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Abstract:
Background:
Type 2 diabetes is a heterogeneous disease characterized by high blood glucose levels. Its prevalence is increasing as a result of lifestyle, related
genes expression, and insufficient insulin signaling. The activation or inhibition of some proteins in the insulin signaling pathway play a vital role
in glucose uptake into the cells and in maintaining serum glucose homeostasis. Phosphoinositide-3-kinase (PI3K), 3-phosphoinositide-dependent
protein kinase-1 (PDK1), Protein kinase B [PKB, also known as the serine and threonine kinase (AKT)], and Rac family small GTPase 1 (RAC1)
are key proteins that play important roles in the liberation of Glucose Transported-4 (GLUT4) vesicle, and consequently the uptake of glucose in
response to the insulin signal of hyperglycemia.

Objective:
In this study, we have focused on the route of targeting insulin signaling proteins for decreasing insulin resistance by targeting the four proteins,
PI3K, PDK1, AKT, and RAC1, using in silico studies.

Methods:
Docking  experiments,  using  AutoDock algorithms,  were  performed to  predict  the  activity  of  eight  recently  purified  derivatives  of  Gundelia
tournefortii (GT) and Ocimum basilicum (4-hydroxybenzoic acid, beta-amyrin, beta-sitosterol, chlorogenic acid, lupeol, lupeol-trifluoroacetate,
myo-inositol, and stigmasterol) on the insulin signaling proteins. The SwissADME website was used to predict ADMEtox properties for the eight
derivatives of the above-mentioned medicinal plants.

Results:
Most of the Gundelia tournefortii and Ocimum basilicum derivatives have shown variable levels of activation, mainly on the PDK1 and AKT
pathways, and to a much lesser extent on the PI3K and RAC1 pathways.

Conclusion:
The results have indicated that Gundelia tournefortii and Ocimum basilicum derivatives can be potent anti-diabetic drugs, namely in targeting
PDK1 and AKT pathways.
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1. INTRODUCTION
Diabetes  mellitus  is  a  group  of  metabolic  illnesses  with

hyperglycemia being its common underlying feature [1]. The
elevated  glucose  level  is  due  to  a  deficiency  in  insulin
secretion, insulin action, or most frequently both [2]. Diabetes
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is  widespread.  The  prevalence  of  DM  increased  from  108
million cases  (4.7%) in  1980 to  425 million (8.5%) in  2017,
and it is predicted to reach 629 million cases by 2045 [3]. The
vast  majority  of  diabetic  patients  fall  into  one  of  two  broad
categories. The first form is Type 1 Diabetes Mellitus (T1DM),
which  is  an  autoimmune  condition  that  causes  the  death  of
pancreatic  beta  cells  that  produce  insulin,  leading  to  an
absolute or near absolute deficiency of insulin [4, 5]. The latter
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category  is  Type  2  Diabetes  Mellitus  (T2DM),  which  is
characterized  by  the  incidence  of  insulin  resistance  with  an
insufficient compensatory increase in insulin secretion [6]. A
third  less  prevalent  form  of  diabetes  is  Gestational  Diabetes
Mellitus (GDM). One in six live deliveries is complicated by
GDM,  which  normally  develops  in  the  second  or  third
trimesters  of  pregnancy  [7].  Indeed,  there  are  a  variety  of
uncommon and diverse types of diabetes, which are caused by
infections, drugs, endocrinopathies, pancreatic destruction, and
genetic defects [2, 8 - 11]. Type 2 Diabetes Mellitus (T2DM)
can  be  caused  by  flaws  in  one  or  more  different  molecular
pathways due to its heterogeneity. It is frequently categorized
as a monogenic disorder that primarily affects insulin action,
either by involving molecules in the insulin signal transduction
cascade or by causing abnormalities in the development of fat
tissue (lipodystrophy), with secondary metabolic disturbances
resulting in insulin resistance [6]. The human body controls the
high level of glucose in the blood by several routes. One such
route is the uptake of glucose by muscle and fat cells [12, 13].
This  is  achieved  through  the  liberation  of  the  intracellular
Glucose  Transporter  4  (GLUT4)  and  translocating  it  to  the
cellular membrane [14]. This action is a result of receiving the
signal of insulin hormone in response to hyperglycemia [15].
Insulin  binding  to  the  insulin  receptor  stimulates  several
signaling cascades [16]. One cascade regulates gene expression
and growth by means of a group of proteins, including SHC,
Grb2,  RAF,  and  MAP  kinase  known  as  the  Ras/MAPK
pathway  [17].  Another  cascade,  on  which  our  study  has
focused, is responsible for the translocation of GLUT4 vesicle
to the cell membrane (Figs. 1 - 2) [18]. This pathway includes a
set  of  activation  and  inhibition  processes  for  a  number  of
proteins,  including  IRS  (Insulin  Receptor  Substrate),  PI3K
(Phosphoinositide-3-kinase),  AS160  (Akt  Substrate  of  160
kDa), mTOR (mammalian Target of Rapamycin), etc [19]. The
insulin  pathway  begins  when  insulin  binds  to  an  insulin
receptor  classified  as  tyrosine  kinase.  The  binding  process
subsequently leads to the autophosphorylation and activation of
tyrosine  residues  [20].  Phosphorylated  tyrosine  activates  the
IRS and a group of proteins as effectors to activate PI3K. PI3K
consists  of  two  basic  units,  regulatory  (p85)  and  catalytic
(p110alpha) subunits. The IRS-P85 binding induces p110alpha
to  phosphorylate  Phosphatidylinositol  (4,5)  bisphosphate
(PI2P)  and  convert  it  to  Phosphatidylinositol  (3,4,5)
trisphosphate  (PI3P),  located  on  the  cell  membrane  [21].  3-
phosphoinositide-dependent protein Kinase-1 (PDK1) consists
of two fundamental domains, PH domain and a kinase domain
[22]. The kinase domain has three ligand binding sites, namely
the  substrate  binding  site,  the  ATP  binding  site,  and  the
docking  site  also  known  as  the  PIF  pocket.  When  the  PH
domain is activated by the PI3P, the kinase domain activates
the AKT protein at THR308 [23]. Protein Kinase B (PKB) is
also  known  as  the  serine  and  threonine  kinase  Akt.  Three
domains make up Akt: a specific PH domain, a central kinase
domain, and a carboxyl-terminal regulatory domain [24]. The
associated key actor in insulin signaling, Akt/PKB, acts from
the cytosol directly to the plasma membrane. It binds precisely
to  a  Pleckstrin  Homology  (PH)  domain  occurring  at  the  Akt
amino terminus, which is recruited as a result of the sustained
increase in PIP3. Akt is phosphorylated particularly at THR308
and  SER473  residues  [25],  which  makes  it  act  in  a  similar

fashion to Phosphoinositide-dependent Kinase-1 (PDK1) and
mTOR  Complex  2  (mTORC2).  After  becoming  activated,
AKT  detaches  from  the  plasma  membrane  and  becomes
heavily involved in the control of insulin-dependent activities,
where  it  becomes  phosphorylated  by  a  variety  of  substrates
[26]. Rac family small GTPase 1 (RAC1) has several domains,
including the Nucleotide-binding Site (NBS), switches I and II,
the multi-base region (PBR), and the CAAX box [27]. Switch
II  interacts  with  the  RAC1  activation  protein  Guanine
nucleotide  Exchange  Factor  (GEF),  while  switch  I  primarily
interacts with the downstream effectors of RAC1 [27].

As  shown  in  Fig.  (2)  [28],  insulin  causes  the  PI3K-
dependent  activation  of  candidate  Guanine  nucleotide
Exchange  Factors  (GEFs)  or  the  deactivation  of  possible
GTPase-activating Proteins (GAPs), which in turn causes Rac1
to  load  up  on GTP.  As  a  result  of  RAC1 activation,  insulin-
stimulated GLUT4 translocation follows [27, 29].

The  recommended  initial  approach  for  the  treatment  of
T2DM  includes  a  combination  of  effective  lifestyle  changes
and  medication  use  [30  -  32].  Medications  mainly  focus  on
reducing  insulin  resistance  and  lowering  the  risk  of
macrovascular and microvascular complications [32 - 34]. This
can  be  achieved  by  reaching  near-normal  glycated
haemoglobin [35, 36]. Food and Drug Administration (FDA)
has  approved many  antidiabetic  drugs  that  produce  clinical
effects  through  different  mechanisms.  These  medications
include  biguanides,  such  as  metformin,  which  reduce
gluconeogenesis in the liver [37]; insulin sensitizers, including
thiazolidinediones,  which  improve  insulin  sensitivity  in
peripheral  tissues  [38];  insulin  supplied  in  the  form  of
recombinant insulin or analogues of it [39, 40]. Two medicinal
plant species, Gundelia tournefortii L. and Ocimum basilicum,
are commonly used to extract therapeutic phytochemicals and
are  common  in  the  Middle  East  culture  [41  -  44].  The
artichoke-like vegetable Gundelia tournefortii L. thrives in the
semi-arid environment of several Mediterranean nations [42].
Its common name is tumble thistle, and it is a member of the
Compositae  or  Asteraceae  families  [45].  The  plant  is  also
known as Tournefort's gundelia. It is a spiky perennial, and the
sections that are above the soil's surface have the potential to
break, aiding the distribution of seeds. GT is a wild edible plant
with antibacterial,  anticancer, antiepileptic, anti-diabetic, and
anti-epileptic  properties  [41,  42,  45].  O. basilicum  has  many
therapeutic characteristics. It originated in the Asian continent
and is now widely grown as an herbaceous perennial plant. O.
basilicum  belongs  to  Lamiaceae  and  possesses  several
pharmacological properties that can be used to prevent or cure
cancer,  diabetes,  menstrual  cramps,  digestive  issues,
cardiovascular  diseases,  and  other  illnesses  [44,  46,  47].
Additionally,  it  has  been  linked  to  reports  of  antioxidant,
antibacterial, and larvicidal properties [48]. Obtaining a ligand-
receptor  complex  with  optimal  shape  complementarity  and
minimal  binding  free  energy  is  the  main  goal  of  molecular
docking [49]. The in silico ADME/Tox profile is a helpful tool
for predicting the pharmacological and toxicological features
of  drug candidates,  especially  in  the  pre-clinical  stages  [50].
The  use  of  in  silico  models  has  improved  ADME/Tox
predictions [51]. The use of these models is particularly helpful
for drug optimization and preventing late-stage failures, which
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Fig. (1). PI3K/AKT insulin signaling pathway [26]. In this pathway, PI3K, PDK1, and AKT proteins are included.

Fig. (2). Non-canonical insulin signaling pathway [28]. In this pathway, the RAC1 protein is included.
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is crucial since late-stage failures result in a significant loss of
time and money. The term ADME/Tox is used to explain how
medications  are  absorbed,  distributed,  metabolized,  and
excreted, and the level of their toxicity [51, 52]. In this study,
we  aimed  to  predict  the  plausible  efficiency  of  eight
phytochemical  extracts  of  the  Gundelia  tournefortii  L.  and
Ocimum basilicum  medicinal plants in targeting hub proteins
(PDK1,  PI3K,  AKT,  and  RAC1)  of  the  insulin  signaling
cascade, which affect the GLUT4 translocation to the plasma
membrane.  To this  aim,  docking and ADME/Tox algorithms
have been used to achieve priori knowledge for further in vitro,
in  vivo,  and  clinical  studies.  We  could  predict  that  these
phytochemicals work as agonists for PI3K, PDK1, AKT, and
RAC1,  and  as  a  result,  increase  GLUT4  translocation  to  the
plasma membrane.

2. MATERIALS AND METHODS

2.1.  Docking  Experiments  Investigating  Gundelia
Tournefortii’s  and  Ocimum  Basilicum’s  Natural  Effector
Ligands  that  Bind  to  the  Protein  Targets  of  Insulin
Signalling  Pathway

The phytochemicals were extracted and purified previously
by  Kadan  and  colleagues  [45,  53,  54].  We  obtained  the  2D
structures  and  IUPAC  names  for  Gundelia  tournefortii  and
Ocimum  basilicum  derivatives  using  the  PubChem  database
(Table  1)  [55].  SMILES  structures  of  the  compounds  were
determined using the  systematic  IUPAC structures  [56].  The
Open Babel server was used to produce the PDB structures for
the ligands used as inputs in the AutoDock tools version 1.5.7
[57, 58].

Table 1. Phytochemical derivatives of Gundelia tournefortii and Ocimum basilicum.

- Name and Structure Plant

(1)
4-hydroxybenzoic acid

4-Hydroxybenzoic acid

Gundelia tournefortii

(2)
Beta-amyrin

(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)
-4,4,6a,6b,8a,11,11,14b-octamethyl-

1,2,3,4a,5,6,7,8,9,10,12,12a,14,
14a-tetradecahydropicen-3-ol

Gundelia tournefortii

(3)
Beta-sitosterol

(3S,8S,9S,10R,13R,14S,17R)
-17-[(2R,5R)-5-ethyl-6-methylheptan-

2-yl]-10,13-dimethyl-
2,3,4,7,8,9,11,12,14,15,16,17-

dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

Gundelia tournefortii, Ocimum basilicum

(4)
Chlorogenic acid

(1S,3R,4R,5R)-3-[(E)-3-(3,4-dihydroxyphenyl)
prop-2-enoyl]oxy-1,4,5-trihydroxycyclohexane

-1-carboxylic acid

Gundelia tournefortii, Ocimum basilicum
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- Name and Structure Plant

(5)
Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)
-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-

2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-
hexadecahydrocyclopenta[a]chrysen-9-ol

Gundelia tournefortii

(6)
Lupeol, trifluoroacetate

(3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-
2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-

hexadecahydrocyclopenta[a]chrysen-9-yl) 2,2,2-trifluoroacetate

Gundelia tournefortii

(7)
Myo-inositol

Cyclohexane-1,2,3,4,5,6-hexol

Gundelia tournefortii

(8)
Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-
[(E,2R,5S)-5-ethyl-6-methylhept-3-en-2-yl]-10,13-dimethyl-

2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-
1H-cyclopenta[a]phenanthren-3-ol

Gundelia tournefortii

We used the RCSB database to extract the structures of the
PI3K,  PDK1,  AKT,  and  RAC1  proteins  in  the  holo-  form,
where the protein was bonded to a positive control (activator)
(PDB ID: 6OAC [59], PDB ID: 3HRF [60], PDB ID: 2UVM
[61],  and  PDB  ID:  2FJU  [26],  respectively).  Afterward,  we
removed the activator to convert the protein to the apo- form.
These files  were then prepared as input  files  for  the docking
protocol using the 4.2 version of the AutoDock software [62].
The  genetic  algorithm  was  used  to  prepare  for  a  docking
protocol  with  a  rigid  protein  and  a  flexible  ligand  [63].  In
preparing  files  for  docking,  some  modifications  were
performed, such as adding polar hydrogen atoms and removing
water. Afterward, a grid box was created, defining the surface
region to be scanned by the ligand at the protein surface. Any
region outside the box was not explored during docking. Two
scenarios  of  docking  were  established.  In  the  first  scenario,
docking  covered  and  searched  the  entire  protein  surface  for
compatible  binding.  The  dimensions  for  the  grid  boxes
covering  PI3K,  PDK1,  AKT,  and  RAC1  total  surfaces  were

126 x 126 x 126 Å, 126 x 126 x 126 Å, 126 x 86x 108Å, and
126 x 100x 100Å, respectively [64]. In the second scenario, the
grid  box  covered  the  site  where  the  positive  control  was
bonded to the protein. We aimed to find suitable analogues for
the  positive  controls.  The  dimensions  for  the  grid  boxes  of
PI3K, PDK1, AKT, and RAC1 were 10.23 x 10.375 x 8.946 Å,
9.52  x  6.172  x  6.23  Å,  14  x  10x  16  Å,  and  9  x  9.6x  11  Å,
respectively.  Twenty  independent  docking  runs  were  carried
out for each mentioned scenario. Of the resulting PDB files, the
files with the lowest free energies and inhibition constants were
ranked  first,  and  the  results  they  contained  were  extracted.
PyMol 2.3 software was then used for 3D visualization of the
‘best fit’ of the proteins and ligands [65].

2.2. Validation

The  docking  procedure  was  validated  by  removing  the
activator from the crystal structure (thus generating the protein
apo-  form),  and  re-docking  the  activator  into  the  activator
binding site, or alternatively to the entire surface of the protein.

(Table 1) contd.....
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To this aim, AutoDock 4.2 was used [66]. Validation helps in
finding  out  whether,  using  AutoDock,  the  activator  binds
precisely to the active site cleft and exhibits minimal variation
from the real 3D structure in the holo- form. PyMOL 2.3 was
then  used  to  superimpose  the  re-docked  complex  onto  the
reference  3D  complex  [67].

2.3. ADME/Tox Properties

Using  the  swissADME  website  [51],  we  studied  the
properties  of  each  phytochemical,  mainly  water  solubility,
pharmacokinetics,  and  several  other  variables  mentioned  in
Table 2 by using the SMILES formula [56].

3. RESULTS

3.1. ADME/Tox Properties

Studying the ADME/Tox properties mentioned in Table 2
below,  the  phytochemicals  showed  variable  levels  of
druggability  (Table  2).  4-hydroxybenzoic  acid  showed  high
gastrointestinal tract absorption. Most phytochemicals obeyed
Lipinski’s rule of five, except for lupeol-trifluoroacetate. LogP

value should be positive in value and ideally <5 [68]. This way,
a drug has a balanced hydrophobic index that allows it to pass
membranes as well as be dissolved in aqueous environments.
Again,  4-hydroxybenzoic  acid  optimally  follows  this  rule.
Most  drugs  showed  robust  scores  for  bioavailability  (≥0.55
[69]), except for chlorogenic acid and lupeol-trifluoroacetate.
The  six  cytochrome  P450  enzymes  responsible  for
metabolizing 90% of the drugs in the body [70] were found to
be  not  inhibited  by  most  of  the  phytochemicals.  Most  drugs
could  not  pass  the  blood-brain  barrier,  except  for  4-
hydroxybenzoic  acid  and  lupeol-trifluoroacetate.

3.2.  Binding-free  Energies  and  Inhibition  Constants  for
PI3K, PDK1, AKT, and RAC1

Gundelia  tournefortii  and  Ocimum basilicum  derivatives
were tested for their binding affinities, inhibition constants, and
Root  Mean  Square  Deviation  (RMSD)  values  for  the  ligand
structure upon docking from the reference structure. Docking
experiments showed variable binding strengths for the different
phytochemicals. All results shown below have been obtained
upon  scanning  the  whole  protein  surface  by  several
phytochemicals.

Table 2. ADME/Tox properties of the Gundelia tournefortii and Ocimum basilicum derivatives.

Phytochemicals 4-hydroxybenzoic
Acid Beta-amyrin Beta-sitosterol Chlorogenic

Acid Lupeol Lupeol,
Trifluoroacetate Myo-inositol Stigmasterol

GI absorption High Low Low Low Low Low Low Low

Lipinski Yes; 0 violation

Yes; 1
violation:
MLOG
P>4.15

Yes; 1
violation:

MLOG P>4.15

Yes; 1
violation:

NHorOH>5

Yes; 1
violation:
MLOG
P>4.15

No violation:
MW>500, MLOG

P>4.15

Yes; 1
violation:
MLOG
P>4.15

Yes; 1
violation:
MLOG
P>4.15

Bioavailability 0.85 0.55 0.55 0.11 0.55 0.17 0.55 0.55
Log po/w 1.05 7.16 7.24 -0.39 7.27 8.43 -2.67 6.98

CYP1A2 inhibitor No No No No No No No No
CYP2CAP
inhibitor No No No No No No No No

CYP2C9 inhibitor No No No No No No No Yes
CYP2D6 inhibitor No No No No No No No No
CYP3A4 inhibitor No No No No No No No No
BBB permeation Yes No No No No Yes No Yes

Table 3. Activation action for the eight selected phytochemicals against the PI3K. Results that were considered as ‘robust’
are shaded in purple.

Protein Activator
AutoDock Binding

Free Energy
(Kcal/mol)

AutoDock Inhibition
Constant, Ki

RMSD for the
Ligand from the

Reference Structure
(Å)

No. of Polar
Contacts

Amino Acids Involved in
the Polar Interaction

PI3K
(PDB ID:
6OAC 59)

4-hydroxybenzoic acid -4.19 847.29µM 14.882 - -
Beta-amyrin -11.22 5.99nm 26.472 1 GLU849

Beta-sitosterol -11.21 6.05nm 26.402 1 GLU849

Chlorogenic acid -5.05 198.61µM 26.321 8
MET811, PRO835,

CYS838(2), SER629,
GLN630, LEU632, ILE633

Lupeol -9.76 70.09 nM 39.596 2 SER7732(2)
Lupeol, trifluroacetate -9.85 60.52nM 11.972 0 -

Myoinositol -3.72 1.87mM 25.773 - -
Stigmasterol -8.32 797.14nM 8.816 0 -
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Fig. (3a-f). Binding interfaces of the most robust binding interfaces of six mentioned phytochemicals to the PI3K (PDB ID: 6OAC 59). Polar contacts
are coloured yellow and nonpolar contacts are coloured blue. Amino acids in the range of 5 Ǻ from the ligands are shown.

3.2.1. PI3K Docking

Docking  experiments  showed  good  activation  results  for
six  phytochemicals  (beta-amyrin,  beta-sitosterol,  chlorogenic
acid, lupeol, lupeol-trifluroacetate, and stigmasterol). Binding
free energies of the PI3K to the tested phytochemicals were in
the  range  of  -11.22  to  -5.05  Kcal/mol,  indicating  strong
contacts.  As  for  the  Ki  values,  they  were  divided  into  a  low
range  (5.99nM to  797.14nM),  indicating  a  strong  activation,
and  a  moderate  value  (198.61  µM  for  chlorogenic  acid),
considered  acceptable  (Table  3).

3.2.2. Binding Interface for PI3K

For the PI3K (PDB ID: 6OAC [59]), and in all the above-
mentioned six ligand-protein interfaces, short-ranged (1.9-2.4
Å)  and  moderate  length-ranged  (2.5–2.8  Å)  electrostatic
interactions at  the ligand-protein interface were present (Fig.
3). Longer bonds (more than 2.8 Å) also existed at the binding
interface. The binding interfaces were influenced by a number
of  nonpolar  amino  acids  (e.g.,  ILE  and  MET  in  chlorogenic
acid), which contributed to the polar contacts via the backbone
atoms.  Moreover,  at  the  binding  interfaces,  both  polar  and
charged amino acids had a significant role (e.g., GLU in beta-
amyrin and beta-sitosterol; SER in lupeol; and CYS, SER, and
GLN in chlorogenic acid) (Fig. 3).

3.2.3. PDK1 Docking

Docking  experiments  showed  good  binding  results,
excluding  D-pintol,  myoinositol,  palmitic  acid,  and  linalool

phytochemicals.  Binding  free  energies  of  the  PDK1  to  the
several  phytochemicals  were  in  the  range  of  -8.81  ˗  -4.51
kcal/mol,  indicating  strong  contacts.  The  Ki  values  were
divided  into  a  low  range  (349.06nM-1.85µM),  indicating  a
strong activation, and moderate slightly strong contacts within
the range 63.22µM -107.63 µM (Table 4).

3.2.4. Binding Interface for PDK1

For  the  PDK1  (PDB  ID:  3HRF  [60]),  and  in  six  ligand-
protein interaction interfaces, interactions at the ligand-protein
interfaces  were  short-ranged  (1.8  to  2.4  Å)  and  moderate-
ranged (2.5 – 4.3 Å) electrostatic interactions (Fig. 4). The six
ligands  (phytochemicals)  were  4-hydroxybenzoic  acid,  beta-
amyrin,  beta-sitosterol,  chlorogenic  acid,  lupeol,  and
stigmasterol.  Long-ranged  interactions  also  existed  at  the
binding interface. A number of nonpolar amino acids (e.g., Tyr
and Phe) contributed to the binding process. Moreover, at the
binding interfaces, both polar and charged amino acids had a
significant role (e.g., Thr, Arg, and Lys).

3.2.5. AKT Docking

Docking  experiments  showed  good  activation  results  for
eight phytochemicals. Binding free energies of the AKT to the
several  phytochemicals  were  in  the  range  of  -8.36  to
-5.14Kcal/mol and indicated stable contacts. The Ki values of
the AKT-binding interface to the tested phytochemicals were in
a variable range (743.30 nM to 169.46 µM), indicating a strong
activation (Table 5).
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Table  4.  Activation  action  of  Gundelia  tournefortii  and  Ocimum basilicum  derivatives  and  eight  selected  phytochemicals
against the PDK1. Results that were considered as ‘robust’ are shaded in purple.

Protein Activator
AutoDock

Binding Free
Energy (Kcal/mol)

AutoDock
Inhibition

Constant, Ki

RMSD for the
Ligand from the

Reference Structure
(Å)

No. of Polar
Contacts (Only

Significant
Binding Results

shown)

Amino Acids Involved in
the Polar Interaction

PDK1
(PDB ID:
3HRF 60)

4-hydroxybenzoic acid -5.56 84.63µM 30.681 4
ARG136, ASP132,
VAL229, ARG129,

LYS228
Beta-amyrin -8.43 662.66nM 32.588 0 VAL127

Beta-sitosterol -8.50 587.54nM 32.717 1 LYS123

Chlorogenic acid -5.41 107.63µM 25.332 6 SER135, HIS139, LUS145,
TYR146(3)

Lupeol -7.82 1.85µM 44.670 1 LEU358
Lupeol-trifluoroacetate -8.81 349.06nM 35.507 0 -

Myo-inositol -3.85 1.51mM 35.088 - -
Stigmasterol -7.79 1.94µM 36.862 1 GLU107

Fig. (4). Binding interfaces of the most robust binding interfaces of Gundelia tournefortii and Ocimum basilicum derivatives to the PDK1(PDB ID:
3HRF 60). Polar contacts are colored yellow and nonpolar contacts are colored blue. Amino acids in the range of 5 Ǻ from the ligands are shown.

3.2.6. Binding Interface for AKT

For the AKT (PDB ID: 2UVM [61]), and in four ligand-
protein  interaction  interfaces,  short-ranged  interactions  (1  to
2.4  Å)  were  demonstrated.  The  four  active  phytochemicals
were  4-hydroxybenzoic  acid,  chlorogenic  acid,  lupeol,  and
lupeol-trifluoroacetate.  Moderate-ranged  (2.5  to  3.5  Å)
electrostatic  interactions  had  higher  contributions  than  the
long-ranged  (3.6  to  4.0  Å)  interactions  at  the  ligand-protein
interface in the binding energies of the seven phytochemicals
that showed good binding energies and Ki constants (Fig. 5).
The  binding  interfaces  were  influenced  by  a  number  of
nonpolar amino acids (e.g.,  ILE and VAL). Moreover,  at  the

binding interfaces, both polar and charged amino acids had a
significant role (e.g., ARG, LYS, and THR).

3.2.7. RAC1 Docking Binding Free Energies and Inhibition
Constants for the RAC1 Protein

Derivatives  of  Gundelia  tournefortii  and  Ocimum
basilicum  were  tested  for  their  binding  affinities,  inhibition
constants,  and  Root  Mean  Square  Deviation  (RMSD)  values
for  the  ligand  structure  upon  docking  from  the  reference
structure. Docking of five phytochemicals (beta-amyrin, beta-
sitosterol,  lupeol,  lupeol-trifluroacetate,  and  stigmasterol)
produced  robust  results  in  terms  of  binding  free  energies
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Table  5.  Activation  action  of  eight  selected  phytochemical  derivatives  against  the  AKT.  Results  that  were  considered as
‘robust’ are shaded in purple.

Protein Activator
AutoDock Binding

Free Energy
(Kcal/mol)

AutoDock Inhibition
Constant, Ki

RMSD for the Ligand
from the Reference

Structure (Å)

No. of Polar
Contacts

Amino Acids Involved
in the Interaction

AKT
(PDB ID:

2UVM 61)

4-hydroxybenzoic acid -5.56 78.23µM 24.917 3 LYS-14, THR-87
ARG-15

Beta amyrin -8.36 743.30nm 9.807 0 -
Beta sitosterol -8.36 744.68nm 9.810 0 -

Chlorogenic acid -5.14 169.46µM 25.562 7 ARG-15(2), THR-87,
ARG86(2), TYR18(2)

Lupeol -8.07 1.22 µM 23.126 1 VAL-83
Lupeol, trifluroacetate -7.70 2.26µM 11.515 1 ASN-54

Myoinositol -4.21 817.95µM 7.609 - -
Stigmasterol -7.37 3.97µM 15.615 0 -

Fig. (5a-g). Binding interfaces of the most robust binding interfaces of most active phytochemicals to the AKT (PDB ID: 2UVM61). Polar contacts
are coloured yellow and nonpolar contacts are coloured blue. Amino acids in the range of 5 Ǻ from the ligands are shown.

Fig. 6 contd.....
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Fig. (6a-e). Binding interfaces of five active phytochemicals to the RAC1 protein (PDB ID: 2FJU 26). Polar contacts are colored yellow and nonpolar
contacts are colored blue.

Table 6. Plausible protein activators of the eight selected phytochemicals for the RAC1 protein.

Protein Activator
AutoDock Binding

Free Energy
(Kcal/mol)

AutoDock Inhibition
Constant, Ki

RMSD of the Ligand
from the Reference

Structure (Å)

No. of Polar
Contacts

Amino Acids
Involved in the

Interactions

RAC1
(PDB ID:
2FJU 26)

4-hydroxybenzoic acid -4.87 269.20 µM 121.398 - -
Beta-amyrin -8.78 365.08 nM 99.048 - -

Beta-sitosterol -8.85 325.88 nM 98.915 1 ASP412
Chlorogenic acid -3.84 1.53 mM 93.946 - -

Lupeol -8.63 472.41 nM 96.543 1 ASP67
Lupeol-trifluroacetate -8.00 1.36 µM 97.639 - -

Myo-inositol -2.47 15.54 mM 126.190 - -
Stigmasterol -7.16 5.61 µM 96.265 - GLU100

(ranging from -8.85 to -7.16 kcal/mol) and affinity constants
(ranging from 472.41 nM to 5.61 µM). Resultant bond lengths
at the binding interfaces were classified into long-ranged (3.6
to  4.0  Å),  moderate-ranged  (2.5  to  3.5  Å),  and  short-ranged
(1.4 to 2.4 Å) electrostatic interactions between the ligand and
the  protein  (Fig.  6).  Short-ranged  interactions  were  found  to
affect  the  binding  interfaces  of  beta-sitosterol,  lupeol,  and
stigmasterol phytochemicals to the target RAC1 protein. Few
longer bonds contributed to the binding process at the binding
interface.  The  binding  interfaces  in  the  several  binding
schemes were influenced by a number of nonpolar amino acids
(e.g.,  TRP,  GLN,  LYS,  PHE,  and  THR).  Moreover,  at  the
binding  interfaces,  both  polar  and  charged  amino  acids  had
significant  contributions  (e.g.,  ARG,  PRO,  ASP,  GLU,  and
HIS) (Table 6).

3.3. Validation

Validation was conducted at the whole protein surface as
well as at the binding interface. The validation results for the
PDK1  and  AKT  on  the  whole  protein  surface  were  more
significant than testing the binding of the positive control to its
original  binding  site  at  the  protein  surface.  In  scanning  the
whole  protein  surface,  very  similar  results  to  the  original
structure were achieved. The bonds were nearly the same as in

the  main  3D  structure,  with  a  slight  increase  in  around  two
bonds at the binding interfaces. In scanning the region where
the positive ligand bonded to the original structure, variations
were  evident,  as  indicated  in  the  tables  and  figures  below.
Validation  results  for  binding  of  the  positive  control  to  the
RAC1  and  PI3K  did  not  show  good  results.  Results  for
validation  at  the  whole  binding  interface  as  well  as  at  the
original binding sites are shown below in Tables 7 - 9 and Figs.
(7 and 8). Figures have been only produced for the proteins that
showed high binding affinities in scanning the whole protein
surface and, at the same time, could bind close to the binding
interface of the positive control. In scanning the whole surface,
both  crystal  structures  for  the  apo-  and  holo-  forms  of  the
proteins were used.

4. DISCUSSION

Phytochemicals and medicinal plant extracts have become
major  factors  in  drug  development  programs,  especially
because of minimal costs and fewer adverse effects [71, 72].
Indeed, the use of natural anti-diabetic drugs results in fewer
side effects and is usually effective [73].  Recently,  Gundelia
tournefortii [45] and Ocimum basilicum [74] methanol extracts
have  been  reported  to  efficiently  augment  GLUT4
translocation to the plasma membrane of skeletal muscle cells.
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Table 7. Validation of ligand binding to PI3K at the binding interface of the positive control and on the whole protein surface
using the positive control extracted from the crystal structure.

- RMSD (Ǻ) Constant
Activator (Ki)

Binding Free
Energy (kcal/mol)

No. of
Hydrogen

Bonds

Amino Acids Involved in Polar
Contacts

Docking at the binding interface
(PI3K, in the apo- form) 32.894 - +4.46e+05 3 1(ASP625),2(THR659)

Docking at the whole surface (PI3K,
in the apo- form) 40.565 990.95 nM -8.19 1 1(HIS759)

PI3K (PDB ID: 6OAC 59) in the
holo- form - - - 3 2(ASP933), 1(VAL851)

Table 8. Validation of ligand binding to PDK1 at the binding interface of the positive control and in scanning the whole
surface, using the positive control that was extracted from the crystal structure.

- RMSD (Ǻ) Constant (Ki)
“Activation”

Binding Free
Energy kcal/mol

No. of
Hydrogen

Bonds

Amino Acids Involved in Polar
Contacts

Docking at the binding interface
(PDK1; in the apo- form.) 3.772 - +8.59e+04 - -

Docking at the whole surface (PDK1 in
the apo- form) 2.218 1.22 µM -8.07 3 1 (ARG-131), 2 (THR148)

PDK1 (PDB ID: 3HRF; 60) in the holo-
form. - - - 3 1(LYS76), 1(THR148),

1(ARG131)

Table  9.  Validation of  ligand binding to  AKT at  the  binding interface  of  the  positive  control  and in  scanning the  whole
surface using the positive control, which was extracted from the crystal structure.

- RMSD (Ǻ) Constant
Activator (Ki)

Binding Free
Energy, kcal/mol

No. of
Hydrogen

Bonds

Amino Acids Involved in
Hydrogen Bonding

Docking at the binding interface (AKT,
in the apo- form) 2.218 - +1.89e+05 10

1 (LEU-52), 1 (ASN-53),
3 (LYN-14), 3 (ARG-23),
1 (ARG-15), 1 (GLU-17)

Docking at the whole surface (AKT; in
the apo- form.) 1.860 757.57 nM -8.35 18

6 (ARG-23), 2 (ARG-25),
1(ARG-86), 2(ASN-53),
4(LYN-14), 1(GLU-17),
1(TYR-18), 1(ILE-19)

AKT (PDB ID: 2UVM 61) in the holo-
form. - - - 16

5(ARG-23), 1(ARG-25),
2(ARG-86), 2(ASN-53),
2(LYN-14), 2(GLU-17),
1(TYR-18), 1(ILE-19)

Fig. (7a-c). Binding interfaces for the positive control to the PI3K (PDB ID: 6OAC 59) in the validation step. Polar contacts are coloured yellow and
nonpolar contacts are coloured blue.
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Fig. (8a-c). Binding interfaces for the positive control to the PDK1 (PDB ID: 3HRF 60) in the validation step . Polar contacts are coloured yellow and
nonpolar contacts are coloured blue.

Ten  phytochemicals  have  been  detected  in  these  herbal
extracts.  Among them, 8 have been reported to possess  anti-
diabetic activity and enhanced GLUT4 translocation to the PM,
a main process in glucose disposal and homeostasis [75]. The
phytochemicals  have  been  investigated  in  this  study.  The
mechanism of action on the insulin signalling pathway has not
yet  been  investigated  for  Gundelia  tournefortii  and  Ocimum
basilicum  derivatives.  In  our  study,  four  hub  proteins  for
insulin  signalling  pathway  were  tested  for  their  plausible
response  to  eight  selected  phytochemicals  detected  in  the
above-mentioned  medicinal  plants  that  are  suggested  to
augment  GLUT4 translocation to  the  plasma membrane,  and
thus  enhance  glucose  disposal  from  the  serum  [45,  53,  54],
with the consequent effect on GLUT4 translocation, alleviating
hyperglycemia. We predicted the complementarity between the
medical compounds and the target proteins by scoring schemes
(RMSD, free energy, and inhibition constant). AKT and PDK1
were found here to be activated by all phytochemicals, except
for myo-inositol, which had the lowest activation effect. On the
other hand, RAC1 and PI3K showed good interaction results
with some phytochemicals (beta-amyrin, beta-sitosterol, lupeol,
lupeol-trifluroacetate,  and  stigmasterol).  PI3K  could  also  be
activated by chlorogenic acid. The binding free energies of the
four  proteins  were  slightly  different.  However,  the  RMSD
values  of  the  PDK1  and  AKT  proteins  were  closer  to  one
another when compared to the PI3K and RAC1. However, in
all  proteins,  myo-inositol  showed  the  least  activation  action
(with  the  highest  inhibition  constants  and  binding  free
energies) among all tested derivatives. In contrast, beta-amyrin,
beta-sitosterol, lupeol, lupeol-trifluroacetate, and stigmasterol
showed  positive  results  for  PDK1,  PI3K,  AKT,  and  RAC1
proteins.  By  testing  ADME/Tox  features  and  reflecting  our
results  with  these  characteristics,  we  deduced  that  several
phytochemicals  very  well  matched  most  of  the  ADME/Tox
properties and are good candidates for oral administration. By
using a validation step, we ensured the accuracy of the docking
protocol by comparing the crystal structure, which is the actual
association  of  the  protein  with  its  positive  control,  with  the
simulation  of  the  association  process  through  the  docking
process. The results for both PDK1 and AKT were very close

to the positive control binding to the reference structure. This
was in  contrast  to  PI3K and RAC1,  for  which the validation
showed  weak  results  compared  to  other  proteins.  We
additionally predict that PI3K and RAC1 could not be plausible
targets for the treatment of T2DM.

CONCLUSION

Certain natural compounds may interact with protein hubs
in insulin signalling, according to previous studies [26]. This
study has highlighted the importance of these lead compounds
in  activating  the  AKT,  PI3K,  PDK1,  and  RAC1  proteins,
which  are  hot  topics  for  the  catastrophic  T2DM  pandemic.
Drug developers  can assess  the  safety  and effectiveness  of  a
drug  candidate  using  ADME/Tox  features.  We  have  found
PDK1 and  AKT to  be  more  attractive  protein  targets  for  the
studied  lead  compounds  than  the  other  proteins  based  on
binding affinities, inhibition constants, binding interfaces, and
ADME/Tox properties. These in silico outcomes offer strong
bases for future in vitro and in vivo research and the discovery
of possible medications to treat type II diabetes treatment. We
believe that our study will motivate more work in this area.
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