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Abstract 

We study rank-one perturbations of centrosymmetric matrices and we 

discuss three applications of rank-one perturbations of matrices. We also 

prove new results about the eigen structure of rank-one perturbations of     

2 x 2 centrosymmetric matrices and the structure of the eigenpair of rank-

one perturbations of Laplacian matrices. 
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 ملخص

 التعديل من الدرجة الأولى للمصفوفات

التعديلات من الدرجة الأولى للمصفوفات مركزية التماثل و كذلك  تتناولُ هذه الرسالة دراسة  

تطبيقات للتعديلات من الدرجة الأولى للمصفوفات في مجالات مختلفة. كما تتضمن عرض لثلاثة 

من الدرجة الأولى للمصفوفات  تية و المتجهات الذاتية لتعديلاتالقيم الذا برهنة نتائج جديدة حول

تشمل وصف للقيم والمتجهات الذاتية لمصفوفة لابلاس،  و أيضا   ،x ۲ ۲مركزية التماثل من الرتبة 

 لمصفوفات المعدلة منها.ا و
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Chapter 1 

Introduction 

        It is rarely true that the determinant of a sum of matrices is equal to the sum of 

determinants. This is one of the facts that perturbation theory of matrices focuses on. 

So, what is perturbation theory? It is a set of mathematical procedures used to find the 

solution to a problem using the solution of a simpler related one (see [7]). The idea is 

to break the problem into two parts: solvable and perturbation. A perturbation theory 

technique describes the desired solution in terms of perturbation series which is a 

formal power series in a small  parameter. The leading term of this series is the 

solution of the solvable part. On the other hand, by truncating the series, an 

approximate perturbation solution can be obtained. If we keep the first two terms only, 

the problem is called then “first-order” perturbation problem. 

Perturbation theory was early used to solve intractable problems in the calculation of 

the motions of planets in the solar system. These problems are known, in physics and 

classical mechanics, as n-body problems. Perturbation theory methods were developed 

and generalized by the 18th and 19th centuries mathematicians due to the increasing 

need for the accuracy of solutions to Newton’s gravitational equations. This came as a 

result of the accuracy of the astronomical observations. The name “perturbation 

theory” is attributed to Lagrange and Laplace. They were the first to develop the view 
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that the motion of a planet is perturbed by the motion of other planets and vary as a 

function of time. Gauss and Poisson also investigated the perturbation theory. In the 

20th century, perturbation theory of matrices, especially rank-one perturbations, 

underwent a gradual expansion and evolution. It has been studied by many 

mathematicians such as J. H. Wilkinson, G. H. Golub, A. Cantoni, P. Butler and A. L. 

Andrew (see [7,13,8,19,6,23].) 

        Our thesis discusses rank-one perturbations of special types of matrices. We 

review previous studies about the effects of rank-one perturbation of matrices on 

determinants and inverses. We also review the effect of perturbation of centro-

symmetric matrices on eigenvalues and eigenvectors. In addition, we present some 

applications. Then, we state the relationship between the eigenvalues, the eigenvectors 

and the determinant of 2 x 2 centrosymmetric matrices and the eigenvalues, the eigen-

vectors and the determinant of a special rank-one perturbation of them. Also, we state 

the relationship between the eigenpairs of Laplacian matrices and their rank-one 

updates. 

        In Chapter 2, we list definitions and notations we use in the next chapters. In 

Chapter 3, we list basic properties including determinants and inverses of rank-one 

perturbations of general matrices. Then, we discuss, in brief, previous studies of rank-

one perturbed centrosymmetric matrices. We also list three applications of rank-one 
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updates of matricesin the fields of linear algebra, recreational mathematics, and 

computer science. In Chapter 4, we study the effect of a specific rank-one perturbation 

on the eigenvalues, eigenvectors and determinants of 2 x 2 centrosymmetric matrices. 

Moreover, we show how rank-one perturbation affects many properties of Laplacian 

matrices. In Chapter 5, we write MATLAB programs and algorithms for rank-one 

updates of matrices. Finaly, in Chapter 6, we list some concluding remarks and 

suggested future work. 
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Chapter 2 

Preliminaries 

        First, we state the followings theorem about block determinants.  

Theorem 2.1. (Block Determinants)[12] If A and D are square matrices, then 

det (
𝐴 𝐵
𝐶 𝐷

)= {
det(𝐴) det(𝐷 − 𝐶𝐴−1𝐵)   𝑤ℎ𝑒𝑛 𝐴−1 𝑒𝑥𝑖𝑠𝑡𝑠

det(𝐷) det(𝐴 − 𝐵𝐷−1𝐶)  𝑤ℎ𝑒𝑛 𝐷−1 𝑒𝑥𝑖𝑠𝑡𝑠 
   . 

We note that the matrices 𝐷 − 𝐶𝐴−1𝐵 and 𝐴 − 𝐵𝐷−1𝐶 are called Schur complements 

of A and D respectively. 

Proof. If 𝐴−1 exists, then  

(
𝐴 𝐵
𝐶 𝐷

)  = (
𝐼 0

𝐶𝐴−1 𝐼
) (

𝐴 𝐵
0 𝐷 − 𝐶𝐴−1𝐵

) 

Hence,  

det (
𝐴 𝐵
𝐶 𝐷

) = det(A) det(𝐷 − 𝐶𝐴−1𝐵). 

Theorem 2.2. Let ω be a nonzeroreal number, let D = diag(d1, d2, …, dn) be a 

nonsingular diagonal matrix, let s = ∑
1

𝑑𝑖

𝑛
𝑖=1 , and let Aω = [ω] + D. Then  

        (i) If s = 0, then det(Aω) = det(D). 
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        (ii) If s ≠ 0, then det(Aω) = (1 +  𝜔 ∑
1

𝑑𝑘

𝑛
𝑘=1 ) (∏ 𝑑𝑗

𝑛
𝑗=1 ) 

                                               = (1 +  𝜔𝑠)(∏ 𝑑𝑗
𝑛
𝑗=1 ). 

        Next we list below definitions we use in the following chapters. 

Definition 2.3. The counterdiagonal of the n x n matrix A = (𝑎𝑖𝑗) is the collection of 

entries ai,n-i+1, i = 1, 2,…, n. 

Definition 2.4. The counteridentity matrix is the matrix in which all of its entries are 

equal to zero except those on the counterdiagonal which are all ones. We denote the 

counter- identity matrix by J. 

Definition 2.5. A vector x is called symmetric  if Jx = x and it is skew-symmetric  if      

Jx = - x. 

Definition 2.6. An n x n matrix A = (aij) is called centrosymmetric if JAJ = A. That is 

A satisfies 

ai,j = an-i+1,n-j+1, ∀ i and j.  

Definition 2.7. An n x n matrix A = (aij) is called skew-centrosymmetric if JAJ = - A.  

Definition 2.8. An n x n matrix C is said to be counterdiagonal if all of its entries are 

zero except those on the counterdiagonal. 



6 
 

 
 

 

Definition 2.9. A Markov chain is a sequence of random variables X1, X2, X3, … with 

the Markov property. The possible values of the Xi’s are called states and  the Markov 

property is a specific kind of memorylessness property in which the probability 

distribution of the next state depends only on the current state and not on the sequence 

of events that preceded it. 

Definition 2.10. An n x n stochastic matrix P = (pij) is a nonnegative real matrix that 

describes the transitions of a finite Markov chain. The entry pij represents the 

probability of moving from state i to state j in one time step. The stochastic matrix is 

also known as probability matrix, transition matrix, substitution matrix and Markov 

matrix. 

Definition 2.11. An n x n stochastic matrix P is called row-stochastic if the sum of 

each row is 1 and it is called column-stochastic if the sum of each column is 1.  

Defenition 2.12. A magic square of order n is an n x n matrix whose elements are the 

integers 1 through  n2, with the property that each row and column, the main diagonal 

and the main counterdiagonal have the sum µ = 
𝑛3+𝑛

2
 . If a magic square A = (aij) of 

order n satisfies  ai,j + an-i+1,n-j+1 = n2 + 1, i = 1, …, n, j = 1, …, n, then it is called a 

regular magic square. 
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Definition 2.13. The singular values of a square matrix A are equal to the square roots 

of the eigenvalues of 𝐴∗𝐴, where 𝐴∗ is the conjugate transpose of A. We note that the 

singular values are nonnegative real numbers. 

Definition 2.14. Let A = (aij) be an n x n matrix. If the off-diagonal entries of A are 

nonpositive and the sum of each row is zero, then A is called Laplacian. 

         We denote the transpose of a matrix A by AT, the trace of a square matrix A by 

tr(A) and the characteristic polynomial of a square matrix A by p(λ). We denote the 

column vector whose entries are all equal to 1 by e and the matrix ωeeT by [ω], where 

ω is a nonzero real number. We write (λ,x) is an eigenpair of a square matrix A if  λ is 

an eigenvalue of A with a corresponding eigenvector x. We denote the multiset of 

eigenvalues of A by σ(A). If D is an n x n diagonal matrix with d1, d2, …, dn as its 

diagonal elements, then we write D = diag(d1, d2, …, dn).  
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Chapter 3 

Survey of Rank-One Perturbations of Matrices 

        In Section 3.1, we start with some introductory theorems about determinant and 

inverse of rank-one updated matrices. In Section 3.2, we state properties of rank-one 

perturbations of centrosymmetric matrices. In Section 3.3, we list applications of rank-

one updates used in different fields. Such applications include perturbed linear system, 

regular magic squares and Google matrix. 

3.1 Rank-One Perturbation of Basic Matrices  

        In this section, we state some theorems and facts about rank-one perturbations of 

some basic matrices such as the identity matrix I (see [16].) 

      Let us consider the following result regarding determinant of a special type of 

sums. 

Theorem 3.1.1. (Determinants of Rank-One Updates) 

If A is n x n nonsingular matrix, and if u and v are n x 1 vectors, then                                      

(i)  det (I + u𝑣𝑇) = 1 + 𝑣𝑇𝑢,       

(ii) det (A + u𝑣𝑇) = (1 + 𝑣𝑇  𝐴−1𝑢) det (A).       

Proof. The proof of (i) follows from applying the product rule to  
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(
𝐼 0

𝑣𝑇 1
) (𝐼 + 𝑢𝑣𝑇 𝑢

0 1
) (

𝐼 0
−𝑣𝑇 1

)   =    (
𝐼 𝑢
0 1 + 𝑣𝑇𝑢

) . 

In order to prove (ii), we write  

A + u𝑣𝑇 = A(I + 𝐴−1 𝑢𝑣𝑇). 

Thus, 

det(𝐴(𝐼 + 𝐴−1 𝑢𝑣𝑇)) = det(A) det(I + 𝐴−1 𝑢𝑣𝑇) 

                                          = (1 + 𝑣𝑇𝐴−1𝑢) det(A).       □  

A MATLAB program for this theorem is in Chapter 5. 

Theorem 3.1.2. (Sherman-Morrison Formula) 

If A is an n x n nonsingular matrix and if u and v are n x 1 vectors such that 

1+ 𝑣𝑇𝐴−1𝑢 ≠ 0, then the sum  A+ u 𝑣𝑡 is nonsingular and  

(𝐴 + 𝑢𝑣𝑇)−1 =  𝐴−1 −    
𝐴−1 𝑢 𝑣𝑇𝐴−1 

1+  𝑣𝑇𝐴−1 𝑢 
 . 

Proof. We can write  

A+ u 𝑣𝑇= A(𝐼 +  𝐴−1𝑢 𝑣𝑇). 

Thus,  

(𝐴 + 𝑢𝑣𝑇)−1 = [ 𝐴(𝐼 + 𝐴−1𝑢 𝑣𝑇) ]−1 
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                     = (𝐼 + 𝐴−1𝑢 𝑣𝑇)−1(𝐴−1). 

But,  

(𝐼 +  𝑢 𝑣𝑇)−1 = 𝐼 − 
𝑢 𝑣𝑇

1+𝑣𝑇𝑢 
 . 

This yields  

(𝐼 + 𝐴−1𝑢 𝑣𝑇)−1 = 𝐼 − 
𝐴−1𝑢 𝑣𝑇

1+𝑣𝑇𝐴−1𝑢
 .    

Hence,  

(𝐴 + 𝑢𝑣𝑇)−1 = ( I − 
𝐴−1𝑢 𝑣𝑇

1+𝑣𝑇𝐴−1𝑢
 ) (𝐴−1) 

                = 𝐴−1 −  
𝐴−1𝑢 𝑣𝑇𝐴−1

1+𝑣𝑇𝐴−1𝑢
 . 

A MATLAB program for this theorem can be found in Chapter 5. 

3.2 Rank-One Perturbations of Centrosymmetric Matrices 

        Centrosymmetric matrices and their rank-one perturbations have applications in 

different fields such as statistics, differential equations, numerical analysis, engineer- 

ing, physics, communication theory and pattern recognition. For more details about 

these applications, see [15,14,10,9].       
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        We mention below results and properties of matrices resulting from updating 

centrosymmetric matrices by special rank-one matrices. This perturbation is obtained 

using symmetric and skew-symmetric vectors (see [4,14,6,8,5].) 

Theorem 3.2.1. Let H be an n x n centrosymmetric matrix, let δ = 
𝑛

2
, and let ξ = 

𝑛−1

2
. 

Then,  

(i) if n is even, then H can be written as  

H = [
𝐴 𝐽𝐶𝐽
𝐶 𝐽𝐴𝐽

], 

where A, J and C are δ x δ matrices. If n is odd, then H can be written as 

[

𝐴 𝑥 𝐽𝐶𝐽

𝑦𝑇 𝑞 𝑦𝑇

𝐶 𝐽𝑥 𝐽𝐴𝐽
𝐽], 

𝑤ℎ𝑒𝑟𝑒 A, J and C are ξ x ξ matrices, x and y are ξ x 1 vectors, and q is a scalar.  

(𝑖𝑖) If n is even, then H is similar to  

[
𝐴 − 𝐽𝐶 0

0 𝐴 + 𝐽𝐶
]. 

If n is odd, then H is similar to  

[

𝐴 − 𝐽𝐶 0 0

0 𝑞 √2 𝑦𝑇

0 √2𝑥 𝐴 + 𝐽𝐶

]. 
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(𝑖𝑖𝑖) If n is even, then the eignevalues of H are the eigenvalues of F1:= A-JC and the 

eigenvalues of G1:= A+JC. Moreover, the eigenvectors corresponding to the 

eigenvalues of F1 can be chosen to be skew-symmetric of the form (uT,- uTJ)T, where u 

is an eigenvector of F1, while the eigenvectors corresponding to the eigenvalues of G1 

can be chosen to be symmetric of the form (uT,uTJ)T, where u is an eigenvector of G1. 

If n is odd, then the eigenvalues of H are the eigenvalues of F1 and the eigenvalues of  

G2:= [
𝑞 √2 𝑦𝑇

√2𝑥 𝐴 + 𝐽𝐶
]. 

 

Moreover, the eigenvectors corresponding to the eigenvalues of F1 can be chosen to 

be skew-symmetric of the form (uT,0,- uTJ) T , where u is an eigenvector of F1, while the 

eigenvectors corresponding to the eigenvalues of G2 can be chosen to be symmetric of 

the form (uT,√2 𝛼,uTJ) T, where (α,uT) T is an eigenvector of G2. 

 

        For the proof of the previous theorem, see [8,6]. Also, the proof of the following 

theorems can be found in [2]. 
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Proposition 3.2.2. Let u be an n x 1 symmetric vector, let w be an n x 1 vector, let H 

be an n x n  nondefective centrosymmetric matrix, and let M= H + wuT. Then, H and 

M share at least ⌊ 𝑛 2⁄ ⌋ eigenvalues and ⌊ 𝑛 2⁄  ⌋ linearly independent eigenvectors.  

 

Lemma 3.2.3. Let δ = 
𝑛

2
 and let ξ = 

𝑛−1

2
. 

(i) Let n be even, let u be an n x 1 symmetric/skew-symmetric vector, and let S = uuT. 

Then u and S can be written as  

u = [
𝜈
𝑝] 

and 

S = [
𝑅 𝐿𝐽
𝐽𝐿 𝐽𝑅𝐽

], 

where ν is δ x 1, J is δ x δ, R= ννT, p = Jν if u is symmetric and p = - Jν if u is skew-

symmetric, and L= R if u is symmetric and L = - R if u is skew-symmetric.  

(ii) Let n be odd, let u be an n x 1 symmetric/skew-symmetric vector and let S = uuT. 

Then u and S can be written as  

u = [

𝜈
𝑐
𝑝

] 

and  
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 S = [

𝑅 𝑐𝜈 𝐿𝐽

𝑐𝜈𝑇 𝑐2 𝑐𝜈𝑇

𝐽𝐿 𝑐𝐽𝜈 𝐽𝑅𝐽
𝐽], 

 

where u is ξ x 1, J is ξ x ξ, R = ννT, c = k (for same scalar k) if u is symmetric and c = 

0 if us is skew-symmetric, p = Jν if u is symmetric and p = - Jν if u is skew-symmetric, 

and L = R if u is symmetric and L = - R if u is skew-symmetric. 

Proof. It is sufficient to prove only one case and the other cases can be proved in a 

similar way. Let us prove the case when u is skew-symmetric and n is odd. The form 

of u follows from the definition of skew-symmetric vectors. Also, note that JT = J. 

Since  

u = [

𝜈
0

− 𝐽𝜈
] , 

then  

S = uuT 

                                    =  [

𝜈
0

− 𝐽𝜈
] [𝜈𝑇     0  − 𝜈𝑇𝐽] 

                                        = [
𝜈𝜈𝑇         0     − 𝜈𝜈𝑇 

0          0           0 
−𝐽𝜈𝜈𝑇       0    − 𝐽𝜈𝜈𝑇 𝐽

]. 

  □ 
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Theorem 3.2.4. Let u be an n x 1 symmetric vector, let H be an n x n centrosymmetric 

matrix, let M = uuT+H , let H be decomposed as in Theorem 3.2.1, let R be as in 

Lemma 3.2.3, and let δ = 
𝑛

2
 .   

(i) If n is even, then the eigenvalues of M are the eigenvalues of F1:= A-JC and the 

eigenvalues of G3:= A+JC+2R , and the eigenvectors of M can be determined from 

the eigenvectors of F1 and the eigenvector of G3. Moreover, the shared eigenvalues 

between H and M are the eigenvalues of F1 and the shared eigenvectors are the 

eigenvectors determined from the eigenvectors of F1. If, in addition, M is nondefective, 

then δ eigenvalues and δ skew-symmetric linearly independent eigenvectors of M can 

be determined from solving the equation 

F1 fi = λi fi , 

and δ eigenvalues and δ symmetric linearly independent eigenvectors of M can be 

determined from solving the equation 

G3 gi = μi gi. 

 (ii) If n is odd, then the eigenvalues of M are the eigenvalues of F1 and the 

eigenvalues of G4, and the eigenvectors of M can be determined from the eigenvectors 

of F1 and the eigenvectors of G4, where  

G4:= [
𝑞 + 𝑘2 √2 (𝑦 + 𝑘𝜈)𝑇

√2(𝑥 + 𝑘𝜈) 𝐴 + 𝐽𝐶 + 2𝑅
]. 
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Moreover, the shared eigenvalues between H and M are the eigenvalues of F1 and the 

shared eigenvectors are the eigenvectors determined from the eigenvectors of F1. If, in 

addition, M is nondefective, then ⌊ 𝑛 2⁄  ⌋ eigenvalues and ⌊ 𝑛 2⁄  ⌋ skew-symmetric 

linearly independent eigenvectors of M can be determined from solving the equation 

F1 fi = λi fi , 

and ⌈𝑛 2⁄ ⌉ eigenvalues and ⌈𝑛 2⁄ ⌉ symmetric linearly independent eigenvectors of M 

can be determind from solving the equation 

G4 gi = μi gi. 

Proposition 3.2.5. Let u be an n x 1 skew-symmetric vector, let w be an n x 1 vector, 

let H be n x n nondefective centrosymmetric matrix, and let M = uuT + H. Then, H and 

M share at least ⌈𝑛 2⁄ ⌉ and ⌈𝑛 2⁄ ⌉ linearly independent eigenvectors.  

Proof. See [2]. 

Theorem 3.2.6. Let u be n x 1 skew-symmetric vector, let H be an n x n 

centrosymmetric matrix, let M = uuT + H , let H be decomposed as in Theorem 3.2.1, 

let R be as Lemma 3.2.3, and let δ= 
𝑛

2
. 

(i) If n is even, then eigenvalues of M are the eigenvalues of F2:= A-JC+2R and the 

eigenvalues of G1:= A+JC, and the eigenvectors of M can be determined from the 

eigenvectors of F2 and the eigenvectors of G1. Moreover, the shared eigenvalues 
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between H and M are the eigenvalues of G1 and the shared eigenvectors are the 

eigenvectors determined from the eigenvectors of G1. If, in addition, M is 

nondefective, then δ eigenvalues and δ skew symmetric linearly independent 

eigenvectors of M can be determined from solving the equation 

F2 fi = λi fi , 

and δ eigenvalues and δ symmetric linearly independent eigenvectors of M can be 

determined  from solving the equation 

G1 gi = μi gi . 

(ii) If n is odd, then the eigenvalues of M are the eigenvalues of F2 and the eigenvalues 

of G2, and the eigenvectors of M can be determined from the eigenvectors of F2 and 

the eigenvectors of G2, where  

G2= [
𝑞 √2 𝑦𝑇

√2𝑥 𝐴 + 𝐽𝐶
]. 

Moreover, the shared eigenvalues between H and M are the eigenvalues of G2 and the 

shared eigenvectors are the eigenvectors determined from the eigenvectors of G2. If, 

in addition, M is nondefective, then ⌊ 𝑛 2⁄  ⌋ eigenvalues and ⌊ 𝑛 2⁄  ⌋ skew-symmetric 

linearly independent eigenvectors of M can be determined from solving the equation  

F2 fi = λi fi , 
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and ⌈𝑛 2⁄ ⌉eigenvalues and ⌈𝑛 2⁄ ⌉ symmetric linearly independent eigenvectors of M 

can be determined from solving the equation 

G2 gi = μi gi . 

3.3 Applications of Rank-One Perturbations of Matrices 

        Perturbation theory have applications in many fields such as physics, enginee-

ring, chemistry, computer science, etc. The beginning studies were in the planetary 

motion as mentioned previously in Chapter 1. However, modern applications are 

focused on quantum field theory like quantum mechanics and quantum chemistry. For 

more details, see [7,20,21]. 

 

3.3.1 Application I : Updating a Linear System  

        If the right-hand side of the linear system Ax = b or the left-hand side is changed, 

then the new system must be solved. Sometimes the solution of the new system 

depends on the solution x0 of the original system. 

We consider here the case when the change is on the right-hand side of the system    

Ax = b to get the new system Ax = c. See [12] 

If the change is a small perturbation of b, e.g., c = b + αb, then, in order to solve this 

new system, we use an iterative method with the solution x0 as the starting point. 

Moreover, the same idea is applied when the coefficient matrix A is changed to 
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become A + αΑ. Meanwhile, by applying the rank-one perturbation of A, the system 

becomes Ãx = (A + uvT)x = b. Solving this system requires finding Ã-1 if A is 

nonsingular. From Theorem 3.1.2, we can write  

Ã-1 = 𝐴−1   −  
𝐴−1  𝑢𝑣𝑇𝐴−1

1+ 𝑣𝑇𝐴−1 𝑢
 . 

Now, the new solution y0 can be expressed in terms of x0 as follows 

y0  = Ã-1b  

                               = 𝐴−1𝑏  − 
𝐴−1𝑢𝑣𝑇𝐴−1𝑏

1+𝑣𝑇𝐴−1𝑢
 

                            = 𝑥0 −   
𝐴−1𝑢𝑣𝑇𝐴−1𝑏

1+ 𝑣𝑇𝐴−1𝑢
 . 

3.3.2 Application II: Regular Magic Squares  

       Magic squares first appeared in Chinese culture. They were early used in artworks 

and had been known to many other cultures. Mathematicians have studied magic 

squares and their properties. Recently, magic squares have many applications in 

games. We introduce below a quick overview of some properties of magic squares.  

See [1,22]. 
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Proposition 3.3.2.1. Let S be a skew-centrosymmetric matrix. If (λ,x) is an eigenpair 

of S, then (ــ λ,Jx) is an eigenpair of S. Moreover, λ and ــ λ have the same multiplicity. 

Proof. Assume that (λ,x) is an eigenpair of S. But, S is skew-centrosymmetric. That is,  

JSJ = - S. Thus, (JSJ) J =  ــ SJ. Also, (JSJ)J = JS(JJ) = JS. Hence, JS = ــ SJ.  

 Since (λ,x) is an eigenpair of S, then Sx = λx. Therefore,   

JSx = J(λx)     →     ــ SJx = λJx    →     S(Jx) = ــ λ(Jx) 

This implies that (ــ λ,Jx) is an eigenpair of S.               □ 

The following theorem shows that a regular magic square is a type of rank-one 

perturbation of matrices. 

Theorem 3.3.2.2. Let A be a regular magic square of order n and let µ = 
𝑛3+𝑛

2
 . Then, 

(i) A can be written as A = Z + 
µ

𝑛
 eeT, where Z is skew-centrosymmetric. 

(ii) (µ,e) is an eigenpair of A and (0,e) is an eigenpair of Z. Moreover, µ is the largest 

eigenvalue of A in magnitude and it is simple. 

(iii) All eigenpairs of A are the same as those of Z except that (0,e) is replaced by      

(µ,e). 

Proof. The proof can be found in [1]. 
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Here below we state a theorem which shows that the eigenvalues of a skew-

centrosymmetric matrix after reversing the rows/columns are the same eigenvalues 

multiplied by i. 

Theorem 3.3.2.3. Let S be a skew-centrosymmetric matrix. Then,  

 evals(JS) = i . evals(S). 

Proof. The proof follows from Proposition 3.3.2.1 and the fact that (JS)2 = - S2.   □ 

 Now, we state the effect of reversing the rows/columns of a regular magic square on 

its eigenvalues. 

Theorem 3.3.2.4. Let A be a regular magic square of order n and let B = JA. Then  

(i) µ is a simple eigenvalue of B and it is the largest eigenvalue in  magnitude. 

(ii) λ ≠ µ is an eigenvalue of A if and only if iλ is an eigenvalue of B. 

(iii) (0,x) is an eigenpair of A if and only if (0,x) is an eigenpair of B. 

Proof. First recall that A =  Z + 
µ

𝑛
 eeT . Then, B = JA = JZ + 

µ

𝑛
 eeT  since JeeT = eeT.  

(i) Note that B is also a regular magic square and tr(B) = µ. Thus, µ is a simple 

eigenvalue of B and it is the largest eigenvalue in magnitude. 
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(ii) Note that from Theorem 3.3.2.2, the eigenvalues of A are the same as the 

eigenvalues of Z , except that the zero eigenvalue corresponding to the eigenvaector e, 

is replaced by µ. Note also that B = Zʹ + 
µ

𝑛
 eeT, where Zʹ = JZ. Thus, the eigenvalues 

of B are the same as the eigenvalues of Zʹ, except that the zero eigenvalue 

corresponding to the eigenvector e is replaced by µ. But, JZ is skew-centrosymmetric. 

Thus, by Theorem 3.3.2.3, evals(Zʹ) = i evals(Z). 

(iii) Note that  B =  JA and A = JB.  □ 

 Therefore, the eigenvalues of B are {µ, iλ1, …, iλn-1} if the eigenvalues of A are            

{ µ, λ1, …, λn-1}.  

Corollary 3.3.2.5. Every regular magic square of even order is singular. 

Proof. Let A be a regular magic square of even order n, let B = JA, and let the 

eigenvalues of A be { µ, λ1, …, λn-1}. 

 First, note that det(J) = 1 if n mod 4 = 0 or 1 and det(J) = -1 if n mod 4 = 2 or 3. 

Now, the eigenvalues of B are {µ, iλ1, …, iλn-1}. Thus, det(A) = µ · ∏ 𝜆𝑗
𝑛−1
𝑗=1  and   

det(B) = ± i · µ  · ∏ 𝜆𝑗
𝑛−1
𝑗=1 . Therefore, det(B) = ±i det(A).  

But, det(B) = det(JA) = ± det(A). Hence, det(A)  = 0. 

Now, the following theorem shows that n – 1 singular values of a regular magic 

square A of order n are the same as n – 1 singular vales of Z. 
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Theorem 3.3.2.6. Let A be a regular magic square of order n and let B = JA. Then                            

(i) The singular values of B are the same as the singular values of A. 

(ii) The singular values of A are the same as the singular values of Z, except that one 

of the zero singular values of Z is replaced by µ. Moreover, the eigenvectors of ATA 

are the same as the eigenvectors of ZTZ. 

Proof.  

(i) BTB = (JA)T(JA) = ATJJA = ATA. 

(ii) It is easy to prove that (𝜇2, 𝑒) is an eigenpair of ATA. Here is the proof 

ATAe = ATμe = μATe 

Now note that AT is a regular magic square and note also that the trace of AT is μ. 

Thus, (μ,e) is an eigenpair of AT. Hence, ATAe = 𝜇2e. Now 

ATA = (ZT + 
𝜇

𝑛
eeT)(Z + 

𝜇

𝑛
eeT) 

                     = ZZT + 
𝜇

𝑛
eeTZ + 

𝜇

𝑛
ZTeeT + 

𝜇2

𝑛2
neeT. 

Now let (λ,x) be an eigenpair of ATA, where λ ≠ 𝜇2. Then eTx = 0, and hence,  

ATAx = ZTZx + 
𝜇

𝑛
eeTZx = ZTZx 
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3.3.3 Application III: Google Matrix 

        There are many applications of rank-one perturbation of matrices. Google matrix 

is one of these applications (see [17,18]). It is used in the computation of the Page-

Rank for the Google Web search engine. The Google matrix, denoted by G, is 

obtained from a stochastic matrix S after modifying it by a special rank-one 

perturbation. The matrix S is an n x n nonnegative column-stochastic matrix satisfying 

eTS = eT, where e is the n-dimensional vector whose entries are all ones. First choose 

an arbitrary c, where 0 < c < 1, and an arbitrary n-dimensional probability vector u, 

i.e., u is a positive vector normalized by uTe = 1. Then, G is defined as 

G= cS + (1 - c) ueT . 

The Google matrix has a dominant eigenvalue of modulus 1. We list below lemmas, 

propositions and theorems that are used in proving a spectral perturbation theorem for 

rank-one perturbed matrices. 

Theorem 3.3.3.1. Let u and v be two n- dimensional column vectors such that u is an 

eigenvector of A associated with eigenvalue λ1. Then, the eigenvalues of A + uvT are 

{λ1 + vTu, λ2,…,  λn },counting algebraic multiplicity. 

Proof. Let λ ∉ σ(A) be any complex number. Then, by applying Theorem 3.1.2 to the 

equality 

λI – (A + uvT) = (λI - A) - uvT, 
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we have 

                              det[λI – (A + uvT)] = [1 – 𝑣𝑇(𝜆𝐼 −  𝐴)−1 u] det(λI - A).             (1) 

The condition Au = λ1 u implies that 

                                                 (𝜆𝐼 −  𝐴)−1 u = 
1

𝜆− 𝜆1
 u.                                            (2)                                                                                                                

So (1) becomes 

               det[𝜆𝐼 − (𝐴 +  𝑢𝑣𝑇   )] = (1 − 
𝑣𝑇𝑢

𝜆 –𝜆1
) det(λI - A) 

                              = 
[ 𝜆 –(𝜆1+𝑣𝑇𝑢 )] (𝜆 – 𝜆1) (𝜆 – 𝜆2) … (𝜆 – 𝜆𝑛)

𝜆 – 𝜆1
 

                                                     = (𝜆 – (𝜆1 +  𝑣𝑇𝑢)) (λ – 𝜆2)…(λ  - 𝜆𝑛). 

Since the equality is true for all λ ∉ σ (A), the theorem is proved.        □ 

Remark 3.3.3.2. Depending on Theorem 3.3.3.1, it is easy to show that the 

characteristic polynomial of (A + uvT)  is 

p(λ) = [λ – (𝜆1+ 𝑣𝑇𝑢 )]( λ – 𝜆2)…( λ -𝜆𝑛). 

        For the second eigenvalue λ2 of the Google matrix, its modulus can analytically 

be determined. We mention below two theorems that show the relationship between 

|λ2| and the constant c. But first, we need the following preliminaries.  
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Recall that the Google matrix G is written as G = cS + (1 - c) · ueT, where u is an       

n x 1 vector represents a probability distribution.  

We can choose the eigenvectors (xi’s) of G such that ||𝑥𝑖||1 = 1. On the other hand, 

since G is column-stochastic, its eigenvalues satisfy λ1 = 1, |λ2| ≥ … ≥ |λn| ≥ 0. 

Similarly, if yi is an eigenvector of S with corresponding eigenvalue γi, then γ1=1,    

|γ2| ≥ … ≥ |γn| ≥ 0 because S is column-stochastic.  

If we look at the matrix ET = ueT, we notice that it is rank-one and column-stochastic. 

Thus, the eigenvalues of ET are μ1 = 1, μ2 = … = μn = 0.  

The transition matrix for a Markov chain with n states is an n x n row-stochastic 

matrix M and this matrix M satisfies Me = e. Therefore, we can conclude that (1,e) is 

an eigenpair for GT. 

A set of states B is said to be a closed subset of the Markov chain corresponding to M 

if and only if i ∈ B and j ∉ B implies that Mij = 0.  

An irreducible closed subset of states, B, of the Markov chain corresponding to M is a 

closed subset, and no proper subset of B is a closed subset, i.e. all states in B are 

mutually reachable.  
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We state below a theorem about the modulus of the second eigenvalue of the Google 

matrix G. 

Theorem 3.3.3.3. Let G be the Google matrix, Then, its second eigenvalue, λ2,satisfies 

the inequality |λ2| ≤  c. 

Proof. We have the following three cases: 

Case 1: c = 0.  

If c = 0, then G = ueT = ET. Therefore, λ2 = 0 because ET is a rank-one matrix. Thus, 

Theorem 3.3.3.3 is proved for c = 0. 

Case 2: c = 1.  

If c = 1, then G = S. Therefore, |λ2| ≤ |λ1| = 1 because S is a column-stochastic matrix. 

Thus, Theorem 3.3.3.3 is proved for c = 1.  

Case 3: 0 < c < 1.  

This case will be proved by the following lemmas.  

Lemma 3.3.3.4. The second eigenvalue of G has modulus |λ2| < 1.  

Proof. See [17] for the proof. 

Lemma 3.3.3.5. The second eigenvector x2 of G is orthogonal to e. I.e., eTx2 = 0. 
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Proof. First, recall that (1,e) is an eigenpair of GT because GT is a row-stochastic. 

Then, apply the theorem that states ‘‘If xi is an eigenvector of A corresponding to the 

eigenvalue λi, and yj is an eigenvector of AT corresponding to λj, then xi
T yj = 0 for λi ≠ 

λj’’ on G and GT.   

Since | λ2| < | λ1|, then, by Lemma 3.3.3.4, we get that the second eigenvector of G is 

orthogonal to the first eigenvector of GT which is e. Therefore, eTx2 = 0. 

Thus, ETx2 = 0. That is obvious because, by definition, ET = ueT. Hence,                 

ETx2 = ueTx2 = 0. 

Lemma 3.3.3.6. The second eigenvector x2 of G must be an eigenvector yi of S and the 

corresponding eigenvalue is γi = λ2 /c.  

Proof. From the definition of G  

Gx2 = cSx2 + (1- c) · ueTx2 = λ2x2. 

But, from Lemma 3.3.3.5, we have eTx2 = 0. Thus,  

Gx2 = cSx2 = λ2x2. 

I.e., cSx2 = λ2x2. Dividing by c yields 

Sx2 = 
𝜆2

𝑐
 x2. 
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This implies that (
𝜆2

𝑐
, 𝑥2) is an eigenpair of S. By letting yi = x2 and γi =  

𝜆2

𝑐
, Lemma 

2.3.3.6 is proved.  

Now, since S is a column-stochastic matrix, |γi| ≤ 1. But, |γi| = 
|𝜆2|

𝑐
. Therefore, |λ2| ≤ c 

and Theorem 3.3.3.3 is proved.  

        The PageRank is an estimate determines the importance of web pages of search 

results. As we mentioned before, the Google matrix computes the PageRank by using 

algorithms based on eigenvector computation.  

The main idea of algorithms is to compute the principal eigenvectors of the stochastic 

matrix that represents the web link graph.  

Although, in the area of numerical linear algebra, there are a lot of fast algorithms for 

computing the eigenvectors, many of such algorithms require matrix inversion which 

makes the operation highly cost for a web scale matrix. Then, developing PageRank-

computing techniques becomes a necessary need.  

The aim of the development of these techniques is to accelerate the convergence of the 

iterative PageRank computation. The importance of that can be explained by the 

limitation of the lag time, where the lag time is the time from where a new crawl is 

completed to when that crawl can be made available for searching.  
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        Now, we turn to the mathematical section in computing the PageRank. Also, we 

present below the power method as one of many methods used by PageRank algori-

thms. 

        In order to understand the mathematical definition of the PageRank, consider the 

following.  

Let u,w ∈ W web graph W be two web pages such that there is a link from u to w. This 

means that v is an important page. But, how much is the importance of the page w 

depends on the importance of u (with proportional relation) and on the number of 

pages u has links to (with inversely proportional relation). This implies that an 

iterative fixed-point computation must be applied in order to determine the importance 

of any web page i ∈ web since the importance of u itself is unknown. 

Let u → w denotes the existence of a link from u to w in W and let deg(u) , the 

outdegree or the outlinks, denotes the number of links out of u. Now we can define the 

PageRank. 

The PageRank of a page i is the probability that at some certain time step k > K, the 

surfer of the web is at page i. Assuming that the surfer is at the web page i at time step 

k. In the next time step, the surfer will uniformly choose one of the outlink of i in a 

random way. 
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This implies that for sufficiently large K it follows the uniform distribution with 

probability 
1

deg (𝑖)
. 

Now, the Markov chain of this process consists of the nodes in the web graph W as 

states and P as the stochastic transition matrix with Pij = 
1

deg (𝑖)
 describing the 

transition from page i to page j.  

In order to build a valid transition probability matrix P, P must not have any zero 

rows. That requires the minimum number of outdegree of each node to be 1. Indeed, it 

is not always possible to have a graph with no nodes of outdegree 0. Thus, P is 

converted into a valid transition matrix S by special modification. The construction of 

S is as follows  

D = d . vT, 

ST = P + D, 

where v is an n-dimensional column vector whose all entries are 
1

𝑛
 and d is an n-

dimensional column vector that identifies the zero-outdegree nodes as  

di = {
1           𝑖𝑓 deg(𝑖) = 0
0            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

 . 
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Adding D modify the transition probabilities so that a surfer visiting a dangling page, 

i.e., a page with no outlinks, randomly jumps to another page in the next time step, 

using the uniform distribution (the distribution of v). 

The irreducible Markov matrix is constructed as  

E = evT  

A = cST + (1 - c) E 

Now, let G = AT for simplicity and consistency and assume that the probability 

distribution over the surfer's location at time 0 is given by x(0) = v. Then, the probabil-

ity distribution over the surfer’s location at time k is given by x(k) = Gx(k - 1) = Gk x(0). 

Thus, the PageRank is the principal eigenvector of the matrix G, then the PageRank is 

simply lim
𝑘 → ∞

𝐺𝑘𝑥(0). 

We discuss below the basic method used to compute the PageRank which is the 

Power method. This method is the oldest method. It finds the principal eigenvector of 

G by computing successive iterates x(k) = Gx(k - 1 )starting with x(0) = v until 

convergence.  
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Let's turn to show the convergence of the Power method. If we assume that the 

starting vector x(0) belongs to the subspace spanned by the eigenvectors of G, then x(0) 

can be written as a linear combination of the eigenvectors of G as  

x(0) = α1u1 + α2u2 + … + αnun.  

Choose α1 = 1. Then,  

x(0) = u1 + α2u2 + … + αnun. 

 

Thus,  

x(1) = Gx(0) 

                                        = Gu1 + α2Gu2 + … + αn Gun 

                                       = u1 + α2λ2u2 + … + αn λnun  

and  

x(k) = Gkx(0) = u1 + α2 𝜆2 
𝑘

 u2 + … + αn 𝜆𝑛
𝑘  un. 

Since λ1 = 1 > λ2 ≥ … ≥ λn, then 

lim
𝑘 → ∞

𝑥(𝑘) = lim
𝑘 → ∞

(𝑢1 + 𝛼2𝜆2
𝑘𝑢2 + ⋯ + 𝛼𝑛𝜆𝑛

𝑘 𝑢𝑛) 

                                             = lim
𝑘 → ∞

𝑢1  

                                             = 𝑢1. 

This implies that Power method converges to the principal eigenvector of the Markov 

matrix G. 
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Note that for faster convergence of the Power method, 𝜆2 should not be so close to 1. 

That is because, for 𝜆2
𝑛  → 0 , n must be very large.  
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Chapter 4 

New Results 

This chapter includes several new results. We prove, in Section 4.1, three properties of 

a special rank-one perturbation of  2 x 2 centrosymmetric matrices. These properties 

include the eigenvalues, the eigenvectors and the determinant. In Section 4.2, we 

study new results about perturbations of Laplacian matrices. 

4.1 Centrosymmetric Matrices 

Theorem 4.1.1. Let u = (r,r)T be a 2 x 1 symmetric vector, let v = (p,-p)T be a 2 x 1 

skewsymmetric vector, let H be a 2 x 2  centrosymmetric matrix,and let M =  H+uvT. 

Then,   

 (i) M and H share the same eigenvalues which they are λ1 = h11 + h12 and λ2 = h11 - 

h12.  

(ii) if H is nonsingular, then the shared eigenvector between H and M is the symmetric 

eigenvector v of H corresponding to λ1 and the second eigenvector of M can be 

determined from the skew-symmetric eigenvector of H corresponding to λ2. 

(iii) det (M) = det(H) = ℎ11
2  -  ℎ12

2 . 

Proof. Since H is centrosymmetric, it can be written as                                                                   
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H = [
ℎ11 ℎ12

ℎ12 ℎ11
]. 

Let a = h11 and b = h12. 

Part (i): The eigenvalues of H are the solutions of the characteristic polynomial Pλ (H) 

of H where 

Pλ (H) = (a – λ)2 – b2. 

It can be easily shown that λ1 = a + b and λ2 = a - b are the solutions of Pλ (H).  

Now,  

M = H + uvT 

                      = [
𝑎 + 𝑟𝑝 𝑏 − 𝑟𝑝
𝑏 + 𝑟𝑝 𝑎 − 𝑟𝑝

]. 

 

The characteristic polynomial of M is 

Pλ (M) = (a + rp - λ)(a – rp - λ) – (b - rp)(b + rp) 

                                         = (λ2 – 2aλ + a2 ) - b2 

                                 = ( (𝜆 − 𝑎) − 𝑏) ( (𝜆 − 𝑎) + 𝑏). 
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This implies that the eigenvalues of M are λ1 = a + b and λ2 = a – b. 

Part (ii): Suppose that H is nonsingular, i.e., |a| ≠ |b|. Then, an eigenvector x(1) of H 

corresponding to λ1 is x(1) = (1,1)T. This is can be easily proved by solving                

(H- λ1)x
(1) = 0 for x(1). I.e., solve the following linear system 

- b x1
 (1) + b x2

 (1) = 0, 

b x1
 (1) – b x2

 (1) = 0. 

Similarly, we can show that the second eigenvector x(2) of H corresponding to λ2 is    

x(2) = (1,-1)T. 

Note that x(1) is symmetric vector while x(2) is skewsymmetric. 

For M, the first eigenvector y(1) of M can be determined from the solution of the 

following system  

(rp - b)  𝑦1
(1)

 + (b - rp) 𝑦2
(1)

= 0, 

(b + rp) 𝑦1
(1)

– (b + rp) 𝑦2
(1)

= 0. 

Solving the above equation we get y(1) = (1,1)T. Similarly, solving the equation                       

(M - λ2I) y
(2) = 0 which is equivalent to solving the system 

(b + rp) 𝑦1
(2)

 + (b – rp) 𝑦2
(2)

 = 0, 
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(b + rp) 𝑦1
(2)

 + (b – rp) 𝑦2
(2)

 = 0, 

we can write y(2) in terms of (1,-1)T. 

Thus, y(1) = x(1), i.e., M and H share the same eigenvector corresponding to λ1. Also y(2) 

is written in terms of x(2). 

Part (iii): Trivial. 

Theorem 4.1.2. Let u = (r,- r)T be 2 x 1 skewsymmetric vector, let v = (p,p)T be 2 x 1 

symmetric vector, let H be 2 x 2 centrosymmetric matrix and let M = H + uvT. Let      

a = h11 and b = h12. Then, 

(i) M and H share the same eigenvalues which are λ1 = a + b and λ2 = a - b. 

(ii) if H is  nonsingular and M is nondefective, then the shared eigenvector between M 

and H is the eigenvector x(2) = (1,-1)T, corresponding to λ2. Moreover, the eigenvector 

of M corresponding to λ1 can be determined from the eigenvector x(1) of H 

corresponding to λ1.  

(iii) det(M) = det(H) = a2 – b2.    

Proof. This theorem can be proved using a proof similar to that of Theorem 4.1.1. 
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4.2 Laplacian Matrices 

        Now we consider several properties of rank-one perturbed Laplacian matrix. The 

following theorem is a generalization of a theorem that can be found in [16]. 

Theorem 4.2.1. Let A = (aij) be an n x n Laplacian matrix, ω a nonzero real number, 

and Aω = [ω] + A. If (λ, x) is an eigenpair of A, where λ ≠ 0 and λ ≠ ωn, then either 

(λ,x) or (λ,x+αe) is an eigenpair of Aω, where α = 
𝜔 ∑ 𝑥𝑖

𝑛
𝑖=1

𝜆− 𝜔𝑛
. Moreover, if (λ,x) is an 

eigenpair of AT and λ ≠ 0, then (λ,x) is an eigenpair of AT + [ω]. Also, the sum of the 

entries of ATx is zero for all x, and hence, whenever it is not zero, ATx is an 

eigenvector of [ω]. 

Proof. For the first part, it suffices to note  

(1) Ae = 0, and [ω]x = ω(∑ 𝑥𝑖
𝑛
𝑖=1 )e. 

(2) α is well-defined because λ ≠ ωn (from the assumptions). 

(3) If x + αe =0, then 𝑥𝑖 = - α, i = 1, 2, …, n. This implies ∑ 𝑥𝑖
𝑛
𝑖=1  = 

− 𝑛𝜔 ∑ 𝑥𝑖
𝑛
𝑖=1  

𝜆− 𝜔𝑛
. Thus, 

either ∑ 𝑥𝑖
𝑛
𝑖=1  = 0, which implies α = 0, or ∑ 𝑥𝑖

𝑛
𝑖=1  ≠ 0, which implies λ = 0, which 

cannot be the case because we are assuming λ ≠ 0. 
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Chapter 5  

Algorithms and MATLAB Programs 

        This chapter consists of two sections. In Section 5.1, we include two algorithms. 

In Section 5.2, we write MATLAB programs for techniques studied in this thesis. 

 

5.1 Algorithms 

        The following algorithms can be found in [18]. 

Algorithm 5.1.1 : Computing y = Ax 

                  y = cPTx; 

                  w = ||x||1 - ||y||1; 

                  y = y + wv; 

 

Algorithm 5.1.2: Power Method 

            function x(n) = PowerMethod()  { 

                               x(0) = v; 

                                 k = 1; 

                                    repeat  

                                        x(k) = Ax(k-1) ; 

                                        δ = ||x(k) – x(k-1)||1 ; 

                                        k = k + 1; 

                                  until δ < ε ;  

                    } 

 

5.2 MATLAB Programs 

 

5.2.1 Determinant of Rank-One Updates 

The following function computes the determinant of a rank-one perturbation of an n x 

n random matrix A. 
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function [A, detA, B, detB] = det_of_perturbation(n) 
% Description: Choose an arbitrary n x n matrix A,  
%        find a rank-one perturbation matrix B of A, 
%        calculate the determinant of both A and B and 
%        display A, B, det(A)and det(B). 
% Usage: [A, det(A), B, det(B)]= det_of_pertirbation(n),  
%          where n is any  positive integer. 

  
        A = randn(n,n); 
        u = randn(n,1); 
        v = randn(n,1); 

  
        if  det(A)== 0 
            disp('A is singular') 
        else  
            detA = det(A); 
            B = A + u*v'; 
        end  

  
        detB = (1 + v'*inv(A)*u)*detA; 

 

5.2.2 Sherman-Morrison Formula 

function [invA, invB]= Sherman_Morrison_Formula(A, n) 
%Description: Calculate the inverse of a given n x n matrix A, 
%       find an arbitrary rank-one matrix B of A, 
%       calculate the inversr of B from the inverse of A using 
%       Sherman-Morrison formula. 
%Usage: For n=4, [invA, invB]= Sherman_Morrison_Formula(A, 4) 

  
invA = inv(A);  % n is the dimension of A and Ainv  

                  is the inverse of A 
u = randn(n,1); 
v = randn(n,1); 

  
if  det(A) == 0 

         disp('A is singular') 
else 

         B = A + u*v'; 
         invB = invA - ((invA*u*v'*invA)/(1 + (v'*invA*u))); 

end 

Example:  

>> A = [5 -3 7; 3 9 -0.8; 0 5 2] 

 

A = 
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    5.0000   -3.0000    7.0000 

    3.0000    9.0000   -0.8000 

         0    5.0000    2.0000 

 

>> [invA,invB] = Sherman_Morrison_Formula(A,3) 

 

Ainv = 

 

    0.0944    0.1760   -0.2601 

   -0.0258    0.0429    0.1073 

    0.0644   -0.1073    0.2318 

 

 

Binv = 

 

    0.1012    0.1886   -0.2653 

   -0.0254    0.0437    0.1070 

    0.0645   -0.1071    0.2317 

5.2.3 Centrosymmetric and Skew-Centrosymmetric Matrices 

        The following MATLAB programs checks whether a matrix is centrosymmetric/ 

skew-centrosymmetric or not respectively. 

 (i) Centrosymmetric Matrices 

function [] = isCentrosymmetric(A,n) 
   % Description: This function checks if an nxn matrix A is whether 
   %              centrosymmetric or not. 
   % Usage: []= isCentrosymmetric(A,4), for n=4, for example. 

     
    j = 1;  
    for i = 1:n  
            if A(i,j)== A(n-i+1,n-j+1) 
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                j = j+1; 
            else 
                disp('The matrix is not centrosymmetric') 
                break 
          end 
    end   

     
    if j == n+1 
        disp('The matrix is centrosymmetric') 
    end 

 

 (ii) Skew-Centrosymmetric Matrices 

function []= isSkewCentrosymmetric(A,n) 
   % Description: This function checks if an nxn matrix A is whether 
   %              skew-centrosymmetric or not. 
   % Usage: []= isSkewCentrosymmetric(A,4), for n=4, for example. 

    
   j = 1; 
    for i = 1:n  
            if A(i,j)== -A(n-i+1,n-j+1) 
                j = j+1; 
            else 
                disp('The matrix is not  skew-centrosymmetric') 
                break 
            end 
    end 

     
    if j == n+1 
        disp('The matrix is skew-centrosymmetric') 
    end 

 

 

5.2.4 Solution to an Updated Linear System 

If a linear system Ax = b is updated to Ăx = b, where Ă is a rank-one updated  matrix 

of A, then the solution of the new system can be derived from the oirignal one. 

function y = Updated_Linear_System_Solution(n,A,b) 

  
%A is the coefficient matrix of dimension n 
%b is the constant vector 
%We call "Sherman_formula(A,n)" function to compute 
%the inverse of the updated coefficient matrix  

  
nn = n; 
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invA = Sherman_formula(A, nn); 
y = invA * b; 

 

 

5.2.5 Regular Magic Squares  

        The following MATLAB programs check if a matrix is magic square or regular 

magic square, respectively. 

 

(i) Magic Square 

 function []= isMagicSquare(A,n) 
   % Description: This function checks if an nxn matrix A is whether 
   %              magic square or not. 
   % Usage: []= isMagicSquare(A,3), for n=3, for example. 

    
   i = 1; j = 1;  
   rowSum = 0; columnSum = 0; diagSum = 0; cdiagSum = 0; 
   u = (n^3 + n)/2; 

    
   for k = 1:n 
       diagSum = diagSum + A(k,k); 
       cdiagSum = cdiagSum + A(k,n-k+1); 
   end  

    
   if diagSum == u & cdiagSum == u  
      for i = 1:n  
          for j = 1:n 
              rowSum = rowSum + A(i,j); 
              columnSum = columnSum + A(j,i); 
          end 
              if rowSum ~= u | columnSum ~= u 
                 disp('The matrix is not magic square') 
                 break 
              end 
          rowSum = 0; columnSum = 0;     
      end  
   else 
       disp('The matrix is not magic square') 
   end 

    
   if i == n; 
       disp('The matrix is magic square') 
   end 
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(ii) Regular Magic Square 

 function []= isRegularMagicSquare(A,n) 
   % Description: This function checks if an nxn matrix A is whether 
   %              regular magic square or not. 
   % Usage: []= isRegularMagicSquare(A,3), for n=3, for example. 

     
   i = 1; j = 1;  
   rowSum = 0; columnSum = 0; diagSum = 0; cdiagSum = 0; 
   u = (n^3 + n)/2; 

    
   for k = 1:n 
       diagSum = diagSum + A(k,k); 
       cdiagSum = cdiagSum + A(k,n-k+1); 
   end  

    
   if diagSum == u & cdiagSum == u  
      for i = 1:n  
        for j = 1:n 
            rowSum = rowSum + A(i,j); 
            columnSum = columnSum + A(j,i); 
        end 
            if rowSum ~= u | columnSum ~= u 
               disp('The matrix is not regular magic square.') 
               break 
            end 
        rowSum = 0; columnSum = 0;     
      end  
   else 
       disp('The matrix is not regular magic square.') 
   end 

    
   if i == n 
       for i = 1:n 
           for j = 1:n 
               if A(i,j) + A(n-i+1,n-j+1) ~= n^2 + 1 
                  disp('The matrix is not regular magic square.') 
                  break 
               end  
           end  
       end 
   end 

    
   if i == n 
       disp('The matrix is regular magic square.') 
   end 
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5.2.6 Power Method 

function x = PowerMethod(A,x0,error) 
%Description: This function returns an approximation of the 

eigenvector 
%             corresponding to the dominant eigenvalue within an error 
%             bound. 
%Usage: x = PowerMethod(A,x0,error) 

  
    [N] = size(A); n = N(1,1); 
    y = x0; normdif = 0; 
    for i = 1:n 
        x = y; 
        xi = A*y; 
        y = xi; 
        norm_of_difference = norm(y,1)-norm(x,1);   
        if lt(norm_of_difference,error)   
            x = y 
            break 
        end 
    end 
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Chapter 6 

Conclusions and Future Work 

        This thesis focused on rank-one perturbations of matrices and their effects on 

centrosymmetric and Laplacian matrices. Properties of perturbed matrices that have 

been studied include determinants, eigenvalues and eigenvectors. The thesis also incl-

uded MATLAB programs for some techniques that were studied and applications of 

rank-one perturbations. 

        Recently, the importance of rank-one perturbed matrices and their applications 

have increased significantly. That is why we will continue our work and try to gener-

alize theorem stated in the thesis. 
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