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ABSTRACT 
 

          The classification of observations plays an important role in statistics and all 

other fields. In this thesis, we studied Logistic Regression (LR) as a method of 

classification and compare its performance with the performance of Linear 

Discriminant Analysis (LDA), Gaussian Mixture Model (GMM), and Neural 

Networks (NN). Performance is compared by the Misclassification Table and Error 

Rate for each method. 

Furthermore, the effect of sample size and presence of correlation were studied. In 

general, the results showed that when the linear discriminant analysis assumptions 

are met, the performance of the linear discriminant analysis method is best. If the 

conditions are not met, the logistic regression method outperforms the other 

classification methods.  
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                                                             Chapter 1 
 
                                                        Introduction 
1.1  General Introduction 

 

Classification and discrimination are important tools in the analysis of data. However, 

prediction takes the values of variables as inputs and then gives the closest value to the occurrence 

(Nikam, 2015). The Classification has recently become popular in regards to applications and 

computing, which is the focus of the thesis. These tools are used for differentiation and 

discriminating between observations. There is a slight overlap between the two concepts. The 

discrimination is numerical, but the classification is designed to separate the different data into 

classes. 

There are two situations of classification. One of them is detecting the classes of objects, or 

assigning new observations into classes. It is appropriate to label these classes as 𝜋1, 𝜋2, …,	  𝜋j, 

where j is the component’s number. The data have commonly come in multivariate form, so the 

observed values of the independent variables X´= [x1, x2, …, xp], where p the number of 

independent variables, differs from class to the other. 

 There are real examples of classification situations such as separating between successful or 

unsuccessful college students, with measured variables like entrance examination scores, high 

school grade point average, and the number of high school activities.  In practice, no matter what 

there will always be uncertainty in identifying the class membership of the data. That is due to 

several reasons. First, predicting future values is not deterministic and can never be that way. 

  

Besides getting accurate information from the correct source may lead to the things to be 
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destroyed. For example, to know the age of a battery, what we should use to exhaust energy stored 

in them, and then we can know the time necessary to exhaust its energy, which is known as battery 

life. 

Another example, we need prediction to avoid medical errors that may occur during a surgical 

procedure, these mistakes should have occurred in the past, and the result was a human loss so that 

we can recognize them and avoid them at present. That is medical errors can’t be avoided without 

their occurrence. This means the inevitability of a loss to obtain accurate information from the 

correct source.  

The assignment of observations or objects into predefined homogeneous groups is a problem of 

major practical and research interest. It’s important to know that classification may have errors 

and the populations are overlap, and the cost of misclassification is different. For example, we may 

use quantitative information in predicting who will or will not graduate from the Medical college, 

an unsuccessful graduate student in a medical college classified as successful is costlier than 

classifying a successful one as unsuccessful. This would be an example of simple binary 

classification problems, where the categorical dependent variable can only assume two distinct 

values. In other cases, there are multiple categories or classes for the categorical dependent 

variable.  Here we will only study a binary dependent variable. 

A categorical variable (or nominal variable) has a measurement unordered scale consisting of a set 

of categories. For nominal variables, the order of listing the categories is irrelevant. The statistical 

analysis should not depend on that ordering. Methods designed for nominal variables give the 

same results no matter how the categories are listed (Agresti, 2007). Categorical scales are 

pervasive in the social sciences for measuring attitudes and opinions. Categorical scales also occur 

frequently in the health sciences, for measuring responses such as whether a patient survives an 
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operation (yes, no), the severity of an injury (none, mild, moderate, severe), and stage of disease 

(initial, advanced). 

Although categorical variables are common in the social and health sciences, they are by no means 

restricted to those areas. Often, categorical data result from n independent and identical trials with 

two possible outcomes for each, referred to as “success” and “failure.” These are generic labels, 

and the “success” outcome need not be a preferred result. Identical trials mean that the probability 

of success is the same for each trial. Independent trials mean the response outcomes are 

independent random variables. In particular, the outcome of one trial does not affect the outcome 

of another. These are often called Bernoulli trials. 

 

1.2 Motivation  

 Classifier effectiveness depends surely on the characteristics of the data to be classified, 

it's the size and which distribution does it belong to. There is no certain classifier that doses the 

best in all given scenarios. For example, a simple model may lose some important information and 

a complex model, even if it fits well with the data, may not give good predictive accuracy. Various 

data were selected to examine the suitability of the logistic regression model and compare its 

performance with that of other models. There are many classification methods such as Support 

Vector Machine (SVM), Principal Component Analysis (PCA), Classification and Regression 

Trees (CART), Logistic Regression(LR), Linear Discriminant Analysis (LDA), Gaussian Mixture 

Model (GMM), Neural Networks (NN) and others. 

Our focus will be mainly on comparing the performance of LR with that of the LDA, GMM and 

Neural Networks (NN). This is because LR and LDA are the most commonly used techniques in 

Machine Learning and Data Science, they are popularity in use, and they have a solid theoretical 
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basis. On the other side, in Computer Science, NN is commonly used. 

 

 1.3 Research Questions 

In this study, several research questions will be addressed. Four classification techniques 

will be presented and compared. The performance of each will be evaluated through the accuracy  

tables or what is called confusion tables. 

 
1.4 The Objectives of the Study  

The goal of this study is classifying new observations by several methods. The fitted model 

using Logistic Regression (LR), Linear Discriminant Analysis (LDA), Gaussian Mixture Model 

(GMM) and Neural Networks (NN) will be compared using the corresponding error rates. 

These aims are summarized as follows: 

1.   Using LR as a classifier in four Datasets. 

2.    Comparing the performance of LR, LDA, GMM and Neural Networks (NN) via normal 

mixtures using classification tables. 

 

1.5 Methodology 

Classification of multivariate normal observations will be done. The logistic regression 

will be used to discriminate between the components of the mixture. This technique will be 

compared with other existing discrimination and classification techniques such as the use of a 

Linear Discriminant Function.  

The comparison will be done using real-life data through the classification tables. All statistical 
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analyses will be done using the R software.  

 
1.6 Organization of the Thesis 

In this chapter, a brief background is presented to serve the purpose of the thesis and its 

methodology. The classification methods used in this thesis were described briefly along with a 

modest review of the literature. In the second chapter, the theoretical aspects of LDA, GMM and 

Neural Networks (NN) are presented. In the third chapter, the theoretical framework of LR is 

presented and the details are discussed. In Chapter 4, the performance of the LR model is compared 

with that of the other three models, the comparison results are presented in the last chapter using 

real-life examples.  

In the fifth and final chapter, the results will be discussed and the research recommendations will 

be included for the future. 

 

1.7 Literature Review  

Many studies that compare the accuracy of each method of classification. These studies 

did not cover the four methods presented in this thesis. And here are the most relevant studies that 

address these comparisons: 

Kiang (2002) assessed the comparative of classification methods. His study aims to evaluate the 

performance of classification methods. The study showed that no one method that outperforms all 

methods all the time. This paper also found that classification methods show sensitivity to changes 

in data characteristics. He recommended the construction of classification systems using several 

methods of different classifications to form a hybrid work in response to the existence of different 
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biases of data. He also recommended studying the characteristics of the data because that may 

affect the performance of the classification methods. Also, Hossain, et al. (2002) concluded that 

the efficiency of logistic regression is $
%
 to %

&
  times better than the efficiency of the linear 

discrimination performance in case the data is multivariate normally distributed.  

However, Pohar, Blas, and Turk (2004) compared LR and LDA in a simulation study. The 

objective of their paper was to develop guidelines to determine when to choose the most 

appropriate method. 

 They focused on the predictive power of methods based on the estimation of parameters. 

The researchers found that the method of linear discriminant analysis (LDA) shows greater 

superiority when the data follows a normal distribution and fails if the number of categories is 

small (2 or 3). These differences become puny when the sample size becomes larger. Otherwise, 

LR is more efficient and appropriate regardless of the distributions. Later on, Maroco, et al. (2011) 

predicted Dementia using data mining methods, by making a comparison of the accuracy 

and sensibility of LDA, LR, SVM, CART, Random Forests and Neural Networks (NN). 

Researchers in the previous study founded that the linear discrimination analysis method showed 

high predictive accuracy, sensitivity, and distinguished power among other classification methods. 

Further, Holden, Finch, and Kelley (2011) compared two-group classification methods and they 

noticed that increasing the size of the sample led to an increase in the accuracy of classification 

using LDA and decreased accuracy rates at the CART. They showed that in most of the conditions 

of the study, LDA has the highest classification truth, while the LR and linear discrimination 

showed lower ratings. On the other hand, Kiveu (2015) compared LR, LDA with analyzing PCA, 

principal component analysis. Kiveu (2015) concluded that the logistic regression achieved a 

slightly higher success rate compared to the linear discriminant analysis of 87% for the logistic 
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regression, and 85.60% for linear discriminant analysis. The researcher found that the linear 

discriminant function attained a lower rate of misclassification. 

 Besides, Yeun Liong and Fan Foo (2013) compared between LDA and LR for data 

classification. The researchers determined that the method of logistic regression showed predictive 

ability and a higher percentage of classification than linear discrimination analysis. But if the 

sample size is large, the computing time for the logistic regression is about 6.44 times higher than 

the computing time of the other method, so, they showed that overall, LR is better.   

Therefore, the researchers recommended using the method of linear discrimination analysis if we 

have a large sample size and our time is limited, and they explained that the number of independent 

variables does not have a significant impact on the computing time of the two methods. While 

Demir (2014) compared CART and LR with other predictive methods in order of identifying 

patients who are at risk of readmission. This study showed that the predictive ability of the LR was 

higher than the other methods adopted in this paper, and classification trees had a similar result. 

Similarly, Omurlu, et al; (2014) compared the execution of CART and LR with CART and Neural 

Networks (NN). The study was to compare the performance of classification methods including 

LR and CART and other methods in diagnosing the presence of albumin in patients with the second 

type of diabetes. In this study, the logistic regression (LR) was better than CART where the logistic 

regression (LR) ranked third with a precision of 74.24%, while CART was ranked fourth and final 

69.7% accuracy. 

At last, Brolin and Finch (2016) followed up a classification in the existence of misclassified 

practice data. The study aimed to find the effect of classification of structured training data on 

three groups of misclassifications by using classification methods like LDA and L.R and CART. 
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The researcher found that CART was ranked second in the most accurate methods in this study, 

with a large gap between its accuracy and accuracy of the method that won the first place (random 

forests). 

In brief, our study will focus on comparing Logistic Regression (LR), Linear Discriminant 

Analysis (LDA), Gaussian Mixture Models (GMM) and Neural Networks (NN). The performance 

of these techniques as classifiers will be investigated through real-life examples.  
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Chapter 2  

Overview of Classification Methods 
2.1 Introduction  
 

The task of classifying future observations into predefined homogeneous groups is of interest 

to researchers in many fields.  

 In classification procedures, we try to allocate a future observation in one of several predefined 

groups or categories. The primary purpose of the classification is to describe the features of 

observations from different known populations, and how to separate observations under two or 

more classes (Johnson & Wichern, 2007). 

The classification classifies the observations to categories by a function of a combination of 

variables. The aim is to provide a formula of function that leads to optimal discrimination of 

observations in categories with the lowest error rate (Wehrens, 2011). 

Some studies dealt with mixed types of variables. There are some strategies to solve this dilemma, 

the most important is to convert the variables to be all of the same types, all of them are continuous 

or all of the categories. But this process may lead to loss of information and this is a drawback 

(Hamid, 2010). 

Rating of classification accuracy is based on 3 criteria: sample design and this depends on specific 

techniques, design response and finally analysis process (Lu, Weng, 2007) 

In this chapter, the theoretical details of the four methods namely Linear Discriminant Analysis 

(LDA), Logistic Regression (LR), Gaussian Mixture Models (GMM) and Neural Networks (NN) 

are presented and discussed. 
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2.2 Linear Discriminant Analysis (LDA)  
 

The first technique or method used in classification is LDA, which was developed in 1936 

by Sir Ronald Fisher (Fisher, 1936 indirect). The power of this technique stems from the fact that 

when two populations are normal with equal covariance matrices, then the method is 

(asymptotically) optimal; thus, the probability of misclassification is minimum (Rencher, 2003).  

 A discriminant rule is a separation of the sample spaces, into disjoint sets R1, R2,…, Rj such that 

S= 	  '
()$ Rk. If x ⋴ Rk, it is predicted to be a member of population 𝝑k, such that the error of 

misclassification is as small as possible. In our case, j=2, that is there are only two populations 𝝑1 

and 𝝑2. 

In particular, let 𝝑1 is the population of observations with the values of X’s which classified as the 

first class, and 𝝑2 are the residual observations which classified as the second class (Johnson & 

Wichern, 2007). Discriminant analysis is used in situations where the clusters are previously 

known. 

 Discriminant analysis aims are using the variables that discriminate between two or more 

normally occurring groups. Then find a function that can be used to classify future observations 

and predict its membership in groups based on measured variables. 

 In LDA, a subject is classified into the group for which its classification function score is highest 

(Maroco, 2011).  Among the advantages that make LDA is good in the classification, the shape 

and location of the original data does not change if we make a transformation on this data, while 

using Principle Component Analysis (PCA), it changes its location and shape if we do the same 

transformation (Balakrishnama, Ganapathiraju, 1998). 
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LDA searches for the best projection to project the input data, on a lower dimensional space, in 

which the data of different classes are well-separated as much as possible.  The projection 

maximizes the distance between the means among several competing classes while minimizes the 

variance within each class (Al-jazzar, 2012) as in Figure 2.1. 

 

Good Class Separation 
                                                                        

 

 

 

                                                                between 

                                                                                                     within 

                                 Figure 2.1: Good class separation between 2-classes. 

 

 Assume we have binary outcome variable populations, i.e.  𝝑(x)j, j = 1, 2 and we have to allocate 

an observation x to one of two groups. These groups or populations can be described by probability 

density function 𝑓1(x) and	  𝑓2(x).  

Let that the sample space Ω which contains all observations’ variables, R1 is the set for all variables 

which make an observation classified as 𝝑1, and R2 is the set for all variables which make an 

observation classified as 𝝑 2. The classification regions R1 and R2 are disjoint, i.e. R1∩R2 = 𝜙 and 

R1∪R2 =	  Ω. 

The conditional probability, P(2|1) is the probability of misclassifying an object as it is in 𝝑2  but 

it is in 𝝑1, so P(2|1) which is the volume formed by the integration of density function	  𝑓$(𝑥)as the 
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height, over the classification region R2, and expressed as : 

P(2|1) = p( x ⋴ R2 | π1) = 𝑓$(𝑥)34
 dx                                                                    (2.1) 

and similarly for P(1|2). 

Let p1 be the prior probability of 𝝑1, and p2 the prior probability of 𝝑2. We define the prior 

probabilities as follows:  p1 is the proportion of observation in 𝝑1, and p2 is the proportion of 

observation in 𝝑2, where p1 + p2 = 1 for every observation.	 

Then the overall probabilities of correctly or incorrectly classifying objects can be derived as the 

product of the prior and conditional classification probabilities as following: 

P(observation is correctly classified as 𝝑1)= P(x ⋴ R1 | 𝝑1 ) p(𝝑1) =P(1|1) p1        (2.2) 

P(observation is misclassified as 𝝑1)= P(x ⋴ R1 |	  𝝑2 ) p(𝝑2) =P(1|2) p2                  (2.3) 

P(observation is correctly classified as 𝝑2 )= P(x ⋴ R2 |	  𝝑2) p(𝝑2) = P(2|2) p2         (2.4) 

P(observation is misclassified as 𝝑2 )= P(x ⋴ R2 |	  𝝑1 ) p(𝝑1) = P(2|1) p1                 (2.5) 

The expected cost of misclassification (ECM) is given by  

ECM = c(2|1) P(2|1) p1 + c(1|2) P(1|2) p2,                                                                 (2.6) 

where c(2|1) is the cost of misclassification when an observation from 𝝑1 is incorrectly classified 

as 𝝑2, and vice versa for c(1|2). 

The regions  R1 and  R2 which minimize ECM formed by: 
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 R1 : 
56 7
54(7)

   ≥  9($/%)	  
9(%/$)	  

 (;4
;6
)                                                                                     (2.7) 

 R2 : 
56 7
54(7)

    <	  	  
9($/%)	  
9(%/$)	  

  (;4
;6
)                                                                                    (2.8) 

To assign an observation x to 𝝑1 or 𝝑2, Fisher (1936) employed his Linear Discriminant Function 

(LDF). To apply the rule, he assumed that ∑1 = ∑2 = ∑ and no assumption made about the 

probability density function (PDF).  Fisher’s rule does not require normality (Timm, 2002) but 

some favored the use of logistic regression if the hypothesis of the normal distribution of data was 

excluded (Kiang, 2003). He also assumed that p1=p2 and c(1|2) = c(2|1), so (2.7) and (2.8) give us: 

 R1:  
56 7
54(7)

       ≥ 1  

 R2 :  
56 7
54(7)

       ≤ 1 

In this case, for any new observation x0 , assigning x0 to	  𝝑1 if    
56 7
54(7)

  ≥ 1, otherwise it is assigned 

to 𝝑2 . 

 2.2.1 LDA Assumptions  

Discriminant analysis, like all statistical procedures, is restricted by certain assumptions, 

and these are: 

1.   Sample size:  There is no objection to existing samples of different sizes, but the size of 

the set should exceed the number of variables. For example, the maximum number of 

variables = N -2, where N is the sample size. 

2.    Normal distribution: it is common that the data are normally distributed with outliers 

values (Johanson & Wichern, 2007). It's important to know that LDA is highly sensitive 
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to the inclusion of outliers. The included in the evaluating of LDA (Reimann et al, 2002). 

It is preferred that the data being normal distributed. Two popular tests check the 

normality, these are Kolmogorov-Smirnov (K-S) and shapiro-Wilk test. 

3.   Homogeneity of variances/covariances: LDA is strongly affected by the heterogeneity of 

the covariance matrices of all groups, it requires the equalization of the variance matrices 

for all of them (Al-jazzar, 2012) 

 i. e. 	  	  ∑1

	  

= 	  ∑2

	  

=. . . = 	  ∑k

	  

. 

4.   Non-Multicollinearity: LDA assumes the independence of variables. The violation of this 

hypothesis as the presence of dependent variables correlated with one of the variables, or 

the existence of a variable as a function of another variable; leads to the fact that the 

coefficients will not estimate the relative weight correctly (Poulsen & French, 2002).  

 

2.2.2 Classification with Two Multivariate Normal Populations  

Parametric procedures are used when classification rules make assumptions regarding the 

pdfs f1(x) and f2(x), such as normality because it’s reasonability and simplicity across population 

models (Johnson, Wichern, 2007). 

 While Fisher’s LDF is nonparametric, it is only asymptotically optimal under normality and 

requires the covariance matrices to be equal (Timm, 2002). 
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           Figure 2.2: Plot of LDA for the Depression dataset. 

 

In our case, we will restrict ourselves and assumes that f1(x) and f2(x) are multivariate normal 

densities. I.e. 𝝑1 is 𝒩p(𝜇1, Σ) and 𝝑2 is 𝒩p(𝜇2, Σ) , with  

X = (x1, x2, …, xp), then the joint densities for populations 𝝑1 and 𝝑2 expressed by  

fi(X) = $
(%I)J/4

 $
K 6/4    exp −$

%
	  	   	  X − 𝜇N `	  ΣP$	  (	  X − 𝜇N)	   , for i= 1,2                              (2.9) 

For any realization x of X, suppose that the population parameters (µ1, ∑) and (µ2, ∑) are known. 

Then the minimum Expected Cost of Misclassification (ECM) regions found in (2.7) and (2.8) 

become: 

R1:
P$
%

 (	  𝑥 − µμ$)T ∑-1 ( x-µ1) + $
%
 (	  𝑥 − µμ%)T	  ∑-1 ( x-µ2) ≥ 	  	  𝑙𝑛 9($/%)	  

9(%/$)	  
  ;4

;6
                      (2.10)                                                
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R2:
P$
%
(	  𝑥 − µμ$)T	  ∑P$	   	  𝑥 − µμ$ +	  $

%
(	  𝑥 − µμ%)T	  ∑P$(	  𝑥 − µμ%) < 𝑙𝑛 9($/%)	  

9(%/$)	  
;4
;6

                                      

(2.11)                                                        

The allocation rule that minimizes the ECM is as follows:  

x0  allocated to 𝝑1 if:  

(µμ$ −	  µμ%)T  ∑-1 x0 - 
$
%
 (µμ$ −	  µμ%)T   ∑-1 (µ1+ µ2) ≥ ln 9($/%)	  

9(%/$)	  
	  	   ;4

;6
                              (2.12)                                                      

Otherwise x0 is allocated as 𝝑2. 

In most popular cases, the population quantities µ1, µ2 and ∑ are unknown, the rule (2.12) must be 

adjusted. Wald and Anderson (1984), substituted the population parameters by their sample 

estimates (Johnson and Wichern, 1999).  

Suppose, then that we have n1 observations from 𝝑1 , and  n2 observations from 𝝑2 , such that n1 

+ n2 −2	   ≥	    p , each of the form X` = (x1, x2, …, xp). Then the sample mean vectors and covariance 

matrices are determined by  

𝑥1 = 
$
X6

	  X6
')$ x1j	  , 𝑥2 = 

$
X4

	  X4
')$ x2j      

S1 = $
X6P$

	  	  	  	   	  X6
')$ (x1j -   𝑥1)(x$' 	  −	  	  	  𝑥$)T,  S2 = $

X4P$
	  	  	  	   	  X4

')$ (x2j -   𝑥2)(x%' 	  −	  	  	  𝑥%)T 

Since it is assumed the present population have the same covariance matrix ∑, the sample 

covariance matrices S1 and S2 are pooled to conclude unbiased estimate of ∑. 

Spooled = X6P$
X6P$ZX4P$

 S1   + X4P$
X6P$ZX4P$

 S2                                                                                             (2.13) 
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Substituting 𝑥1 for  µ1 ,	  	  𝑥2  for  µ2 and Spooled  for ∑ in (2.11) gives the sample  

classification rule:   

  x0 allocated to π1 if: 

(𝑥$ − 𝑥%)T Spooled 
-1 x0 - 

$
%
 (𝑥$ − 𝑥%)T  Spooled 

-1 (𝑥1+ 𝑥2) ≥ ln 9($/%)	  
9(%/$)	  

	  	   ;4
;6

               (2.14)                                                      

Otherwise x0 allocated as π2. 

In summary, Fisher’s rule has some optimal properties if  ∑1 = ∑2, p1=p2= 
$
%
,  and 

c	  (	  1/2)	  =	  c	  (	  2/1	  )	 as long as samples are acquired from normal populations. When this is not 

the case, Fisher’s rule is to be averted (Timm, 2002) 

 

2.3    Gaussian Mixture Models (GMMs) 

       For Gaussian Mixture Models, in particular, we'll use 2D normal distributions, meaning that 

our input is now a vector instead of a scalar. This also changes our parameters: the mean is now a 

vector as well. The mean represents the center of our data so it must have the same dimensionality 

as the input. 

The variance changes less intuitively into a covariance matrix Σ. The covariance matrix, in addition 

to telling us the variance of each dimension, also tells us the relationship between the inputs, i.e., 

if we change x, how does y tend to change? 

We can plot the 2D Gaussian, as we see in Figure 2.3, The X and Y axes are the two inputs and 

the Z-axis represents the density. The lower plot is a contour plot. The lighter the color, the larger 

the density, the larger is the enclosed probability.  
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          Figure 2.3: Contour plot that shows this our contour Gaussian in 2D. 

 

             Figure 2.4: the Surface plot that shows the 3D density. 

 

 

If the datasets are not normal, then CLT can be used. In our case and since we know these data are 

normally distributed, why not try to fit the normal case to them? The idea behind Gaussian Mixture 
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Models, GMM, is to find the parameters of the Gaussians that explain our data better. However, 

determining the optimal number of ingredients is not easy (Zhang, Huang, 2015). 

As a condition of using this road is to determine the optimum count of the components to get good 

performance in the classification. Few of them reduce the performance of this method, especially 

if training data are already small. And if the components are large, it means that the complexity of 

calculations will be overly exaggerated and this is something we do not seek at all (Huang et al., 

2005). 

The most common method is the maximum likelihood technique because of its optimal properties. 

This method is the most widely used among other proposed methods (Oliveira, Martins, 2005). 

We are assuming that these data are normally distributed and we want to find parameters that 

maximize the likelihood of observing these data. In other words, we consider each point as being 

generated by a mixture of normal distributions and can compute that probability as follows: 

P(x) = Ø(
')$ j	  	  𝒩'( x; 𝜇j , ∑j ),                                                                                (2.18) 

where k is the number of components of normal mixtures, and the result is 3k groups of parameters 

to be estimated (Cao, 2010), such that each Øj is positive and 	   Ø(
')$ j = 1 (Anifowose, 2012), and 

every 𝜙j is the weight of the jth normal, which represents the size of contribution of that component.  

We have three sets of different parameters that we need to estimate: the weights for each normal 

component 𝜙j, the means of the jth normal component 𝜇j, and the covariances of each jth normal 

component ∑ j.  

𝒩'( x; 𝜇j , ∑j ) = $

	  	  (%]) ^ 4	   K_
  exp −$

%
	   𝑥 − 𝜇'

T 	  (𝑥 − 𝜇')P$
'   , x 𝜖 ℝ , 𝜇 𝜖 ℝ,   

and Σ > 0.                                                                                                              (2.19) 
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What characterizes GMM is that it treats the data as a linear combination of Gaussian distributions, 

either uses one single probability distribution for all data or completely ignores its structure (Cao, 

2010). 

To classify an observation in GMM, we use a Bayesian maximum likelihood classifier (Povinelli 

& Johnson, 2004). As	  𝜃	  represents the parameters, the component is determined by calculating the 

conditional probability of each model for every single observation and adopting max P(xn; 𝜃) as 

follows:  

argmax
i

	  𝑙𝑜𝑔 	  𝑃(𝑥X; 	  𝜃)	  =	  argmax	  log
i

Π
N
	  𝑃(𝑥N|	  𝜃)  

                                     = 	  argmax	  	  
i

𝑙𝑜𝑔(𝑃(𝑥N|	  𝜃) 	  )N                                         (2.20) 

If we try to directly solve for these, it turns out that we can find closed-forms. But there is one 

huge catch: we have to know the 𝜙j’s. In other words, if we knew exactly which combination of 

the normal mixture a particular point was taken from, then we could easily figure out the means 

and covariances. 

But this one critical flaw prevents us from solving GMMs using this direct technique. Instead, we 

have to come up with a better approach to estimate the weights, means, and covariances. We will 

estimate these parameters by using the well-known Expectation-Maximization (EM) Algorithm 

and applying it to our sample. 

 
2.4 Neural Networks (NN) 

The idea of naming this method came from the principle that neural networks work in the brain 

and are therefore designed to simulate the way the brain works and Neural networks are powerful 
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tools in classifying patterns in terms of artificial intelligence (Russell and Norvig,2003), also it is 

nonlinear because its idea is inspired by the synthesis of biological neurons in its nonlinear form 

(Tiwary, 2014). The history of neural networks began in the 1940s (Kriesel, 2011) 

A neural network is a massively parallel distributed processor made up of simple processing units 

that has a natural propensity for storing experiential knowledge and making it available for use 

(Haykin, 2008). In this way, the weights in the network are adjusted to achieve the goal. 

Neural networks have succeeded in the classification especially for data on the topics of 

bankruptcy forecasting, handwriting recognition and speech, diagnosis of faults and medical 

diagnoses, valuation of bonds and others. 

Advantages of Neural Networks: 

1-   Nonlinearity: Their neuronal cells are connected in a non-linear network, which means 

they are distributed throughout the retina and function abnormally. 

2-   The possibility of mapping inputs and outputs: The weights of the neural networks are 

modified to reduce the difference between the actual response and the desired response, 

where the network is trained several times to reach the stability in the weights of networks. 

3-   Adaptability: Neural networks deal easily with minor changes. If the variables are not 

stable, we can change the weights. The availability of this feature ensures our system 

stability, which means a more stable performance. Adaptation does not mean durability. 

4-   Contextual information: This means that the neuron may be affected by the global activity 

of all neurons in the network. 

5-   Fault tolerance: This ability to bear the error, because of the nature of the complex and 

wide distribution of the damage without showing a catastrophic level of performance. 
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Neural networks (NN) have other advantages like the Uniformity of Analysis and Design, 

Neurobiological Analogy, and Evidential Response.  

  

      Figure 2.5: Plot of Neural Networks for the Depression Dataset. 

 

As we see, neural networks are a nonlinear model. The range of the output of a neuron is as the 

unit interval [0,1]. 

As we note from Figure 2.5, the neural networks (NN) have 3 elements: 

1-   Input layer: A set of synapses and its function is the interconnecting, and the m input signals 

are xj’s where j=1, …m. In Figure 2.5 input signals are x1, x2, …, x6.  Each tangled node 
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produces a weight symbolized by 𝓌kj, where k indicates for the neuron, and j indicates to 

the signal (Haykon, 2008). Weights are the numbers listed above the stock in Figure 2.5. 

2-   Hidden layer: A collector that	  Synthesizes the weighted input signals, in the sense that it 

forms a linear combiner. The collector of the neural networks (NN) for the Depression 

Data is x7, and it needed 280 steps as shown in Figure 2.5. 

3-   Output layer: The Activation Function 𝜑(.) (not shown in Figure 2.5) determines the 

allowable range in the output signal to a finite value which is as the closed unit interval 

[0,1] (Haykon, 2008). 

The Neural Networks (NN) model may contain a certain amount of bias (bk) affects the net input 

value of the Activation Function either by increasing or decreasing. This is expressed 

mathematically as follows:    uk = 𝓌('𝑥't
')$                                                       (2.21)                    

 and the output of the Activation Function is yk = 𝜑	  (uk + bk).                               (2.22) 

By the Threshold Function: The Activation Function is: 

𝜑	  (uk + bk) =
1	  	  	  	  	  	  𝑖𝑓	  	  𝑢k	   + 	  𝑏k	   ≥ 0
0	  	  	  	  	  	  𝑖𝑓	  	  𝑢k	   + 	  𝑏k	   ≤ 0                                                                      (2.23)                                         

We will talk about the Logistic Regression (LR) method in some details in the next chapter. 

 
 
 
2.5 Datasets 

We have 4 datasets, we want to compare the performance of the four methods (LDA, Mixture 

models, Neural Networks (NN), and LR) and observe the accuracy of performance according to 

the Error rates. 

In what follows are the details of these four datasets. These datasets have different sizes, different 
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class variables, and different numbers of independent variables.  

Example 1:  

The first dataset is the Depression Dataset, which consists of 45 penitents (15 ill and 30 well) with 

one categorical dependent variable coded to 1 = ill and 2 = well, with five qualitative independent 

variables coded according to the penitents' answers of these five questions:  

1.Have you recently felt that you are playing a useful part in things? 

1 =No to 4 =Yes 

2. Have you recently felt contented with your lot?     1= No to 4 =Yes 

3. Have you recently felt capable of making decisions about things? 

1=No to 4 Yes. 

4. Have you recently felt that you’re not able to make a start on anything?  

       1= Yes to 4 =No 

5. Have you recently felt yourself dreading everything you have to do?  

       1 =Yes to 4 =No 

 

Example 2: 

 The second dataset is the Bankruptcy Data. The annual financial data listed in the attached data 

file, (𝜋 = 0 is for bankrupt, and 𝜋 = 1 for no bankrupt firms) have been analyzed by Johnson, W 
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(1987). Their analysis was focused on studying the impact of outlier observations on discriminant 

analysis. The Bankruptcy Dataset has four variables which are: 

1.   CF/TD which indicates to (cash flow/total debt). 

2.   NI/TA which indicates to (net income/total assets). 

3.   CA/CL which indicates to (current assets/ current liabilities). 

4.   CA/NS which indicates to (current assets/net sales).  

Example 3: 

The third dataset is the Frog Data that is a new data set that was collected by the Department of 

Biology at James Madison University in the United States. Data occurred from 2010-present. The 

dependent variable CLADE.DES is based on DNA sequence data or locality collected. The data 

classified 534 frogs into 21 classes, some of which remained unknown, and adopted 80 variables, 

reduced to two classes of frogs, with 10 variables and 100 observations. The variables in Frog Data 

(measured with cm) are quantitative. Character abbreviations are: 

1.   ED - Eye diameter 

2.   HL - Head Length 

3.   HW - Head Width 

4.   LAL – Lower arm length 

5.   MN - Mandible-nostril distance 

6.   TBL - Tibia Length 

7.   UEW - Upper Eyelid Width 

8.   OL - Odontoid Length (measured from the bottom of the mandible to the top of the 

odontoid) 

9.   MD - Mandible depth (the thickness of the mandible at the base of the odontoid.  This is 

used to calculate the actual length of the odontoid by subtracting MD from OL) 
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Example 4: 

 The last dataset is Women Empowerment dataset from UNDP and CIA sites which published in 

2004. These data ranked 177 countries of the world if they had the advantage of women's 

empowerment or not through 134 variables reduced to 7 quantitative and qualitative variables 

which are mixed of: 

1.   Log GDP: which is converted into purchasing power parity terms to eliminate differences 

in national price levels. 

2.   Education enrollment: which is the combined gross enrollment in primary, secondary, and 

tertiary schools. 

3.   Power position: which is female legislators, senior officials, and managers. 

4.   Employment: which is female professional and technical workers. 

5.   Income: This is the ratio of female to male earned income. 

6.   Empowerment: which is the categorical – dependent variable, i.e. it’s coded by 0 to 

countries which classified as one where women are not empowered, and the opposite for 

1. 

In this chapter, the theoretical aspects of the three classification methods which are LDA, 

GMM, and NN were discussed. 

In the next chapter, theoretical aspects of logistic regression will be presented. 
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Chapter3  

Binomial Logistic Regression. 
3.1 introduction 
 

The regression methods aim is to describe the relationships between one dependent 

variable and one or more than independent variables. Some of these methods are linear regression 

and others are nonlinear such as logistic regression. 

Logistic regression (LR), is a statistical method for analyzing datasets in which there are 

independent variables used to predict the outcome of a dichotomous variable (Titterington, 1985). 

Logistic regression is commonplace in many fields such as education, sciences, health, biology, 

etc. (Barkinson & Read, 1985).   

 

Logistic regression has two wide applications in research, one of them is classification (Predicting 

membership of new observations into labeled classes), and separation (Distinguish observations 

according to its nature) (Tensey, et al., 1996). 

Logistic regression classifies observations by constructing a regression function that enables us to 

predict and requires that the dependent variable be two levels, success, and failure. This is similar 

to the binomial theory requirement (Wang, 2008). Since the objective of the regression method is 

to find and describe the relationship between independent and dependent variables. The logistic 

regression is an appropriate method to examine the hypotheses about the nature of the relationship 

between the dependent variable in the case of categorical, and independent variables, whether they 

were continuous or categorical. 

If we have k independent variables, the mean of Y given X=x, E(Y|X=x), can be expressed as 

E(Y|X=x) = β0+β1x1+… + βkxk , where  β0, β1,…, βk are partial slopes coefficients of the  
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corresponding x1 ,x2 , … , xk independent variables.  

The explicate form of the equation is: 

Y = E(Y|X=x) + 𝜀, i.e Y= β0+β1x1+… + βkxk + 𝜀, if we have more than one explanatory variable 

where β0 is the intercept, β1,…, βk are regression coefficients, and 𝜀 is the error term, where is 

assumed to be independent and normally distributed with mean zero and constant variance. 

In linear regression, the main estimate method is the ordinary least squares, but in logistic 

regression, the main method is the maximum likelihood to estimate the coefficients. 

The differences between logistic regression and linear regression are summarized below (Hosmer, 

Lemeshow,2000):  

1-   The outcome variable in logistic regression is binary or dichotomous, so the value of the 

predicted value π(x) = y may even be outside the permissible range of 0 to 1, as shown in 

Figure 3.1 

 

i.   Figure 3.1: Linear regression for a binary dependent variable. 
 

2-   In any regression problem, the mean value of the outcome variable, given the value of the 
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independent variable is the key quantity. This quantity is called the conditional mean and 

which is expressed as “E (Y|X= x)”, where Y denotes the outcome variable and x denotes 

a value of the independent variable. In linear regression, we assume that this mean may be 

expressed as a linear equation in x (or some transformation of x or Y), such that E (Y|X= 

x), ranges between (- ∞, +∞) if β not equal to zero with taking any value of x.  In 

dichotomous data, conditional mean must be greater than or equal to zero and less than or 

equal to 1, i.e. 

[ 0 ≤ E(Y|X= x)≤ 1]. 

3-   Another difference between the linear and logistic regression models is the conditional 

distribution of the outcome variable. In the linear regression model, Y= E(Y|X= x)+	  𝜀, such 

that the error expresses an observation’s deviation from the conditional mean. The most 

common assumption is that 𝜀 follows a normal distribution with mean zero and some 

variance that is constant across levels of the independent variable. It follows that the 

conditional distribution of the outcome variable given x will be normal with mean E(Y|X= 

x), and a constant variance. This is not the case with a dichotomous outcome variable, the 

value of the outcome variable given x as Y = π(x)	  +	  𝜀. Here the quantity may assume one 

of two possible values. If y = 1 then 𝜀 = 1 - π(x)	  with probability =π(x) which is equal 

to E(Y|X= x), and if y = 0 then 𝜀 = π(x) with probability = 1- π x .	  Thus, 𝜀 has a 

distribution with mean zero and variance equal to π(x)[1- π(x)]. That is, the conditional 

distribution of the outcome variable follows a binomial distribution, not the 

normal distribution, with probability given by the conditional mean, 𝜋(X).  
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3.2 The logistic regression model 

        We want to find the probability that a case is categorized as one of two categories of 

outcomes. Let us assume that we have one independent variable X; when X=x, Y could be 0 or 1. 

So let us define π(x) =P(Y=1|X=x) = 1-P(Y = 0|X = x ), if we know one probability, we know the 

other. The expected value of Yi given X=x is, by definition of expectation,  

E(Yi|X=x) = 1×P(Yi =1) + 0×P(Yi =0). This reduces to E(Yi|X=x) =P(Yi=1|X=x) = Pi. 

E(Yi |X=x)=E(β0+β1xi+ 𝜀i) = E(β0)+E(β1xi )+E(𝜀i) = β0+ β1xi  , so we get that  

 Pi = β0 + β1xi = π(x). We conclude that π(𝑥)	  = β0+β1xi  . 

Unfortunately, this is not a good model. As long as β1≠ 0, extreme values of x will give values of 

E(Yi|X=x) = β0+β1xi  that is inconsistent with the fact that 0 ≤ p ≤ 1. 

 To solve this problem, we substitute the odds that Y=1 for the probability that Y=1, with using the 

natural logarithm.  The odds that Y=1, written odds(Y=1), is the ratio of the probability that y=1 to 

the probability that Y≠1. The odds that Y=1 is equal  �(�)$)
�(�)�)

 =	   �(�)$	  )
$P� �)$	  

	  .	  We use the term log odds 

for this transformation. We model the log odds as a linear function with one explanatory variable: 

ln ;
$P;

=β0+β1x . So the natural logarithm of the odds, ln ](�)	  
$P](�)

, is called the logit of Y.  

Now, extend this case to k independent variables X= (x1, x2,…, xk), therefore, the logistic regression 

model expressed as : 

  ln ](�)	  
$P](�)	  

 = β0 +β1x1+… + βkxk  = βT	  𝐗	                                                                (3.24)      

 which is the logistic regression model. 
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We will convert the logit and return to the odds via exponentiation for both sides of (3.19), so we 

get  

     ](�)	  
$P](�)	  

=  𝑒��7	                                                                                                      (3.25) 

By Cross-product, the equation will be:	  	  $PI(�)
I(�)

= 	   $
	  	  ���^	  

   , 

$
I �

 -1 =   $
	  ���^	  

 , so we get $
I(�)

  =  1+ $
	  ���^	  

  . 

Solving for	  𝜋 x , we get 𝜋 x = ��
�^	  

$Z���^	  
  .                                                              (3.26) 

Whatever the value of β’s and the X’s, it is sure that the numerator is less than the 

 denominator in (3.26), and thus ensure that the value of π(x) is limited between 0 and 1. 

Aldrich and Nelson showed that according to the previous formula (3.26), values of βT𝑥	  are 

ranging from negative infinity to positive infinite and this gives the Gaussian distribution S-shape 

(Cabrera,1994). 

 

3.3 Fitting logistic regression model 

If Y is coded as 1 or 0, then 𝜋 x  equals to the conditional probability when Y =1 given x 

which is donated by P(Y=1|X=x), and the conditional probability when Y=0 given x which donated 

as  P(Y=0 | x) equals 1-π(x).  

To fit the logistic regression model in equation (3.19) using the data with the unknown 

parameters  β0+β1x+… + βkxk, that requires that we estimate the values of the unknown 
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 parameters. Maximum likelihood is a common method of estimation; maximum likelihood 

estimates of the parameters are the values that maximize the probability of getting the observed 

set of data for a given x. Below is the outline of the steps of obtaining the Maximum Likelihood 

Function (MLE). Finding probability by Maximum Likelihood is preferred because it is more 

practical, especially for the data that violate the normality assumption (Press, Wilson, 1978). 

 First, we have to find the likelihood function. Since the dependent variable is a dichotomous 

variable, then we start with Bernoulli trials. A convenient way to express the contribution to the 

likelihood function for the pair (xi ,yi) obtained as follows: 

since for a given Xi = xi, yi =1 with probability π(x) and yi =0 with probability 1- π(x), so the 

distribution of yi for a given X= xi can be written as:  

  	  π(𝑥𝑖)
��

 [1	   − 	  	  π(𝑥N)]
$P��                                                                               (3.27) 

Since the observations are assumed to be independent, the likelihood function is obtained as the 

product of the terms given in expression (3.28) as follows: 

for all (x1, y1), …, (xn,yn), the likelihood function performed as 

 L(β)= P(y1, …, yn| x1, …, xn) =  π(𝑥𝑖)
��	  [1	   − 	  	  π(𝑥𝑖)]

1−𝑦𝑖X
N)$ 	                      (3.28)  

The principle of maximum likelihood states that we use as our estimate of	  β as the value which 

maximizes the expression in equation (3.28). 

Secondly, the log likelihood is obtained as:  

ℓ𝓁(β)= ln L(β) = (X
N)$ yi  [ln π(xi)] + [1-yi ] ln[1 -  π(xi)])                                         (3.29) 

So, we maximize ℓ𝓁(β) instead of ln L(β) because it is easier to work with given that it attains its 
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maximum at the same point as that of ℓ𝓁(β). That is because the natural log is one to one function 

as its always increasing. 

Thirdly, ℓ𝓁(β) is a differentiable as a function of β. Therefore, to find the value of that maximizes 

we differentiate function concerning the k+1coefficients and set the resulting expressions equal to 

zero. There will be k+1 likelihood equations that are obtained by differentiating the log likelihood. 

The likelihood equations that result may be expressed as follows: 

[ yi - 
��

�^	  

$Z���^	  
] = 0         i= 1, …, n                                                                                 (3.30) 

(xij [yi - 
��

�^	  

$Z���^	  
]) =0    i= 1, …, n,  j = 1,2,…, k                                                           (3.31)  

The value of β given by the solution to equations (3.30) and (3.31) is called the maximum 

likelihood estimate and is denoted as 𝛽. 
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Chapter 4 

           Comparing Logistic Regression with Other Commonly Used Models 
 

4.1 Introduction  

      In our study, the classification error rate is used as an evaluation method. The performance of 

the four classification methods used will be evaluated by comparing their classification rates. 

Factors that may contribute to the performance will be also investigated. These factors are the 

sample size and the correlation between the explanatory variables. (I did this in section 4.3) 

The process is performed 15 times, the classification error is found for each case and then the 

average of the 15 times is taken as the classification error rate which is done for all datasets with 

all methods. Then we compared the error of the classification of each data for the four methods. 

In particular, four datasets are used and the performance of each method is reported. All 

computations are done using the statistical package R and explore the factors that might impact 

the performance of these classification methods. 

 

 

4.2 Using four Real Data Sets for Comparing 

All four classification methods are statistical methods designed to predict the value of a category 

variable based on the given values of independent variables. These techniques are widely used in 

medical and economic sciences. 

We will conduct the comparison process through five real datasets which described in chapter 2 

with a very brief description:  

1-  The Depression Dataset: This data is used to predict whether a person is in a depression state 

or not based on his answers to 5 questions, data has 45 observations. 
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2-  The Bankruptcy Dataset: This data is used to predict the company's occurrence in bankruptcy 

depending on several variables. This was done for 46 companies. The Data constructed by four 

variables. The source: 1968, 1970, 1971, 1972 Moody’s Industrial Manual. 

3-Frog Dataset: This data distinguishes between two types of frogs according to biological 

measurements of the head, eye, arm, the distance between nostrils and mandible, and the 

decomposition of the lower teeth and measurements in the unit centimeter. 

4- Women Empowerment: This data is from UNDP and CIA sites which published in 2004. Its 

aim is to rank 177 of countries around the world if they empower their women or not based on 7 

variables. 

 

4.2.1 Testing LDA assumptions  

Since real-world data are usually rough and may not follow the required pattern, the model 

examination of the conditions and assumptions should be checked because this affects its 

performance. The assumptions are: 

1. Normality: 

Which means that the variables are normally distributed or approaching the normal distribution. 

There are many tests of normality, the one we used here is the Shapiro-Wilk test. The effect of the 

normality or lack of normality will be studied and investigated. So we have two hypotheses: 

Null Hypothesis: The variables follow the normal distribution. 

Alternative Hypothesis: The variables do not follow the normal distribution. 

We hope that the value of the p-value will be > 0.05 to exit the rejection region at the 0.05 level 

of significance. 

2. Equality of the covariance matrix 

Suppose we have n1 objects from 𝜋1 and n2 objects from 𝜋2, with a vector of multivariate 
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independent random variables 𝑋= [x1, x2, …, xp], such that n1+ n2- 2  ≥ p, then the unbiased 

the pooled estimator of covariance matrix obtained in equation (2.13) which we inferred 

obviously in Chapter 2. 

And this is done by Box’s M test, with two hypotheses: 

Null Hypothesis: The covariance matrices for variables are equal, i.e. Σ1=	  Σ2. 

Alternative Hypothesis: The covariance matrices for variables are not equal, i.e. Σ1≠ 	  Σ2. 

We also hope to have the p-value > 0.05 at the 0.05 level of significance.  

Another assumption is that the independent variables are not highly correlated to each other, so 

the correlation between each pair of variables must be found. 

 

Exploratory Data Analysis:  

Exploring and describing the important features and data screening is the start in any data analysis 

process. This is done to find out if there are any errors in the data, such as missing information 

correct alignment of the variables, outliers, etc. Besides, it gives us a rough and visual idea about 

the correlation between them, which can be noticed by scatter plots. 

Scatter plots help us detect the nature of the trend between each pair of variables as linear or 

nonlinear. Scatter plots show us the trends between the explanatory variables. 

For the Depression dataset, all explanatory variables are qualitative, so we can't see if there is any 

linear relationship between them. 
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         Figure 4.1: Scatter plot of the Bankruptcy Dataset. 

Figure 4.1 is a matrix of scatter plots between variables in the Bankruptcy Dataset. It shows that 

there is a positive linear relationship between CF/TD and NI/TA. 
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Figure 4.2: Scatter plot of the Frog Dataset. 

Figure 4.2 is a matrix of scatter plots between variables in the Frog Dataset. It shows that there are 

very strong positive linear relationships between the ED variable with all of them. Also, there are 

strong positive linear relationships between the HL variable with all remained variables, but the 

relationship between HL and MN is a very strong positive relationship. 

 Also, the HW variable has strong linear relationships with other remaining variables, but the 

relationship between the HL and HW variables is the best. Besides the previous, there are strong 

positive linear relationships between the LAL variable with all remaining variables. The same for 

the MN variable. Also, there are very strong positive linear relationships between the TBL variable 

with all remaining variables, but the relationship between TBL and OL is the weakest. And the 

relationships between the UEW variable with all remaining are moderate linear relationships, and 

this applies to the variables OL and MD.  
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Univariate Tests of Normality:  

 The normality of a data can be tested by the Shapiro-Wilk test with a package shapiro.test in 

R. In this case, the Null Hypothesis: the variable is normally distributed, and the Alternative 

Hypothesis: the variable is not normally distributed. The p-value of the Shapiro-Wilk test of the 

four datasets was followed in Table 4.1: 

TABLE 4.1 Result of the Normality Test for the Four Datasets.   

Dataset Variables P-value of Shapiro-Wilk test 

Depression PUA 
FC 
MD 
FNA 
FD 

0.0002511 
2.382e-05 
2.424e-10 
1.464e-05 
1.281e-05 

Bankruptcy CF/TD 
NI/TA 
CA/CL 
CA/NS 

0.5431 
5.302e-06 
0.001916 
0.3457 

Frog ED 
HL 
HW 
LAL 
MN 
TBL 
UEW 
OL 
MD 

0.2739 
0.00302 
0.04535 
0.03218 
0.0009113 
0.02366 
0.001216 
0.0001036 
0.008917 

 

As we notice, the Depression Dataset, all variables are abnormal. Concerning the Bankruptcy 

Dataset, just CF/TD and CA/NS variables are normal. Also, in Frog Dataset, the variable ED and 

the p-value of the remained variables are almost too close to 0.05.  
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Test the Equality of Covariance Matrix:  

Box’s M test measures the hypothesis of equal covariance between variables, and that is used to 

test the equality of the covariance matrix. The results showed a p-value ≅	  0, which means rejecting 

the null hypothesis that assumes equality. This result is the same in all datasets. 

4.2.2 Applying Linear Discriminant Analysis 

Tables below show linear discrimination coefficients for each dataset, which in turn measure the 

relative weight and importance of all variables in each data, such that the variable that possesses 

the absolute larger coefficient means that it has the heaviest of the variables and vice versa. This 

means that the groups are most affected by this variable. 

Example 1: 

 
TABLE 4.2 Standardized Canonical Discriminant Function Coefficients for the Depression Data. 

Variable  PUA FC MD FNA FD 

LD1 Coefficient 0.64634 0.34609 -0.1384 0.34501 0.68123 

The coefficients in Table 4.2 indicate that the FD has the strongest discriminatory effect, followed 

by PUA, and MD is the least discriminating. 

Example 2: 
 
TABLE 4.3 Standardized Canonical Discriminant Function Coefficients for the Bankruptcy Data. 

Variable  CF/TD  NI/TA CA/CL CA/NS 

LD1 Coefficient 0.66124 0.39352 0.88721 -1.1785 

The coefficients indicate that the first independent variable which is CA/NS has the strongest 

discriminatory effect, followed by the third independent variable. But the second variable is the 
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least discriminating. 

Example 3: 
 
TABLE 4.4 Standardized Canonical Discriminant Function Coefficients for the Frog Data. 

Variable ED HL HW LAL MN TBL UEW OL MD 

LD1 Coefficient 0.021 0.23 0.004 0.012 -0.1 0.18 -0.52 -2.02 0.96 

As we notice the OL variable has the strongest discriminatory effect, followed by the MD variable. 

However, HW is the least discriminating. 

4.2.3 Applying Logistic Regression  

The Pseudo R2 = 1- (��P��)�
��6

4

(��P��)�
��6

4 , where N is the sample size,  𝑦 is the dependent variable, 𝑦N is the 

mean of 𝑦 values, and 𝑦N is the predicted value of 𝑦i . 

R2  as a refinement from null to fitted model, as you notice, the denominator of the ratio is dealing 

with the sum of squared errors from the null model which predicts the dependent variable without 

the combination of independent variables, and it considers that every value of 𝑦 is predicted to be 

𝑦. But numerator dealing with the sum of squared errors from the fitted model. 

We seek to reduce the difference between real values and predictive values, which increases the 

value of the numerator in the R2 ratio. Therefore, obtaining a higher value means that the estimate 

of parameters of the model is improved. Also, in simple linear regression, i.e. when you have only 

one independent variable, R2 considered as a square of the correlation between predicted and the 

actual values, so it ranges from 0 to 1. Besides, this ratio can tell us how much 𝑦 varies from 𝑦. 
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In linear regression, Pseudo R2 is the coefficient of determination and its function is to summarize 

the variation in the dependent variable associated with independent variables. The greater its value 

indicates that the model interprets the greater variance. Its maximum value is 1. 

But in the logistic regression where the dependent variable is categorical, it is not possible to 

calculate Pseudo R2 at once and having the characteristics of Pseudo R in the linear regression. In 

the case of logistic regression, the estimates are calculated using the log likelihood method, and 

there are three ways: 

1.   Cox and Snell:	  Based on a comparison of the log likelihood of the model to the log 

likelihood of the basic model, and because of categorical dependent variables, the 

maximum value is less than 1. 

2.   Nagelkerke: It is a modified version of Cox and Snell to cover the full range from 0 to 1. 
 

3.   McFadden: A modified version also depends on the log-likelihood kernels for the intercept-

only model and the full estimated model. 

When comparing competing ways to the same data, the way which has the highest R2 statistic is 

the best way. 

TABLE 4.5 The Pseudo R2 of the Datasets. 

Datasets McFadden  

 

Cox and Snell 

 

Nagelkerke  

 

Depression 0.552190 0.504879 0.701204 

Bankruptcy 0.567287 0.542570 0.725264 

Frog 0.33505 0.371237 0.509015 
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Table 4.5 shows that for the Depression Dataset, 55.219% of the variance of explanatory variables 

was explained by the dependent variable according to McFadden value, and 50.4879% according 

to Cox and Snell value, also 70.1204% according to Nagelkerke value.  

Also, it shows that for the Bankruptcy Dataset, 56.728% of the variance of explanatory variables 

was explained by the dependent variable according to McFadden value, and 54.257% according 

to Cox and Snell value, also 72.5264% according to Nagelkerke value. 

TABLE 4.6 Results of Fitting the Logistic Regression Model of the Depression Data. 

Variables Estimated coefficients  Std. Error Z value Sig. Exp(𝛽) 

Intercept -15.2226 6.3321 -2.404 0.0162  

PUA 0.6757 0.8045 0.840 0.4009 1.9654 

FC 1.1471 1.0622 1.080 0.2802 3.149 

MD 2.9016 2.2733 1.276 0.2018 18.203 

FNA 1.0316 0.7080 1.457 0.1451 2.80556 

FD 2.0280 1.2023 1.687 0.0917 7.59888 

 

Most of odds ratio are greater than 1, and its logit equation = - 15.2226 + 0.6757 PUA + 1.1471 

FC + 2.9016 MD + 1.0316 FNA + 2.0280 FD. 

Also, as the p-values of all variables are more than 0.05, then all of them are not significant 

variables in the logistic regression model. 
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TABLE 4.7 Results of Fitting the Logistic Regression Model of the Bankruptcy Data. 

Variables Estimated coefficients  Std. Error Z value Sig. Exp(logit) 

Intercept -5.320 2.366 -2.248 0.02459  

CF/TD 7.138 6.002 1.189 0.23433 1259.0 

NI/TA -3.703 13.670 -0.271 0.78647 0.0246 

CA/CL 3.415 1.204 2.837 0.00455 30.416 

CA/NS -2.968 3.065 -0.968 0.33286 0.051 

 

Most of odds ratio are greater than 1, and its logit equation = - 5.320 + 7.138 CF/TD  

-3.703 NI/TA + 3.415 CA/CL - 2.968 CA/NS. 

 

Also, as the p-values of CF/TD, NI/TA, CA/NS variables are more than 0.05, then all of them are 

not significant variables in the logistic regression model, but the p-values of CA/CL is less than 

0.05, so CA/CL is a significant variable in the logistic regression model. 
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TABLE 4.8 Results of Fitting the Logistic Regression Model of the Frog Data. 

Variables Estimated coefficients Std. Error Z value Sig. Exp(logit) 

Intercept - 3.33426 1.47900 - 2.254 0.024171  

ED 0.09358 0.55725 0.168 0.866631 1.098 

HL 0.39634 0.42067 0.942 0.346100 1.486 

HW - 0.04487 0.09621 - 0.466 0.640986 0.956 

LAL - 0.02424 0.30230 - 0.080 0.936099 0.976 

MN - 0.29124 0.38461 -0.757 0.448911 0.7473 

TBL 0.38688 0.18036 2.145 0.031952 1.4723 

UEW - 0.49622 0.67691 - 0.733 0.463520 0.6088 

OL - 2.47920 0.65163 - 3.805 0.000142 0.082. 

MD 0.73336 1.33118 0.551 0.581697 2.082 

 

Its logit equation = - 3.33426 + 0.09358 ED + 0.39634 HL - 0.04487 HW - 0.02424 LAL - 0.29124 

MN + 0.38688 TBL - 0.49622 UEW - 2.47920 OL + 0.73336 MD. 

Also, as the p-values of ED, HL, HW, LAL, MN, UEW, and MD variables are more than 0.05, 

then all of them are not significant variables in the logistic regression model, but the p-values of 

TBL and OL are less than 0.05, so they are significant variables in the logistic regression model. 
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4.2.4 Classification Results of the Diabetes Dataset  

      Now we will study the performance of LR, and compare it with the performance of LDA, 

GMM, and Neural Networks (NN). 

The Comparison determined according to the classification rates, which will be illustrated in tables 

for each dataset. Classification table contains n00 which is the number of observations which equal 

0 and correctly predicted as 0, n01 is the number of observations which equal 0 and incorrectly 

predicted as 1, n10 is the number of observations which equal 1 and incorrectly predicted as 0, n11 

is the number of observations which equal 1 and correctly predicted as 1.  

 

The error rate is the ratio of the summation of the number of incorrectly predicted observations 

(n01, n10) to the total number of observations in the dataset (n00+ n01 +n10 +n11).  

It’s important to know that in comparing the error rates, we assume that the costs of  

misclassification are equal and have the same penalty, i.e. c01=c10, and c00= c11=0.  

TABLE 4.9 Classification Table for the Two Groups. 

Actual Group Number of Observations Predicted Group 
 
  0                      1 

 0  n0  n00                   n01 

 1  n1  n10                   n11 

 

And the Error Rate = 
X�6ZX6�

X��ZX�6ZX6�ZX66
. 
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TABLE 4.10 Confusion Matrix of the Depression Data Classification Error Rates for the Four 
Methods. 

Data Name Actual Predicted 

0                              1 

Error Rate (with equal 

cost) 

LR 0     15 

1                 30 

  12           3 

    3                                          27 

0.1333333 

LDA 0     15 

1                 30 

  12             3 

    4                                         26 

0.1555556 

GMM 0     15 

1                 30 

   14                                          1 

    8                                          22  

0.2000000 

Neural Networks (NN) 0     4 

1                    7 

  3           1 

    1                                           6 

0.1818181 

 

The Depression dataset has 45 observations. Here as we notice, for LR, there are 12 observations 

of the first group were classified correctly, and 27 observations from the second group were 

correctly classified also. 

So LR succeeded in classifying 86.667% of observations. 

Now,  the LDA classified 12 observations from the first group and 26 from the second group 

correctly. That means that the LDA succeeded in classifying 84.45% of the observations. 

Besides, the GMM classified 14 observations from the first group and 22 from the second group 

correctly. That means that the GMM succeeded in classifying 80% of the observations. Also, the 

NN method made for a sample of the Depression dataset with sample size = 11. It classified 3 

observations from the first group and 6 from the second group correctly. 
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That means that Neural Networks (NN) misclassify 81.8181%  of the observations correctly. For 

more accuracy, this step is repeated 15 times, then we take the average of those correct  

classification rate. 

 

TABLE 4.11 The Average of Error Rates for Each Method for the Depression Data. 
 
Method LR LDA GMM Neural Networks 

(NN) 

Error Rate 0.14942 0.16110 0.22466 0.169697 

 

As you can see, LR has the smallest error rate, it followed by the LDA, then the GMM has the 

biggest error rate followed by the NN method. 

TABLE 4.12 Confusion Matrix of the Bankruptcy Data Classification Error Rates for the Four 
Methods. 

Data Name Actual Predicted 

0                              1 

Error Rate 

LR 0     21 

1                  25 

  18   3 

    1                                           24 

0.08696 

LDA 0     21 

1                  25 

  18           3 

    1                                         24 

 0.08696 

GMM 0     21 

1                 25 

   21                                          0 

1                                        24  

0.021734 

Neural Networks (NN) 0   6 

1                   6 

  6           0 

    2                                           4 

0.166667 
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The Bankruptcy dataset has 46 observations. Here as we noticed, for LR, there are 18 observations 

of the first group were classified correctly, and 24 observations from the second group were 

correctly classified. So LR succeeded in classifying  91.304% of observations correctly. The LDA 

has the same error rate. 

 

 Besides, the GMM classified 21 observations from the first group and 24 from the second group 

correctly. That means that the GMM succeeded to classify 97.8266% of the observations correctly. 

 

Also, the NN method made for a sample of the Bankruptcy Dataset with sample size = 12. 

It classified 3 observations from the first group and 6 from the second group correctly.  

That means that the NN method succeeded in classifying 83.333% of the observations correctly.  

 

For more accuracy, this step is repeated 15 times, then we take the average of those correct 

classification rate. 

 
TABLE 4.13 The Average of Error Rates for Each Method for the Bankruptcy Data. 
Method LR LDA GMM Neural Networks (NN) 

Error Rate 0.1111 0.08696 0.222 0.58333 

 

As you can see, the LDA method has the smallest error rate so it behaved very well and it is 

followed by the LR method, and the  NN method has the biggest error rate. 
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TABLE 4.14 Confusion Matrix of the Frog Data Classification Error Rates for the Four Methods. 

Data Name Actual Predicted 

  0                                1 

Error Rate 

LR 0     8 

1                   11 

  7 1 

  4                                             7 

0.1724 

LDA 0     8 

1                  11 

  5           3 

  3                                             8 

 0.2069 

GMM 0     8 

1                  11 

   2                                           6 

   1                                          10  

0.2413 

Neural Networks (NN) 0     3 

1                   3 

  2              1 

    0                                          3 

0.166667 

 

The Frog dataset has 132 observations. Here as we noticed, for the LR, there are 7 observations of 

the first group were classified correctly, and 7 observations from the second group were correctly 

classified. So LR succeeded in classifying 82.76% of observations correctly. Now, the LDA 

classified 5 observations from the first group and 8 from the second group correctly. That means 

that the LDA succeeded in classifying 79.31% of the observations.  

 

 Besides, the GMM method classified 2 observations from the first group and 10 from the second 

group correctly. That means that the GMM method succeeded to classify 75.9% of the 

observations correctly. Also, the NN method made for a sample of the Depression dataset with 

sample size = 6. It classified 2 observations from the first group and 3 from the second group 

correctly. That means that the NN method succeeded in classifying 83.333% of the observations 
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correctly. For more accuracy, this step is repeated 15 times, then we take the average of those 

correct classification rate. 

 

    TABLE 4.15 The Average of Error Rates for Each Method for the Frog Data. 

Method LR LDA GMM Neural Networks (NN) 

Error Rate 0.1458 0.1736 0.2152 0.1111 

 

 As you can see, the NN method has the smallest error rate. It followed by LR, the LDA method 

comes in the third place and GMM has the biggest error rate. 

Also, the GMM method classified 21 observations from the first group and 3 from the second 

group correctly. That means that GMM succeeded in classifying 48% of the observations correctly. 

 

Also, the NN method made for a sample of the Depression dataset with size 13. It classified zero 

observations from the first group and 10 from the second group correctly. That means that the NN 

method succeeded in classifying only  25%  of the observations correctly.  

 

For more accuracy, this step is repeated 15 times. Then the average of those correct classification 

rate is reported. 

 

In general, we note that the LR method recorded the lowest error rate in the classification of all 

data in the event that assumptions of  LDA are overturned, and therefore LR shows its superiority 

over the other three classification methods. 

LR followed by the LDA method in all cases. In most cases, Neural Networks (NN)was ranked 

last and had the highest rate of error. 
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4.3 Study the Effect of Some Data Properties 
 

In this chapter, we will examine the properties of the data y affect the efficiency of the 

performance of each method of classification. 

For the Women's Empowerment Dataset, the variables were collected from the United Nations 

Development Programme’s (UNDP) and the Central Intelligence Agency’s (CIA) sites. The data 

included 6 variables and 177 observations. These variables were added to other variables in the 

paper “A Multivariate Statistical Analysis of Female Empowerment “, by the students: Adri Anne 

Demski and Janelle Jones. 

Women's Empowerment Data was chosen because of the importance of the topic, the selected 

variables are of the global interest to members of the UN. It also shows the classification and rank 

of Palestine among the countries of the world. The most important that it serves our purpose and 

satisfies the conditions of the method of Linear Discriminant Analysis (LDA). 

 The covariance matrices of variables are equal,  and the unit matrix is adapted for easy handling. 

The means of the variables are not equal (Demski, Jones, 2004). 

 

While the requirements of the method of linear discrimination analysis are met, the extent of the 

factors of sample size and distance between means for both classes, classification matrices and the 

correlation between forecasters will be examined for each method of classification, with error rate 

as the valuation method. 

 

 

 

 



	  

	  

53	  

4.3.1 Results for the Effect of Sample Size  

TABLE 4.16: Results of error rates for the effect of sample size.  

Sample size  LR LDA GMM Neural 

Networks (NN) 

28 0.0805 0.2281 0.9798 0.214 

51 0.1194 0.2222 0.9762 0.70588 

96 0.1481 0.1728 0.9753 0.8395 

177 0.1016 0.2033 0.9830 0.2130 

 

The error rate sometimes increases and sometimes decreases with increasing sample size, so there 

is no clear correlation between error rate and  increasing of the sample size, we may get more clear 

results if sample size is too large 

We also note that the LR  method showed superiority over the rest of the roads, followed by LDA 

then Neural Networks (NN), but the error rate of GMM method is very high. 
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4.3.2 Results for the Effect of Existing Correlated Variables 

 

             Figure 4.3: Scatter plot of Women Empowerment dataset. 
 
 
As we see in Figure 4.3 there is a positive linear relationship between Employment with Power 

positions and Income with Employment variables. So we will calculate the error rate with and 

without correlated variables, then compare. 

 

TABLE 4.17: Results of the error rate for the effect of existing of correlated data. 

Classification method With correlated variables Without correlated variables 

LR 0.1316 0.1129 

LDA 0.2133 0.2090 

GMM 0.9830 0.9152 

Neural Networks (NN) 0.2930 0.27273 

  

As we see that the error rate increases little when data has a correlated variable, which means that 

the existence of correlated variables increase the error rate, but not too much. 
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It is different when studying the effect of variables associated with each other on the error rate of 

the regression method and the rest of the other methods, the effect on the performance of the four 

classification methods was found to be negligible.  

 

The rate of error was decreased by approximately 2% of LR if the associated variables were 

removed. In LDA, the error rate decreased by 0.77%, it also approximately decreased by 6%, but 

GMM’s error rate decreased by 7%. 
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Chapter 5 

Conclusion and Recommendation 

5.1 Conclusion  

In this study, the performance of Logistic Regression (LR) was compared with the 

performance of 3 other methods: Linear Discrimination Analysis (LDA), Gaussian Mixture 

Models (GMM), and Neural Networks (NN). We have relied on the comparison of the error rates 

when the costs of misclassifications are equal. 

We used the same three real data to evaluate the performance of each of the four classification 

methods: Depression Data, Bankruptcy and Frogs Data sets. 

We have used the Women's Empowerment data to examine the impact of certain data  

characteristics on the performance of the four methods of classification. 

The Depression data didn’t meet the requirements of normality. LR showed superiority in its 

performance from the rest of the four classification methods, which recorded the lowest error rate, 

followed by LDA, GMM ranked in the final and preceded by the Neural Networks (NN). 

As well as in Bankruptcy statements, GMM showed clear superiority over the other three 

classification methods followed by LDA and LR. The method of Neural Networks (NN) was 

obtained at the highest rate of error. 

As for the Frog data, which followed the natural distribution, we are surprised that the method that 

recorded the lowest error rate is Neural Networks (NN), followed by LR with a slight difference, 

then by the LDA and GMM at last. 

Women Empowerment data is used to match the conditions of the LDA, which is normality, 
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equality of the covariance matrix, and the difference in the means of variables to study the effect 

of the sample size, and the existence of the correlation between the variables on the performance 

of the four classification methods, then investigate whether the LR will remain superior to LDA 

or not. 

However, using the Women Empowerment dataset, as we noted earlier matched the conditions of 

LDA which is normality and equal covariance matrix of, and the different means. 

As LDA assumptions are met, we found that the was ranked second lowest error rate among the 

other three classification methods after LDA. In the case of the study of the effect of sample size 

on LR performance and the other methods of classification, there was no clear correlation between 

the error rate and increasing of the sample size.  

Where LR showed the lowest error rate followed by LDA, then by Neural Networks (NN) and 

finally GMM, i.e. sample size didn’t effect sufficiently on the performance of methods. 

It is different when studying the effect of variables associated with each other on the error rate of 

the LR method and the rest of the other methods. Error rates have increased for LR, LDA, and 

Neural Networks (NN) slightly decreased for GMM.  
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5.2 Recommendations  

Based on the inferences, we recommend that: 

1.  Before using one of the classification methods, it’s important to check the data and explore the 

data graphically and numerically because we rarely find normal data. 

2.  As we note that the error rates for LR and LDA are very close to whether the data met the 

conditions of LDA or did not. Besides, LR exceeded LDA in the classification rates in general. 

Therefore, using LR in classifying data in case the data does not meet the conditions of LDA is 

recommended. 

3.  GMM can be affected by the correlation between independent variables. So it is preferable to 

get rid of one of them which is less important than the other correlated variables. 

4.  The thesis included the data of the number of observations less than 200, the effect of sample 

size on the performance of classification methods may be large if the size exceeds this number. 

5. The thesis was limited to binary variables, so these results and recommendations may change 

of the dependent variable  has more than two levels. 

6. The cost of misclassification is the simple one, the results may change with a more complex 

cost function. 

7. This study is limited in scope, so we need to increase the variety of examples to make more 

concrete recommendations. 
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 االملخص

٬، ةططرووحیيلعب تصنیيف االملاحظاتت ددوورًراا مھهمًا في علم االإحصاء ووجمیيع االمجالاتت االأخرىى. في ھھھهذهه االأ      

تحلیيل االتمایيز االخطي٬، وونموذذجج خلیيط غاووسس٬، أأدداائھه بأددااء كوسیيلة للتصنیيف وومقاررنة  ندررسس االانحداارر االلوجستي

 مقاررنة االأددااء من خلالل جدوولل االتصنیيف االخاططئ وومعدلل االخطأ لكل ططریيقة.تتم ٬، وواالشبكاتت االعصبیية

 ستیيفاءاا٬، أأظظھهرتت االنتائج أأنھه عندما یيتم االعیينة ووووجودد االاررتباطط. بشكل عامم٬، تم ددررااسة تأثیير حجم علاووةة على ذذلك

٬، االشرووطط تستوففإإنن لم  ل.ھھھهو االأفضططریيقة تحلیيل االتمایيز االخطي ي٬، فإنن أأددااء اافترااضاتت تحلیيل االتمیيیيز االخط

 أأسالیيب االتصنیيف االأخرىى.أأددااء  االلوجستي یيتفوقق علىططریيقة االانحداارر أأددااء فإنن 

 

 

 
 
 


