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Abstract

The differential transform method (DTM) and the reduced differential transform
method (RDTM) are semi-analytical numerical methods which can be applied to
various kinds of ordinary and partial differential equations besides several types of
integral equations.

In this work, the theory of DTM and RDTM of one and two-dimensional Volterra
Integral Equation (VIE) have been introduced. The solution of three- dimensional VIE
has been investigated. In addition, we have proved some additional theorems related to
this type of integral equations. Furthermore, the theory of three dimensional DTM has
been successfully extended to three dimensional RDTM. Finally, a comparison between
the two methods has been carried and to show the advantage of RDTM over DTM in
solving three dimensional VIE.
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Introduction

Integral equations are equations in which the function to be determined appears under
one or more integral signs. The concept of integral equations interferes with many
issues in the field of pure and applied mathematics. Many initial and boundary value
problems can be reformulated to the shape of integral equations. Further, in physics and
engineering fields, integral equations have wide applications, for example, potential
theory, scattering in quantum mechanics, and mathematical physics modeling [1, 2, 3].
The most frequently used integral equations are of two major types, namely Volterra
(an Italian mathematician Vito volterra,1860-1920) and Fredholm (Swedish
mathematician Ivar Fredholm, 1866-1927) integral equations [2]. Volterra Integral
Equation (VIE) has been used to model several kinds of problem. For example, they
are considered to be stochastic integrals of a time-dependent kernel with respect to a
standard Brownian motion [4]. In addition, they have many applications in demography
and actuarial science [5].

In the literature, numerical and analytical methods have been developed in the last and
the present centuries to solve VIE. One of these methods is the differential transform
method (DTM). Recently DTM has been modified to the reduced differential transform
method (RDTM). However, the differential transform method is considered to be one
of the useful techniques in solving VIE, despite the significant time needed to calculate
the higher derivatives [1].

Since the beginning of 1986, Zhou was the first who initiated and introduced the idea
of the DTM [8]. He showed the efficiency of the method by a successful application to
the electrical circuit’s analysis problem. In the last and in the present decades,
researchers have applied the method and its variants to various linear and nonlinear
ordinary and partial differential equations [7-24]. In 2007 Z. M. Odibat [25] was the
first who successfully applied the differential transform method (DTM) to find exact
solutions to linear and nonlinear VEI of dimension one, he has managed to express the
solution of such problems in Taylor series expansion form. The method could overcome
the computational difficulties of other methods and all calculations can be simply
manipulated. He tested many examples by applying DTM and the results illustrated the
reliability and the performance of the DTM. In 2009 A. Tari, M.Y. Rahimi and S.
Shahmorad developed the two dimensional DTM for solving two dimensional linear
and nonlinear VIE [26]. They gave examples to demonstrate the accuracy of the
method. Jang [27], introduced some properties concerning the two dimensional VIE .
In 2009, M. Mohseni Moghadam and H.A. Saeedi [28], used DTM to solved Volterra
integro-differential equations. In 2012, M. Bakhshi, M. Asghari-larimi, Mohammad
Asghari-Larimi [29] have successfully tested the three -dimensional DTM on a
nonlinear three-dimensional VIE. In 2013, Reza Abazari and AdemKilicman [30],
developed the two dimensional RDTM for solving two dimensional VIE, they also
made a comparison between the two solutions getting from RDTM and DTM. They
concluded that RDTM is more accurate, it has faster convergence rate, and has less
complicated computational process.

In this thesis, a numerical solution of three-dimensional VIE is proposed. We solve
such equation using RDTM, then, a comparison between this method and DTM is done.

In chapter one, basic definitions of integral equations are presented. Chapter two

contains a complete proof of some fundamental theorems concerning the solution of
one and two dimensional VIE using DTM. Also, it includes some illustrative examples.

1



Chapter three contains some basic concepts on the solution of three dimensional VIE
using DTM and some numerical examples on the presented theory.

In chapter four, the technique of RDTM in solving two dimensional VIE is introduced.
For that, some basic definitions and properties of RDTM are given. Then, we apply the
method on some examples and clarify the rapid convergence of this method by some
figures.

In chapter five, we present results relating to the solution of three dimensional VIE via
RDTM. Also, we apply the produced theory on some examples which are solved earlier
using DTM. Finally, we compare the results obtained from the two methods by showing
the relative and absolute error at several points in the domain of the integral equation.



Chapter One

Preliminaries

In this chapter, the definitions of VIE in one, two and three variables are given in section
one. In section two, we introduce the differential transform method.

1.1 Volterra Integral Equation

The integral equation, which is first introduced in 1888 by Paul Du Bois-Reymond [31],
IS an equation in which the unknown function appears under one or more integral sings.
A standard form of the integral equation in u(x) is given by

B(X)
HQU(X)=fF(X)+ 4 jk(x,t)u(t)dt
a(x)
where k(x,t) is called the Kernel of the integral equation, a(x)and £(x)are limits of

integration, A is nonzero constant, f(x)is any given function. The function u(x) that

will be determined appears inside the integral sing and outside the integral sing, where
the limits of integration «(X)and /(X) may be variables, constant or mixed.

If the limit of integration are fixed, then the integral equation is called Fredholm integral
equation given by the form:

A(X)u(x) = f(x)+ A_T k(x,t)u(t)dt

If one of the limits is variable, then the integral equation is called Volterra integral
equation which is given by the form:

d(X)u(x) = f(x)+ ﬂj' k(x,t)u(t)dt

If the function ¢(X) a:1, then we have the second kind of VIE
u(x)=f(x)+ Aik(x,t)u(t)dt

While ¢(x) = 8 leads to the first kind of VIE

f(x) +ij'k(x,t)u(t)dt =0

VIE can be classified according to linearity and homogeneity concept. If the integral
equation contains nonlinear function ofu(X), such ase’™ sin u(x),cosh u(x),

In(u(x)) or (U(x))" where n=1, the integral equation is called nonlinear. The

integral equation is called linear if N =1.
VIE of the second kind are classified as homogeneous or inhomogeneous, if the
function f(x) is identically zero, then VIE of second kind is called homogeneous.

Otherwise it is called inhomogeneous.



Theorem 1.1[33]: For each f (X) € C[a,b], the Volterra integral equation of the second
kind with continuous kernel k(X,t) has a unique solutionu(x) € C[a,b].

A function which can be represented by a convergent power series is called an analytic
function. In others words, functions that are infinitely differentiable. Moreover, a
function is analytic if and only if its Taylor series about a point x, converges to that

function in some neighborhood for every X in its domain.

In the next two definitions, we present the two and three dimensional VIE of the second
kind.
Definition 1.2[34]: The two dimensional VIE is defined by:

X

u(x,t) = f(x,t)+”K(x,t, y, Z)u(y, z)dydz (1.1)

to Xo

Where the kernel K has the following degenerate form

KLY 2) =3 M, (CON, (1,2) 12

i=0

Definition 1.3[29]: The three dimensional VIEs is defined by

tyx
u(x, y,t) = f(x, y,t)+J'”K(x, V,t,,2,7)u(w, z,7)dwdzd ¢ (1.3)
to Yo %o
The kernel K is degenerate of the form
K(x, y,t,w,2,7) =Zn:Mi(x, Y, N, (@,2,7) (1.4)
i=0

The functions m, and N, appear in equations (1.2) and (1.4) are assumed to be analytic
fori=12,...,n.

Finally, we close this section by the so called Leibniz formula, such formula plays a
main role in solving integral equations.

Leibniz Rule [35]: let R ={(X,t):a < x<b,c <t <d}bearegioninthe Xt - plane.

Let f(xt)be a continuous function defined on R, such that f, (X,t)is continuous on
B(x)
R . Moreover, assume that I| f(x,t)[dt <o, for each t in(c,d) for each continuous
A(X)
functions A(X)and B(x). Suppose also there is a piecewise continuous function g(t)
B(x)

such that for all (xt) inR, | f,(X,t)|< g(t) and jg(t)dt<oo. Then

A(x)

B(x) B(x)

J £0utdt= [ 1,000t + £ (x BOOB() - £ (¢ AC)IA ) 15)

A(x) A(x)

a
dx



For special case, the partial derivatives of a function of two variables under double
integral signs are listed below:
m t X m-1

ju(y, dydz—Ja ——U(X,2)dz | and

!
|

0
a“‘
&l

Leibniz Formula [36]: Letu(x) andv(x) be functions having derivatives up to order
N, then then™ derivatives of their product gives by:

( jdnm dm
dx" ™" dx™ (1.6)

1.2 The Differential Transform Method

u(y, z)dydz = j—u(y t)dy

In this section, we give the definitions of the differential transform and the differential
inverse transform of functions in one variables.

Definition 1.4[25]: The differential transform of the k™ derivative of function f(x) is
defined by:

F(k)=%{d f(x)} (1.7)

dx*

Definition 1.5 [25]: The differential inverse transform of F(k) is defined as

F(0 =3 FK)(x-x,)"
k=0 ) (1.8)

From equations (1.7) and (1.8), we get

f(x)= Z(X )!() {ddi(x) (1.9)

X=Xq

This means that the concept of differential transform is derived from the Taylor series
expansion, but the method does not evaluate the derivatives symbolically. However,
the relative derivatives are calculated by an iterative way which is described by the
transformed equations of the original function.

In real applications, the function f (x) is expressed by a finite series and equation (1.8)

can be written as

f(x)= Zn:F (K)(X = X,) (1.10)

k=0



The DTM determines the coefficients of the Taylor series of a function by solving
recursive equations from the given differential equation.

Assuming the one dimensional VIE, there are a host of available solution techniques,
one of the most important classical techniques are the method of successive
approximations and the method of successive substitutions [37]. In addition, the series
method and the direct computational method are also suitable for some problems [38].
The recently developed methods, namely the Adomain decomposition method (ADM)
and the modified decomposition method are gaining popularity among scientists and
engineers for solving highly nonlinear integral equations and singular integral equations
[37,38], encountered by Abel [33]. The aim of the next chapter is to present the
technique of DTM for solving one and two dimensional VIE.



Chapter Two

Solving One and Two- Dimensional Volterra Integral
Equation by DTM

This chapter consists of two sections. In section one, we give a complete proof of some
fundamental theorems on 1-dimentional VIE using the DTM. In section two, we discuss
the solvability of 2-dimentioal VIE using DTM.

2.1 Solving One Dimensional Volterra Integral Equation by DTM

In this section, we introduce fundamental theorems on the one dimensional VIE and
present their proofs in more details. Moreover, we apply the method on various kinds
of differential equations appear in [8-9, 25].

The following theorems give the differential transformation for some functions that
have the first kind of VIE shape. For convenience, we will use the notationsuU (k) ,G(k)
and F(k)to indicate the differential transform of the functionsu(x), g(x)and f(x)

respectively.

The proof of the following theorem can be deduced directly from equations (1.7-8) and
Leibniz formula so we skip the proof.

Theorem 2.1[10, 25]: If f (X) = Iu(t)dt , thenF (k) = # and F(0)=0
Uk-1-1)

Theorem 2.2[10, 25]: If f(X) =Ig(t)U(t)dt ,then F (k) = kiG(I)T :

where F(0) =0.

Proof: Using Leibniz formula, the k™ derivative of the given VIE is

{dk f (x)} _ d"}(g(¥u(x)

dx* dx**
k-1 k 1 d g(x)dkllu(x)
e ka -1-1
Therefore,
k k-1
4" i)k -1-1uK-1-1)
ax* | i3

- (k -1)!2@(|)u (k-1-1)

And equation (1.7) completes the proof of the theorem.



Theorem 2.3 [10, 25]: If f(x) = g(x)ju(t)dt then F (k) = ZG(DM,
where F(0) =0.

Proof: Assume thatk >1 and letv(x) = ju(t)dt. Thus, f can be written as
0

f (X) = g(x)v(X) . From equation (1.6), the k" derivative is

{dkf(x)}: d*(g(x)v(x)) Ek:( jd g(x)d*v(x)
dx* dx* dx'dx""

d*“'v(x)

But since fork =1 [ v
X

} =0 the upper limit sum in the above equation can
X=Xg

be reduced tok —1. Therefore,

{d f (X)} - ki(ﬂl!G(l)(k )N (k-I) = k!fG(I)V(k -1

dx* 1=0
Taking in account that v(x) = Iu(t)dt , the result can be drawn directly from theorem

0
(2.1), and this finished the proof of the theorem.

Now, we give some examples to show how the above theorems are applicable.

Example 2.1: Consider the linear VIE.
u(x) = (L+x)+ [ (x=tu()dt , 0<x<1

According to theorems (2.2-3) and from the table in appendix A.1, we have the
following recurrence relation

UKk) =5k - 1)+/125(| 1)% 1250 1)M,k21

whereU (0) =u(0) = 1 Then
UO=UD=1,U@)=7.U@=75, U= U(s)_f

From the above sequence we conclude the following general term

2’%
, kiseven
k!
U(k) =
(k—l%
L, k is odd
k!

From equation (1.8), the solution of the integral equation is

8



2 2
u(x):1+x+£x2 Y SN I
2! 3 4l 5!

As a special case when 1 =1, the exact solution of the integral equation isu(x) = e*.

Example 2.2: consider the nonlinear Volterra integral equation

. 1 . X 1 x
u(x) =sin x+=sin(2x) ==+ = | u?(t)dt
(x) =sin x+ sin(2x) -+ = | u*()

From theorem (2.2) and the table in appendix A.1, we have the following recurrence
relation
k-3 _ 1 N
UK) = Lsint®) 27 gin ) _ok=D 19, yUk=1-1)
k! 2 k! 2 4 21 k
Direct substitutions give the following sequence:

U(0)=0,U() =1, U(2)=0, U(3)=—%, U4) =0, U(5)=é,...

(-D)"

HenceU(2k) =0, andU (2k +1) =
(2k +1)!

From equation (1.7), the solution of the integral equation is given by

1 1 1 i
u(x) =1—§X3 +§x5 —ﬁx7 +...=sin X (Which is the exact solution)

2.2 Solving Two Dimensional Volterra Integral Equation by DTM

This section contains definitions and fundamental theorems on VIE of dimension two.
Further, examples using the method of two dimensional DTM has been introduced.

Consider a function of two variables W(X,t) and suppose that it can be represented by

a product of two functions each of which is of one variable, i.e. W(x,t) = f(x)g(t). So,
on the light of one-dimensional differential transform properties, the function w(x,t)
can be represented by [27]:

wx ) = Y FOX Y6() =YW, ixt 1)

Where W(i, j) = F(i)G(j) is the spectrum of W(X,t).
The basic definitions and operations for two-dimensional transform will be listed
below:

Definition 2.1[26]: If w(X,t) is analytic and continuously differentiable in the domain
of interest, then the differential transform function of W(X,t)is define by

9



1 am+n
W((m,n)=—— w(X,t .
( ) mln||:axmatn ( )j|x xot t0 (2 2)

Definition 2.2 [26]: The differential inverse transform of W (m,n) is defined by
W(x, 1) =2 > W(mn)(x—x,)" (t—t)". (2.3)

m=0 n=0

Combining (2.1) and (2.2) gives

am+n
w(X,t w(X,t 2.4
- E il a0 &
In real application, the function w(xt) in (2.4) can be approximated around (0,0)
M N
Wy (1) =D W (m,n)x™t" + Ry, (X,1). (2.5)
m=0 n=0

Using the assumption w(x,t) = f (x)g(t) and expressing f (x)and g(t)as power
series around (x,,t,) , we get

w(x ) = > FHx-%) Y G()(E-1,)

1) .ZF(u)(x x)‘lZG(J)(t k)
Méf’t) _ ZF(i)(x—Xo)i(j)ZG(J')(t—to)j_l
*w(x,t) & i-1 =
o _|I21:F(|)(X X,) (J)ZG(Jt t)

So, inductively we conclude the foIIowmg formula

o™ w(x,t ) > . . 2 . -
E D (6-1)-.6-m )Y FOK-%) -G -1+HE (1))
i=m j=n
(2.6)
Set i=m and j=n to reduce (2.6) to the following formula
T _ (my Fm()G(n)
Therefore, L @7 " W(x, 1),
m!n,[ ot 1=F(mM)G(n)

Finally, assume W (m, n) = F(m)G(n)to be the transformed form of w(x, y) . Then

l am+n
W(m, n) = m|:6xmatn W(X,t)j|

X=Xg
t=t,

10



From the above analysis we conclude that the concept of the two-dimensional
differential transform method is derived from the two- dimensional Taylor series

expansion.

Below, we give theorems which are useful in solving some kinds of integral equations.
To each theorem a complete proof will be given. We suppose also that W (m, n),

V(m,n)and U(m,n) are the differential transformations of the functions w(Xx, y), v(X, Y)
andu(x, y) respectively.

t X
Theorem2.4 [26, 27]: If w(X,t) = [ [u(z, 7)dzdz , then
00

1
W (m, n) = U(m -1n-1) nm=12,.
0 Otherwise

Proof: From equation (2.4), we have

W (O, )_OIlo'[aj;tOW( t)Lto (W, t)] oo = jju(z 7)dzd 7 =0

o"w(x,t o
The m™ partial derivative with respectto x is G(m ) :Iétml (u(x,7))dr,
X

o"w(x,t) o™t
— j - -(u(z,t))dz.

0

and the n™ partial derivative with respect to t is

Therefore, F W(f’t)} =0, and {aw—(:t)} =0. This proves the first
at x=0,t=0 aX x=0,t=0

assertion of the theorem. For the next part of the theorem, differentiate w(x,t) with
respectto x and then with respect tot with the Leibniz formula and appendix A.2,
we have

(Mm+D(+HYW(M+Ln+D) =U(m,n),mn=012,....

Replacingm +1 bym andn+1 byn in the last equation will finish the proof.

Theorem 2.5[26, 27]: If W(X,t) =

o —

Iu(z,r)v(z,r)dzdr then
0

n-1 m-1

wm.n)= {” 2, 2 UK DVIm—k-Ln-1-1), nm=12,..

0 Otherwise

11



Proof: Assumem,n >1. According to the fundamental operation of two dimensional
DTM listed in Appendix A.2 and from Leibniz formula, we get

{G”H“W(x,t)} _ M U v(xt))

ox"ot" ox"ot"t
o™ [omu(x v(x,t)
axm—l i atn—l

am—l n1(n—
_axm—l Z(

1=0

1) o'u(x,t) 0" 'v(x,1)
atl atn —1-1

Cg(n=1Y ™ (Bu(x,t) 8" v(x.t)
1=0 | 5Xm -+ atl 61:”717'

mi(m 1) o u(x,t) o™ y(x, t)}

=)
L

>
|

axatl amklatnll

0
m1(N— 1 m— 1 akHU(X,t) amm—l—k—zv(x’t)
e W k ox*ot' ox™ ottt
Therefore,

{8;;g?0}8 %i:[ ImklmmekD]Km k-D!(n—1 -V (m—k-Ln—1-1)]

Il
o

:!
H

Il
o

(Mm-S S UK IV (MK -Ln—1-1)

1=0 k=0

Equation (2.2) implies the result and the proof is completed.

t x
Theorem 2.6 [26, 27]: If W(X,t) =h( X,t)”U(Z 7)dzd7 | then
00

wiot H(k,DU(m—k —1,n—1—-1)

W(m,n):{” (m_k)(n_l) , hym=12,..
0

Otherwise

Proof: Assume m,n >1and for convenience, we set V(X,t) = ”U(Z,T)dZdT

Then, w(x,t) =h(x,t)v(x,t)and the M+ N partial derivatives with respect to X and t
IS
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o™ "w(x,t) | 0™"h(x,t)v(x,t)
Mt | oxMat”
_ o™ [ 8" (h(x,tv(x,1))
XM ot"

~ am ()0 h(x,t) 8™ 'v(x,t)
- ,Z(;[IJ at' ot }
o™ (8'h(x,t) 0™'v(x,1)

_axm 6’[' atn—l
n [ m ak+lh(x t) 8m+n | kV(X t)
(I Z;( j ox ot 8x”“8t“'1}
(n ( J 6k+'h(x,t) 8m+n_|_kV(X,t)
= | ox*ot' ox" ot
8m+”"‘kv(x,t)
axm—katn—l

Il
ﬁi

N
o

T At

Il
o

Since [ } =0whenm=k,n =1, the upper limits in the last equation
t to

can be replaced by m-1 andn-1, so it becomes

{w} : Z( ]m[knm(k,l)][(m—k)!m—'>!V<m—k’”")]

ox"ot =

On the other hand, theorem (2.4) impliesv (m, n) = Lu (m—1,n-1) and the proof is
mn

completed.

ty
Theorem 2.7 [26,27]: If W(x,t) = [ j:gf)

dzd 7, then

U(m,n) = kZi;IZ:O:V(k,I)(m—k +D(n—1+HYW(m—-k+1,n—1+1), n,m=12,..
0, Otherwise

Proof: The second partial derivative of W(X,t) with respectto X and 1 is

o*w(x,t) _ u(x,t)
otox  v(xt)

2
Let W(x,t) = 8(\;Vt—g(t) then we have v(X,H)W(x,t) =u(x,t)
X

From the table in appendix A.2, we have (M:N) = sz(k W (m -k, n—1),

k=0 1=0
where W (m, n) the differential transform of is(xt).

Thus, W (m, n) = (m+1)(n + D)W (m +1,n+1) and the proof is finished.

13



t x
Theorem 2.8 [26, 27] If w(x,t) :]/v(x,t)”u(z,r)dzdr,then
00

U (m,n) {(m +1)(n +1):Z_:+:2V(k,l)(W(m —k+1n-1+1), nm=12,..
0, Otherwise

Proof: Suppose that f(X,t) =Vv(X,t)w(x,t) and let F(m,n) be the differential transform
of the function f (x,t). From appendix A.2, we have

F(m,n)=iZnZV(k,I)W(m—k,n—l).

k=0 1=0
ot (xt)
Also, smceW:u(x,t), (m+HY(n+)F(m+1L,n+1)=U(m,n)for m,n=01,...
Therefore, F(m+Ln+1) =3 SV (k IW(m—k +1n—1 +1) =M
k=0 1=0 (m +1)(n +1)

The proof of the theorem is completed.

t X k

Theorem 2.9 [39]: If W(X,t) :”Hui(z,r)dzdr then,
00 i=1

W(m,0) =W (0,n) =0 for m,n=01..., and

m-1 n-1l Ny S )

Wimm=—=3 53 3 YU s, s, - ).

mn f1=08,4,=01_,=0s,_,=0 =0 $,=0

Uk—l(rk—l - rk—Z’ Skt — Sz )U k (m -1- rk—l’ n-1- Sk—l)]

k t X
Proof: First setv(x,t) = l_Iui (x,t), then w(x,t) = ”v(z, 7)dzd 7. Apply Theorem
i=1 00

(2.4) to getW (m,n,) = iV (m—1,n-1). From appendix A.2 we get
mn

k1 Ska n

V(m,n) = i Zn: > ....Zi[ul(rl,sl)uz(rz—rl,sz—sl)...

f.1=0 8, _41=01,_,=05,_,=0 =0 5,=0

U k—l(rk—l - rk—z 151~ Sk2 )Uk (m - rk—l’ n- Sk—l)]
Hence,

m-1 n-1 N S

wWmn=—3 5 3 33 I8 s -5

f1=08,4,=01,_,=0s,_,=0 =0 $,=0

Uk—l(rk—l - rk—Z’ Skt — Sz )U k (m -1- rk—l’ n-1- Sk—l)]

The following example is mentioned in [24], here we give the solution in details.

Example 2.3[24]: Consider the following Volterra integral equation

14



tx
u(xt) =xe™ rt-xtxtatxtet oty Loyttt +”(xz +te")u(z,7)dzd
3 37 20 4 )

According to theorems (2.5-6) and the transformations given in appendix A.2, we
have the following recurrence relation:

m-1 n-1 n—-s-1m-r-1
U(m,n)=>> 6.0, : {Z Zb‘kylb“,'OU(m—r—k—l,n—s—l—1)}

e (m-r)(n—s)

1I=0 k=0

m-1 n-1 n—-s-1m-r-1 _1\n
+ 0,001 5k01U(m—r—k—1,n—s—I—1)+5mlﬂ

=0 5=0 (m- r)(n )is w M! ’

1 1 )" 1 1

+5m,05n,1 _§§m,45n,0 _5m,15n,1 35m,4 ( n!) _Eam,zén,z _Zam,35n,2

m n m n 1
+ 0 ..,0.,0 0..0.,0  a——

;; r1%s1%¥m-r,0 ( _ )l ;; r1%s,2¥m-r,0 (n—S)!

WhereuU (0,0)=0,U (m,0) = F(m,0) and U (0,n) = F(0,n), m,n=12,....

The computations from the previous equation can be summarized in the following
matrix:

) o 1 00 0 ..]
U0 U®@LO0) U(2,0) U(30) U@40) . L 100 0
U UWD UERD UBDH UG .| |g L 4 4 ¢
U@0,2) U@L2) U(@22) U@B2) U@B2) ... 2!
U3 U@L3) U(@3) U@B3) U®@43) .| |o —?'1 000
U@04) U@L4) U(@2,4) U@BA4) U®@44) .. 1
) . ) ) T 0 m 000

Substituting this relation in equation (2.3), we conclude that the solution is of the form
u(x,t) =t +x—xt +£xt2 —ixt3 +1xt4 —..
2! 3 41

= t+x(1- el +1t4—....)
200 3 4

=(x+t)e™

Which is the exact solution.

The example below has been solved in [40, 41] in different methods, we solve it using
DTM.

15



Example 2.4: Consider the following Volterra integral equation

t X

U(X,t) — ex+3t + eBx+t

X+t)+4J. '[ e“'u’(z,7)dzd 7 where x,t e[0]

00

According to theorems (2.5) and (2.6) and the operation transformation given in
appendix A.2, we obtain

U(0,0) = F(0,0)=1,U (m,0) = F(m,0) =

r #=m,S # N the following recursive relatlon.

U(m,n
min!

) (3n +3m 3m n

5

risl(m- r)(n S) 1%

s

—,U(@O,n)=F(@O,n)== and we have for

By solving the recursive equation for m,n =0,1,2,3,4the results can be listed as

follows

U(0,0) U(L0)
U@l U(Ll
U@, U(L2)
U3 U(L3)
U@©,4) U(L4)

U (2,0)
U1
U(2,.2)
U(2,3)
U(2,4)

U (3,0)
U(@31)
U(3,2)
U(3,3)
U (3,4)

Therefore, from equation (2.3), we get

2

U (4,0)...
U(4D)...
U(4,2)..
U (4,3)...
U(4,4)..

u(x,t) =1+ x+ X X X
2! 3 41
+t+ Xt+ X2t+ Xt X
21 3! |
t?  xt® xt® X%t x*t?
+—+ + + + +
2! 2! 2121 3121 4121
t® xt® xt* Xt X't
+—+ + + + +
3 3! 213! 313! 4131
t*  xt*  xt* Xttt x*t?
— + + + +
4 4 2141 34 44

Thus,

1 , 1 . 1 . B
u(x,t):1+(x+t)+5(x+t) +§(x+t) +m(x+t) +..=

16

SU K DU M-r—k-1,n-s—I-1)

1 1 1
2 3 4
1 1 1
2 3 4
1 1 1
2121 3121 417
1 1 1
231 331 413
1 1 1
2141 34 A4
ex+t .




Chapter Three

Solving Three- Dimensional Volterra Integral Equation by
DTM

This chapter contains basic concepts on VIE of dimension three and some numerical
examples on the presented theory.

Consider a function of three variable w(x, y,t) and suppose it can be represented as a
product of three functions namely, w(x,y,t) = F(x)G(y)H(t) i.e. the function
w(Xx, y,t) is separable. The differential transformation of w(x, y,t) is

W(X, Y1) = iF(i)x‘iG(j)iH(k)tk =3 S S WG, KXyt (3.1)

i=0 j=0 k=0

Where W (i, j,k) = F(i))G(j)H (k) is called the spectrum of w(x, y,t) .

Definition3.1 [29]: Letw(x, y,t)be analytic and defined on a domain D — R*and let
(X, Yo:t,) € Dbe a fixed point. The three dimensional differential transform of
w(X, y,t)is defined

m-+n+l
wmnh=—| % wxyt (3.2)
mintl!| ox™oy" ot X=X, Y=Yo t

Definition3.2 [29]: The differential inverse transform of W (m,n,1) is defined by
wix, Y, t) =237 > W(m,n D(X—=%)" (Y = ¥o)" (t—t,) (3.3)

m=0n=0 =0

Combining equations (3.2) and (3.3) we get

) 0 1 ’7 am+n+|
w(x,y,t) = w(x,y,t 3.4
V=220 2 il axvayrar MY )LM_W_% G4
In fact, the function w(x, y,t) can be represented by a finite series around (0,0,0)
M N
WM,N,L (X! y’t) = ZZW (m’ n! L)mentl + RM,N,L(X’ y!t) (35)
m=0 n=0

Below, we give theorems which are useful in solving some kinds of VIEs in three
dimensions using DTM. From now, denote the functionsw(m,n,l),V(m,n,l),

H(m,n,1)and U(m,n)to be the differential transformations of the functions
w(x, y, 1), V(X ¥,t) h(x, y,t)andu(X, y,t) respectively.

17



Theorem3.1 [29]: If w(X, y,t) =

o'.—...—o

Yy X
j j u(z, w,7)dzd wd 7 then
00

1
wm,nly=4ma Pl (M-Ln-11-1, nml=12,
0 Otherwise

Proof: From definition (3.1), we have

Wooo_ 1 60+0+0 [ ]: 020 0 dda)d _0
©00)= G001 axcaya " Y 0 wiey.0l8 = [ )], ((z.0e))ded e -
t:O
asw(x y,t)
The partial derivative of w(x, y,t) with respectto X, Yand tis u(x, y,t) :—6 6,8'[, _
X0y

Also, DTM operations imply that
(M+DI(n+DI1+D)W(Mm+Ln+11+1) =mintllU (m,n,l)

Finally, replacing (m+1) bym, (n+1) byn and (1+1) byl yield the results and the
proof is completed.

Theorem 3.2[29]: 1FW(X, Y,t) =

o'—.-—r

y X
”u(z,a), T)V(Z,0,7)dzd d7 | then
00

1 1-1 n-1 m-1

U(p,s,klV(m-1-p,n-1-s,1-1-k), n,m=12,..
W(mn|){mnlk050po (p ) ( P )

0, Otherwise
Proof: Them"” partial derivative with respect to X is

o" W(X y,t) J~J_ ;(r:ll (u(x,z,7)v(x,z,7))dzd ¢

o"w(x, y,1) 0
Thus, oxm o0t .

o"W(x, y,t) _0 o'w(x, y,t) _0
Similarly we have oy" N - o' N I
x=0,y=0,t x=0,y=0,t

HencewW (m,0,0) =0,W(0,n,0) =W (0,0,1) =0, m,n,1 =0,1,...
Now, form>1,n>11>1, by Leibniz formula

18



am+n+IW(X’ y,t) B am+n+lf3 (U(X, y’t)V(X, y,t)
oxmoy"at! ox"oy"at'™

omt oMt {a'lu(x, v, tv(X, Y, t)}

= 8Xm—l 8yr'l—1 atl—l
am -1 6n -1 171 -1 aku(X’ y,t) al—l—kv(x, y,t)
axm -1 -1 = k atk atlflfk

_ o™ .21: I=1Y ™" (a u(x,y,t) ' v(x, y,1)
Tt =k oyt att o

|: (n ljak+su(x Y, t) al+n k—s— 2V(X Y, t)j|
s=0 S

ayatk aynslatlkl

am -1 ak+su(x, y,t) al+n—k—s—2V(X’ y,t)
axm -1 aysatk aynfsflatlfkfl

m 1(m 1jak+s+pu(x Y, t) 8I+n+m k—s—p— 3V(X Y, t):|
p

kK Ns )& oxPoyet'  ox™ oy ot
_ ZZ I 1Y n—1Ym—1Y 05 Pu(x, y,t) 8" ™50y (x y 1)
k=0 <0 po\ K S p oxPoycoth  ox™Proy" ot

1ot nd] —1\'n—1)'m—1Y p!stkiU (p,s,k) e (m—p-D'(n—s-1)I(I —k —1)!
"2 [kJ( j p [ }

S xV(m-p-Ln-s-11-k-1)
1-1 n-1m
=(1-DI(n-D!(m-1)! U(p,s,kV(m—-p-Ln—-s-11-k-1)
0 0

k=0 s=0 p=

o

Therefore, the m+n+1 partial derivative with respectto X, yand t at (0,0,0)

6m+n+'w(x,y,t) ~ ~ ~ I n-1 m-1 o i
{W} =(1-)!(n-1)!(m 1)!k=05=0p=OU(p,s,k)V(m p-Ln-s-11-k-1).

5%
I
©so

This ends the proof of the theorem.

n

Theorem 3.3[29]: IfW(X, y,t) = J’”{Hu (z,m, T)}dZda)dT then
000 gl

m-1 Iy

W(mnl)=— mep PN 5339039 MD WD LAY

1=0 =0 n= 5.4=05,,=0 =0 P1=0 p_,=0  p=0
1 k 1’ 1 pk 1)]

XUz(rz_l’ S, =S, P, — pl)x xU (m -1-

kl’

Proof: SetV(X, y,t) = Hu (X, y,1) . then W(X, y,t) =

i=1

[ S———

ﬁv(z,a), 7)dzdwd 7
00

19



From Theorem (3.1), W (m,n,I) = iIV(m —1,n—-1,1-1). Also, from Appendix A.3
mn

we have the following formula

k1 Sk-1 Pra )

vinn)=3 3 Y SIS ziw (150 DU (6, — 1.5, 51, Dy — ).

Me-1=08_1=0 py_1 =01 =0 S, _» Py o $=0p=0

x U (ha =S —Sca P — P U (m=r_,n=s ., 1-p)l

Hence

m-1 n-1 -1 G S Pa 1)

UGRDERD 1) 3D 1P IP 2 3 > D65 P 5,5, = -

=053=0 px1=01, =0 s, Py o $=0p=0

X Uk—l(rk—l I 2,81~ S P — PV (m=1-r_,,n-1-s,,,1-1-p,,)]

The proof is completed.

t
Theorem 3.4[28]: IfW(X, Y,t) = h(x, y,t)j u(z,w,7)dzd @dz then
0

O <
O Ty <

W (m,n,l) = Z;;; EpT s)(m p)'—|(p,s,k)U(m—1—p,n—l—s,l—l—k)
(3.9)

ty x
Proof: LetV(X,Y,t) = “ Iu(w, z,7)dwdzd 7 | therefore the left hand side of the
0

integral equation takes the form w(x, y,t) =h(x, y,t)v(x, y,t). So, for m,n,1 >1
We have

am+n+IW(X’y’t) _ am+n+| _ m 8n
|: axmaynatl } a maynﬁt' (h(x y t)V(X y t))

[—(h(x y V(X Y, t))}

o

o

"*~<><
IS

X" oy"
From Leibniz formula we have

oM w(x,y,t) | 0" 0" | ahxyt(_’}'k v(X, y,t)

[ ox"oy"ot! } ox" oy" [ (kj ot ]
ami(l [khxyta'kxytﬂ
ox" ol k ot

_ om L[ Z“: n 5k+sh(X, y,t) ahnikiSV(X,y,t)
_aXm o\ K | s=0 S aysatk ayﬂ—satl—k
[\

2

| n am ak+sh(xiy,t)al+nksV(X,y,t)j
ks Lo oyt oyat™

The last formula can be simplified as
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n\m ak+s+ph(x, y,t) al+n+m—k—s—pv(x, y,t)
skp) oxPoyatt  ox™Poy"tot™

jplh)mﬁmHmsme—MMW*NU-HWW“p“‘&“*”

am+n+l—p—s—kv(x’ y,t):|

Kyt =0, the upper indices in the

But since form=p,n=s,1 =k, [

W“ﬁ‘
© oo

j (e, 2,7)dedzd 7

O ey <

t
above sums reduce tom-1,n-1 and | —1and hence V(x,y,t) = I
0

1
Therefore, V(m,n,l) = mU (m-1,n-11-1)and

_il—ln—lm—l U(m—p—l,n—S—1,|—k—1)
wmn = 22 2 B s == ik

The proof is finished.

The two theorems listed below are a natural extension to theorems 2.7and 2.8 which
are mentioned in the previous chapter.

Theorem 3.5: If W(X,Y,t)= ”J:g 22

W(m.0,0) =W (0,n,0)=W(0,0,1)=0,m,n,1 =0.1...and

dzdadz then

U(m,n,l :Zmlzn: ZIJV ns,p)(m-r+H(n-s+)(l-p+IW(mM-r+Ln-s+1L1-p+J)

r=0 s=0 p=0

3 3
OWC6 Y8 U YD o et v, 1) = SOV Then we have
oxoyet V(X y.t) oxoyat

V(X, y, WX, y,t) =u(x, y,t)

Proof: Let

From appendix A.3 we get U(m.n,1) = rZ SZO pZV(f s, PW(m—r,n—s,| - p)

whereW (m, n, 1) is the differential transform of W(X, y,1).
21



Thus, VV(m,n,I) =Mm+Y(n+)I+Y)W(m+1Ln+11+1) and
U(m,n,l):izn: iV(r,s, p)(im—-r+)(n—s+D)(—-p+IW(M-r+L,n—s+11—-p+1)

r=0 s=0 p=0

The proof of the theorem is completed.

tyx
Theorem 3.6: If W(X, V,t) = u(z,w,7)dzdwdz.
oy = v(X yt)m( )

ThenW (m,0,0) =W (0,n,0) =W(0,0,1) =0, m,n,1 =0,1....and
m+ln+l 141

umn)=m+H(n+D(+1>> > V(r,s,pW(m-r+Ln-s+11-p+1)

r=0 s=0 p=0

Proof: Let f(X,y,t) =v(X, y,t)w(X, y,t). Then its differential transform is

m n |
r=0 s=0 p=0
3
On the other hand, oYY =u(x,Yy,t) so we have
oxoyot

M+)(n+H(A +DF(M+Ln+L1+) =U(m,n,1), m,n,1 =031,.....
The last equation leads to the end of the proof.

Now we discus some examples [29] using DTM. We give the solutions in more
details.

Example 3.1: Consider the following linear VVolterra Integral Equation
tyx

u( y.1)=9(x.y.)~ [ | [u(z, 0, 1)dxd etz
000
2 2 2
Such that 0< x,y,t <1 and g(X, y,t) = X yz+>qx22+xyz +X+Yy+t,

tyx

Let F(% Y,1) ”J.U(Z,a),r)dzda)dr, then we have U(X,y,t) =g(x, y,t)— f(x, y,t)
000

Now from appendix A.3, we getU(m,n,l) =G(m,n,l) — F(m,n,l), where

G(m,n,1) = % (3(M=2)5( =151 -1 +5(M -5 -2)5(1 —1) + S(m -5 -15(1 - 2))
+8(M=2)5MS(1) + S(M)SM -1)5(1) + S(M)SM)S( —1),

F(m,n,l) :LU(m—l,n—l,l -1)
mnl
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The solutions of the above equations can be organized as follows:

U(0,00) U(0,01) U(0,02) U®©003) .7 - _
U(0L0) U(0LL) U(L2) U(0L3)
U(0,2,0) U(0,21) U(0,2,2) U(0,2,3)
U(0,0) U@LOL U(@L0,2) U(L03)
U@20 U@L) U@RL2) U(@123)

I
O O+ O
o O O O -
o O O O O
o O O O O

Now substituting the result in equation (3.3) to get

u(x,y,t) = x+y+t
Example 3.2: Consider the linear VIE

tyx
u(x, y,t) = g(x, y,t) — 24x yj”u 2,0,7)dzdad 7
000

3

Such that0 < x, y,t <1and (X, y,t) = 4X yt +4x yt +3X y‘°’t2+xzy+yt2+xyt

tyx

set T y,t) =24y [ [u(z, 0,7)dzd @7 | then we have

000
u(x, y,t) = g(x,y,t) + f(x,y,t) now using the properties in table in appendix A.1 , we
get

U(m,n,l)=G(m,n,I)+F(m,n,I)
Where

G(m,n,1) = 465(m—5)5(n —3)5(1 —1) + 45(m —3)5(n - 3)5(1 - 3)
+35(m—4)3(n—23)5(1 - 2) + 5(m—2)5(n-1)5(1 - 0)
+5(M=-0)8((n-1)5( - 2) + S(M-1)5(n-1)5( —1)

and we also have from theorem (3.4)

m-1n-1 -1 1
F(m,n,1)=-24 Zr RO )5(m—2)5(n—1)5(|—0)

0
xU(m-k-1,n-h-11-r-1)

Solving the above equation recursively, the results can be listed as follows:
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U (0,0,0)
U (0,1,0)
U (1,0,0)
U (110)
U (2,0,0)
U(2,10)
(U(3,0,0)

U (0,0,))
U (0,.11)
U (L0,1)
U (L1
U(2,0.1)
U(2.11)
U (3,0,)

U(0,0,2)
U(0.1,2)
U(10,2)
U(L112)
U(2,0,2)
U(2.12)
U (3,0,2)

U (0,0,3)
U (0.13)
U (L0,3)
U(L13)
U(2,0,3)
U(213)
U(3,0,3)

O r O O O O O

o O o O O O

o O oo o o+ o

Now substituting this relation in equation (3.3), we get the exact solution

u(x,y,t) = x*y + yt® + xyt
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Chapter Four

Solving Two - Dimensional Volterra Integral Equation by
RDTM

In chapter two, we introduced the differential transform method and showed how this
method could solve the two dimensional VIEs. The purpose of the current chapter is
to solve the two dimensional Volterra Integral equation using the reduced differential
transform method (RDTM). For that, we give basic definitions and some properties of
RDTM, then we apply the method on some examples and finally we present some
figures to show the rapid convergence of the method.

4.1 Two Dimensional RTDM

Consider a function of two variable w(x,t)and suppose it can be represented as a product
of two functions as follows w(x,t) = F(X)G(t). Then the function w(X,t) can be
represented in the following form [42]:

w(x,t):gF(i)xiiOG(j)ti =S SW(iX't . @.1)

i=0 j=0

Where W (i) = F(i)G(j) is called the spectrum of W(X,t)

Definition4.1 [30]: If W(X,t)is analytic and continuous in the domain of interest, then
1| o

W, (X) = —| —w(x,t 4.2

() k!{atk ( >} (4.2)
is called the reduced transformed function of w(x,t).

Definition4.2 [30]: The differential inverse reduced transform of w, (x) is defined as

WX, 1) = 3 W, ()t —t)" 43)

Combining equations (4.2) and (4. 3) imply

w(x,t) = i%{% w(x,t)}

k=0 ™=

(t—t5)" (4.4)

t=t,
In fact, the function w(x,t) in equation (4.4) can be written as

W, (x,t) = Zn:Wk ()" + R, (x,1) (4.5)

k=0

Equation (4.5) implies thatR_(x,t) = iwk(x)tk is negligibly small.

k=n+1
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Throughout this chapter, we assume thatw, (x),U,(x) and V,(x) are the reduced
differential transform method of the functions, w(x,t),u(x,t)and v(x,t) respectively.

In the following theorems we consider various shapes of two dimensional integral
equations and we give a full proof for the presented results.

t X
Theorem 4.1[30]: If W(X,t) = ”U(y, 2)dydz then
00
1 X
W, () =+ [U,,()dy (4.6)

Proof The k" derivative with respect tol is

W(X t) _—(Hu(y, z)dydz) = j—u(y t)dy

Now, equation (4.2) gives kW, (x) = Jx'(k -1, ,(y)dy. Therefore,
0

1 X
—Ejuk 41(Y)dY and the proof is completed.
0

t x
Theorem 4.2[30]: If w(x,t) = Hu(y, z)Vv(y, z)dydz then
00

k-

1X
:EI U, (YN a(y)dy (4.7)
0

r

|_\

I
o

Proof: From Appendix B.1 and Leibnitz formula, we have
ak ak t X
WD) = ﬁ(j [u(y, 2)v(y, 2)dydz

(4.8)

= J (Y HV(y, D)y

From equatlons (1.6) and (4.8), we obtain

K X k-1 k— k—r-1
Sy = [ S Sy

Therefore,
k-1

0 k
[—w(x t)} -| [ rljrwk—r DU, (Vo5 (y)dy

= (k- 1)'j U, (Vi ()l

X
Or
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Finally, equation (4.2) implies

11 X
W, (X) = Zﬁ H, ()]U, . (y)dy (4.9)
r=0 N — 0

Proof: The k™ derivative of w(x,t) with respect tol is
k k t x
sTw(x )= —k(h(x,t) [uty.2)ayee
00

Z( ] P hx, t)jakflu(y t)dy

~0 ot

k X
{ S t)} (Jr!(k ~rDH, [V, )3y

k-

H

XL, 00fu, )y

Il
o

r

Thus,

W0 =3 H 0]V, (1)

This ends the proof.

(ruy,2)
Th 4.41301: If W(Xt)=||———dydz
eorem 4.4[30] .([_([V(y’z) en
U, (x) = Z(r +1) a\’\’M(X)vk,r(y) (4.10)

Proof: The partial derivative of w(x,t) with respect to t and xis

o’w(x,t) _ u(x,t)
oxot  v(xt)
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Hence,

o*w(Xx,1)

u(x,t) = v(Xx,t)

So, the k™ derivative of u(x,t) with respect tot is

9 u(xt) = 0 {a w(Xx,t) (x,t)}

otk oxot
Z k) 0" w(x,t) 0¥ "v(x,1)
~ r axatl’+1 atk r

Therefore, equation (4.2) implies that

kU, (x) = i(t}(r +D!(k - r)!%;(x)vkr (x)

Then U (X) Z(r 1) aWr-+—l(x)

This completes of the proof

k—r (X)

Ly
Theorem4.5 [30]: 1FW(X,t) = (/v(x,1)) ”U y,2)dydz then
00

r=0

KD W, (Vi ()= [ (y)dy (4.11)

t X
Proof: Rewrite the equation as W(X, t)v(x,t) = “U(y, z)dudz . The k" derivative with
00
respect tot is
k X ak -1

0
Py — (W(x,t)v(x,t)) :jw y,t)dy

Using equation (1.6) and Leibnitz formula

k k ar akr 8“
Z[ jﬁw(x (et = ! ~ru(y.dy

Then from equation (4.2), we get

k'zw (Ve (0= (k- 1)j (y)dy

0
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thenk > W, (X)V, , () = [U, ,(y)dy

The proof is completed.
4.2 Example

Now we solve an example which is given in [40] and [41] by RDTM.

Example 4.1: Consider the following VIE
t X

u(x,t) =€ +™ — 1 4] [ (2,7)dzd T where x,t e [0a]
00

U, (X) = F (X) + G, (X) where f(x,t) =™ +e% —g3**V

From table appendix B.1 we have F, (x) = 3e” + e _3'e™
k! k! k!
Therefore, using theorems (4.2) and (4.3) we get

Where U, (x) = F, (x) = e*

Now we find,
1-r-1

ZU (24 (2)dz

r
1=0

1 X 1 X
U (x)=3* +e¥ —3e* 145 & &
{9 rzz;‘r! 1—r-([

=3e* — 2% + 4(e* j U, (2)U,(2)dz)
0

=3e* —2e¥ + 4(exjez.ezdz)
0

eZX _1 .

)=¢e

=3e* —2e* + 4e*(

Similarly, we find U, (x) and U, (x) as follows:
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uz(x)=1|(32ex +e¥ 32e3X)+4Z . zirizibl(z)uz_r_l_l(z)dz
:%(9(; _8e%) 4 4[(e" = j Z U, (U, , ,(2)d2)) + (* j ZU U, , . (2)d2)]
1

= (9" —8e3x)+4[(%j(uo(z)ul(z) +Ul(z)U0(z))dz)+erU0(z)U0(z)dz

0

1 e ¥ t
==(9e* —8e¥) + 4[(— | 2e%*dz) +e* | e?dt
S )+ j ) J ]

1 1
== (9e* —8e¥) +4e™ —4e* == (&*
2( ) 2!( )

1 3 % 3x o33« Let 1 &G
Us( = (3% +e™ —3%e™)+ ZF 3—j U, (U, ., (2)dz
. 0 -

0

U, (U, @)+ . [3U, (U, ()e)

I= 0|0

= % (27e* —26e>) +4[(e*.

eX

2
20 @U@

= L @rer 260+ AC [ U, (U, (24U, (U, 2) +U, (21U, ()

+ [ U@V, +U, U, @) + ;- [U, (U, ()

1 X % t X % 1
=—(27e* —26e>) + 4[(=— | 2e%dz2) + (e* | e?*dz) + (— | e?*dz)] = = (e*
3¢ ) Ks! )(! )(2£ N=56"

Therefore, we conclude that the general formula u, (x) = i_x and from equation (4.3)
1

we get

u(x,t) =U, ()t° +U, (x)t" +U, (x)t* + U, )t° +U, (x)t* +.......
_ef st e S
2 3! 41
2 3 4

= "(l+t+—+—+—+......)
21 3 4

Therefore, U(X,t) = e*e' =e" which is the exact solution

The following figures illustrate the approach of RDTM solution of u(x,t)at different
values oft . Also, the figures show the rapid convergence of this method
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8. o T

uo(x,t)

; o ul(x,t) '
u2(x,t) ’ *
u3(x,t)

6H ®  ud(xt) ¥
uexact(x,t) *

® r »
5 ® L J
S ) *= ®
4 =*
K = >
'S = ®

3 X

= ®
L
L

= =

pa—

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.1: The numerical result of RDTM at t=1, by comparing the exact solution by
the first five iteration.

7
uo(x,t)
o ul(x,t)
6L u2(x,t)
u3(x,t) *
® u4(xt) d
uexact(x,t) i
5 [t ® Y
d I >
*
S 4 =+
L ] I '
-+
® >
24
3 -
s T .
5=
? ° -
(4 S -
%
®
Lt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 4.2: The numerical result of RDTM at t=0.8, by comparing the exact solution
by the first five iteration.
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uo(x,t) I I I I ol
o— ul(x,t)
4.5 u2(x,t) e R
u3(x,t)
4 ® ud(x,t) 7;‘ °
uexact(x,t) )
35 < L]
2
ks ®
S 3 * 5
d
=+ L
2.5 £y !
2 . T
2 @
3! ® -
o -
15
1t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 4.3: The numerical result of RDTM at t=0.6, by comparing the exact solution
by the first five iteration.

4.5¢
uo(x,t)
o ul(x,t)
44 w2 &
u3(x,t) P

a5l uAD &

' uexact(x,t) ?

L2
! ]
3 2.
»
= X3 -
2.5 e ’ —r =
] P
o
2 ® P
. ,///
- -
e ® - -

1.5 * -

1 L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 4.4: The numerical result of RDTM at t=0.4, by comparing the exact solution
by the first five iteration.
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3.5¢

uo(x,t)
o uL(x,t) ]
= u2(x,t)
3K u3(x,t) H
®  ud(x,t)
uexact(x,t) * o
2.5 g
> v
//
> * P
2 3 "
*_ 7
¥
15 :
«'—
¥
b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.5: The numerical result of RDTM at t=0.2, by comparing the exact solution
by the first five iteration.

relative error at x=1
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Figure 4.6: The relative error at X =1 within five iteration at five value of {.
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relative error at x=0.5
0.7 r r

—5—t=0.2
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Figure 4.7: The relative error at X = 0.5 also at five iteration at five value of {
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Chapter Five

Solving Three- Dimensional Volterra Integral Equation by
RDTM

In this chapter, we establish some theorems on three dimensional Volterra integral
equation which are similarly to that in chapter 3 and give in details the proof of such
theorems. Also, we apply the produced theory on some examples which are solved
earlier using DTM method. Finally, we compare the results obtained from the two
method.

5.1 Three Dimensional RDTM

Let w(x, y,t) be a function of three variables, and assume it can be represented as
product of two functions as followsw(x,y,t) = F(x,y)G(t). Then the function
w(X, y,t) can be written as [24]:

o0

> SW(I, j)xy't . (5.1)

o0
i=0 j=0 k=0

wix,y.1) =3 F (L Xy G

i=0 j=0
The function W (i, j) = F (i, j)G(k) is called the spectrum of w(X, y, 1) .

Definition 5.1[43]: If w(x, y,t) is analytic and continuous in the domain of interest,
then its reduced transformed function is

1] 0"
Wk (X1 y) = E|:ﬁ W(X! Y, t)} (52)

Definition 5.1[43]: The differential inverse reduced transform of W, (X, Y) is defined
by

w(x, y,t) = zw (X, Y)(t—1t,)". (5.3)

Combining equations (5.2) and (5.3), gives

WX, .1) =:20%{%w(x, y,t)} t-1,)" 64

t=t,
In fact, the function w(x, y,t) in equation (5.4) can be written as

w_(X,Yy,t) = Zn:Wk (X, Y+ R (X, y,1) (5.5)

The tail function R, (X, y,t) = > W, (X, y)t“in equation (5.5) is negligibly small.

k=n+1
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Suppose thatw, (x, y), U, (x, y) and Vv, (x, y) are the reduce differential transform
functions of w(X, y,t) ,u(x, y,t) and v(X, y,t) respectively.

Now, we introduce some theorems for various shapes of VIE that will useful in solving
three dimension Volterra integral equation.
tyx

Theorem 5.1: IfW(X, Y,t) :j“ Z,0,7)dzdad7 then
000

|

y X
W, (x,y) = [ [U,1 (2, 0)dzdo (5.6)
00

Proof The k™ partial derivatives with respect to t have the form
a tyx
w(x y.t) =~ ([ [ [u(z, @, 7)dzdad7).
at 000
k y x Ak-1

Leibnitz formula simplifies the last equation to aatkw(x, y,1) :”a—k_lu(z,r,t)dzdr
0

y X
Now, equation (5.2) gives W, (x,y) = ”Uk_l(z,r)dzdr as desired.
00

k!
k —1)!

tyx
Theorem 5.2; If W(X, Y,1) :I”U 2,0,7)V(2,0,7)dzd @d7 then,
000

k-1

11
W.(xy) =7 [ 2V, @ 0N, (2. 0)dzdo (5.7)

r=0

Proof: From appendix B.2 and Leibnitz formula , we have
k ty x

PO w(x, y,t) ——(”ju(z o, 7)\V(Z, »,7)dzdad 7)

y X akl
“la

Equation (1.6) leads to

(u(z, w,t)v(z, w,t)dzdw

Y X k1 k 1 k—r k-r-1
2wk yty=]]3 [ J;k QR O \(z,0,t)dzdo
00

While equation (5.2) provides the following equation
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{;—kkw(x, y,t)LO - I! H(k r_l}r!(k 1YW, (z,0)V,_, ,(z,0)dzd @

r=0

X K=1
j U.(z,0)V,_,,(z,0)ddo
0

r=0

= (k-1)!

O e <

From equation (5.2) we get the result and the proof is completed.

tyx
Theorem5.3: Ifw(x, y,t) =h(x, y,t)[ [ [u(z,®,7)dzdaxd ) , then
000

k-1 1 y X
wk(x,y):zﬁ 06 Y)[ [Uy (2 0)dzdo
r=0 00

Proof: The k" partial derivative with respect to t is

stkk w(x, Y, t)——(h(x Y, t)ﬁiu(z,a),r)dzda)dr)

i( ]—h(x, ol (jtkk = wzotddo

=0 00

Therefore, equation (5.2) implies that

[st—kkW(X, y,t)lzo =kIW (X,y) = rzk:(i:] ri(k—r—1)IH (X, y)_”Uk (2, 0)dzdw

::zokk' H.(x, y)”Uk (z0)ddw

k-r

8 tyx
But since for K=T, (j”u(z 0,7 dZda’dT)]t o =0
000
1,2,.

and then using (5. 2) for k=1
= y X

W, (%)= —H (X y)j JU,..(z.0)dzdo
o K 00

The proof is completed

tyx
Theorem5.4: IfW(X, Y,t) = J.” V(; ®.7) dzdwd 7. Then
000 , T
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k O°W._,, (X

U ) =3 ety y) 59
r=0 ay

Proof: The partial derivatives of w(x, y,t) with respectto X , Y ,and { is

o°w(x,y,t) _u(x,vy,t)

oxoyot  v(x,y,t)
Hence,

o°w(x, y,t)

5.10
oxoyat vix vt (.10

u(x,y,t)=

Then, Thek" partial derivative of equation (5.10) with respect to  is

0" o°w(x, Y, t)
EU(X, y!t) atk|: Ox ayat ( Y, t)}

_ Zk: 0"™*w(x, y,t) 6“"v(x, y,1)
r) oxoyot™ otk

r=0
Therefore
(K oW, (X, y)
k! = DK —r)l—22 27V ,
U, (X,y) ;(rj(w N(k—r) o3y r (X, Y)
So,

azvvr+1 (X’ y)
vk—r(x,y)
oxoy

U, ( y>=:zo(r+1)

This completes the proof.

tyx
Theorem 5.5: If W(X, Y,t) = (/V(x, y,1)) [ [ [u(z,®, 7)dzdad 7 , then

k y X
YW, (6 YV, (. Y) = [ [U,. (2, 0)dzdoo (5.11)
r=0 00
Proof: Rewrite the integral equation as
tyx
w(x, YOV y.1) = [ [ [u(z,0,7)ded ez (5.12)
000

The k™ partial derivative of equation (5.12) with respect to 1 is

k

8 akl
w(X, Yy, tv(x, y,t))
at((y y,1)

'[Tu (z,0,t)dzdw
) Ot

II
O e <

Now, using equation (1.6), we get
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k r ak— yXakl
Z(j—wxyt xyt:”—uzwtdzda)
r 00

Then from equation (5.2) we get

y X
klZW X, YV, (X, y) = (k- 1|”Uk_r(z,a))dzdw
00

r=0

y X
kZW X YV, (X,y) = ”Ukrzwdzda)
r=0 00

Which is the end of the proof

5.2 Examples

In this section, we apply RDTM on the examples which are given and solved in [29] by
DTM.

Example 5.1: Consider the linear VIE.
tyx

u(x y,t)=g(x,y,t) ”I 2,0,7)dzd@d 7 where (x, y,t) < [0,1]x [0,1]<[0,1]and

00

g(x,y.t) > yth ot

Its exact solution is U(X, Y,t) =X+ y+t

+X+Yy+t

It easy to see that g(x,y,0) =x+y and therefore RDTM version is Gy (X, y) = X+Y
where UQ (X1 y) = GO (X! y)

1t
Theorem 5.1 implies for k =1,2,...U (X, ¥Y) =G, (X, y) - E“Uk L(z,0)dd @
00

where G, (x,y) = %5« D+ XyTza(k 1)+ 75(k —2)+ x5(K) + yS(K) + S(k —1)

thus Gl(x’ y):%_kxyTz_Fl , GZ(X’ y):% and Gk(X’ y):OWhen k:3,4, .....

Now,
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U, (x,y) =Gy (x, y)—ﬁuo(z,w)dzdw

XYW ”(z+a))dzda)

2 2
Xy o Xy 0
2 2

Us () = Gy x, y)—iﬁul(z,w)dzdw

ﬁ—ljj(l)dzdw
XXy ~0
2 2
and
1t¢
U (X, Y) =G,(x,Y) §”Uz Z,0)dzdw = 0,since G,(X,y) =0, and we obtain that
00

Gk(X,y)ZO,When k=234,.....

Using equation (5.3) the solution can expressed as
u(x, y,t) = U, (x, )t
k=0

=U, (X, t° +U (X, Y)t' +U, (X, Y)t* +.......
=X+y+t

Example 5.2: Consider the linear VIE
tyx

u(xy,t)=g(x y,t)- 24X2Y“J.U(Z,60, 7)dzdd7 where (, y, t) e [0,1] < [0,1]x [0.1]and

000
g(x, v,) = 4’y + A3yt + 3 Yo% + X2y + vt + xyt
The exact solution is U(X, y,t) = X*y + yt? + xyt
It easy to see that g(X, Y,0) = xzy and therefore RDTM version is G, (X, y) =X+

where Ug(X,y) =G, (x,Y)
Apply theorem (5.2) for k =1,2,... to get

y X
U, (X, ) =G, (X, y) - (24x2y) % j j U, ,(z,w)dzd . Where
00

G, (X, Y)=4x°y*S(k -1 +4x°y*S(k —=3) +3x*y*5(k —2) + X’ y5 (k) + yS(k — 2) + xyS(k 1)
G,(X,Y) =4x°Y’ +xy,G, (X, ) =3x"y’ + Y, G,(x,y) = ax*y*and G, (x,y) =0, k> 4.

40



So, according to the above computations we have

y x
U, (X, ¥) =G,(x,y) - (24x*y)[ [U,(z, w)dzd
y x
=4x°y* + xy — 24x*y| [ (2’ w)dzd
00

=4x°y° + xy—24x2y(%)
=4x°y® + xy — 4x°y?
y X
U, (x,¥) = G, (x,Y) - (24x'y) [ U, (2, 0)ced o
00

y x
=3x'y* +y-12x*y|[ [ (’w)dzd

X2y3

=3x'y* +y—-12x*y( 2 )

=3x'y* +y-3x*y®
=Y

U.(x¥) =6, (x ) - (24x'y) [ [U, (2. 0)dzdo

=4x°y® 4+ — SXZyﬁ(a))dzda)

2

=4x’y* + -8x’y(—)

Xy
2
— 4X3y3 N 4X3y3
=0
On the other hand, since G, (X,¥)=0 k>4 U, (X,y)=0 when k>3
Using equation (5.3) ,the solution can be expressed as

u(x,y. =20, ()t
=U, (6 E° +U (X, )+ U, (X, )2 +U, (6 Y)E + .,
=X’y + Xyt + yt?

Example 5.3: Consider the linear VIE
tyx

u(x,y,t)=g(xy,t) +j”U(Z,w, 7)dzd d7 where (x, y, t) e [0,1]x[0,1]x [0.1]and
000
g(x,y,t) = +e* +e’" —e* —e’ —e' +1
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X+y+t

Its exact solution is U(X,y,t) =

It easy to see that (X, Y,0) =€*" and therefore RDTM version is G, (X, y) =e*

where U, (X, y) =G, (x,Y)
Now, by using theorem (5.1),for k =1,2,....., we get

X y l
U, (xy)= _U; kl(za)dZdwwhereG(X y)_e! %_E

Now,
y x

U, (%, ¥) = G,(x, y) + [ [U, (2, 0)dzda
00

=e +e’ -1+ [[edzdw

=e"+e’ -1+(e" —-e’'—-e"+])

:eX+y
yX
U,(x,y) =G, (X, y) + ”Ul(z,co)dzda)
00
X y y X
&, e——1+lHe“’”dzda)
2 2 2%%
X y
I % VRS
2 2 2 2
e><+y
-2

U, (% y) =G, (x,y) +1ﬁu2(z,a))dzdw

AL ” (e””)dzdw
a3 3 3
X y

=2 e——£+£(e”y—ey—e*+l)
3a 33 3 3

ex+y

R

X+y

k!

Therefore, we conclude that the general formula U, (x,y)= €
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and from equation (5.3) we get
u(x, y,t) = Zuk (% y)tk
k=0

=U, (X, Mt° +U (X, Yt +U, (X, Y)t* +U, (X, Y%+
t? t?
= +t(e™)+—(E ")+ —=(€"")+.........
(e™) 2( ) 3!( )
2 t3
YA+t + —+—+....... )=e"" ¢!
21 3

e X+y+t

The figures below illustrate the approach of RDTM solution of u(Xx, y,t) ,at different

values of t |, also show the rapid convergence of this method, where the approximated
value converge up to the exact solution.

t=1
N exact solution
25~ I 0
L Ju
L | -
20 - - — - - T _U3

Figure 5.1: The numerical result of RDTM at t=1, by comparing the exact solution by
the first four iteration for example 5.3.
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exact solution
I o
[ Ju
I 2
I s

Figure 5.2: The numerical result of RDTM at t=0.8, by comparing the exact solution
by the first four iteration for example 5.3.

t=0.6

exact solution
N w0
[ Ju
I 2
I

Figure 5.3: The numerical result of RDTM at t=0.6, by comparing the exact solution
by the first four iteration for example 5.3.
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t=0.4

12-\-' exact solution
—

[ Jum

I 2

I

Figure 5.4: The numerical result of RDTM at t=0.4, by comparing the exact solution
by the first four iteration for example 5.3.

t=0.2
10\777 B 1 exact solution
I 0
1L _u2

Figure 5.5: The numerical result of RDTM at t=0.2, by comparing the exact solution
by the first four iteration for example 5.3.
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relative error at x=0.1, y=0.5
0.7¢ r r

— 59— t=0.1
% & =05

\ —e— {=1

0.5

0.4+

relative error

0.3 \

0.1 L N
0 )\ & \\1'""""""""""*$ =
0 1 ’ 3 4 5
iteration

Figure 5.6: The relative error within five iteration at x =0.1, y =0.5for example 5.3

relative error at x=0.1, y=0.1
0.7¢ r I :
—O—1=0.1

t & 1=05 |

\ —— t=1]1

0.5

0. 4

) \
0.2 \

relative error

O. 1 éﬁ' ~_ ‘ \'l\
| ;\k ~ \1’”’””””””””—”@P *
0 1 2 , ‘ 5

number of iteration

Figure 5.7: The relative error within five iteration at x = 0.1, y = 0.1 for example 5.3
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relative error

Figure 5.8: The relative error within five iteration at x =0.5, y = 0.5 for example 5.3
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Figure 5.9: The relative error within five iteration at x =1, y =1for example 5.3
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According to these figure the result indicated that using small t lead to error approach
to zero (see Appendix C). In addition, if we look at these figure we conclude that the
figure is identical, although we use different value of X and Y , which means that if

we want get a small error we choose a small value to the reduced variable.

5.3 Comparison

In this section, we will compare between the methods DTM and RDTM using the
examples introduced in the previous section to show the accuracy of these two methods.

For example 5.3, the exact solution is u(x, y,t) =" The absolute error of the
iterative solutionsU,,,(X,Y,t), Us45(X,Y,t) obtained by DTM [28] and U,(X,Y,t),

U;(X,Y,t) obtained by RDTM at some test point (x,y,t) are calculated in the
following tables.

Table 5.1. Absolute error using DTM [28]

X y t Exact solution | | u,... —U,,, (X, Y,) | | | Uggaet —Usz5(X, ¥it) |
1 1 1 20.085536923 | 11.585536 7.085536
0.1 0.5 1 4.9530324243 | 1.07303242 3.9036575x 10!
0.5 0.5 0.5 4.4816890703 | 8.5668907x 10 2.941890% 10!
0.1 0.1 0.1 1.3498588076 | 1.6261825x1073 1.557798x107°
001 |01 0.1 1.2336780600 | 4.8175870% 10 9.492003% 10°®
0.01 |o0.01 0.1 1.1274968516 | 1.5113801x10* 4.338226x10°
0.01 |0.01 0.01 | 1.0304545340 | 1.5113801x 10 1.280568x 107°
0.001 |0.01 0.01 |1.0212220516 | 4.3803265x% 107’ 8.421920x% 10-10
0.001 | 0.001 |[0.01 |1.0120722889 | 1.7775346x 10-7 4.165485x 107"
0.001 | 0.001 | 0.001 | 1.0030045045 | 1.5043042x 107° 3.637978x 10-12
Table5.2. Absolute error using RDTM
X y t Exact solution | uexact - u2 (Xv yvt) | | uexact - u3 (X' y,t) |
1 1 1 20.0855369231 | 1.61289667586104 | 3.81387326x% 10
0.1 0.5 1 4.95303242439 | 3.977354234x 107t | 9.40489566x 1072
0.5 0.5 0.5 4.48168907033 | 6.448109909x 102 | 7.85022766x 1073
0.1 0.1 0.1 1.3498588076 | 2.08759809%x10* | 5.19268266x10°
0.01 0.1 0.1 1.2336780600 | 1.90792099x 10* | 4.7457546x 10
0.01 0.01 0.1 1.1274968516 | 1.74370849x10* 4.3372931x10°°
0.01 |o0.01 0.01 1.0304545340 | 1.7045949x 10’ 4.2594x% 107
0.001 | 0.01 0.01 1.0212220516 | 1.6893224x 10’ 4.2212x 10-10
0.001 |0.001 |0.01 1.0120722889 | 1.6741867x 107 41834%x 10"
0.001 | 0.001 |0.001 | 1.0030045045 | 1.6704x 107 4x 10-15
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20¢ r r
—S—DTM error
18 ~% -RDTM rrror [T

16

14

12

10

absolute error

iteration

Figure 5.10 : The absolute error for five iteration at x=1, y =1,t =1 obtaining from
DTM, and RDTM for example 5.3.

3.5x r r
—O—DTM error
—% —~RDTM error

2.5

15

absolute error

0.5

iteration

Figure 5.11:The absolute error within five iteration at x=0.5,y=0.5,t=0.5
obtaining from DTM, and RDTM for example 5.3.
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Figure 5.12 :The absolute error within five iteration at x=0.1, y =0.5,t =1 obtaining
from DTM, and RDTM for example 5.3.

5.4 Discussion and Conclusion

We successfully extended the RDTM method to solve three dimensional VIEs. For that
purpose, we produced theoretical approach to the extended method, also a numerical
analysis has been made in order to check the effectiveness of the method.
Regarding the examples that have been discussed, we can conclude the followings:
1) RDTM minimizes the number of iterations to reach the exact solution.
2) The approximated solution using RDTM approaches rabidly to the exact
solution, see figures (5.1- 5.5).
3) The value of the error decreases whenever the iteration increases, see figures
(5.6-5.9).

In this thesis, the three dimensional linear and nonlinear integral equations are solved
by using RDTM. However, this method works when the kernel is analytic and
separable. It is worth noting that RDTM does not require complex computational work
like DTM. It can be easily implemented, its convergence is rapid and its approximation
is accurate. In general, it can be concluded that RDTM is a powerful tool for solving
many linear and nonlinear three dimensional integral equations
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Appendix A

Differential Transform Tables

A.1: DTM Operation in One Dimension

Suppose that U(k), V(k)and F(k)are the differential transformations of the functions
u(x) v(x)and f(x), respectively. Using one dimensional DTM, the fundamental

operations [44-64] are listed in following table

Original function

Transformed function

f(X) =u(x) £v(x)

F(k) =U (k) £V (k)

f(X) = au(x)

F(k) = aU (k)

T (X) =u(x)v(x)

Fk) = Zk:U vk -1

f(x)=¥ F(K)=(+DU(K +1)

f(x) =% Fk)=(K+D)........ (k+m)U (k +m)
f(x)=x" F(k) =Sk —m)

f(x)=e* F(k):%

f (x) =sin(ex + a) F(k)=%sin(%+a)

f (X) = cos(ax + ) 6 z%:cos(%Jra)
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A.2 : DTM Operation in Two Dimension

Suppose that W (m, n), V (m,n) and U (m, n) are the differential transformations of
the functions w(x, y), v(x,y)and u(x, y), respectively. The fundamental mathematical
differential transform [47,48] listed in next table.

Original function Transformed function
w(X,y) =u(xt) £v(x,t) | W(m,n)=U(m,n) £V (m,n)
w(x,t) =cu(x,t) W (m,n) =cU(m,n)

W(Xat)ZEU(X,t) W(mvn):(m+1)U(m+:Ln)
OX

w(x,t) =2U(x,t) W(m,n) =(n+HU(m,n+1)
ot

o (m+r)l(n+s)!
w(x,t)_axrats u(x,t) W(m,n) = povpen U(m+r,n+s)
w(x,t) =u(x,Hvix.t) W(m,n) = Zmlznlu (r,s)Y (m—-r,n—s)
w(x,t) = x“t” W(m,n)=5(m—a,n—ﬂ){1'm:a’n:'8

0,ow
w(x,t) = x¥e W (m, n) :“—namk
W(X,t) = eax+/3t W (m,n) = 23 ,B
min!

n

w(x,t) = x“sin(at +B) | w(m,n) = &S s+ )

n

W(x,t) = X“ cos(at + ) | w(m,n) = %5” cos(nT” + 1)

w(X,t) =sin(ax + ft) (m+n)z

W(m,n) = a”p’ sin(

m!n! 2 )
w(X,t) = cos(ax + ft) W (m, n) an:.ﬁ,n COS((m +2n)7r)

Tk-1

W(X,t)=1iilui(x’t) W(m,n) = i Z Z Z ZZ[U (r,sU,(r —r,s, -

N1=0s8,_1=01,_»,=0s,_,=0 r=0s,=0

U i(fs =N S =SV (m=r_,n=s, )]

5,)...
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A.3 : DTM Operation in Three Dimension

Suppose that W (m,n,l),V (m,n,l)and U (m,n,I) are the differential transformations of
the functions w(x,y,t), v(x,y,t)and u(x,y,t), respectively. The fundamental
mathematical differential transform [59,50] listed in next table.

Original function

Transformed function

w(X,y,t) =u(x,y,t) xv(x,y,t)

W(m,n,I)=U(m,n,1)+V(m,n,l)

w(X,y,t) =cu(x,y,t)

W (m,n,l)=cU(m,n,l)

%u(x,y,t) (m+DU (m+1,n,l)

%U(X’ y.0) (n+HU(m,n+1L1)

%u(x,y,t) (+DU(m,n,1 +1)

—axarz;'::;t" u(x,y,t) (m-+ r)!(rr:;;?!(l A p)!U(m+ r,n+s,l+ p)
w(x,y,t) =u(x, y,t)v(x,y,t) W (m.n,1) = Zm: n ZI:U (r.s. pV(m—r.n—s.l—p)

r=0 s=0 p=0

w(X, y,t) =Hui(x, y,t)

m n | N1 Sk

winah=3 3 Y S 3Y3 YU s )

f-1=0 8 1=0 P _1=0 1, =0 s, _» Py ho $=0p,=0

X U2(r2_rl’82_sl’p2_pl)" XUk(m_rk—l’n_Sk—l’I_pk—l)]

w(x,y,t) =xPyat'

W(m,n,I)=6(m-p)o(n—q)o(l —r)

w(X,Vy,t) =sin(ax+by+cz mpnal
( 1y’ ) ( y ) W(m,n,l):a b C Sin(m+n+|ﬂ_)
min!l! 2
w(X, y,t) =cos(ax + by +cz mpnal
6y, ( ¥ ) W(m,n,l)zabccos(m+n+ln)
min!l! 2
_ pax+by+cz men -1
w(x,y,t) =e W(m,n,|):a b"c
min!l!
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Appendix B

Reduce Differential Transform tables

B.1 : RDTM Operation in Two Dimension

Suppose that w, (x),U, (x) and v, (x) are the reduce differential transform method of the

function w(x,t),u(x,t) and v(x,t) respectively. The fundamental mathematical

differential transform [51-53] listed in next table.

Original function

Reduce transformed function

w(X,t) =u(x,t)v(x,t)

W, (9 = 2 U, GOV, ()

w(X,t) = au(Xx,t) £ Sv(x,t)

W, (x) = U, (x) £ BV, ()

%u(x,t) (k+DU,,(x)
ars (k+s)! &'
mu(xit) Kl Wuk+s (X)
X" x"5(k —n)
eat ak
K
sin(ox+ ) 'B—ksin(ﬁjuax)
k! 2!
ﬁk
cos(ax + /&) WCOS(E + )
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B.2 : RDTM Operation in Three Dimension

Suppose that w, (x,y) U, (x,y) and v, (x,y) are the reduce differential transform

method of the function w(x, y,t) ,u(x, y,t) and v(x, y,t) respectively. The fundamental
mathematical differential transform [54] listed in next table.

Original function

Reduce transformed function

WX, y,t) =u(x, y,v(x, y,t)

W, (%) = 3V, (% YV (%9)

W(X’ y,t) = OAJ(X, yrt) iﬂ/(x, yrt)

W (xy)=al, (x,y)+ BV, (xY)

oN k + N)!
6tN U(X, y!t) ( kl ) Uk+N (X! y)
am+n+s (k + S)! 6m+n
ox™oy" ot ux.y.t k! ox™ey" Ui (6 ¥)
mentq men’k:q
0,ow

eat ak

k!

sin(ax + By + at)

k

o . 7K
WSIn(E+aX+ﬂy)

cos(ax + By + at)

a)k

7K
WCOS(E + O!X—l—ﬂy)
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Appendix C
Relative Error for Example 5.2.3 Using RDTM

X Y T Iteration O Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
0.1 [ 0.1 |0.1|9.516258*102 | 4.67884*10° | 1.54653*10* | 3.84683*10° | 7.66780*10® | 1.27490*10°
0.5 | 3.934693*10* | 9.02040*10° | 1.43876*10% | 1.75162*10° | 1.72115*10* | 1.41649*10°
1 6.321205*10" | 2.64241*10* | 8.03013*10% | 1.89881*102 | 3.65984*10° | 5.94184*10*
0.5 | 0.1 | 9.516258*102 | 4.67884*10° | 1.54653*10* | 3.84683*10° | 7.66780*10% | 1.27490*10°
0.5 | 3.934693*10* | 9.02040*102 | 1.43876*10% | 1.75162*10° | 1.72115*10* | 1.41649*10°
1 6.321205*10" | 2.64241*10 | 8.03013*10% | 1.89881*102 | 3.65984*10° | 5.94184*10*
1 0.1 | 9.516258*102 | 4.67884*10° | 1.54653*10* | 3.84683*10° | 7.66780*10% | 1.27490*10°°
0.5 | 3.934693*10* | 9.02040*10% | 1.43876*10% | 1.75162*10° | 1.72115*10* | 1.41649*10°
1 6.321205*107" | 2.64241*10* | 8.03013*102 | 1.89881*102 | 3.65984*10° | 5.94184*10*
05 | 0.1 | 0.1 |9.516258*102 | 4.67884*10° | 1.54653*10* | 3.84683*10° | 7.66780*10% | 1.27490*10°
0.5 | 3.934693*10* | 9.02040*102 | 1.43876*10% | 1.75162*10° | 1.72115*10* | 1.41649*10°
1 6.321205*10" | 2.64241*10* | 8.03013*10% | 1.89881*102 | 3.65984*10° | 5.94184*10*
0.5 | 0.1 | 9.516258*102 | 4.67884*10° | 1.54653*10* | 3.84683*10° | 7.66780*10® | 1.27490*10°
0.5 | 3.934693*10" | 9.02040*102 | 1.43876*10% | 1.75162*10° | 1.72115*10* | 1.41649*10°
1 6.321205*10" | 2.64241*10* | 8.03013*10% | 1.89881*102 | 3.65984*10° | 5.94184*10*
1 0.1 | 9.516258*102 | 4.67884*10° | 1.54653*10* | 3.84683*10° | 7.66780*10% | 1.27490*10°°
0.5 | 3.934693*10* | 9.02040*102 | 1.43876*10% | 1.75162*10° | 1.72115*10* | 1.41649*10°
1 6.321205*107 | 2.64241*10* | 8.03013*10% | 1.89881*10 | 3.65984*10° | 5.94184*10*
1 0.1 | 0.1 | 9.516258*102 | 4.67884*10° | 1.54653*10* | 3.84683*10° | 7.66780*10® | 1.27490*10°
0.5 | 3.934693*10* | 9.02040*102 | 1.43876*102 | 1.75162*10° | 1.72115*10* | 1.41649*10°
1 6.321205*10" | 2.64241*10 | 8.03013*10% | 1.89881*102 | 3.65984*10° | 5.94184*10*
0.5 | 0.1 | 9.516258*102 | 4.67884*10° | 1.54653*10* | 3.84683*10° | 7.66780*10° | 1.27490*10°°
0.5 | 3.934693*101 | 9.02040*%102 | 1.43876*102 | 1.75162*10° | 1.72115*10* | 1.41649*10°
1 6.321205*10" | 2.64241*10' | 8.03013*102 | 1.89881*102 | 3.65984*10° | 5.94184*10*
1 0.1 | 9.516258*102 | 4.67884*10° | 1.54653*10* | 3.84683*10° | 7.66780*10% | 1.27490*10°°
0.5 | 3.934693*10* | 9.02040*102 | 1.43876*10% | 1.75162*10° | 1.72115*10* | 1.41649*10°
1 6.321205*10" | 2.64241*10 | 8.03013*102 | 1.89881*102 | 3.65984*10° | 5.94184*10*
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