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Abstract 

 
The differential transform method (DTM) and the reduced differential transform 

method (RDTM) are semi-analytical numerical methods which can be applied to 

various kinds of ordinary and partial differential equations besides several types of 

integral equations.   

In this work, the theory of DTM and RDTM of one and two-dimensional Volterra 

Integral Equation (VIE) have been introduced. The solution of three- dimensional VIE 

has been investigated. In addition, we have proved some additional theorems related to 

this type of integral equations. Furthermore, the theory of three dimensional DTM has 

been successfully extended to three dimensional RDTM. Finally, a comparison between 

the two methods has been carried and to show the advantage of RDTM over DTM in 

solving three dimensional VIE.   
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به تحليلي لمعادلة فولتيرا التكاملية باسلوب التحويل التفاضلي واسلوب شحل 

 التحويل التفاضلي المختزل

 

 

 ملخص

 
بيقها على عمليات شبه تحليلية عددية يمكن تط التحويل التفاضلي و أسلوب التحويل التفاضلي المختزل هي يوبأسل

 أنواع مختلفة من المعادلات التفاضلية العادية و الجزئية و كذلك المعادلات التكاملية .

عادلات فولتيرا تفاضلي المختزل لمفي هذا البحث، تم تقديم الجانب النظري لأسلوبي التحويل التفاضلي و التحويل ال

ذات البعد الواحد و البعدين، ثم دراسة حل معادلة فولتيرا ذات البعد الثلاثي بشكل مستفيض و إضافة نظريات و 

أمثلة متعلقة بهذا النوع من المعادلات. علاوة على ذلك، استطعنا توسيع الجانب النظري لأسلوب التحويل التفاضلي 

إلى أسلوب التحويل التفاضلي المختزل ذو البعد الثلاثي. و أخيراً، تم إجراء مقارنة بين الاسلوبين ذو البعد الثلاثي 

ولتيرا التكاملية في حل معادلة ف وأظهرت النتائج أفضلية أسلوب التحويل التفاضلي المختزل على التحويل التفاضلي

  .  ذات البعد الثالث
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Introduction 
  
Integral equations are equations in which the function to be determined appears under 

one or more integral signs. The concept of integral equations interferes with many 

issues in the field of pure and applied mathematics.  Many initial and boundary value 

problems can be reformulated to the shape of integral equations. Further, in physics and 

engineering fields, integral equations have wide applications, for example, potential 

theory, scattering in quantum mechanics, and mathematical physics modeling [1, 2, 3]. 

The most frequently used integral equations are of two major types, namely Volterra 

(an Italian mathematician Vito volterra,1860-1920) and Fredholm (Swedish 

mathematician Ivar Fredholm, 1866-1927) integral equations [2]. Volterra Integral 

Equation (VIE) has been used to model several kinds of problem. For example, they 

are considered to be stochastic integrals of a time-dependent kernel with respect to a 

standard Brownian motion [4]. In addition, they have many applications in demography 

and actuarial science [5]. 

 In the literature, numerical and analytical methods have been developed in the last and 

the present centuries to solve VIE. One of these methods is the differential transform 

method (DTM). Recently DTM has been modified to the reduced differential transform 

method (RDTM). However, the differential transform method is considered to be one 

of the useful techniques in solving VIE, despite the significant time needed to calculate 

the higher derivatives [1]. 

Since the beginning of 1986, Zhou was the first who initiated and introduced the idea 

of the DTM [8]. He showed the efficiency of the method by a successful application to 

the electrical circuit’s analysis problem. In the last and in the present decades, 

researchers have applied the method and its variants to various linear and nonlinear 

ordinary and partial differential equations [7-24]. In 2007 Z. M. Odibat [25] was the 

first who successfully applied the differential transform method (DTM) to find exact 

solutions to linear and nonlinear VEI of dimension one, he has managed to express the 

solution of such problems in Taylor series expansion form. The method could overcome 

the computational difficulties of other methods and all calculations can be simply 

manipulated. He tested many examples by applying DTM and the results illustrated the 

reliability and the performance of the DTM. In 2009 A. Tari, M.Y. Rahimi and S. 

Shahmorad developed the two dimensional DTM for solving two dimensional linear 

and nonlinear VIE [26]. They gave examples to demonstrate the accuracy of the 

method. Jang [27], introduced some properties concerning the two dimensional VIE . 

In 2009, M. Mohseni Moghadam and H.A. Saeedi [28], used DTM to solved Volterra 

integro-differential equations. In 2012, M. Bakhshi, M. Asghari-larimi, Mohammad 

Asghari-Larimi [29] have successfully tested the three -dimensional DTM on a 

nonlinear three-dimensional VIE. In 2013, Reza Abazari and AdemKilicman [30], 

developed the two dimensional RDTM for solving two dimensional VIE, they also 

made a comparison between the two solutions getting from RDTM and DTM. They 

concluded that RDTM is more accurate, it has faster convergence rate, and has less 

complicated computational process.  

In this thesis, a numerical solution of three-dimensional VIE is proposed. We solve 

such equation using RDTM, then, a comparison between this method and DTM is done. 

 

In chapter one, basic definitions of integral equations are presented.  Chapter two 

contains a complete proof of some fundamental theorems concerning the solution of 

one and two dimensional VIE using DTM. Also, it includes some illustrative examples. 
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Chapter three contains some basic concepts on the solution of three dimensional VIE 

using DTM and some numerical examples on the presented theory. 

In chapter four, the technique of RDTM in solving two dimensional VIE is introduced. 

For that, some basic definitions and properties of RDTM are given. Then, we apply the 

method on some examples and clarify the rapid convergence of this method by some 

figures. 

 In chapter five, we present results relating to the solution of three dimensional VIE via 

RDTM. Also, we apply the produced theory on some examples which are solved earlier 

using DTM. Finally, we compare the results obtained from the two methods by showing 

the relative and absolute error at several points in the domain of the integral equation.  
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Chapter One 

 

Preliminaries 
 

In this chapter, the definitions of VIE in one, two and three variables are given in section 

one. In section two, we introduce the differential transform method. 

 

1.1 Volterra Integral Equation 
 

The integral equation, which is first introduced in 1888 by Paul Du Bois-Reymond [31], 

is an equation in which the unknown function appears under one or more integral sings. 

A standard form of the integral equation in )(xu  is given by 



)(

)(

)(),()()()(

x

x

dttutxkxfxux







                                                                        
where ),( txk is called the Kernel of the integral equation, )(x and )(x are limits of 

integration,   is nonzero constant, )(xf is any given function. The function )(xu  that 

will be determined appears inside the integral sing and outside the integral sing, where 

the limits of integration )(x and )(x may be variables, constant or mixed. 

If the limit of integration are fixed, then the integral equation is called Fredholm integral 

equation given by the form: 



b

a

dttutxkxfxux )(),()()()( 

                                                                             
        

If one of the limits is variable, then the integral equation is called Volterra integral 

equation which is given by the form:  



x

a

dttutxkxfxux )(),()()()( 

                                                                             
If the function 1)( x , then we have the second kind of VIE  



x

a

dttutxkxfxu )(),()()( 

                                                                                   
 While 0)( x leads to the first kind of VIE  

0)(),()(  
x

a

dttutxkxf 

                                                                                        
VIE can be classified according to linearity and homogeneity concept. If the integral 

equation contains nonlinear function of )(xu , such as
)( xue , )(sin xu , )(cosh xu ,

))(ln( xu  or 
nxu ))((  where 1n , the integral equation is called nonlinear. The 

integral equation is called linear if 1n . 

VIE of the second kind are classified as homogeneous or inhomogeneous, if the 

function )(xf  is identically zero, then VIE of second kind is called homogeneous. 

Otherwise it is called inhomogeneous.    
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Theorem 1.1[33]: For each ],[)( baCxf  , the Volterra integral equation of the second 

kind with continuous kernel ),( txk has a unique solution ],[)( baCxu  . 

 

A function which can be represented by a convergent power series is called an analytic 

function. In others words, functions that are infinitely differentiable. Moreover, a 

function is analytic if and only if its Taylor series about a point 
0

x  converges to that 

function in some neighborhood for every x in its domain.  

 

In the next two definitions, we present the two and three dimensional VIE of the second 

kind. 

Definition 1.2[34]:  The two dimensional VIE is defined by: 

 

t

t

x

x

dydzzyuzytxKtxftxu

0 0

),(),,,(),(),(                                                           (1.1) 

Where the kernel K  has the following degenerate form 





n

i

ii zyNtxMzytxK
0

),(),(),,,(                                                                             (1.2) 

 

Definition 1.3[29]: The three dimensional VIEs is defined by  

  

t

t

y

y

x

x

dzddzuztyxKtyxftyxu

0 0 0

),,(),,,,,(),,(),,(                                  (1.3) 

The kernel K  is degenerate of the form 





n

i

ii zNtyxMztyxK
0

),,(),,(),,,,,(                       (1.4) 

The functions
iM and

iN appear in equations (1.2) and (1.4) are assumed to be analytic 

for ni ,...,2,1 . 

 

Finally, we close this section by the so called Leibniz formula, such formula plays a 

main role in solving integral equations. 

 

Leibniz Rule [35]: let },:),{( dtcbxatxR  be a region in the xt - plane. 

Let ),( txf be a continuous function defined on R , such that ),( txf x is continuous on

R . Moreover, assume that  dttxf

xB

xA

)(

)(

|),(| , for each t  in ),( dc for each continuous 

functions )(xA and )(xB . Suppose also there is a piecewise continuous function )(tg  

such that for all ),( tx  in R , )(|),(| tgtxf x  and  

)(

)(

)(

xB

xA

dttg . Then 

 

)()),(,()())(,(),(),(

)(

)(

)(

)(

xAxAxfxBxBxfdttxfdttxf
dx

d
xB

xA

x

xB

xA

                          (1.5) 
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For special case, the partial derivatives of a function of two variables under double 

integral signs are listed below: 

dzzxu
x

dydzzyu
x

t

m

mt x

m

m

),(),(
0

1

1

0 0

  











 , and  

dytyu
t

dydzzyu
t

x

n

nt x

n

n

),(),(
0

1

1

0 0

  











 

 

Leibniz Formula [36]:  Let )(xu  and )(xv  be functions having derivatives up to order

n , then the thn  derivatives of their product gives by: 

 

 

 

                                                     (1.6) 

 

 

1.2 The Differential Transform Method 

 

In this section, we give the definitions of the differential transform and the differential 

inverse transform of functions in one variables. 

 

Definition 1.4[25]: The differential transform of the thk derivative of function )(xf  is 

defined by: 

0

)(

!

1
)(

xx

k

k

dx

xfd

k
kF











                                                                                             (1.7) 

 

 

Definition 1.5 [25]: The differential inverse transform of )(kF  is defined as  







0

0 ))(()(
k

kxxkFxf

.                                                                                         (1.8) 

 

From equations (1.7) and (1.8), we get 

0

)(

!

)(
)(

0

0

xx

k

k

k

k

dx

xfd

k

xx
xf















                                                                            (1.9) 

 

This means that the concept of differential transform is derived from the Taylor series 

expansion, but the method does not evaluate the derivatives symbolically. However, 

the relative derivatives are calculated by an iterative way which is described by the 

transformed equations of the original function. 

In real applications, the function )(xf  is expressed by a finite series and equation (1.8) 

can be written as 

                                                                       

                                                                                     (1.10) 

 



n

k

kxxkFxf
0

0 ))(()(

)()())()((
0

xv
dx

d
xu

dx

d

m

n
xvxu

dx

d
m

mn

m
mn

mn

n

n
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The DTM determines the coefficients of the Taylor series of a function by solving 

recursive equations from the given differential equation. 

  

Assuming the one dimensional VIE, there are a host of available solution techniques, 

one of the most important classical techniques are the method of successive 

approximations and the method of successive substitutions [37]. In addition, the series 

method and the direct computational method are also suitable for some problems [38]. 

The recently developed methods, namely the Adomain decomposition method (ADM) 

and the modified decomposition method are gaining popularity among scientists and 

engineers for solving highly nonlinear integral equations and singular integral equations 

[37,38], encountered by Abel [33]. The aim of the next chapter is to present the 

technique of DTM for solving one and two dimensional VIE. 
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Chapter Two 
  

 Solving One and Two- Dimensional Volterra Integral 

Equation by DTM 
 

  This chapter consists of two sections. In section one, we give a complete proof of some 

fundamental theorems on 1-dimentional VIE using the DTM. In section two, we discuss 

the solvability of 2-dimentioal VIE using DTM. 

 

2.1 Solving One Dimensional Volterra Integral Equation by DTM 
 

   In this section, we introduce fundamental theorems on the one dimensional VIE and 

present their proofs in more details. Moreover, we apply the method on various kinds 

of differential equations appear in [8-9, 25]. 

The following theorems give the differential transformation for some functions that 

have the first kind of VIE shape. For convenience, we will use the notations )(kU , )(kG  

and )(kF to indicate the differential transform of the functions )(xu , )(xg and )(xf  

respectively. 

 

The proof of the following theorem can be deduced directly from equations (1.7-8) and 

Leibniz formula so we skip the proof. 

Theorem 2.1[10, 25]: If 
x

dttuxf
0

)()( , then
k

kU
kF

)1(
)(


  and 0)0( F                                                                         

 

Theorem 2.2[10, 25]: If 
x

dttutgxf
0

)()()( , then 







1

0

)1(
)()(

k

l k

lkU
lGkF    , 

where 0)0( F .                                                      

 

Proof: Using Leibniz formula, the 
thk derivative of the given VIE is 

 

lk

lk

l

lk

l

k

k

k

k

dx

xud

dx

xgd

l

k

dx

xuxgd

dx

xfd











 






 











1

11

0

1

1

)()(1

))()(()(

 

Therefore, 

 






















 










1

0

1

00

)1()()!1(

)1()!1)((!
1)(

k

l

k

lx

k

k

lkUlGk

lkUlklGl
l

k

dx

xfd

 

And equation (1.7) completes the proof of the theorem. 
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Theorem 2.3 [10, 25]: If 
x

dttuxgxf
0

)()()(  then 


 




1

0

)1(
)()(

k

l lk

lkU
lGkF , 

where 0)0( F .                                                         

Proof:  Assume that 1k  and let 
x

dttuxv
0

)()( . Thus, f  can be written as

)()()( xvxgxf  . From equation (1.6), the 
thk derivative is 

 
























 k

l
lkl

lkl

k

k

k

k

dxdx

xvdxgd

l

k

dx

xvxgd

dx

xfd

0

)()())()(()(
. 

 

  But since for lk  , 0
)(

0

0

















tt
xx

lk

lk

dx

xvd
 the upper limit sum in the above equation can 

be reduced to 1k . Therefore,  

 
























 1

0

1

00

)()(!)()!)((!
)( k

l

k

lx

k

k

lkVlGklkVlklGl
l

k

dx

xfd
 

Taking in account that 
x

dttuxv
0

)()( , the result can be drawn directly from theorem 

(2.1), and this finished the proof of the theorem. 

 

 

Now, we give some examples to show how the above theorems are applicable. 

 

Example 2.1: Consider the linear VIE. 

 

x

dttutxxxu
0

)()()1()(    , 10  x                                                          

According to theorems (2.2-3) and from the table in appendix A.1, we have the 

following recurrence relation: 

1,
)1(

)1(
1

)1(
)1()1()(

1

0

1

0








 









k
k

lkU
l

k

lkU
lkkU

k

l

k

l

  

where .1)0()0(  uU  Then 

1)1()0( UU , 
!2

)2(


U , 
!3

)3(


U , 
!4

)4(
2

U , 
!5

)5(
2

U ,.... 

 

From the above sequence we conclude the following general term

















oddisk
k

evenisk
k

kU
k

k

,
!

,
!

)(
2

)1(

2





.  

 

From equation (1.8), the solution of the integral equation is   
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..........
!5!4!3!2

1)( 5
2

4
2

32  xxxxxxu


 

As a special case when 1 , the exact solution of the integral equation is xexu )( .  

 

 

Example 2.2: consider the nonlinear Volterra integral equation 


x

dttu
x

xxxu
0

2 )(
2

1

4
)2sin(

8

1
sin)(                                                                

 

 From theorem (2.2) and the table in appendix A.1, we have the following recurrence 

relation 






 





1

0

3 )1(
)(

2

1

4

)1(

2

)(
sin

!

2

2

)(
sin

!

1
)(

k

l

k

k

lkU
lU

kk

k

k

k
kU

 . 

Direct substitutions give the following sequence: 

0)0( U , 1)1( U , 0)2( U , 
!3

1
)3( U , 0)4( U , ,

!5

1
)5( U  

 

Hence 0)2( kU , and
)!12(

)1(
)12(






k
kU

k

   . 

 

From equation (1.7), the solution of the integral equation is given by  

xxxxxu sin...
!7

1

!5

1

!3

1
1)( 753  (Which is the exact solution) 

 

2.2 Solving Two Dimensional Volterra Integral Equation by DTM 

 
   This section contains definitions and fundamental theorems on VIE of dimension two. 

Further, examples using the method of two dimensional DTM has been introduced. 

 

Consider a function of two variables ),( txw and suppose that it can be represented by 

a product of two functions each of which is of one variable, i.e. )()(),( tgxftxw  . So, 

on the light of one-dimensional differential transform properties, the function ),( txw  

can be represented by [27]: 
 

j

i

i

i j

ji txjiWtjGxiFtxw  











00

),()()(),(                                                          (2.1)                                                              

 

Where )()(),( jGiFjiW   is the spectrum of ),( txw . 

The basic definitions and operations for two-dimensional transform will be listed 

below: 

 

 

Definition 2.1[26]: If ),( txw is analytic and continuously differentiable in the domain 

of interest, then the differential transform function of ),( txw is define by  
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00 ,

),(
!!

1
),(

ttxx

nm

nm

txw
txnm

nmW

















                                                                      (2.2) 

 

 

Definition 2.2 [26]: The differential inverse transform of ),( nmW  is defined by 

n

m
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Combining (2.1) and (2.2) gives 
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In real application, the function ),( txw  in (2.4) can be approximated around )0,0(  
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0

,

0
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M
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 .                                                         (2.5) 

 

Using the assumption )()(),( tgxftxw   and expressing )(xf and )(tg as power 

series around ),( 00 tx , we get  
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So, inductively we conclude the following formula 
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Set mi   and nj   to reduce (2.6) to the following formula 
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Finally, assume )()(),( nGmFnmW  to be the transformed form of ),( yxw . Then 
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From the above analysis we conclude that the concept of the two-dimensional 

differential transform method is derived from the two- dimensional Taylor series 

expansion.  

 

  

Below, we give theorems which are useful in solving some kinds of integral equations. 

To each theorem a complete proof will be given. We suppose also that ),,( nmW

),( nmV and ),( nmU are the differential transformations of the functions ),,( yxw ),( yxv

and ),( yxu  respectively. 

Theorem2.4 [26, 27]: If  
t x

dzdzutxw
0 0

),(),(  , then  

 











Otherwise
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Proof: From equation (2.4), we have  
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The thm  partial derivative with respect to x  is  
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and the thn  partial derivative with respect to t  is  
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Therefore, 0
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m

m

x

txw
. This proves the first 

assertion of the theorem. For the next part of the theorem, differentiate ),( txw with 

respect to x  and then with respect to t , with the Leibniz formula and appendix A.2, 

we have 

 

),()1,1()1)(1( nmUnmWnm  , ,...2,1,0, nm . 

 

Replacing 1m  by m  and 1n  by n  in the last equation will finish the proof. 

 

Theorem 2.5[26, 27]:  If  

t x

dzdzvzutxw
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Proof: Assume 1, nm . According to the fundamental operation of two dimensional 

DTM listed in Appendix A.2 and from Leibniz formula, we get   
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 Equation (2.2) implies the result and the proof is completed.  

 

Theorem 2.6 [26, 27]: If  

t x

dzdzutxhtxw
0 0

),(),(),(  ,  then  























Otherwise

mn
lnkm

lnkmUlkH

nmW

n

l

m

k

0

,...2,1,,
))((

)1,1(),(

),(

1

0

1

0

 

Proof: Assume 1, nm and for convenience, we set  

t x

dzdzutxv
0 0

),(),(   

Then, ),(),(),( txvtxhtxw  and the nm  partial derivatives with respect to x  and t

is  
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when lnkm  , , the upper limits in the last equation 

can be replaced by 1m  and 1n , so it becomes 

 

 

 

On the other hand, theorem (2.4) implies )1,1(
1
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nmV  and the proof is 

completed. 

 

Theorem 2.7 [26,27]: If 
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Proof: The second partial derivative of ),( txw   with respect to x  and t  is 
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From the table in appendix A.2, we have 
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Theorem 2.8 [26, 27] If  
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Proof: Suppose that ),(),(),( txwtxvtxf   and let ),( nmF  be the differential transform 

of the function ),( txf . From appendix A.2, we have  
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The proof of the theorem  is completed. 

 

 

Theorem 2.9 [39]: If   
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Proof: First set 
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The following example is mentioned in [24], here we give the solution in details. 

 

Example 2.3[24]: Consider the following Volterra integral equation  
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According to theorems (2.5-6) and the transformations given in appendix A.2, we 

have the following recurrence relation: 
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  Where 0)0,0( U , )0,()0,( mFmU   and ),0(),0( nFnU  , ,...2,1, nm . 

The computations from the previous equation can be summarized in the following 

matrix:   
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Substituting this relation in equation (2.3), we conclude that the solution is of the form  
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Which is the exact solution. 

 

The example below has been solved in [40, 41] in different methods, we solve it using 

DTM. 
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Example 2.4: Consider the following Volterra integral equation 
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According to theorems (2.5) and (2.6) and the operation transformation given in 
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By solving the recursive equation for 4,3,2,1,0, nm the results can be listed as 
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Therefore, from equation (2.3), we get  
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Chapter Three 

 

Solving Three- Dimensional Volterra Integral Equation by 

DTM 

 
   This chapter contains basic concepts on VIE of dimension three and some numerical 

examples on the presented theory. 

  

Consider a function of three variable ),,( tyxw and suppose it can be represented as a 

product of three functions namely, )()()(),,( tHyGxFtyxw   i.e. the function  

),,( tyxw  is separable. The differential transformation of ),,( tyxw is  
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i tyxkjiWtkHjGxiFtyxw .                     (3.1)                                                             

Where )()()(),,( kHjGiFkjiW   is called the spectrum of ),,( tyxw . 

 

Definition3.1 [29]: Let ),,( tyxw be analytic and defined on a domain 3RD and let 

Dtyx ),,( 000 be a fixed point. The three dimensional differential transform of 

),,( tyxw is defined 
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Definition3.2 [29]: The differential inverse transform of ),,( lnmW  is defined by 
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Combining equations (3.2) and (3.3) we get 
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In fact, the function ),,( tyxw  can be represented by a finite series around  )0,0,0(  
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0

,,

0

,, tyxRtyxLnmWtyxw
M

m
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                                       (3.5) 

 

Below, we give theorems which are useful in solving some kinds of VIEs in three 

dimensions using DTM. From now, denote the functions ),,,( lnmW ),,( lnmV , 

),,( lnmH and ),( nmU to be the differential transformations of the functions 

),,,( tyxw ),,( tyxv ),,( tyxh and ),,( tyxu  respectively.  
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Theorem3.1 [29]: If   

t y x

ddzdzutyxw
0 0 0
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Proof: From definition (3.1), we have  
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The partial derivative of ),,( tyxw  with respect to yx, and t is 
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Also, DTM operations imply that 
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Finally, replacing )1( m  by m , )1( n  by n  and )1( l  by l  yield the results and the 
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t

m

my

m

m

dzdzxvzxu
xx

tyxw

0

1

1

0

)),,(),,((
),,(













Otherwise

lmnlnmU
mnllnmW

0

,...2,1,,),1,1,1(
1

),,(



19 

 







 

 

 
























































































































































 







 







 

























 







 







 

























 







 







 






































 







 

























 







 










































 





























 

















































1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0
111

3

1

0

1

0

1

0
111

3

1

0

1

0
11

2

1

1

1

0

1

0
11

21

1

0
1

1

1

1

1

1

1

0
1

1

1

1

1

1

1

1

1

1

1

1

111

3

)1,1,1(),,()!1()!1()!1(

)1,1,1(

)!1()!1()!1(),,(!!!111

),,(),,(111

),,(),,(111

),,(),,(11

),,(),,(11

),,(),,(1

),,(),,(1

),,(),,(

),,(),,((),,(

l

k

n

s

m

p

l

k

n

s

m

p

l

k

n

s

m

p
klsnpm

pskmnl

ksp

psk

l

k

n

s

m

p
klsnpm

pskmnl

ksp

psk

l

k

n

s
klsn

sknl

ks

sk

m

m

l

k

n

s
klsn

sknl

ks

sk

m

m

l

k
kl

kl

k

k

n

n

m

m

l

k
kl

kl

k

k

n

n

m

m

l

l

n

n

m

m

lnm

lnm

lnm

lnm

klsnpmVkspUmnl

klsnpmV

klsnpmkspUksp

p

m

s

n

k

l

tyx

tyxv

tyx

tyxu

p

m

s

n

k

l

tyx

tyxv

tyx

tyxu

p

m

s

n

k

l

ty

tyxv

ty

tyxu

xs

n

k

l

ty

tyxv

ty

tyxu

s

n

k

l

x

t

tyxv

t

tyxu

yk

l

x

t

tyxv

t

tyxu

k

l

yx

t

tyxvtyxu

yx

tyx

tyxvtyxu

tyx

tyxw

Therefore, the lnm   partial derivative with respect to yx, and  t  at   )0,0,0(  

 

.)1,1,1(),,()!1()!1()!1(
),,( 1

0

1

0

1

0

0
0
0































 l

k

n

s

m

p

t
y
x

lnm

lnm

klsnpmVkspUmnl
tyx

tyxw

This ends the proof of the theorem. 
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The proof is completed.  
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The last formula can be simplified as  
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The proof is finished. 

 

 

The two theorems listed below are a natural extension to theorems 2.7and 2.8 which 

are mentioned in the previous chapter. 
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The proof of the theorem is completed. 
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Proof: Let ),,(),,(),,( tyxwtyxvtyxf  . Then its differential transform is  
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The last equation leads to the end of the proof. 

 

 

Now we discus some examples [29] using DTM. We give the solutions in more 

details.  

 

Example 3.1: Consider the following linear Volterra Integral Equation  
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. 

Let   
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 The solutions of the above equations can be organized as follows:  
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Now substituting the result in equation (3.3) to get 
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Example 3.2: Consider the linear VIE  
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Solving the above equation recursively, the results can be listed as follows:  
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Now substituting this relation in equation (3.3), we get the exact solution 
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Chapter Four 

 

Solving Two - Dimensional Volterra Integral Equation by 

RDTM 
 

In chapter two, we introduced the differential transform method and showed how this 

method could solve the two dimensional VIEs.  The purpose of the current chapter is 

to solve the two dimensional Volterra Integral equation using the reduced differential 

transform method (RDTM). For that, we give basic definitions and some properties of 

RDTM, then we apply the method on some examples and finally we present some 

figures to show the rapid convergence of the method.  

  

4.1 Two Dimensional RTDM 
 

Consider a function of two variable ),( txw and suppose it can be represented as a product 

of two functions as follows )()(),( tGxFtxw  . Then the function ),( txw  can be 

represented in the following form [42]: 
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is called the reduced transformed function of ),( txw . 

Definition4.2 [30]: The differential inverse reduced transform of )(xWk
  is defined as   
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In fact, the function ),( txw  in equation (4.4) can be written as  
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  is negligibly small.  
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 Throughout this chapter, we assume that )(xWk
, )(xU k  and )(xVk

 are the reduced 

differential transform method of the functions, ),( txw , ),( txu and ),( txv respectively.  

 

In the following theorems we consider various shapes of two dimensional integral 

equations and we give a full proof for the presented results. 

 

Theorem 4.1[30]: If  
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Proof: The thk  derivative with respect to t  is 
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Proof: From Appendix B.1 and Leibnitz formula, we have  
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From equations (1.6) and (4.8), we obtain 
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Finally, equation (4.2) implies 
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Theorem 4.3[30]: If  
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Proof: The thk  derivative of ),( txw  with respect to t  is  
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This ends the proof.         
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Proof: The partial derivative of ),( txw  with respect to t  and x is 
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Hence, 
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This completes of the proof. 

Theorem4.5 [30]: If  
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Proof: Rewrite the equation as  
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then  
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The proof is completed. 

 

4.2 Example 
 

Now we solve an example which is given in [40] and [41]  by RDTM.    

 

Example 4.1: Consider the following VIE 
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Therefore, we conclude that the general formula 
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Therefore,
txtx eeetxu  .),(  which is the exact solution  

 

 

The following figures illustrate the approach of RDTM solution of ),( txu at different 

values of t  . Also, the figures show the rapid convergence of this method 
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Figure 4.1: The numerical result of RDTM at t=1, by comparing the exact solution by 

the first five iteration.  

 
Figure 4.2: The numerical result of RDTM at t=0.8, by comparing the exact solution 

by the first five iteration.  
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Figure 4.3: The numerical result of RDTM at t=0.6, by comparing the exact solution 

by the first five iteration.  

 

 
Figure 4.4: The numerical result of RDTM at t=0.4, by comparing the exact solution 

by the first five iteration.  
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Figure 4.5: The numerical result of RDTM at t=0.2, by comparing the exact solution 

by the first five iteration.  

 

Figure 4.6: The relative error at 1x  within five iteration at five value of t . 
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 Figure 4.7: The relative error at 5.0x also at five iteration at five value of t  
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Chapter Five 

 

Solving Three- Dimensional Volterra Integral Equation by 

RDTM  
 

In this chapter, we establish some theorems on three dimensional Volterra integral 

equation which are similarly to that in chapter 3 and give in details the proof of such 

theorems. Also, we apply the produced theory on some examples which are solved 

earlier using DTM method. Finally, we compare the results obtained from the two 
method.  
 

5.1 Three Dimensional RDTM 

   
Let ),,( tyxw be a function of three variables, and assume it can be represented as 

product of two functions as follows )(),(),,( tGyxFtyxw  . Then the function 

),,( tyxw can be written as [24]: 
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kji tyxjiWtkGyxjiFtyxw .              (5.1) 

                                                        

The function )(),(),( kGjiFjiW   is called the spectrum of ),,( tyxw . 

  

Definition 5.1[43]: If ),,( tyxw is analytic and continuous in the domain of interest, 

then its reduced transformed function is 
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Definition 5.1[43]: The differential inverse reduced transform of ),( yxWk  is defined 

by 
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Combining equations (5.2) and (5.3), gives 
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In fact, the function ),,( tyxw in equation (5.4)  can be written as  

),,(),(),,(
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tyxRtyxWtyxw
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k
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The tail function
k

nk
kn

tyxWtyxR ),(),,(
1






 in equation (5.5) is negligibly small.  
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 Suppose that ),( yxW
k

, ),( yxU
k

 and ),( yxV
k

 are the reduce differential transform 

functions of ),,( tyxw , ),,( tyxu  and ),,( tyxv  respectively.   

 

Now, we introduce some theorems for various shapes of VIE that will useful in solving 

three dimension Volterra integral equation. 

Theorem 5.1: If   

t y x

ddzdzutyxw
0 0 0

),,(),,(   then 

 dzdzU
k

yxW

y x

kk ),(
1

),(
0 0

1                                                                              (5.6) 

Proof:  The thk  partial derivatives with respect to t  have the form 

  







 t y x

k

k

k

k

ddzdzu
t

tyxw
t 0 0 0

)),,((),,(  . 

Leibnitz formula simplifies the last equation to  dzdtzu
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Theorem 5.2: If   

t y x
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0 0 0
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Proof: From appendix B.2  and Leibnitz formula , we have 
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Equation (1.6) leads to 

 

 

























 




 y x k

r
rk

rk

rk

rk

k

k

dzdtzv
t

tzu
tr

k
tyxw

t 0 0

1

0
1

1

),,(),,(
1

),,(   

 

While equation (5.2) provides the following equation 
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 From equation (5.2) we get the result and the proof is completed. 

 

Theorem5.3: If )),,(),,(),,(
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Proof: The thk  partial derivative with respect to t  is 
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Therefore, equation (5.2) implies that 
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But since for     
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and then using (5.2) for k=1,2,… 
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The proof is completed 

 

Theorem5.4: If   
t y x
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Proof: The partial derivatives of ),,( tyxw  with respect to x  , y , and t  is 
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Then, The thk  partial derivative of equation (5.10) with respect to t  is 
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This completes the proof. 

Theorem 5.5: If   
t y x

ddzdzutyxvtyxw
0 0 0
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Proof: Rewrite the integral equation as  
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0 0 0
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The thk  partial derivative of equation (5.12) with respect to t  is 
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Now, using equation (1.6), we get 
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 Then from equation (5.2)  we get 
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Which is the end of the proof 

 

5.2 Examples 
 

In this section, we apply RDTM on the examples which are given and solved in [29] by 

DTM. 

 

Example 5.1: Consider the linear VIE.   
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Example 5.2: Consider the linear VIE 

  

t y x

ddzdzuyxtyxgtyxu
0 0 0

2 ),,(24),,(),,(  where      1,01,01,0),,( tyx and 

xytytyxtyxtyxtyxtyxg  2223433335 344),,(  

The exact solution is xytytyxtyxu  22),,(  

It easy to see that yxyxg 2)0,,(   and therefore RDTM version is yxyxG ),(0  

where ),(),( 00 yxGyxU   

Apply theorem (5.2) for ,...2,1k  to get 

  

y x

kkk dzdzU
k

yxyxGyxU
0 0

1

2 ),(
1

)24(),(),(  . Where

)1()2()()2(3)3(4)1(4),( 2343335  kxykykyxkyxkyxkyxyxGk 

xyyxyxG  35

1 4),( , yyxyxG  34

2 3),( , 33

3 4),( yxyxG  and 0),( yxGk , 4k . 

0
22

)1(
2

1

2

),(
2

1
),(),(

0 0

0 0

122







 

 

xyxy

dzd
xy

dzdzUyxGyxU

y x

y x





1)
22

(1
22

)(1
22

),(),(),(

2222

0 0

22

0 0

011







 

 

xyyxxyyx

dzdz
xyyx

dzdzUyxGyxU

y x

y x







41 

 

So, according to the above computations we have  
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Example 5.3: Consider the linear  VIE 
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Its exact solution is 
tyxetyxu ),,(  

 

It easy to see that 
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and from equation (5.3) we get  
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The figures below illustrate the approach of RDTM solution of ),,( tyxu ,at different 

values of t  , also show the rapid convergence of this method, where the approximated 

value converge up to the exact solution. 

 
Figure 5.1: The numerical result of RDTM at t=1, by comparing the exact solution by 

the first four iteration for example 5.3.  
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Figure 5.2: The numerical result of RDTM at t=0.8, by comparing the exact solution 

by the first four iteration for example 5.3.  

 
 

Figure 5.3: The numerical result of RDTM at t=0.6, by comparing the exact solution 

by the first four iteration for example 5.3.  
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Figure 5.4: The numerical result of RDTM at t=0.4, by comparing the exact solution 

by the first four iteration for example 5.3.  

 
Figure 5.5: The numerical result of RDTM at t=0.2, by comparing the exact solution 

by the first four iteration for example 5.3.  
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Figure 5.6: The relative error within five iteration at 5.0,1.0  yx for example 5.3 

 
Figure 5.7: The relative error within five iteration at 1.0,1.0  yx for example 5.3 
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Figure 5.8: The relative error within five iteration at 5.0,5.0  yx for example 5.3 

 
Figure 5.9: The relative error within five iteration at 1,1  yx for example 5.3 
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According to these figure the result indicated that using small t  lead to error approach 

to zero (see Appendix C). In addition, if we look at these figure we conclude that the 

figure is identical, although we use different value of x  and y , which means that if 

we want get a small error we choose a small value to the reduced variable. 

 

5.3 Comparison 

 
In this section, we will compare between the methods DTM and RDTM using the 

examples introduced in the previous section to show the accuracy of these two methods. 

For example 5.3, the exact solution is 
tyxetyxu ),,( . The absolute error of the  

iterative solutions ),,(2,2,2 tyxu , ),,(3,3,3 tyxu  obtained by DTM [28] and ),,(2 tyxu , 

),,(3 tyxu  obtained by RDTM at some test point ),,( tyx  are calculated in the 

following tables. 

 

Table 5.1.  Absolute error using DTM [28] 

 

x  y  t  Exact solution |),,(| 2,2,2 tyxuuexact 

 

|),,(| 3,3,3 tyxuuexact   

1 1 1 20.085536923 11.585536    7.085536   

0.1 0.5 1 4.9530324243 1.07303242    3.9036575× 10-1       

0.5 0.5 0.5 4.4816890703  8.5668907× 10-1      2.941890× 10-1        

0.1 0.1 0.1 1.3498588076 1.6261825×10-3 1.557798×10-5 

0.01 0.1 0.1 1.2336780600 4.8175870× 10-4 9.492003× 10-6 

0.01 0.01 0.1 1.1274968516 1.5113801×10-4 4.338226×10-6 

0.01 0.01 0.01 1.0304545340 1.5113801× 10-6 1.280568× 10-9 

0.001 0.01 0.01 1.0212220516  4.3803265× 10-7 8.421920× 10-10 

0.001 0.001 0.01 1.0120722889 1.7775346× 10-7 4.165485× 10-10 

0.001 0.001 0.001 1.0030045045 1.5043042× 10-9 3.637978× 10-12 

 

 

Table5.2.  Absolute error using RDTM 

 

x  y  t  Exact solution |),,(| 2 tyxuuexact   |),,(| 3 tyxuuexact   

1 1 1 20.0855369231 1.61289667586104 3.81387326× 10-1       

0.1 0.5 1 4.95303242439 3.977354234× 10-1     9.40489566× 10-2     

0.5 0.5 0.5 4.48168907033 6.448109909× 10-2     7.85022766× 10-3     

0.1 0.1 0.1 1.3498588076 2.08759809×10-4 5.19268266×10-6 

0.01 0.1 0.1 1.2336780600 1.90792099× 10-4 4.7457546× 10-6 

0.01 0.01 0.1 1.1274968516 1.74370849×10-4 4.3372931×10-6 

0.01 0.01 0.01 1.0304545340 1.7045949× 10-7 4.2594× 10-10 

0.001 0.01 0.01 1.0212220516  1.6893224× 10-7 4.2212× 10-10 

0.001 0.001 0.01 1.0120722889 1.6741867× 10-7 4.1834× 10-10 

0.001 0.001 0.001 1.0030045045 1.6704× 10-10 4× 10-15 
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Figure 5.10 : The absolute  error for five iteration at 1,1,1  tyx  obtaining from 

DTM, and RDTM for example 5.3. 

 
Figure 5.11:The absolute error within five iteration at 5.0,5.0,5.0  tyx  

obtaining from DTM, and RDTM for example 5.3. 
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Figure 5.12 :The absolute  error within five iteration at 1,5.0,1.0  tyx  obtaining 

from DTM, and RDTM for example 5.3. 

 

5.4 Discussion and Conclusion  
 

We successfully extended the RDTM method to solve three dimensional VIEs. For that 

purpose, we produced theoretical approach to the extended method, also a numerical 

analysis has been made in order to check the effectiveness of the method. 

Regarding the examples that have been discussed, we can conclude the followings: 

1)  RDTM minimizes the number of iterations to reach the exact solution. 

2) The approximated solution using RDTM approaches rabidly to the exact 

solution, see figures (5.1- 5.5). 

3) The value of the error decreases whenever the iteration increases, see figures 

(5.6-5.9). 

 

  In this thesis, the three dimensional linear and nonlinear integral equations are solved 

by using RDTM.  However, this method works when the kernel is analytic and 

separable. It is worth noting that RDTM does not require complex computational work 

like DTM. It can be easily implemented, its convergence is rapid and its approximation 

is accurate. In general, it can be concluded that RDTM is a powerful tool for solving 

many linear and nonlinear three dimensional integral equations 
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Appendix A 

Differential Transform Tables 

____________________________________________________________________ 

 

A.1 : DTM Operation in One Dimension  
 

Suppose that ),(kU )(kV and )(kF are the differential transformations of the functions 

)(xu )(xv and )(xf , respectively. Using one dimensional DTM, the fundamental 

operations [44-64] are listed in following table  
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A.2 : DTM Operation in Two Dimension 
 

Suppose that  ),,( nmW ),( nmV and ),( nmU are the differential transformations of 

the functions ),,( yxw ),( yxv and ),( yxu , respectively. The fundamental mathematical 

differential transform [47,48] listed in next table.  

 

 

Original function Transformed function 
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A.3 : DTM Operation in Three Dimension 

 
Suppose that  ),,,( lnmW ),,( lnmV and ),,( lnmU are the differential transformations of 

the functions ),,,( tyxw ),,( tyxv and ),,( tyxu , respectively. The fundamental 

mathematical differential transform [59,50] listed in next table.  
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Appendix B 

Reduce Differential Transform tables 

____________________________________________________________________ 

 

  
B.1 : RDTM Operation in Two Dimension 

 
Suppose that )(xWk

, )(xU k
 and )(xVk

 are the reduce differential transform method of the 

function ),( txw , ),( txu  and ),( txv  respectively. The fundamental mathematical 

differential transform [51-53] listed in next table.  
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B.2 : RDTM Operation in Three Dimension 

 
Suppose that ),( yxWk

, ),( yxU k
 and ),( yxVk

 are the reduce differential transform 

method of the function ),,( tyxw , ),,( tyxu and ),,( tyxv  respectively. The fundamental 

mathematical differential transform [54] listed in next table.  
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Appendix C 
Relative Error  for Example 5.2.3 Using RDTM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x Y T Iteration 0 Iteration  1 Iteration  2 Iteration  3 Iteration  4 Iteration  5 

0.1 0.1 0.1 9.516258*10-2 4.67884*10-3 1.54653*10-4 3.84683*10-6 7.66780*10-8 1.27490*10-9 

0.5 3.934693*10-1 9.02040*10-2 1.43876*10-2 1.75162*10-3 1.72115*10-4 1.41649*10-5 

1 6.321205*10-1 2.64241*10-1 8.03013*10-2 1.89881*10-2 3.65984*10-3 5.94184*10-4 

0.5 0.1 9.516258*10-2 4.67884*10-3 1.54653*10-4 3.84683*10-6 7.66780*10-8 1.27490*10-9 

0.5 3.934693*10-1 9.02040*10-2 1.43876*10-2 1.75162*10-3 1.72115*10-4 1.41649*10-5 

1 6.321205*10-1 2.64241*10-1 8.03013*10-2 1.89881*10-2 3.65984*10-3 5.94184*10-4 

1 0.1 9.516258*10-2 4.67884*10-3 1.54653*10-4 3.84683*10-6 7.66780*10-8 1.27490*10-9 

0.5 3.934693*10-1 9.02040*10-2 1.43876*10-2 1.75162*10-3 1.72115*10-4 1.41649*10-5 

1 6.321205*10-1 2.64241*10-1 8.03013*10-2 1.89881*10-2 3.65984*10-3 5.94184*10-4 

0.5 0.1 

 

0.1 9.516258*10-2 4.67884*10-3 1.54653*10-4 3.84683*10-6 7.66780*10-8 1.27490*10-9 

0.5 3.934693*10-1 9.02040*10-2 1.43876*10-2 1.75162*10-3 1.72115*10-4 1.41649*10-5 

1 6.321205*10-1 2.64241*10-1 8.03013*10-2 1.89881*10-2 3.65984*10-3 5.94184*10-4 

0.5 0.1 9.516258*10-2 4.67884*10-3 1.54653*10-4 3.84683*10-6 7.66780*10-8 1.27490*10-9 

0.5 3.934693*10-1 9.02040*10-2 1.43876*10-2 1.75162*10-3 1.72115*10-4 1.41649*10-5 

1 6.321205*10-1 2.64241*10-1 8.03013*10-2 1.89881*10-2 3.65984*10-3 5.94184*10-4 

1 0.1 9.516258*10-2 4.67884*10-3 1.54653*10-4 3.84683*10-6 7.66780*10-8 1.27490*10-9 

0.5 3.934693*10-1 9.02040*10-2 1.43876*10-2 1.75162*10-3 1.72115*10-4 1.41649*10-5 

1 6.321205*10-1 2.64241*10-1 8.03013*10-2 1.89881*10-2 3.65984*10-3 5.94184*10-4 

1 0.1 0.1 9.516258*10-2 4.67884*10-3 1.54653*10-4 3.84683*10-6 7.66780*10-8 1.27490*10-9 

0.5 3.934693*10-1 9.02040*10-2 1.43876*10-2 1.75162*10-3 1.72115*10-4 1.41649*10-5 

1 6.321205*10-1 2.64241*10-1 8.03013*10-2 1.89881*10-2 3.65984*10-3 5.94184*10-4 

0.5 0.1 9.516258*10-2 4.67884*10-3 1.54653*10-4 3.84683*10-6 7.66780*10-8 1.27490*10-9 

0.5 3.934693*10-1 9.02040*10-2 1.43876*10-2 1.75162*10-3 1.72115*10-4 1.41649*10-5 

1 6.321205*10-1 2.64241*10-1 8.03013*10-2 1.89881*10-2 3.65984*10-3 5.94184*10-4 

1 0.1 9.516258*10-2 4.67884*10-3 1.54653*10-4 3.84683*10-6 7.66780*10-8 1.27490*10-9 

0.5 3.934693*10-1 9.02040*10-2 1.43876*10-2 1.75162*10-3 1.72115*10-4 1.41649*10-5 

1 6.321205*10-1 2.64241*10-1 8.03013*10-2 1.89881*10-2 3.65984*10-3 5.94184*10-4 
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