [6] Convergence in distribution:

A sequence of random variables X1, X2,..., converges in distribution to a random

variable X if

lim
n→∞

FXn(x) = FX(x)

∀ points x such that FX(x) continuous.

Remark.

The sequence Xn converges in distribution to a constant b ⇐⇒ converges in

probability to b

59



Theorem 1. [17] (Slutsky’s theorem)

If Xn → X in distribution and Yn → a a constant , in probability, then

a) YnXn → aX in distribution.

b) Xn + Yn → X + a in distribution.

Lemma 2. Suppose that Xn → 0 in probability and α′ns are random variables such

that |αn| ≤M where M is a positive real number. Then, αnXn → 0 in probability.

Proof.

P [|αnXn − 0| < ε] = P [|αn||Xn − 0| < ε]

≥ P [M |Xn − 0| < ε]

= P [|Xn − 0| < ε

M
]

−→ 1, n −→∞

(1)

Theorem 3. [1] Let δ̂1,n and δ̂2,n be two sequences of weakly estimators of a pa-

rameter δ.

Consider the sequence of convex linear combinations defined by

δ̂n = αnδ̂1,n + (1− αn)δ̂2,n

Such that, αn are random variables ∈ [0, 1]. Then, δ̂n is a weakly consistent estimator

of δ

Proof. Since δ̂1,n
P−→ δ and δ̂2,n

P−→ δ by Slutsky’s Theorem

δ̂1,n − δ̂2,n
P−→ 0
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Also, since αn is bounded, by 2

αn(δ̂1,n − δ̂2,n)
P−→ 0

Now,

δ̂n = αnδ̂1,n + (1− αn)δ̂2,n

= δ̂2,n + αn(δ̂1,n − δ̂2,n)

P−→ δ, by Slutsky′s theorem

(2)

4.4.2 Mean Squared Error Consistency

Definition 4.3. Let δ̂1, δ̂2, ...., δ̂n, .. be a sequence of estimators of a real valued

parameter δ, the sequence {δ̂n} is defined to be a mean squared error consistent

sequence of estimators of δ if and only if

lim
n→∞

E[(δ̂n − δ)2] = 0

We say δ̂n is a MSE-consistent estimator of δ.

Theorem 4. [2] Let δ̂1,n and δ̂2,n be two sequences of MSE consistent estimators of

δ. Consider the sequence of convex linear combinations defined by

δ̂n = αnδ̂1,n + (1− αn)δ̂2,n

Such that,αn are random variables ∈ [0, 1].

Then, δ̂n is MSE consistent estimator of δ.
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Proof.

E[(δ̂n − δ)2] = E[(αn(δ̂1,n − δ) + (1− αn)(δ̂2,n − δ))2]

≤ E[2[(αn)2(δ̂1,n − δ)2 + (1− αn)2(δ̂2,n − δ)2]]

≤ 2E[((δ̂1,n − δ)2 + (δ̂2,n − δ)2]

−→ 0, as n −→∞

(3)

So, δ̂n is a consistent estimator of δ
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4.5 Example

In this example, first, we will find the jump points of Simple weighted estimator,

Zhao-Tsiatis estimator and the Wang estimator. Then, we will find the values of

these estimators at the jump points to investigate which of these points assigned

negative mass. Finally, we will use these data and the result by applying the proce-

dure given in previous sections to find monotonized the Zhao-Tsiatis estimator and

monotonized the Wang estimator.

i Xi Γli U(THi(t)) N(Xi)

1 [8− 18] 0 1 10

2 [10− 51] 0 1
4

10.25

3 [0− 48] 1 1
2

24

4 [0− 53] 1 1 53

(a) The Simple weighted estimator jump points

The simple weighted estimator has jump points only when Γli = 1, so b is

equal to 24 and 53.

(b) The Zhao-Tsiatis estimator jump points.

(i) When b = N(Xi) and Γli = 1, the jump points are 24 and 53.

(ii) When b = N(Xi) and Γli = 0, the jump points are 10 and 10.25.

(iii) To find the jump points of the third kind, we want to check if there exists

an item i such that N(Xi) < b and Γli = 0 and there exists another index

j, such that

b =

∫ Xi−spi+spj

spj

Uj(TH(t))dt
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and Xj − spj > Xi − spi.

The first item, which has Γli = 0 is X1.

Now, X2, X3 and X4 are all greater than X1. We have to check which of

them lead to jump point.

For X2, we have

b =
∫ 18−8+10

10
1
4
dt = 2.5, and since 2.5 < 10 b is not a jump point.

For X3, we have

b =
∫ 18−8
0

1
2
dt = 5, and since 5 < 10 b is not a jump point.

For X4, we have

b =
∫ 18−8
0

1dt = 10, and since 10 is not < 10 b is not a jump point.

The second item, which has Γli = 0 is X2.

Now, X3 and X4 are all greater than X2. We have to check which of them

lead to jump point.

For X3, we have

b =
∫ 51−10
0

1
2
dt = 20.5, and since 20.5 > 10.25, b is a jump point.

For X4, we have

b =
∫ 51−10
0

1dt = 41, and since 41 > 10.25, b is a jump point.

The jump points of Zhao-Tsiatis estimator are

10, 10.25, 20.5, 24, 41 and 53.

(c) The Wang estimator jump point

(i) When b = N(Xi) and Γli = 1, the jump points are 24 and 53.

(ii) When b = N(Xi) and Γli = 0, the jump points are 10 and 10.25.

(iii) b = N(Xi) + (spi− 0) + (L−Xi) and Γli = 0, the jump points are 53 and

22.25.

(iv) To find the jump points of this kind, we have to check if there exist an

item i such that N(Xi) < b < N(Xi) + (spi − 0) + (L−Xi) and Γli = 0,
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and there exist another index j, such that

b =

∫ Xi−spi+spj

spj

Uj(TH(t))dt

and Xj − spj > Xi − spi.

The first item, which has Γli = 0 is X1.

Now, X2, X3 and X4 are all greater than X1. We have to check which of

them lead to jump point.

For X2, we have

b =

∫ 18−8+10

10

1

4
dt = 2.5

, and since 2.5 is not between 10 and 53 b is not a jump point.

For X3, we have

b =

∫ 18−8

0

1

2
dt = 5

, and since 5 is not between 10 and 53 b is not a jump point.

For X4, we have

b =

∫ 18−8

0

1dt = 10

, and since 10 is not between 10 and 53 b is not a jump point.

The second item, which has Γli = 0 is X2.

Now, X3 and X4 are all greater than X2. We have to check which of them

lead to jump point.

For X3, we have

b =

∫ 51−10

0

1

2
dt = 20.5
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, and since 20.5 is between 10.25 and 22.25 b is a jump point.

For X4, we have

b =

∫ 51−10

0

1dt = 41

, and since 41 is not between 10.25 and 22.25 b is not a jump point.

(v) To find the jump points of this kind, we have to check if there exist an

item i such that N(Xi) < b < N(Xi) + (spi − 0) + (L−Xi) and Γli = 0,

and there exist another index j, such that

b =

∫ Xi−spi+spj

spj

Uj(TH(t))dt+ (spi − 0) + (L−Xi)

Xj − spj > Xi − spi and N(Xj) + spj + (L−Xj) < b.

The first item, which has Γli = 0 is X1.

Now, X2, X3 and X4 are all greater than X1. We have to check which of

them leads to a jump point.

For X2, we have

b =

∫ 18−8+10

10

1

4
dt+ (8− 0) + (53− 18) = 45.5

, and since 10.25 + (10− 0) + (53− 51) < b and 10 < b < 53, b is a jump

point.

For X3, we have

b =

∫ 18−8

0

1

2
dt+ (8− 0) + (53− 18) = 48

, and since 24 + 53− 48 < b and 10 < b < 53, b is a jump point.

For X4, we have
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b =

∫ 18−8

0

1dt+ (8− 0) + (53− 18) = 53

, and since 53 is not less than b, b is not a jump point.

The second item, which has Γli = 0 is X2.

Now, X3 and X4 are all greater than X2. We have to check which of them

leads to a jump point.

For X3, we have

b =

∫ 51−10

0

1

2
dt+ (10) + (53− 51) = 32.5,

and since b is not between 10.25 < b < 22.25, b is not a jump point.

For X4, we have

b =

∫ 51−10

0

1dt+ (10) + (53− 51) = 53,

and since b is not between 10.25 < b < 22.25, b is not a jump point.

The jump points of Wang estimator are

24, 53, 22.25, 20.5, 45.5, 48, 10 and 10.25.

The values of these estimators just before and just after each jump point

are given in the next page.

67



Table 21: Values of estimators just before and after the jump points

b δ̂S(b) δ̂Z(b) ˆδW (b)

10- 1 1 1

10+ 1 1 1

10.25- 1 1 1

10.25+ 1 2
3

2
3

20.5- 1 2
3

2
3

20.5+ 1 1 1

22.25- 1 1 1

22.25+ 1 1 2
3

24- 1 1 2
3

24+ 0.5 1
3

1
3

41- 0.5 1
3

1
3

41+ 0.5 1
2

1
3

45.5- 0.5 1
2

1
3

45.5+ 0.5 1
2

0.375

48- 0.5 1
2

0.375

48+ 0.5 1
2

1
2

53- 0.5 1
2

1
2

53+ 0 0 0

Now, want to apply the procedure that is given in 4.2 to find the monotonized
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Zhao-Tsiatis estimator.

Let P1 = W0 = 0,

The jump points of Zhao-Tsiatis estimator in 4.5 are 10, 10.25, 20.5, 24, 41, and 53.

Now, want to find the matrices Q and A

Q =



−(1− 1) 0 0 0 0 0 0

(1− 1) −(1− 1) 0 0 0 0 0

0 (1− 1) −(2
3
− 1) 0 0 0 0

0 0 (2
3
− 1) −(1− 1) 0 0 0

0 0 0 (1− 1) −(1
3
− 1

2
) 0 0

0 0 0 0 (1
3
− 1

2
) −(1

3
− 1

2
) 0

0 0 0 0 0 (1
2
− 1

2
) −(0− 0)

0 0 0 0 0 0 (0− 0)



Q =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1
3

0 0 0 0

0 0 −1
3

0 0 0 0

0 0 0 0 1
6

0 0

0 0 0 0 −1
6

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


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A =



(1− 1)

(1− 1)

(1− 1)

(1− 1)

(1
2
− 1)

(1
2
− 1

2
)

(0− 1
2
)

(0)



A =



(0)

(0)

(0)

(0)

(−1
2
)

(0)

(−1
2
)

(0)


Now, by linear programming problem, we want to maximize

N∑
i=1

Ki

Subject to the constraints

QY ≥ A
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Then,

Y =



1

1

0

1

0

1

1


Then, the montonized Zhao-Tsiatis estimator is :

δ̂MZ(b) =



1 0 ≤ b < 10

1 10 ≤ b < 10.25

1 10.25 ≤ b < 20.5

1 20.5 ≤ b < 24

1
2

24 ≤ b < 41

1
2

41 ≤ b < 53

0 53 ≤ b
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Now, we want to apply the procedure that is given in 4.3 to find the monotonized

Wang estimator.

Let P1 = W0 = 0.

The jump points of Wang estimator in section 4.5 are 10, 10.25, 20.5, 22.25, 24, 45.5, 48,

and 53

Now, want to find the matrices Q and A
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Q
=

                            −
(1
−

1)
0

0
0

0
0

0
0

0

(1
−

1)
−

(1
−

1)
0

0
0

0
0

0
0

0
(1
−

1)
−

(2 3
−

1)
0

0
0

0
0

0

0
0

(2 3
−

1)
−

(1
−

1)
0

0
0

0
0

0
0

0
(1
−

1)
−

(2 3
−

1)
0

0
0

0

0
0

0
0

(2 3
−

1)
−

(2 3
−

1 2
)

0
0

0

0
0

0
0

0
(2 3
−

1 2
)
−

(3 8
−

1 2
)

0
0

0
0

0
0

0
0

(3 8
−

1 2
)
−

(1 2
−

1 2
)

0

0
0

0
0

0
0

0
(1 2
−

1 2
)
−

(0
−

0)

0
0

0
0

0
0

0
0

(0
−

0)

                            
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Q =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1
3

0 0 0 0 0 0

0 0 −1
3

0 0 0 0 0 0

0 0 0 0 1
3

0 0 0 0

0 0 0 0 −1
3

1
6

0 0 0

0 0 0 0 0 −1
6

1
8

0 0

0 0 0 0 0 0 −1
8

0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


and,

A =



(1− 1)

(1− 1)

(1− 1)

(1− 1)

(1− 1)

(1
2
− 1)

(1
2
− 1

2
)

(1
2
− 1

2
)

(0− 1
2
)

(0)


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A =



(0)

(0)

(0)

(0)

(0)

(−1
2
)

(0)

(0)

(−1
2
)

(0)


Now, by linear programming problem, we want to maximize

N∑
i=1

Ki

Subject to the constraints

QY ≥ A

Then,

Y =



1

1

0

1

1

0

0

1

1


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Then, the montonized Wang estimator is :

δ̂MW (b) =



1 0 ≤ b < 10

1 10 ≤ b < 10.25

1 10.25 ≤ b < 20.5

1 20.5 ≤ b < 22.25

2
3

22.25 ≤ b < 24

1
2

24 ≤ b < 45.5

1
2

45.5 ≤ b < 48

1
2

48 ≤ b < 53

0 53 ≤ b
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5 SIMULATION RESULT

In this simulation study, we will estimate and compare the mean squared errors

of the simple weighted estimator, the Zhao-Tsiatis estimator, the Wang estimator,

the monotonized Zhao-Tsiatis estimator, and the monotonized Wang estimator by

R-code for the left and right censorship case. This study is similar to the study by

Gelber (1989), Zhao-Tsiatis (1999), Wang (2001) and Almanassra et al(2005). In

this simulation we will assume that the time to follow up is uniformly distribution

FU ∈ [0, 74], time to relapse is exponential distribution TR ∼ exp(1/100), and time

of toxicity is uniform distribution on [0, TOX2]([0, 50]), TOX ∼ U [0, 50]. The true

survival function of time without symptoms of disease and toxicity is given by Gel-

ber (1989)

Pr(TWiST > b) =


1

λTOX2
exp−λb(1− exp−λTOX2) 0 ≤ b < L− TOX2

1

λTOX2
(exp−λb− exp−λL) L− TOX2 ≤ b < L

To compute all estimators, we need

Ti = TRi ∧ L,Γli = I(Ti ≤ FUi), Xi = Ti ∧ FUi

N(Xi) = Xi − TOXi

note that, if

TOXi > Xi, then N(Xi) = TRi

To compute simple weighted estimator we need to use

Xi,Γli
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To compute Zhao-Tsiatis and monotonized Zhao-Tsiatis estimators we have to use

ml(b) = TOXi + b Ti(b) = ml(b) ∧ Ti

Γli = I(Ti(b) ≤ FUi) Xi(b) = Ti(b) ∧ FUi

To compute Wang and monotonized Wang estimators we have to use if N(Xi) < b

and L− TOXi ≤ b

zli(b) = L− b T ′i (b) = zli ∧ Ti

Γ′li = I(T ′i (b) ≤ FUi) X ′i(b) = T ′i (b) ∧ FUi

Also, let the artificial end point L = 60.

We consider different sample sizes, n = 10, 15, 20, 30, 50. and the number of simula-

tions = 1000
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The following table show Comparison of the mean squared error of the sim-

ple weighted estimator(MSES), Zhao-Tsiatis estimator (MSEZ), Wang estimator

(MSEW), monotonized Zhao-Tsiatis estimator (MSESZ) and monotonized Wang

estimator (MSESW) for n = 10
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The following table show Comparison of the mean squared error of the sim-

ple weighted estimator(MSES), Zhao-Tsiatis estimator (MSEZ), Wang estimator

(MSEW), monotonized Zhao-Tsiatis estimator (MSESZ) and monotonized Wang

estimator (MSESW) for n = 15
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The following table show Comparison of the mean squared error of the sim-

ple weighted estimator(MSES), Zhao-Tsiatis estimator (MSEZ), Wang estimator

(MSEW), monotonized Zhao-Tsiatis estimator (MSESZ) and monotonized Wang

estimator (MSESW) for n = 20
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The following table show Comparison of the mean squared error of the sim-

ple weighted estimator(MSES), Zhao-Tsiatis estimator (MSEZ), Wang estimator

(MSEW), monotonized Zhao-Tsiatis estimator (MSESZ) and monotonized Wang

estimator (MSESW) at n = 30
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The following table show Comparison of the mean squared error of the sim-

ple weighted estimator(MSES), Zhao-Tsiatis estimator (MSEZ), Wang estimator

(MSEW), monotonized Zhao-Tsiatis estimator (MSESZ) and monotonized Wang

estimator (MSESW) at n = 50
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6 Conclusion

From the results of our case study, as expected the new two estimators monotonized

Zhao-Tsiatis estimator and monotonized Wang estimator, the MSE is smaller than

MSE for simple weighted estimator in general. Also, as expected the Zhao-Tsiatis

and Wang estimators have smaller MSE than simple weighted estimator. Therefore,

they are better estimators for the survival function of restricted quality adjusted

lifetime.

In general Wang estimator has smaller MSE than the Zhao-Tsiatis estimator. The

MSE for both the monotonized Wang and Zhao-Tsiatis estimator are very close to

the Wang and Zhao-Tsiatis estimator respectively. Also, both the monotonized of

Zhao-Tsiatis and monotonized Wang estimators are monotonic functions and hence

they are proper survival functions. While, the Wang and Zhao-Tsiatis estimators

are not monotonic.
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