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Abstract

In this work, we study computational methods for solving general one, two and three dimen-

sional nonlinear Fredholm-Volterra Integral Equations of the second kind Using Chebyshev

Approximation. The method is based on replacement unknown functions by truncted se-

ries of well known Chebyshev expantion function. The final result will be compared with

published experimental and theoritical results. Further, in order to find the approximated so-

lution, the Fredholm-Volterra integral Equation of the second kind is converted to a system of

non-linear equation using the Chebyshev approximation. Finally, many numerical examples

were provided to demonstrate the applicability and the accuracy of the presented method.
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Introduction

The integral equation is the one in which the unknown function U(x) appears inside an inte-

gral sign [41]. The most standard form among all the forms of the integral equation is [31,41]:

U(x) = f (x)+λ

∫ h(x)

g(x)
k(x, t)U(t)dt, (1)

λ is considered as constant parameter, g(x) , h(x) are the limits of integration, and k(x, t) is a

known function of two variables x and t which is called the kernel of the integral equation.

The unknown functionU(x) can be seen inside the integral sign or outside it, where the bound-

aries may be constants, variables, or mixed.

There are a lot of forms for the integral equations, but there are two distinct forms depend on

the integral boundaries. The boundaries of integration can define the type of integral equa-

tions as follows [41] :

1. If the limits of integration are fixed numbers, the integral equation is called a Fredholm

integral equation FIE [12] :

U(x) = f (x)+λ

∫ b

a
k(x, t)U(t)dt (2)

where a and b are constants.

2. If at least one limit is a variable, the equation is called Volterra Integral Equation (VIE)

[41]:

U(x) = f (x)+λ

∫ x

a
k(x, t)u(t)dt (3)

There are two distinct types based on the appearance of the unknown function U(x)

[31, 41] :
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(a) If the unknown function U(x) appears only under the integral sign of Fredholm or

Volterra equation, the integral equation is called a first kind Fredholm or Volterra

integral equation as:

f (x) = λ

∫ b

a
k(x, t)U(t)dt (4)

and

f (x) = λ

∫ x

a
k(x, t)U(t)dt (5)

(b) If the unknown function U(x) appears both inside and outside the integral sign

of Fredholm or Volterra equation, the integral equation is called a second kind

Fredholm or Volterra equation integral equation as:

U(x) = λ

∫ b

a
k(x, t)U(t)dt (6)

and

U(x) = λ

∫ x

a
k(x, t)U(t)dt (7)

Another way to classify integral equations is according to linearity and homo-

geneity, and these two types play a major role in the form of solutions. Now, we

highlight these two types:

If U(x) is linear, the integral equation is called linear,other wise it is nonlinear.

In all Fredholm or Volterra integral equations presented above, if f (x) is identi-

cally zero, the resulting equations are:

U(x) = λ

∫ b

a
k(x, t)U(t)dt (8)
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and

U(x) = λ

∫ x

a
k(x, t)U(t)dt (9)

is called homogeneous equation.

The Volterra-Fredholm integral equations arise from parabolic boundary value problems,

from the mathematical modelling of the spatio-temporal of an epidemic, and form various

physical and biological model [1, 30, 41] .

The general form of Fredholm-Volterra equations as [1, 41]:

U(x) = f (x)+λ1

∫ x

a
K1(x, t)U(t)dt +λ2

∫ b

a
K2(x, t)U(t)dt. (10)

It’s notable that the integral equations contain mixed of Volterra and Fredholm. More-

over, the unknown function U(x) appear inside and outside all of the integral signs.

If U(x)is linear, the integral equation is called linear,other wise it is nonlinear. We say that

the integral equation of the second kind is homogeneous if the function f(x) equals to zero,

otherwise it is non-homogeneous.

There are many ways to solve integral equations including analytical and numarical meth-

ods [4, 13, 23]. These analytical methods include: the Adomian decomposition method, the

modified decomposition method, the succcessive approximations, the series solution method

and the conversion to initial value problem [36]. Many numerical methods exist to solve

the integral equations in the one, two and three dimensions. like the two-dimensional tri-

angular functions and their applications to nonlinear 2D Volterra–Fredholm integral equa-

tions [6], the numerical solution of two-dimensional Volterra integral equations by colloca-

tion and iterated collocation methods [8],extrapolation method of iterated collocation solu-

tion for two-dimensional nonlinear Volterra integral equations [20],a new differential trans-

formation approach for two-dimensional Volterra integral equations [21] ,solving a class of
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two-dimensional linear and nonlinear Volterra integral equations by the differential trans-

form method [40] ,applying the modified block-pulse functions to solve the three-dimensional

Volterra–Fredholm integral equations [15] , a numerical method for solving Fredholm–Volterra

integral equations in two-dimensional spaces using block pulse functions and an operational

matrix [5],a computational method for solving a class of two dimensional Volterra integral

equations [7], the numerical solution of nonlinear two-dimensional Volterra-Fredholm inte-

gral equations of the second kind based on the radial basis functions approximation with error

analysis [11],a new numerical method for solving two-dimensional Volterra-Fredholm inte-

gral equations [16],applying the modified block-pulse functions to solve the three-dimensional

Volterra–Fredholm integral equations [32], two-dimensional legendre wavelets and their ap-

plications to integral equations [38],a matrix based method for two dimensional nonlin-

ear Volterra-Fredholm integral equations [24], a new method based on Haar wavelet for

the numerical solution of two-dimensional nonlinear integral equations in [27],a computa-

tional method based on hybrid of block-pulse functions and Taylor series for solving two-

dimensional nonlinear integral equations [33], numerical solution of a class of two-dimensional

nonlinear Volterra integral equations using Legendre polynomials [35], application of trian-

gular functions to numerical solution of stochastic Volterra integral equations [28],applica-

tions of two-dimensional triangular functions for solving nonlinear class of mixed Volterra-

Fredholm integral equations [29].

In this research, we have extended the method of solving nonlinear Fredholm-Volterra in-

tegral equations of the second kind using Chebyshev approximation in [17] ,in which the

first dimension of the Fredholm-Volterra nonlinear integral equation of the second kind was

solved. The general idea of the solution is converting the equation into systems of non-linear

equations.

In chapter one, we present general concepts like Clenshaw-Curtis Quadrature, Newton’s
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Method for System of Nonlinear Equations, and Orthogonal Polynomials. In chapters three,

four and five, Chebyshev Polynomial, Approximation with Cebyshev Polynomial , method

of solution of one ,two, and three dimensional Fredholm-Volterra integral equations, and

numerical example are presented.



6

Chapter One

Preliminaries

In this chapter, we will present the basic terms that will be used throughout this work:Inner

product, Orthognality of Polynomyals,Discrete Chebyshev transforms, The product opera-

tional matrix, Newton’s Method for system of nonlinear equation,and Clenshaw-curtis quadra-

ture.

1.1 Inner Product

Recall that if u, and v are two vectors in vector space, then the inner product < u,v > is a

function satisfying the following conditions [18, 25, 43] :

1. < u+ v,w >=< u,w >+< v,w >, where w is a vector.

2. < u,v >=< v,u >

3. < u,u >≤ 0 with equality if and only if u = 0

4. < Ku,v >= K < u,v >, K is scalar

Throughout this work, we will deal with real valued functions defined on a finite interval

[a,b]. The inner product of two functions f and g on an interval [a,b] is the number < f ,g >

given by [25, 43] :

< f ,g >=
∫ b

a
f (x)g(x)dx
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1.2 Normed spaces

Definition 1.1. [10] Let X be a vector space over IK . A norm on X is a map

‖.‖ : X −→ [0,∞) that satisfies the following three properties.

1) ‖x‖= 0 implies x = 0

2) ‖λx‖= |λ |.‖x‖ for x ∈ X and λ ∈ IK.

3) ‖x+ y‖ ≤ ‖x‖+‖y‖.

A normed space is a pair (X ,‖.‖) where X is a vector space and ‖.‖ is a norm on X .

1.3 Chebyshev Equations

Definition 1.2. [3, 39] The Chebyshev equation is given by:

(1− x2)y′′ − xy′ +λ
2y = 0 (11)

of which 0 is an ordinary point.

1.4 Chebyshev Polynomial

In this chapter we give definition and properties of chebyshev polynomials (CHP) in one-

dimensional space.

Definition 1.3. [2, 14] If t = cos(θ)(0≤ θ ≤ π), the function

Tn(t) = cos(nθ) = cos(ncos−1t) ,

is a polynomial of t of degree n where (n = 0,1,2, ...), Tn is called the Chebyshev Polynomial
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of degree n when θ in crease from 0 to π , t decreas from 1 to −1,Then the interval [−1,1] is

domain of definition of Tn(t).

Also, that (CHP) are derived from the following recursive formula [2, 14, 17, 37]:

T0(t) = 1 (12)

T1(t) = t (13)

T(n+1)(t) = 2tTn(t)−T(n−1)(t),n = 1,2,3, ... (14)

Definition 1.4. [31] The Chebyshev polynomial Un(x) of the second kind is a polynomial of

degree n in x defined by:

Un(x) =
sin(n+1)θ

sinθ
when x = cosθ (15)

The ranges of x and θ are the same as for Tn(x). Elementary formulae give

sin1θ = sinθ , sin2θ = 2sinθcosθ , sin3θ = sinθ(4cos2
θ −1),

sin4θ = sinθ(8cos3
θ −4cosθ), ....

so that we see that the ratio of sine functions (15) is indeed a polynomial in cosθ , and we

may immediately deduce that

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2−1, U3(x) = 8x3−4x,

Coefficients of all polynomials up to degree n.
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1.4.1 Orthogonality of Chebyshev polynomials

Definition 1.5. [19] A locally integrable function on IRn that takes values in the interval

(0,∞) almost everywhere is called a weight. So by definition a weight function can be zero

or infinity only on a set whose Lebesgue measure is zero.

Definition 1.6. [31] Two functions f (x) and g(x) in L2[a,b] are said to be Orthogonal on the

interval [a,b] with respect to a given continuous and non-negative weight function w(x) if:

∫ b

a
w(x) f (x)g(x)dx = 0 (16)

And to make it clear, we use the "inner product" notation,

< f ,g >=
∫ b

a
w(x) f (x)g(x)dx = 0 (17)

An inner product defines an L2− type norm:

|| f ||= || f ||2=
√
< f , f > (18)

We shall adopt the inner product (17) (with various weight functions) and the associated L2

norm (18). We shall in particular be concerned with families of orthogonal polynomialsφi(x), i = 0,1,2, ...

where φi is of degree i exactly, defined so that:

< φi,φ j >= 0,(i 6= j) (19)

Clearly, since w(x) is non-negative,

< φi,φi >= ||φi||2> 0. (20)
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we say that the family is orthonormal if, in addition to (78), the functions φi(x) satisfy [31]:

||φi||= 1, f or all i (21)

1.4.2 Chebyshev polynomials as orthogonal polynomials

If we define the inner product (17) using the interval and weight function [17, 31]:

[a,b] = [−1,1], w(x) =
1√

1− x2
(22)

then we find that the first kind Chebyshev polynomials satisfy [31]:

∫ 1

−1
Ti(x)Tj(x)w(x)dx =


0 if i 6= j

π/γi if i = j

where,

γi =


1 if i = 0

2 if i≤ 0,

In order to prove that,

< Ti,Tj >=
∫ 1

−1

Ti(x)Tj(x)√
1− x2

dx =
∫

π

0
cos iθ cos jθdθ (23)

shown by setting x = cosθ and using the relations, Ti = cosiθ and,

dx =−sinθdθ =−
√

1− x2dθ

Now, for i 6= j,

∫
π

0
cos iθ cos jθdθ =

1
2

∫
π

0
[cos(i+ j)θ + cos(i− j)θ ]dθ
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1
2
[
sin(i+ j)θ

i+ j
+

sin(i− j)θ
i− j

]π0 = 0

Hence,

< Ti,Tj >= 0,(i 6= j,) (24)

and Ti(x), i = 0,1, ... forms an orthogonal polynomial system on [−1,1] with

respect to the weight
1√

1− x2
. The norm of Ti is given by [31]

||Ti||2=< Ti,Ti >

=
∫

π

0
(cos iθ)2dθ

=
1
2

∫
π

0
(1+ cos2iθ)dθ

=
1
2
[θ +

sin2iθ
2i

]π0 , (i 6= 0)

=
π

2
(25)

While,

||T0||2=< T0,T0 >=< 1,1 >= π (26)

The system Ti is therefore not orthonormal. We could, if we wish, scale the polynomials to

derive the orthonormal system [31]

1
π

T0(x),
2
π

Ti(x), i = 1,2, ..., (27)

but the resulting irrational coefficients usually make this inconvenient. It is simple in par-
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tice to adopt the Ti we defined initially, taking note of the values of their norms (25).

1.5 Discrete Chebyshev transforms and the fast Fourier transform

Using the values of a function f (x) at the extrema yk of Tn(x). given by [31]:

yk = cos(
kπ

n
),(k = 0, ...,n) (28)

we can define a discrete Chebyshev transform

f̂ (yk) =

√
2
n

n

∑
j=0

′′Tk(yi) f (yi),(k = 0, ...,n). (29)

Where the double prime indicate that the first and the last term of the summation should be

halved, values of f̂ (yk) are in fact proportional to the coefficients in the interpolant of f (yk)

by a sum of Chebyshev polynomials.

Using the discrete orthogonality, namely [31]

n

∑
k=0

′′Ti(yk)Ti(yk) =


0 if i 6= j; i, j ≤ n

n
2

if 0 < i = j < n

n if i = j = 0or n

We can easily deduce that the inverse transform is given by

f (yi) =

√
2
n

n

∑
k=0

′′Tk(yi) f̂ (yk), ( j = 0, ...,n). (30)
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In fact, since

Tk(y j) = cos
jkπ

n
= Tj(yk) (31)

which is symmetric in j and k, it is clear that the discrete Chebyshev transform is self-inverse

It is possible to define other forms of discrete Chebyshev transform, based on any of the other

discrete orthogonality relations.

The discrete Chebyshev transform defined here is intimately connected with the discrete

Fourier (cosine) transform. Defining

φk =
kπ

n
(32)

(the zeros of sinnθ ) and

g(θ) = f (cosθ), ĝ(θ) = f̂ (cosθ) (33)

then

ĝ(φk) =

√
2
n

n

∑
j=0

′′ cos
jkπ

n
g(φi),(k = 0, ...,n). (34)

Where the double prime indicate that the first and the last term of the summation should be

halved.

Since cosθ and therefore g(θ) are even and 2π− periodic functions of φ , (34) has alternative

equivalent expressions [31]

ĝ(
kπ

n
) =

√
1
2n

n

∑
j=−n

cos(
jkπ

n
)g(

jπ
n
),(k =−n, ...,n). (35)
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or

ĝ(
kπ

n
) =

√
1

2n

n

∑
j=−n

exp(
i jkπ

n
)g(

jπ
n
),(k =−n, ...,n). (36)

or

ĝ(
kπ

n
) =

√
1

2n

2n−1

∑
j=0

exp
i jkπ

n
g(

jπ
n
),(k = 0, ...,2n−1). (37)

The formulas (36) and (37) define the general discrete Fourier transform, applicable to func-

tions g(φ) that are periodic but not necessarily even.

1.6 Taylor Expansion

Definition 1.7. [9] Suppose that f (x) has a power series expansion at x = a with radius of

convergenceR > 0, then the series expansion of f (x) takes the form

f (x) =
∞

∑
n=0

f (n)(a)
n!

(x−a)n = f (a)+ f ′(a)(x−a)+
f (2)(a)

2!
(x−a)2 + ... (38)

that is, the coefficient cn in the expansion of f (x) centered at x = a is precisely cn =
f (n)(a)

n!
.

The expansion (38) is called Taylor series.
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1.7 Newton’s Method for System of nonlinear equations

One of the repetitive methods used to solve nonlinear systems of algebraic equations is the

Newton Rphson method. The system of n- nonlinear equations in n unknowns is given by:

f1(x1,x2, ...,xn) = 0

f2(x1,x2, ...,xn) = 0

...

fn(x1,x2, ...,xn) = 0

This system can be written using a single form as [25] :

F(X) = 0

where X =



x1

x2

...

xn


and F =



f1

f2

...

fn


,0 is the zero vector. (39)

As in newton method of one variable, we need to start with an initial guess X0. Theoretically,

the more variables one has, the harder it is to find the initial guess. In practice, that must

be overcomed by reasonable assumptions about the possible values of the solution. Once X0

is chosen, let ∆X = X1−X0, then it can be approximated around the vector X0 using Taylor

expansion as follows:

F(X0 +∆X)≈ F(X0)+ J(F(X0))∆X , (40)
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where

J =
∂ ( f1, f2, ..., fn)

∂ (x1,x2, ...,xn)

=



∂ f1
∂x1

∂ f1
∂x2

... ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

... ∂ f2
∂xn

...
... . . . ...

∂ fn
∂x1

∂ fn
∂x2

... ∂ fn
∂xn


,

J is called the Jacobian.

Newton’s method is based on constructing of a sequence of vectors that converges to X , such

that F(X) = 0. Let F be a continuously differentiable function at X0, and the target is to

find X that makes F(X) equal to the zero vector. If X = X0 represents the first guess for the

solution, successive approximations to the solution are obtained from [26]

Xn+1 = Xn− J−1(F(Xn))F(Xn)

with Xn+1 = ∆X +Xn.

A convergence criterion of the solution of the system of nonlinear equations could be ,for

example, that the maximum of the absolute values of the function fi(Xn) is smaller that a

certain tolerance ε ,

Maxi| fi(Xn)|< ε

Another possibility for convergence is that the magnitude of the vector F(Xn) be smaller than
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the tolerance

|F(Xn)|< ε

We can also use the difference consecutive values of the solution [25, 26]

Maxi|(Xi)n+1− (Xi)n|< ε

or

|∆X |= |Xn+1−Xn|< ε

.

1.8 Clenshaw-Curtis Quadrature Formula

In [12], Clenshaw and Curtis set a formula for integration of f as follow:

∫ 1

−1
f (x)dx≈

N

∑
k=0

′′wk f (cos
nkπ

N
) (41)

where

wk =
4
N

N

∑
even
n

′′ 1
1−n2 cos(

nkπ

N
), (42)

and the double prime means that the first and the last term of the summation should be halved.

Lemma 1.1 The Clenshaw-Curtis formula of 2D is given by:

∫ 1

−1

∫ 1

−1
f (x,y)dxdy≈

N

∑
k=0

′′
M

∑
l=0

′′wkal f (cos(
nkπ

N
),cos(

mlπ
M

)) (43)
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where,

wk =
4
N

N

∑
even
n

′′ 1
1−n2 cos(

nkπ

N
),

al =
4
M

M

∑
even
n

′′ 1
1−n2 cos(

nlπ
M

), (44)

Proof:

∫ 1

−1

∫ 1

−1
f (x,y)dxdy =

∫ 1

−1

(∫ 1

−1
f (x,y)dx

)
dy

According to equation (42), we get:

∫ 1

−1

(∫ 1

−1
f (x,y)dx

)
dy =

∫ 1

−1

( N

∑
k=0

′′wk f (cos(
nkπ

N
),y))

)
dy =

=
N

∑
k=0

′′
M

∑
l=0

′′wkal f (cos(
nkπ

N
),cos(

mlπ
M

))

where,

wk =
4
N

N

∑
even
n

′′ 1
1−n2 cos(

nkπ

N
),

al =
4
M

M

∑
even
n

′′ 1
1−n2 cos(

nlπ
M

), (45)

Lemma 1.2 The Clenshaw-Curtis formula in 3D is:

∫ 1

−1

∫ 1

−1

∫ 1

−1
f (x,y,z)dxdydz≈

N

∑
k=0

′′
M

∑
l=0

′′
L

∑
m=0

′′wkalbm f (cos(
nkπ

N
),cos(

mlπ
M

), f (cos(
nmπ

L
))

(46)

where,

wk =
4
N

N

∑
even
n

′′ 1
1−n2 cos(

nkπ

N
),
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al =
4
M

M

∑
even
n

′′ 1
1−n2 cos(

nlπ
M

), (47)

bm =
4
L

M

∑
even
n

′′ 1
1−n2 cos(

nmπ

M
), (48)

Proof:

∫ 1

−1

∫ 1

−1

∫ 1

−1
f (x,y,z)dxdydz) =

∫ 1

−1

(∫ 1

−1

(∫ 1

−1
f (x,y,z)dx

)
dy
)

dz

According to equation (42), we get:

∫ 1

−1

(∫ 1

−1

(∫ 1

−1
f (x,y,z)dx

)
dy
)

dz≈
∫ 1

−1

(∫ 1

−1

( N

∑
k=0

′′wk f (cos(
nkπ

N
),y,z)

)
dy
)

dz (49)

=
∫ 1

−1

( N

∑
k=0

′′
M

∑
l=0

′′ wkal f (cos(
nkπ

N
),cos(

mlπ
M

),z)
)

dz (50)

=
N

∑
k=0

′′
M

∑
l=0

′′
L

∑
m=0

′′wkalbm f (cos(
nkπ

N
),cos(

mlπ
M

), f (cos(
nmπ

L
)) (51)

where,

wk =
4
N

N

∑
even
n

′′ 1
1−n2 cos(

nkπ

N
),

al =
4
M

M

∑
even
n

′′ 1
1−n2 cos(

nlπ
M

), (52)

bm =
4
L

M

∑
even
n

′′ 1
1−n2 cos(

nmπ

M
), (53)
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,

Chapter Two

One-Dimensional Nonlinear Fredholm-Volterra Integral

Equation

In this chapter, we present a numerical solution of nonlinear one dimensional Fredholm-

volterra Integral Equation of the second kind 1D−FV IE of the form [17]

U(x) = f (x)+λ1

∫ x

0
K1(x, t)y(t,U(t))dt +λ2

∫ 1

0
K2(x, t)g(t,U(t))dt,0≤ x, t ≤ 1 (54)

where U(X) is an unknown function, f (x),y(t,U(t)), and g(t,U(t)) are continous functions

on [−1,1].

The nonlinear Fredholm-Volterra integral equation FV IE arises from varios phisical and bi-

ological models . The essential features of these models are of wide applications [42]. As

result of this type of problems, there numerical solution becomes very difficult to reach.

2.1 Approximation With Chebyshev Polynomial

Chebyshev polynomyals are important in numerical anlysis and approximation theory. A

function U(t) over [−1,1] may be represented by Chebyshev Polynomials series as [17, 31,

37] :

U(t) =
∞

∑
i=0

CiTi(t) (55)



21

If the infinite series in (55) is truncated, then (55) can be written as:

U(t)≈
N

∑
i=0

CiTi(t) (56)

= T (t)TC, (57)

where,

T (t) = [T0(t),T1(t), ...,TN(t)]T (58)

and,

C = [c0,c1, ...,cN ]
T (59)

and,

ci =
γi

π

∫ 1

−1
U(t)Ti(t)w(t)dt (60)

Also, w(t) is the weight function.

2.2 Method of solution

consider the nonlinear integral equation (54). we start to approximate U(t) as equation (57).

then we substitute (57) into equation (54)to get:

CT T (x) = f (x)+λ1

∫ x

0
K1(x, t)y(t,CT T (t))dt +λ2

∫ 1

0
K2(x, t)g(t,CT T (t))dt, (61)

In order to use Gaussian integeration formula for equation (61) , we transfer the intervals

[0,xi] into interval [−1,1] by transformations :
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τ1 =
2t
xi
−1 (62)

τ2 = 2t−1,

For Chebyshev polynomial we consider the Collocation points:

xi = cos(
iπ
N
) (63)

where, i = 0,1, ...,N, Let

H1(x, t) = K1(x, t)y(t,CT T (t)),

and,

H2(x, t) = K2(x, t)g(t,CT T (t)),

Now, we use Colloction points (63) in transformed equation (61), to get:

CT T (xi) = f (xi)+λ1
xi

2

∫ 1

−1
H1(xi,

xi(τ1 +1)
2

)dτ1 +
λ2

2

∫ 1

−1
H2(xi,

(τ2 +1)
2

)dτ2, (64)

Now, using Clenshaw-Curtis quadratrure formula, we get [12] [17] :

CT T (xi) = f (xi)+
N

∑
k=0

′′wk[λ1
xi

2
H1(xi,

xi(xk +1)
2

)+
λ2

2
H2(xi,

(xk +1)
2

)] (65)

for i = 0, ...,N, and k = 0, ...,N where

wk =
4
N

N

∑
even
n

′′ 1
1−n2 cos(

nkπ

N
), (66)

Where the double prime means that the first and the last term of the summation should be

halved [12] .
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The resulting system of equation consists of an equation of number (65) N +1 in addition to

an unknown N+1 This system can be solved in the usual by iterative method such as simplex

method or Newton Raphson method or any other method.

We can used The Fast Fourier Transform (FFT) techniqueto evaluate the summation part in

(66) in O(NlogN) operations. In fact the discrete cosine transformation of the vector v with

entries [12] :

vn =


2

1−n2 if neven

0 if nodd.

The weights wk there fore is computed directly in O(N logN) operations,this will be the faster

computation when we integrate functions in (64) using the same value of N.

2.3 Numerical Examples

In this section, we will present several illustrative examples and use our suggested method to

solve these examples. All our calculations were using the Matlab programming. Our stan-

dard of accuracy is the maximum absolute error.

Example 1. Consider the following 1D nonlinear Fredholm integral equation given in [17] :

U(x) = exp(1)x+1
∫ 1

0
(x+ t)eU(t)dt, (67)

The exact solution is U(t) = t.

The numerical solution for this problem is given in the following tables and figures.

The following tables show the exact solution, estimation, and the absolute error ||U −UN ||2

in some point of [0,1]
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Table 1: The numerical solution at N=2

t Estimation Error

0.1 0.098372 0.001628

0.2 0.19849 0.0015069

0.3 0.29861 0.0013857

0.4 0.39874 0.0012646

0.5 0.49886 0.0011434

0.6 0.59898 0.0010223

0.7 0.6991 0.00090111

0.8 0.79922 0.00077996

0.9 0.89934 0.0006588

1 0.99946 0.00053765

T he max error = 0.0017492 at N = 2
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The exact and numerical solution at N=2

Figure 1: The exact and numerical solution at N=2

Table 2: The numerical solution at N=4

t Estimation Error

0.1 0.1 1.4099e-06

0.2 0.2 1.2961e-06

0.3 0.3 1.1823e-06

0.4 0.4 1.0686e-06

0.5 0.5 9.548e-07

0.6 0.6 8.4103e-07

0.7 0.7 7.2726e-07

0.8 0.8 6.1349e-07

0.9 0.9 4.9972e-07

1 1 3.8595e-07

This approximations show the accuracy of the Chebyshev Approximation method to solve

equation number (67) at N = 4, and the max error = 1.5237e−06.
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The exact and numerical solution at N=4

Figure 2: The exact and numerical solution at N=4

Table 3: Thenumerical solution at N=6

t Estimation Error

0.1 0.1 5.7158e-10

0.2 0.2 5.6673e-10

0.3 0.3 5.6194e-10

0.4 0.4 5.572e-10

0.5 0.5 5.5252e-10

0.6 0.6 5.4782e-10

0.7 0.7 5.4304e-10

0.8 0.8 5.3803e-10

0.9 0.9 5.3259e-10

1 1 5.2643e-10

This approximations show the accuracy of the Chebyshev Approximation method to solve

equation number (67) at N = 6, and the max error = 5.57649e−10.
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The exact and numerical solution at N=6

Figure 3: The exact and numerical solution at N=6

Table 4: The numerical solution at N=8

t Estimation Error

0.1 0.1 1.1263e-13

0.2 0.2 1.0172e-13

0.3 0.3 9.1704e-14

0.4 0.4 8.3544e-14

0.5 0.5 7.6938e-14

0.6 0.6 7.0499e-14

0.7 0.7 6.2172e-14

0.8 0.8 5.0071e-14

0.9 0.9 3.6859e-14

1 1 3.4639e-14

This approximations show the accuracy of the Chebyshev Approximation method to solve

equation number (67) at N = 8, and the max error = 1.2336e−13.
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The exact and numerical solution at N=8

Figure 4: The exact and numerical solution at N=8

Table 5: The numerical solution at N=10

t Estimation Error

0.1 0.1 1.1668e-09

0.2 0.2 1.2915e-09

0.3 0.3 1.4172e-09

0.4 0.4 1.5436e-09

0.5 0.5 1.6701e-09

0.6 0.6 1.7956e-09

0.7 0.7 1.9199e-09

0.8 0.8 2.0444e-09

0.9 0.9 2.1706e-09

1 1 2.2943e-09

This approximations show the accuracy of the Chebyshev Approximation method to solve

equation number (67) at N = 10, and the max error = 2.2943e−09.
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The exact and numerical solution at N=10

Figure 5: The exact and numerical solution at N=10

Example 2. Consider nonlinear 1D−FV IE given in [17]:

U(x) = 2cos(x)−2+3
∫ x

0
(x− t)u2(x)dt +

6
7−6cos1

∫ 1

0
(1− t)cos2(x)(t +U(t))dt, (68)

The exact solution is U(x) = cos(x).

and,

Fig. presents the approximate solution computed by the for N = 2,4,6,8,10. Table shows

the numerical results given by the Chebyshev Approximation method.
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The exact and numerical solution at N=2

Figure 6: The exact andnumerical solution at N=2

Table 6: The numerical solution at N=2

t exact Estimation Error

0 1 0.98005 0.01995

0.1 0.995 0.97491 0.020093

0.2 0.98007 0.95949 0.020572

0.3 0.95534 0.9338 0.021536

0.4 0.92106 0.89783 0.023232

0.5 0.87758 0.85158 0.026003

0.6 0.82534 0.79505 0.030283

0.7 0.76484 0.72825 0.036593

0.8 0.69671 0.65117 0.04554

0.9 0.62161 0.56381 0.057803

1 0.5403 0.46617 0.074132

T he max error = 0.074132 at N = 2
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The exact and numerical solution at N=4

Figure 7: The exact and numerical solution at N=4

Table 7: The numerical solution at N=4

t exact Estimation Error

0 1 0.99968 0.00031679

0.1 0.995 0.99469 0.0003155

0.2 0.98007 0.97975 0.00031433

0.3 0.95534 0.95502 0.00032087

0.4 0.92106 0.92071 0.00034611

0.5 0.87758 0.87718 0.00040199

0.6 0.82534 0.82484 0.00049794

0.7 0.76484 0.76421 0.00063657

0.8 0.69671 0.6959 0.00080846

0.9 0.62161 0.62062 0.00098609

1 0.5403 0.53919 0.0011171

T he max error = 0.0011171 at N = 4
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The exact and numerical solution at N=6

Figure 8: The exact and numerical solution at N=6

Table 8: The numerical solution at N=6

t exact Estimation Error

0 1 1 5.2402e-07

0.1 0.995 0.995 4.8862e-07

0.2 0.98007 0.98007 4.1516e-07

0.3 0.95534 0.95534 3.8546e-07

0.4 0.92106 0.92106 4.8602e-07

0.5 0.87758 0.87758 7.5065e-07

0.6 0.82534 0.82533 1.1147e-06

0.7 0.76484 0.76484 1.4152e-06

0.8 0.69671 0.69671 1.4801e-06

0.9 0.62161 0.62161 1.359e-06

1 0.5403 0.5403 1.7553e-06

This approximations show the accuracy of the Chebyshev Approximation method to solve

equation number at N = 6, and the max error = 1.7553e−06.
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The exact and numerical solution at N=8

Figure 9: The exact and numerical solution at N=8

Table 9: The numerical solution at N=8

t exact Estimation Error

0 1 1 6.5873e-10

0.1 0.995 0.995 5.1267e-10

0.2 0.98007 0.98007 2.6756e-10

0.3 0.95534 0.95534 3.2755e-10

0.4 0.92106 0.92106 9.0288e-10

0.5 0.87758 0.87758 1.6876e-09

0.6 0.82534 0.82534 1.9752e-09

0.7 0.76484 0.76484 1.3631e-09

0.8 0.69671 0.69671 6.5323e-10

0.9 0.62161 0.62161 1.5749e-09

1 0.5403 0.5403 2.4589e-09

This approximations show the accuracy of the Chebyshev Approximation method to solve

equation number 68 at N = 8, and the max error = 2.4589e−09.
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Table 10: The numerical solution at N=10

t exact Estimation Error

0 1 1 3.3714e-08

0.1 0.995 0.995 3.4201e-08

0.2 0.98007 0.98007 3.567e-08

0.3 0.95534 0.95534 3.8156e-08

0.4 0.92106 0.92106 4.1709e-08

0.5 0.87758 0.87758 4.6382e-08

0.6 0.82534 0.82534 5.2206e-08

0.7 0.76484 0.76484 5.9159e-08

0.8 0.69671 0.69671 6.7131e-08

0.9 0.62161 0.62161 7.5899e-08

1 0.5403 0.5403 8.5078e-08

This approximations show the accuracy of the Chebyshev Approximation method to solve

equation number 68 at N = 10, and the max error = 8.5075e−08.
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Chapter Three

Two-Dimensional Nonlinear Fredholm-Volterra Integral

Equation

In this chapter, we present a computational method for solving tow-dimensional nonlinear

Fredholm-Volterra integral equations, 2D−FV IE of the second kind [6] ;

U(x, t) = f (x, t)+λ1

∫ t

0

∫ x

0
K1(x, t,y,z,U(y,z))dydz

+λ2

∫ 1

0

∫ 1

0
K2(x, t,y,z,U(y,z))dydz,(y,z) ∈ D (69)

where U(x, t) is an unknown scalar valued function on D = ([0,1]× [0,1]).

The function K1(x, t,y,z,U(y,z)) and K2(x, t,y,z,U(y,z)) are give function define on:

W = {(x, t,y,z,U) : 0≤ x≤ s≤ 1,0≤ y≤ t ≤ 1},

For convenience, we put:

K1(x, t,y,z,U(y,z)) = K1(x, t,y,z)[U(y,z)]p

K2(x, t,y,z,U(y,z)) = K2(x, t,y,z)[U(y,z)]q

Where p and q are positive integer , moreover, f (x, t) is a known function defined on D.
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3.1 Two-Dimensional Chebyshev polynomial

we defined an (N +1)2 set of Two-Dimensional Chebyshev polynomial by considering one-

dimensional chebyshev polynomial as [37]:

Ti j = Ti(x)Tj(t), i, j = 0,1, ...,N (70)

Therefore, the Two-Dimensional Chebyshev polynomial basis vector is [37]:

T (x, t) = [T0(x)T0(t),T0(x)T1(t), ...,T0(x)TN(t),T1(x)T0(t), ...,TN(x)TN(t)]T

= (AN⊗BN)
T

where,

AN = [T0(x),T1(x), ..,TN(x)]

and,

BN = [T0(t),T1(t), ..,TN(t)]

are one dimensional chebyshev polynomial vectors. The orthogonanality property for these
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polynomials with respect to the weight function [37],

w(x, t) =
1

(
√

1− x2)(
√

1− t2)

on the interval [−1,1]× [−1,1] is;

(Ti, j(x, t),Tk,i(x, t))w(x,t) =
∫ 1

−1

∫ 1

−1

Ti, j(x, t)Tk,i(x, t)dxdt

(
√

1− x2)(
√

1− t2)

=



π2/4 if i = k 6= 0, j = l 6= 0

π2/2 if i = k = 0, j = l 6= 0

π2/2 if i = k 6= 0, j = 1 = 0

π2 if i = k = 0, j = 1 = 0

0 if else

3.2 approximation with chebyshev polynomial

In this chapeter, we give definitions and properties of chebyshev polynomial (CHD) in two

dimensional space.

Definition 3.8. [2] suppose U(x, t) be a continous function on [−1,1]× [−1,1] for a given

natural number N,M, we set:
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U(x, t) = ∑
N
i=0 ∑

M
j=0 ai jTi(x)Tj(t) (71)

(x, t) ∈ [−1,1]× [−1,1]

where,

ai j =
< Ti(x),<U(x, t),Ti(t)>>

< Ti(x),Ti(x)>< Ti(t),Tj(t)>
(72)

and < ., . > denotes the inner product space in L2([−1,1]× [−1,1]).

3.3 Method of solution

suppuse that U(x, t) be a continous function on [−1,1]× [−1,1] a give natural number N,M

we set:

U(x, t) =
∞

∑
i=0

∞

∑
j=0

ai jTi(x)Tj(t), (x, t) ∈ [−1,1]× [−1,1] (73)

If the infinite seriese in (73) is truncated, then 73 can be written as:

U(x, t)≈
N

∑
i=0

M

∑
j=0

ai jTi(x)Tj(t), (x, t) ∈ [−1,1]× [−1,1] (74)

where N,M is any Natural number,

i = 0, ...N
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and

j = 0, ...,M

now, substitute (74) into (69) to get:

N

∑
i=0

M

∑
j=0

ci jTi(x)Tj(t) = f (x, t)

+λ1

∫ t

0

∫ x

0
k1(x, t,y,z,

N

∑
i=0

M

∑
j=0

Ci jTi(y)Tj(z)))dydz

+λ2

∫ 1

0

∫ 1

0
k2(x, t,y,z,

N

∑
i=0

M

∑
j=0

Ci jTi(y)Tj(z)))dydz (75)

Then, we transfere the intervals [0, tm], [0,xn] and [0,1] into interval [−1,1] by transforma-

tions:

α1 =
2
xn

y−1 (76)

β1 =
2
tm

z−1

α2 = 2y−1

β2 = 2z−1

now, for (CHP) we consider the colloction points:

xn = cos(
nπ

N
), n = 0, ...,N

tm = cos(
mπ

M
), m = 0, ...,M (77)
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then, let H1(x, t,y,z) = k1(x, t,y,z,∑N
i=0 ∑

M
i=0Ci jTi(y)Tj(z))

and

H2(x, t,y,z) = k2(x, t,y,z,∑N
i=0 ∑

M
i=0Ci jTi(y)Tj(z))

now, we used transformed equations (76 ) we obtain

N

∑
i=0

M

∑
j=0

Ci jTi(x)Tj(t) = f (x, t)

+
λ1xt

4

∫ 1

−1

∫ 1

−1
H1(x, t,

x
2
(α1 +1),

1
2
(β1 +1))dα1dβ1 (78)

+
λ2

4

∫ 1

−1

∫ 1

−1
H2(x, t,

1
2
(α2 +1),

1
2
(β2 +1))dα2dβ2

using collocation points (77) in transformed equation (78) , we get:

then we used Clenshaw-Curtis formela to get:

N

∑
i=0

M

∑
j=0

Ci jTi(xn)Tj(tm) = f (xn, tm)

+
N

∑
k=0

′′
M

∑
l=0

′′wkal[
λ1xntm

m
(H1(xn, tm,

xn

2
(xk +1),

tm(tl +1)
2

))

+
λ2

4
H2(xn, tm,(

xk +1
2

),(
tl +1

2
)]

where,

n = 0, ...,N

,

m = 0, ...,M

k = 0, ...,N
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l = 0, ...,M

and,

wk =
4
n

N

∑
even
n

′′ 1
1−n2 cos(

nkπ

N
)

al =
4
M

M

∑
even
m

′′ 1
1−m2 cos(

mkπ

M
) (79)

and the double prime indicate that the first and the last term of the summation should be

halved.

Note that the obtained system from the previous equations contains(N +1)× (M+1) of the

equations and also contains the same number of unknown, and these equations can be solved

by Newton Raphson’s method or any other method.

3.4 Numerical Result

In this section, we will present several illustrative examples and use our suggested method to

solve these examples.All our calculations were using the Matlab programming. Our standard

of accuracy is the maximum absolute error.

Example 3. Consider nonlinear 2D−FV IE given in [6]:

U(x, t) = f (x, t)−
∫ 1

0

∫ 1

0
(xt + yz2)U(y,z)dydz−

∫ x

0

∫ t

0
(x+ t + y+ z)[U(y,z)]2dydz,

where f (x, t) = x2 +
1
4
+

17
6

Xt +
7
9

X3t4 +
29
18

X4t3 +
6
5

X5t2 +
11
30

x6t, which has the exact

solution U(x, t) = x2 +2xt. We solve this example at N = M = 3,4,6,8. Consider the
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following tables:

Table 11: The numerical solution at N=M=3

T he max error = 0.0099657 at N = M = 3

Table 12: The numerical solution at N=M=4

N=M=4

T he max error = 0.0011171 at N = M = 4
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Table 13: The numerical solution at N=M=6

N=M=6

T he max error = 0.0011171 at N = M = 6

Table 14: The numerical solution at N=M=8

N=M=8

T he max error = 0.0011171 at N = M = 8
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Example 4. Consider nonlinear 2D−FV IE given in [6]:

U(x, t) = f (x, t)+16
∫ 1

0

∫ 1

0
e(x+t+y+z)[U(y,z)]3dydz+

∫ x

0

∫ t

0
[U(y,z)]dydz,

where, f (x, t) = 2es+t+4− es+t+8− es+tes + et−1, with the exact solution U(x, t) = es+t

We solve this example at N = M = 4,5,6,7,8. Consider the following tables:

Table 15: The numerical solution at N=M=4

T he max error = 0.0032144 at N = 4



45

Table 16: The numerical solution at N=M=5

N=M=5

This approximations show the accuracy of the Chebyshev Approximation method to solve

equation number 68 at N = M = 5, and the max error = 0.00026305.

Table 17: The numerical solution at N=M=6

This approximations show the accuracy of the Chebyshev Approximation method to solve
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equation number 68 at N = M = 6, and the max error = 1.8535e−05.

Table 18: The numerical solution at N=M=7

This approximations show the accuracy of the Chebyshev Approximation method to solve

equation number 68 at N = M = 7, and the max error = 1.1462e−05.

Table 19: The numerical solution at N=M=8
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N=M=4

N=M=5
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N=M=6

N=M=7
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N=M=8
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Chapter Four

Three-Dimensional Nonlinear Fredholm-volterra Integral

Equation

In this chapter, we present a numerical method for the solution of nonlinear

Three-Dimensional Fredholm-Volterra Integral Equation, 3D−FV IE of the second kind of

the form:

U(x,y,z) = f (x,y,z)+λ1

∫ z

0

∫ y

0

∫ z

0
K1(x,y,z,r,s, t,U(r,s, t))drdsdt

+λ2

∫ 1

0

∫ 1

0

∫ 1

0
K2(x,y,z,r,s, t,U(r,s, t))drdsdt (80)

where U(x,y,z) is an unknown scalar valued function on D = [0,1]× [0,1]× [0,1].

The functions K1(x,y,z,r,s, t,U(r,s, t)) and K2(x,y,z,r,s, t,U(r,s, t)) are given functions we

put:

K1(x,y,z,r,s, t,U(r,s, t)) = K1(x,y,z,r,s, t)[U(r,s, t)]p

.

K2(x,y,z,r,s, t,U(r,s, t)) = K2(x,y,z,r,s, t)[U(r,s, t)]q

. where p and q are postive integer,moreover, f (x,y,z) is a knowm function define on D.
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4.1 Three-Dimensional Chebyshev Polynomial

In this chapter, by considering 2D−CHP, we define an (N +1)3 set of three-dimensional

chebyshev polynomial 3D−CHPas:

4.2 Approximation With Chebyshev Polynomial

Definition 4.9. [22,34] suppose that U(x,y,z) be a continious function on [−1,1]× [−1,1]×

[−1,1] for give natural numbers L,M,N, we set

U(x,y,z)≈
L

∑
i=0

M

∑
j=0

N

∑
k=0

Ci jkTi(x)Tj(y)Tk(z) (81)

where N is any natural number.

4.3 Method of solution

consider the nonlinear integral equation (80), at first we approximate U(x,y,z) as (88) :

U(x,y,z)≈
L

∑
i=0

M

∑
j=0

N

∑
k=0

Ci jkTi(x)Tj(y)Tk(z) (82)

then we substitute this approximation into equation (80) to get:
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L

∑
i=0

M

∑
j=0

N

∑
k=0

Ci jkTi(x)Tj(y)Tk(z) = f (x,y,z)

+λ1

∫ z

0

∫ y

0

∫ x

0
k1(x,y,z,r,s, t,

L

∑
i=0

M

∑
j=0

N

∑
k=0

Ci jkTi(r)Tj(s)Tk(t))dsdrdt

+λ2

∫ 1

0

∫ 1

0

∫ 1

0
k2(x,y,z,r,s, t,

L

∑
i=0

M

∑
j=0

N

∑
k=0

Ci jkTi(r)Tj(s)Tk(t))dsdrdt (83)

now, we trasfer the intervals [0,xl], [0,ym], [0,zn] and [0,1] into [−1,1] by transformitions:

α1 =
2
xl

r−1 (84)

β1 =
2

ym
s−1

γ1 =
2
zn

t−1

α2 = 2r−1

β2 = 2s−1

γ2 = 2t−1

then for chebyshev polynomils we consider the cocollection points
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xl = cos(
lπ
L
), i = 1, ...,L (85)

ym = cos(
mπ

M
),m = 0, ...,M

zn = cos(
nπ

N
),n = 0, ...,N

let,

H1(x,y,z,r,s, t) = k1(x, ,y,z,r,s, t,
L

∑
i=0

N

∑
j=0

M

∑
z=0

Ci jkTi(x)Tj(y)Tk(z))

and,H2(x,y,z,r,s, t) = k2(x, ,y,z,r,s, t,
L

∑
i=0

N

∑
j=0

M

∑
z=0

Ci jkTi(x)Tj(y)Tk(z)) (86)

(87)

using transformed equation (84) we get,

L

∑
i=0

N

∑
j=0

M

∑
k=0

Ci jkTi(x)Tj(y)Tk(z) = f (x,y,z)

+
λ1xyz

8

∫ 1

−1

∫ 1

−1

∫ 1

−1
H1(x,y,z,

x(α1 +1)
2

,
y(β1 +1)

2
,
x(γ1 +1)

2
)dα1dβ1dγ1

+
λ2

8

∫ 1

−1

∫ 1

−1

∫ 1

−1
H2(x,y,z,

α2 +1
2

,
β2 +1

2
,
γ2 +1

2
)dα2dβ2dγ2 (88)
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using collocation points (85) in transformed equation (88) , we get:

L

∑
i=0

N

∑
j=0

M

∑
z=0

Ci jkTi(xl)Tj(ym)Tk(zm) = f (xl,ym,zn)

+
λ1xlymzn

8

∫ 1

−1

∫ 1

−1

∫ 1

−1
H1(xl,ym,zn,

xl(α1 +1)
2

,
ym(β1 +1)

2
,
zn(γ1 +1)

2
)dα1 dβ1 dγ1

+
λ2

8

∫ 1

−1

∫ 1

−1

∫ 1

−1
H1(xi,ym,zn,

α2 +1
2

,
β2 +1

2
,
γ2 +1

2
)dα2 dβ2 dγ2 (89)

now, we use clenshaw-curtis quadraturs formela, to get:

L

∑
i=0

M

∑
j=0

N

∑
k=0

Ci jkTi(xl)Tj(ym)Tk(zn) = f (xl,ym,zn)

+
L

∑
a=0

′′
M

∑
b=0

′′
N

∑
c=0

′′waζbξc[
λ1xlymzn

8
Hi(xl,ym,znxl(

xa +1
2

),
ym(yb +1)

2
,
zn(zc +1)

2
)

+
λ2

8
H2(xl,ym,zn,

xa +1
2

,
yb +1

2
,
zc +1

2
)] (90)

f or i = 0, ..., l

j = 0, ...,M

k = 0, ...,N

a = 0, ...,L

b = 0, ...,M

c = 0, ...,N



55

and,

wa =
4
L

∑
L
even
n=0
′′ 1

1−n2 cos(
naπ

L
)

ζb =
4
M

∑
M
even
n=0
′′ 1

1−n2 cos(
nbπ

M
)

ξc =
4
N

∑
N
even
n=0
′′ 1

1−n2 cos(
ncπ

M
)

(91)

Where the double prime indicate that the first and the last term of the summation should be

halved. Note that the obtained system from the previous equations contains

(N +1)× (M+1)× (L+1) equations and also contains the same number of unknown.

These equations can be solved by Newton Raphson’s method or any other method
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5 Conclusions

In the presented method, one, two, and three-dimensional nonlinear FVIE of the second

kind are transformed into a system of nonlinear equation using Chebyshev polynomial of

the first-kind. The Chebyshev method used to approximate the solution of the problem. The

approximated non-linear FVIE of the second-kind is transformed to a non-linear system of

algebraic equations with unknown coefficients which is solved using Newton’s method.

The applicability and accuracy of the method have been checked by some examples in one

and two dimensional FVEI. It was noticed that the method gives more accurate results than

the methods presented even when we use a small number of basis functions.

As a future work, the method can be used also for the three dimensional case. In chapter

four of this thesis, the theoretical back of the future work has been done.
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