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Abstract 

The main issues of Intrusion Detection Systems (IDS) are the sensitivity of these systems 

toward the errors and the inconsistent and inequitable ways in which the evaluation 

processes of these systems were often performed. Most of the previous efforts concerned 

about improving the overall accuracy of these models via increasing the detection rate and 

decreasing the false alarm which is truly important. However, even they improved the 

overall accuracy of these systems; they almost fell in the accuracy paradox phenomena. 

Machine Learning (ML) algorithms mostly classifies all or most the records of the minor 

classes to one of the main classes with negligible impact on performance. The seriousness 

of the threats caused by the minor classes and the short coming of the previous efforts were 

used to address this issue in addition to the need for improving the performance of the IDSs 

were the motivations for this work. In this thesis, stratified sampling method and different 

cost-function schemes were consolidated with both Support Vector Machine (SVM) and 

Extreme Learning Machine (ELM) methods to build competitive ID solutions that 

improved the performance of these systems and reduced the occurrence of the accuracy 

paradox problem. This, while ensuring a consistent and fair evaluation of the performed 

experiments. The main experiments were performed on NSL-KDD dataset while that the 

UNB ISCX2012 dataset was used to proof the concept. The experimental results of NSL-

KDD dataset showed that the ten-fold Gaussian radial base function (RBF) kernel WSVM 

model was better than Ji et al. Multi-Level ID method models, it was the most stable one 

and it had better performance than the multi-level SVM model in all rounds and the multi-
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level neural network (NN) model in most rounds. They also showed that the optimized 

Gaussian RBF kernel with two-fold SVM model was better performance than Al-Yaseen at 

el. Multi-level hybrid SVM and ELM models in overall accuracy, recall and F-score. Also, 

it competed the best model of Fossaceca et al. MARK-ELM in DoS and R2U classes and it 

had better performance in the Probing and U2R classes. While the experimental results of 

UNB ISCX2012 dataset showed that the optimized Gaussian RBF with WSVM was better 

than the polynomial kernel SVM model in the recent thesis in the overall accuracy in 

addition to all F-score values except the Botnet F-Score. The better F-score of the botnet 

that achieved by the previous thesis experiments on a random selected subset did not reflect 

better performance on that set because the weakness of the experiments. 
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1 Introduction 

With the growth of computer networks and the increase of the services that offered by the 

computing systems, the need to maintain the reliability, integrity, and availability of these 

systems is increasing, this makes the security of these systems more important. On the other 

hand, the attackers increased the directed attacks on these systems which become a serious 

problem [1]. The operations of cyber-attacks able to cause significant economic damage to 

both public and private companies and organizations, thus attacks the national security of 

any country [2]. There is also a greater complexity of Intrusion attacks due to the 

exponential growth of mobile devices and cloud environments. 

Intrusion detection (ID) in cyberspace is multi-disciplinary problem. One side of the 

problem is a cybersecurity problem, and the other side is the statistical, Knowledge-Based 

and ML fields that represent the factories that produce the pool of solutions, this thesis 

interests in the ML solutions of the ID problem. The security problem becomes more 

complicated because of the high connectivity of the world via the Internet. Deep looking for 

the communication, computer network systems, protocols, and services which represent the 

backbone of the Internet shows the wide distributions of the flaws for most computing 

components. These flaws represent the reason for previous, current and future attacks. Part 

of this fact presented in [3] which included a list of security flaws in the TCP stack 

protocols.  

The ID solutions are categorized into one of three common methodological categories [4]. 

The first category called misused or signature-based IDS, in this approach, either different 

normal and different abnormal known rules or patterns are captured in training phase from 
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labeled data, and then the generated models are used to make a prediction for the unseen 

data. Although these models get high accuracy for detecting known and some variant of 

know attacks, they fail in detecting zero-day attacks. The second category is anomaly-based 

IDS, it is based on the closed world assumption [5], which assumes the capability to capture 

the complete normal behaviors in the training phase, and then the developed models are 

used to measure the deviation from the normal behavior in the testing phase to predict the 

unseen data as normal or anomalies. This approach success in detecting the zero-day 

attacks, but with total accuracy less than the preceding one. The Third one is the hybrid 

approach which combines both previous approaches in one model. 

The network ID field has wide set of open issues, some of them will be illustrated in the 

following few paragraphs. Firstly, the scalability issue for ML algorithm or any other tools 

that used to solve the ID problem. Computer networks generate huge volume of traffic 

which is increasing more and more due to the expansion of the Internet services, increasing 

the mobile devices and the movement toward internet of things (IoT) technology [6]. 

Secondly, it is related to labeling the records collected from the traffic correctly. This 

process needs extra efforts from experts to label the traffic correctly. It increases the need to 

benefit from the huge size of unlabeled records beside the correct labeled records. 

Third, this issue related to anomaly detection method, it is about the inability of the data 

collector to aggregate a pure set that includes all variant of either normal traffic or abnormal 

traffic in case that the zero-day or newly attacks are renewable. This is summarized with the 

impossibility to have the close world in our domain. The question is if the incremental 

learning by the ML algorithm can address this dilemma that based on the closed world 

assumption which is impractically in our domain. 
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Fourth, it is a multifaceted issue that this thesis focused on, it is about the sensitivity of the 

IDS toward the errors. Most works in this field concerned about increasing the detection 

rate and decreasing the false alarm rate (FAR) in order to improve their system accuracy [7] 

[8]. Even the number of misclassified records is little, in huge traffic; it represents a big 

problem for the clients of network services if the normal traffic treats as an anomaly, and it 

makes a big headache for network administrators to treat a huge amount of false alarms. On 

the other hand, the exact detection of abnormal traffics helps the system administrator to 

solve the problem easily. Most studies either fail to predict like [9] or predict with an 

insufficient accuracy of the minor classes like  user to remote (U2R) and remote to local 

(R2L) classes in the NSL-KDD dataset; even they had succeeded in improving the overall 

accuracy, this phenomenon called accuracy paradox [10]. The detection of the minor attacks 

will be a crucial issue [11] if it is related to minor attacks that have high level of security as 

U2R and R2L in the NSL-KDD dataset. 

In this thesis, we are interested in improving the accuracy of IDSs for the new attacks and 

mitigating the existence of accuracy paradox problem. So, two weighted algorithms which 

are SVM and Extreme Machine Learning (ELM) with different weight schemes, stratified 

sampling and with optimizing for some parameters of these algorithms were consolidated to 

solve this problem. WSVM is an effective algorithm than any other algorithm when dealing 

with any training subset contains many more samples than the others. Also, WELM is the 

fast and simple NNs that solve the time consuming iterative process in feedforward neural 

networks (FFNN). Furthermore, the evaluation phase was processed in consistent and fair 

way, it was taken into account the data selection reasons and the way of performing 

different tests. 
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These experiments were performed on two benchmark datasets which are the NSL-KDD 

and UNB ISCX2012. The NSL-KDD dataset is used to apply the main experiments while 

the UNB-ISCX2012 dataset is used to apply the support experiments. The NSL-KDD is 

public benchmark dataset [12]; it is an improved version of the KDDCup99 dataset, which 

is the most frequently used benchmark dataset in this field. It includes labeled records from 

five classes which are Normal, Denial of Service Attacks (DoS), Probing, R2L, and U2R 

categories. Even there is a gap between the nature of traffic aggregated in this dataset and 

the contemporary real traffic, it is still the most important general benchmarked dataset on 

one hand and the points we are focusing on to address are existing in our set comparting 

with the real traffic on the other hand. For this work scope, this dataset is sufficient leaving 

behind the former open points to address in other locations. The UNB ISCX 2012 was 

suggested to perform the verification experiments, it is a benchmark dataset that includes 

real-time contemporary traffic for normal and attack behaviors. It is generated 

systematically so this makes it modifiable, extendable, and reproducible dataset. It includes 

four type of attack scenarios which are inside network infiltration, Hypertext Transfer 

Protocol (HTTP) denial of service, IRC Botnet Distributed Denial of Service Attacks 

(DDoS), Brut force SSH.  

These are some of the open issues in this field and there are others included in literature. 

They prevent a lot of these efforts, especially that developed using anomaly-based methods 

to deploy in operational real-world environments [5]. The awareness of the pressing needs 

to improve powerful and dynamics security tools that protect the contemporary computing 

systems emphasis the great interest of researchers of both communities to improve the 

IDSs.  
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1.1 Objective 

The objectives of this thesis are to improve the accuracy of IDSs for the new attacks and to 

mitigate the existence of accuracy paradox problem. This phenomenon appears as a result 

of existing small classes in any dataset. Some of these minor classes have serious effects on 

the security of computing systems as U2R and R2L attacks. As well we concerned in 

performing the evaluation of the performed experiments in consistent and fair way. 

1.2 Contribution 

This thesis presented several ID solutions on NSL-KDD and UNB ISCX2012 datasets, 

these solutions were evaluated in consistent and fair way with a set of new preceding works 

that intersect with our interest and very close to our tests. With regard to NSL-|KDD 

dataset, both algorithms had better performance than two of three works, even that the third 

work got better results in overall accuracy, G-mean, and F-score of the normal class; our 

models can compete them in DoS and R2U classes and it does better in the Probing and 

U2R classes. Regards to UNB ISCX2012 dataset, both algorithms with best-optimized 

parameter had better performance in the overall accuracy and in F-score of all classes 

except the botnet. This does not reflect better performance in this class, because the 

experiments on the previous works performed once on a randomly selecting subset while 

our results represent the average of ten round on different ten randomly selecting subsets. 

1.3 Overview 

The remainder of this thesis is arranged as the following. In Chapter 2, will present a 

background that includes the dataset description of the NSL-KDD and UNB ISCX2012 
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datasets, then a literature review that includes works in the multiple class classification 

solutions of the ID problem and others included some techniques used to treat the 

unbalanced class problem. Chapter 3 presents the methodology that includes the dataset 

selection considerations firstly. Secondly, a brief description of the preprocessing phase is 

included; the stratified sampling method is illustrated as a part of the preprocessing phase. 

Thirdly, Both WSVM and WELM algorithms are explained, different weight schemed are 

illustrated to be combined with both algorithms. Finally, different concepts and metrics of 

the accuracy are introduced. Then in Chapter 4, all experiments on both NSL-KDD and 

UNB ISCX2012 datasets are illustrated, and the summary of results are included. They 

include the selection considerations of normalization method, the selection of best kernel, 

regularization parameter 𝐶 and weight scheme that were used with WSVM to perform our 

experiments, in addition to the selection of best number of hidden layer neurons 𝐿, 𝐶, 

activation function and weight scheme that were used with WELM to perform our 

experiments. The best models for each dataset are evaluated with new other works that 

intersect in concern with this thesis. After that, some conclusion and future works will be 

presented in Chapter 5. Finally, the appendix part includes the results of all experiments 

that were performed on NSL-KDD and UNB ISCX 2012 datasets to optimize some 

parameters of WSVM and WELM models. 
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2 Background  

The fact that both internal and external users to the context of the network they can connect 

locally or remotely increases considerably the probability of attacks, for this they have been 

developed different tools and strategies, both in hardware and software, to detect intrusions. 

As example firewalls tool restrict service of unknown traffic [4]. IDSs were used to detect 

the attacks, in this work we will use ML methods to detect attacks with a certain percentage 

of accuracy. So, we will conduct experiments on some well-known ID datasets 

2.1 Datasets Description: 

There are still shortages in the available datasets in ID domain in spite of the great efforts 

were exerted in this field [13] [14], Some important datasets in the ID field are KDD-

CUP99, NSL-KDD, UNB ISCX 2012 and Kyoto University dataset. we selected the NSL-

KDD and UNB ISCX2012 dataset to perform our experiments due to some reasons that will 

be illustrated in section 3.1. 

2.1.1 NSL-KDD Dataset 

NSL-KDD dataset [15] is an improved version of KDDCUP99 public simulated benchmark 

dataset, it includes only the distinct records of the mother set. This selection solves the 

biasing problem that appears during training and evaluating any learning method. 

Furthermore, this makes the dataset size is reasonable; this facilitates performing the 

experiments on the complete dataset without the need to get some subsets randomly. This 

increases the ability to evaluate the different models in consistent and fair manner.  
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It consists of five categories. The first category is the normal traffic. The others represent 

abnormal traffic which falling into one of the following categories: 

1. Denial of service attacks (DoS): They are the most frequent attacks, which based on 

generating huge amounts of offensive and aggressive traffics in order to saturate the 

targeted computing components; this would be lost the rights of legitimate users. 

2. Probing attacks:  they represent the first step of any adversary behaviors. At these 

attacks, the efforts concentrate on gathering information about the different 

components of the targeted cyberspace. 

3. Remote to local attacks (R2L) are made to get illegal root privilege in the targeted 

component.  

4. User to remote attacks (U2R) are the remotely accessing the target by the 

penetrative local accounts via internal flaws like operating system flaws. 

All these types of traffic are represented by 41 features that fall into three groups. They are 

basic features which were extracted from TCP/IP protocols records, the time-based features 

and content features which important for detect R2L and U2R attacks like login status. 

The complete NSL-KDD records are included in the following files: 

1. KDD-Train+: This file includes records suggested as a training set. 

2. KDD-Test+: This file includes records suggested as a testing set. 

The records of both files were used as one big set in this thesis. The Figure 2.1 shows the 

numbers of records for each category in this complete set of data and clarify the existence 

of the minor classes in this set.  
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2.1.2 UNB ISCX 2012 ID Evaluation Dataset 

It is an ID evaluation dataset; it was created by Information Security Centre of Excellence 

(ISCX) [14]. A systematic approach was used to generate the modifiable, extendable, and 

reproducible dataset. In this approach, two different profiles α and β were generated; each 

one included a presentation set of normal or attack behaviors or event of the real and 

modern networks. They were the key to make these set modifiable, extendable and 

producible. They have included a description for generating real traffic related to FTP, 

HTTP, IMAP, POP3, SMTP and SSH protocols.  

 
Figure 2.1: A chart illustrates the number of records for each category in the NSL-KDD 

dataset. 

The dataset was generating during seven days, three days of them included only normal 

traffic while remain days included one scenario of attack for each in addition to the normal 

traffic. The four types of attacks that scenarios were deployed are inside network 

infiltration, HTTP denial of service, IRC Botnet DDoS, Brut force SSH. The traffic 

represented by 19 features, these features were listed in Table 2.1, the Tag feature was used 

for dataset labeling, it was used to distinguish between the normal and the attack traffic. 

DoS

53385

Normal 

77053 Probing

14077

R2L 

3549

U2R

452Others, 4001
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The record will classify by distinct the day that the attacks appeared in. So, all the attacks 

appeared on the day of the inside network filtration scenario and they were classified as 

attacks they will be classified as inside network filtration attacks and so on. The distribution 

of the records in the days which included attacks scenarios illustrates in the Table 2.2. 

Table 2.1:The UNB ISCX 2012 features List.  

Main 

features 

Application Name Total Source Bytes 

Total Destination Bytes Total Destination Packets 

Total Source Packets Direction 

Source TCP Flags Description Destination TCP Flags Description 

Protocol Name Source Port 

Destination Port Tag 

Accumulative  

and 

redundant 

features 

Time Start Time End 

sourcePayloadAsBase64 sourcePayloadAsUTF 

destinationPayloadAsBase64 destinationPayloadAsUTF 

dataroot_Id  

It is clear that there are a sufficient number of records for each attack class, and there is a 

tremendous number of normal records.   

Table 2.2: The distribution of the records in the UNB ISCX 2012 set in the days which 

included attack scenarios 

The days named by the attack scenarios Attack Normal 

Infiltrating the network from inside 20358 255170 

HTTP Denial of Service 3776 167604 

Distributed Denial of Service using an IRC Botnet 37460 534238 

Brute Force SSH 5219 392376 

Sum of the records 66813 1349388 
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2.2 Related works 

ID problem has a great interest from the researchers; part of these efforts concentrated on 

review the problem from different point of view, one of the recent surveys [16] studied four 

categories of anomaly ID methods, they are classifications, statistical, information theory, 

and clustering. It founds that classifications and clustering outperformed in detecting DoS 

attacks, while statistical technique outperformed in U2R and R2L attacks. It focused on the 

lack of the public datasets that used in network intrusion system. The Mchine learning 

community suggests many tricks to solve the deficiency of its models in predicting the 

small classes like U2R and R2L classes of ID problem, it is the problem was mentioned in 

section 1. Different approaches suggested [17, 18] to solve the imbalanced classes like 

resampling techniques and algorithmic approach. The oversampling and undersampling are 

the common two resampling methods in literature while the cost function was added to 

different ML algorithms to address it’s sensitivity to imbalanced classes. Different cost 

functions suggested in both works and applied with Neural Networks [18] and Extreme 

machine learning (ELM) [17] algorithms. In the last work, ELM neural network solved the 

time-consuming process on the FFNNs by initializing the weight of the hidden layer 

randomly, the proposed algorithm is fast, simple and has the capability to support different 

kernels with the small size dataset. Both preceding works concluded that using different 

weight scheme will improve the prediction of the small classes in the used dataset. In this 

thesis, different weight schemes will be tested with two different algorithms, one of them is 

the WELM that referenced in [17].  



14 

Several Network ID models proposed and tested in the last decade, these models were built 

based on the KDDCup99 or one of an improved set from KDDCup99 like NSL-KDD. Most 

of these efforts concentrated on either making normal or abnormal record prediction or 

multi-class classification prediction. On the other hand, a few efforts tried to build sub-

models like in [19], where the proposed model distinguished between the Scanning 

networks threats and normal traffic based on selected records of NSL-KDD.  It used PCA as 

statistical feature reduction method and Multilayer Perceptron Neural Network (MLPNN) 

as a binary class classification model. The Authors in [20] proposed a hybrid model for 

detecting different classes of DoS attacks. In this model, Particle Swarm Optimization 

algorithm used as feature selection methods, then it used SVM to build a model for 

predicting the different classes of DoS attacks. These efforts and others go with the advice 

that recommended narrowing the scope of the ID problem [5] in order to reduce the FAR 

when building the ML models. Our work aimed to solve the complete problem which 

makes these works out of the scope.  

To compare the performance of the supervised or unsupervised ML models as ID solutions, 

the authors in [21] have built a framework and made a number of experiments. They 

demonstrate that supervised learning model do better if the test data contain known or 

variant of known attacks. While both have close performance in dataset contains unknown 

attacks. The suggested semi-supervised learning as promise solution. With the same 

hypothesis, the authors in [22] proposed a semi-supervised model based on NLS-KDD 

dataset as an enhanced version of the KDDCUP’99 dataset.  The main goal of this efforts is 

to evade from the heavy and extensive works need from experts to correctly label the 
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complete traffic while they preserve the good performance that caused by using the 

sufficient amount of Label data. 

The authors in [23] have built multi-level hybrid classification model based on an improved 

set include non-redundant 10% KDDCup99 subset. They have combined between Extreme 

Machine Learning (EML) and SVM algorithm in order to improve the accuracy of the 

model and reduce the execution time. In order to decrease the execution time, they have 

deployed the ELM algorithm and they have sampled the data using a modified version of 

K-means clustering algorithm to get the best representative data. Although they have made 

some improvement of total prediction accuracy which was 95.75%, they have occurred in 

the accuracy paradox which clearly shown in the bad prediction accuracy result achieved 

for the minor classes U2R and R2L which was 21.9% and 31.39% sequentially. 

Another kind of hybrid models was introduced in literature for our problem, but at this time, 

it was combined multiple kernels together [24]. Multiple Adaptive Reduced Kernel Extreme 

Machine Learning Model (MARK-ELM) was proposed. This work proposed a framework 

which used AdaBoost method to combine each set of Reduced Kernel Multi-class ELM 

models in order to increase the detection accuracy and decrease the false alarm. Twelve 

combined models were performed, seven of them got greater than 99% accuracy in total, 

but only one of them got greater than 30% for U2R class and it got 60.87%, which confirm 

the existence of accuracy paradox problem in these experiments. 

Another multi-level ID model was proposed in [9]. It passed through three phases. In the 

first phase, the categorical records were used to generate a set of rules to binary normal, 

abnormal prediction using the well-known Classification and Regression Trees (CART) 
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algorithm. The second phase included building three predictive model using SVM, Naïve 

Bases, and NNs in order to determine the exact attacks categories for only three of the 

attacks, while U2R attacks excluded because of the insufficient amounts of records, this 

confirms the existence of the imbalanced class problem. In this phase, it used both the row 

data features once and the features were generated using Discrete Wavelet Transformation 

(DWT) methods in again, the models were built using the last set of features performed 

better than the features of raw data. In the last phase, it deployed visual analytical tool 

called iPCA to perform visual and reasonable analysis of the results. This is a remarkable 

suggestion or solution for the recommendation assigned in [5] about the clearance of the 

interpretation of the result at evaluation step of our problem. 

Many efforts performed to generate benchmark contemporary and real-time traffic dataset, 

one of these done by ISCX. A systematic approach was used to generate modifiable, 

extendable, and reproducible dataset [14] which is known as UNB ISCX2012. It includes 

real traffic related to FTP, HTTP, IMAP, POP3, SMTP and SSH protocols. UNB 

ISCX2012 dataset includes four types of attacks in addition to the normal traffic, these 

attacks are inside network infiltration, HTTP denial of service, IRC Botnet DDoS, Brut 

force SSH. The new thesis [25] used the UNB ISCX2012 dataset to build multiple class 

classification solution for the ID problem. The SVM with Gaussian radial base function 

(RBF) and polynomial kernels, MLPNN and Naïve Based algorithms are deployed to build 

different models. The SVM with polynomial kernel had the best performance than others. 

There are two remarks related to this work, the first, the number of records of this dataset as 

it is included in this thesis is inconsistent with the real number of records of the UNB ISCX 

dataset. The thesis assumed that the number of records of Botnet and DoS attacks equals 5 
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and 40 sequentially, while the correct number of these classes are 37460, 3776 sequentially. 

Second, “All the tests were carried out on the same training and testing dataset” which a 

subset was selected randomly with respect to the huge classes. The performance of these 

experiments is not fair to reflect the correct performance of that algorithm on this dataset or 

on any other subset else. 

A lot of ML algorithms were used, and many tricks and enhancements also were deployed 

in order to improve the ID solutions, they could increase the detection rate and also 

decrease the false alarms in total but they failed to detect the rare but serious attacks.  

In this work, we have deployed two weighted algorithms, which are SVM and Extreme 

Machine Learning (ELM) with different weight schemes, stratified sampling and with 

optimizing for some parameters of these algorithms are consolidate to improve the accuracy 

of IDSs for the new attacks and mitigate the existence of accuracy paradox problem. 
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3 The Proposed Method 

In this chapter, the proposed method is illustrated, it aims to improve the predicting 

accuracy of the small and serious classes of the ID problem co-occurrence with preserve the 

overall accuracy. It starts with emphasizing the datasets selection considerations. Then, it 

illustrates different preprocessing steps which include datatype portability, data cleaning, 

feature selection and the stratified sampling. Next, it illustrates the deployed models which 

are the WSVM and WELM, they used to implement ID solutions. Finally, it includes 

different metrics that were used in the evaluation process. 

3.1 Dataset Selection Considerations 

There are still shortages in the available datasets in ID domain in spite of the great efforts 

were exerted in this field [14] [13]. These datasets are divided into two categories which are 

simulated-based datasets and real-time datasets. Most the considerable public benchmarked 

datasets are simulated-based datasets, they cannot reflect the nature of the contemporary 

traffic and there is no possibility to modify or extend or reproduce these old datasets. The 

public real-time datasets often subject to heavy anonymization in order to preserving the 

privacy. The dataset anonymization is a process of hiding the critical data of these sets like 

payload content, real IP-addresses, and others. CAIDA (2011), and LBNL are an example 

of public real-time datasets which they are heavily anonymized and totally removed 

payload. Furthermore, most datasets suffer from labeling problem regards the correctness or 

the completeness. 

Some of the important datasets in the ID field are KDD-CUP99, NSL-KDD, UNB ISCX 

2012 and Kyoto University dataset. KDDCUP99 is the main public simulated benchmark 
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dataset which is still used for a lot of recent researches [20] [23] [24], although the gap 

between the characteristics of the contemporary traffic and the records were included in this 

dataset. KDDCUP99 dataset suffers from a large number of redundant records in both 

training and testing sets. They are the cause of unwanted biasing in both training and 

evaluation processes. To overcome the unwanted biasing problem in the mother dataset. 

Several improved versions of KDDCUP99 were selected like 10 percent KDDCUP99 and 

NSL-KDD dataset. The NSL-KDD dataset was generated as an improved version of it is 

origin which includes only distinct records with reasonable size. The reasonable size of 

NSL-KDD dataset improves the evaluation consistency and efficiency for this set than any 

other dataset. Furthermore, the dataset includes two small classes, this is evident from 

Figure 2.1. It is an important and sufficient selection at this scope, so it was suggested to 

perform the primary experiments in this thesis.  

 
Figure 3.1: The records distribution of the selected sets of UNB ISCX 2012 dataset to build 

the secondary experiments. 

To verify the proposed model, it was nessessary to select other dataset. But, we are 

interested in selecting a contemporary and real-time dataset. So, the UNB ISCX 2012 

suggested to perform the verification experiments. It is a benchmark dataset, and it is 
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included real-time contemporary traffic for normal and attack behaviors. It is generated 

systematically so this made it modifiable, extendable, and reproducible dataset. To proof 

the proposed idea, we performed the secondary experiments based on the general method in 

this thesis using the complete records of all attacks in addition to some randomly selected 

normal subsets that have the same size of attacks records, these subsets have small classes. 

This is evident from Figure 3.1 which is shown the distribution of the records for that 

subsets. 

3.2 Preprocessing Phase 

Data preprocessing includes many steps [26] that depend on the nature of the data. 

Different preprocessing sub-steps were used; they included data-type portability, data 

cleaning, feature selection and the stratified sampling. 

3.2.1 Main Preprocessing Steps 

The NSL-KDD dataset consists of set of features that fall into three types which are 

Nominal, Numerical and Binary. None of them were excluded. It was observed that it did 

not have missing data, the numeric features did not follow balanced scale and the data was 

labeled into five classes which are Normal, DOS, Probing, U2R, and R2L. 

UNB ISCX 2012 ID Evaluation Dataset consists of 19 features, they listed in Table 2.1. As 

a feature selection step, the cumulative and redundant records were excluded. So, only the 

main 12 features were used in our experiments. The selected features fall into two 

categories which are nominal and numerical features. The nominal features converted to 

numeric features. Most features did not follow balanced scale, so, they treated using data 

cleaning method. The generated tag feature refers to one of the following classes which are 
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Normal, inside network infiltration, HTTP DoS, IRC Botnet DDoS and Brut force SSH 

classes. Knowing that, this dataset was collected in seven days, only four of them included 

attacks scenarios, one class per day. 

This phase started with converting the nominal or categorical data to sequential numeric 

values as data-type portability step. Then the imbalance scale of the features was addressed 

using two common methods [26] in data cleaning phase: 

1. Standardization: It is one of the common data transformation methods, it reproduces 

the data for each feature to have zero mean and unity variance, it is represented 

using the following equation: 

 zi
j
=  

xi
j
− μj

σj
 3.2.1 

Where μj: is the mean of the feature j, σj is the standard deviation of the feature j 

and xi
j
 is the j attribute of the ith records. 

2. Min-Max Scaling method: It scales all attributes into [0,1] range and it is 

represented using the following equation: 

 yj
i = 

xj
i − minj

maxj − minj
 3.2.2 

Where {maxj , minj}represent the {maximum, minimum}value of the feature j 

and xi
j
 is j attribute of the ith records. 

The standardization method was selected to clean the imbalance scale of feature. The 

selection considerations will illustrate in section 4.1. 
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3.2.2 Stratified Sampling 

Stratified sampling is a statistical sampling method [27]. It is an alternative to the known 

method called random sampling. It is used to generate new subsets of data that have the 

same sample fraction [28] of their classes as in the main corpus. The following equation 

illustrates the sample fraction: 

 fi =
ni
j

Nj
 3.2.3 

Where  fi  is the fraction of the class i̇ in main set and any subset, Nj is the number of 

records in an arbitrary set j and ni
j
 is the number of records belonging to the class i̇ in the 

arbitrary set j. 

It guarantees that any generated subset will include records from all classes and the ratios of 

records of all classes in these subsets as they are in the main data-set, while the class-

records selected each time randomly. It is clear that in the case where the minor classes 

present and the random sampling is used, some models will be built that do not learn 

anything about these classes. This was the reason for using this method. 

3.3 Building Models Phase 

Both WSVM and WELM algorithms were used to build ID solutions on both NSL-KDD 

and UNB ISCX2012 dataset. WSVM is an effective algorithm than any other algorithm 

when dealing with any training subset contains many more samples than the others, while 

WELM is the fast and simple neural networks that solve the time consuming iterative 

process in FFNNs. This section will describe both algorithms in details. 
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3.3.1 Weighted Support Vector Machine 

SVM is a powerful classification method. The robustness of SVM doesn’t come from the 

search for the hyperplanes that correctly separates the data, but the search for the maximal 

margin hyperplane. It is used directly for binary classification, and with some tricks, it is 

used as a multiple class classification algorithm. One of these tricks which is used to solve 

multi-class classification problem is one-against-one trick, so if there is n classes, it will 

build n(n + 1)/2  models. The final result of all models is made based on voting strategy. 

This approach is used in the SVMLIB [29]. It is a Library of SVM which includes set of 

SVM algorithms for different purposes such as binary and multiple class classification, 

regression and distribution estimation. It supports several interfaces and extensions for 

different programing environments like MATLAB, Java, R, Python, C++ and C#. The 

MATLAB version of C Support vector classification (C-SVC) algorithm with one against 

one trick and voting strategies for multiple class classification was used to build our 

models. Now we can see the problem as a set of binary class classification sub-problems 

which is solved using C-SVC. 

Looking for SVM shows that SVM is based on mapping the problem into high dimensional 

features space, and then the linear hyperplane is constructed in that space [30]. It is 

important to understand the fact of the existence of few points that do not site on the correct 

side of the plane after building the models, this emphasis the use of a slack parameter to 

move this point to the correct side, this model called Soft-margin SVM [31]. Now, suppose 

there are N records of training data denoted by xi where xi ∈ R
n, i = 1,…N, these records 

belong to one of two classes donated by y, while y ∈ Rl, and the normalized margin 
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separate the two classes equal  1 ‖w‖⁄  . The dual optimization problem which make 

tradeoff between maximizing the margin and decreasing the error using 𝐶 regularization 

parameter will be described using the following formulas: 

 min
w,b,ξ  

1

2
‖w‖2 + C∑ξn

n

 3.3.1 

 
subject to yi(w

2∅(xi) + b) ≥ 1 − ξi 
 

 
ξi ≥ 0, i = 1,…… . l 

 

Where   ∅  is the mapped feature of  xi , ξ is the slack parameter and C is the regularization 

parameters. 

At the next step, the optimization problem represented by equation 3.3.1 is reformulated 

using the Lagrange Method then the Lagrange form of the optimization problem is solved 

[31]. Finally, the decisions are performed based on the following formula: 

 sgn(wT∅(x) + b) = sgn (∑ yiαiK(xi, x) + b
l

i=1
) 3.3.2 

Where sgn is the step function, αi is a Lagrange constant which must be ≥ 0 and K(xi, x) is 

the kernel function. 

Different Kernels are supported with SVM like sigmoidal, polynomial, and Gaussian RBF 

kernels. Gaussian RBF kernel is represented by the following formula: 

  K(xi, x) = 𝑒𝛾∗|𝑥𝑖−𝑥|
2
 3.3.3 

While the sigmoidal kernel is represented by the following formula: 

 K(xi, x) = tanh(𝛾 ∗ 𝑥𝑖
′ ∗ 𝑥 + 𝑐𝑜𝑒𝑓0) 3.3.4 

The last kernel was Polynomial which is represented by the following formula: 

 K(xi, x) = 𝛾 ∗ 𝑥𝑖
′ ∗ 𝑥 + 𝑐𝑜𝑒𝑓0𝑑𝑒𝑔𝑟𝑒𝑒 3.3.5 
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In this work, default value of degree = 3 and coef0 = 0 parameters were used. 𝛾 will be 

calculated using the following equation: 

 
γ =

1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 
 

3.3.6 

we are interested in finding the best kernel, C and weight scheme that will be used to build 

the SVM ID solution. The selection considerations according to the dataset will be 

illustrated in subsections  4.2.1 and 4.3.1. 

3.3.2 Weighted Extreme Learning Machine 

ELM is a feedforward neural network, but it is not suffering from the time consuming and 

iterative process in the feedforward backpropagation neural network. This is addressed via 

random selection of the hidden layers weights and biases, so it is fast and simple method. A 

set of other features related to ELM still need to be discussed. One of them, it is the ability 

of ELM to deploy different feature mapping and kernels. The other point is the ability to 

build multiple class classification solutions easily in one model, without the need to 

combine multiple binary classes together.  

 
Figure 3.2: Extreme Learning Machine Network 
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The method illustrated in [17] was used in this thesis as WELM solution to address the 

unbalanced classes in ID problem, a single hidden layer feedforward neural network 

(SLFFN) was used, it is architecture is shown in Figure 3.2. For any dataset (Xi⃗⃗  ⃗, Ti⃗⃗⃗  ), where 

Xi ⃗⃗⃗⃗ = x1 + x2 +⋯ . . +xm is the feature matrix which includes N records called i =

1,2… . . , N and m features, while  Ti⃗⃗⃗   is a target matrix. As any neural network algorithms, 

both feature and target matrixes are numerical matrices which are obtained from the output 

of the preprocessing phase. 

The algorithm starts with asking user to determine the activation function and the number 

of the hidden neurons which are denoted by  g(x) and 𝐿 in sequential orders. Then the 

weight matrix WL∗N and bias vector BL∗1of hidden neurons are generated randomly, this 

saves the time for this algorithm and makes this algorithm faster. Different feature mapping 

can be used in ELM which represents different activation functions that can be used, 

examples of activation functions that can be used are: 

• Sigmoid function 

 
g(x) =

1

1 + e−𝑥
 

3.3.7 

• Gaussian function 

 g(x) = e−𝑥
2
 3.3.8 

Then the output of hidden neurons H is computed using the following equation: 

 H = g(WL∗N .  XN∗m + BL∗1) 3.3.9 

The output layer consists of l neurons, while l is the number of classes in the problem, and 

the weight matrix of the output layer donated by βl∗L. 
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Now, solving the problem means finding the value of β  which maximize the marginal 

distance and minimize the weighted and accumulative error, this represented the following 

equations: 

 minimize ∶ ‖Hβ − T‖2 and ‖β‖. 3.3.10 

The other form of the previous equation is: 

 minimize ∶ LpELM =
1

2
‖β‖2 + CW

1

2
∑‖εi‖

2

N

i=1

 

Subject to: h(xi)β = ti
T − εi

T,     i = 1, … , N. 
3.3.11 

Where W is a diagonal matrix with N ∗ N size,  wii is the weight of the xi record.εi , is the 

error of the sample xi, which equal to the difference between the target value and the actual 

output. 

Reformulate the equation (3.3.11) using Lagrange and based on Karush Kuhn Tucker 

(KKT) theorem, it is being: 

 LDELM = 
1

2
‖β‖2 + CW

1

2
∑‖εi‖

2

N

i=1

−∑αi(

N

i=1

 h(xi)β − ti
T + εi

T) 3.3.12 

Where, αi is the Lagrange Multiplier which is a constant. 

In the next step, the partial derivative is performed based on β, α, and ε. 

 

∂LDELM
∂β

= 0,
    
→  β = ∑αi

N

i=1

 h(xi)
T = HTα 

∂LDELM
∂εi

= 0,
    
→ αi = CWεi,     i = 1, … , N  

∂LDELM
∂βi

= 0, h(xi)β − ti
T + εi

T = 0,     i = 1,… , N 

3.3.13 

Two forms of equation produce the β, caused by solving (3.3.13) equation, the first one has 

N ∗ N dimension, and the second has L ∗ L the dimension of the inverse matrix. The first 
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one is better when the size of the dataset is small and it is able to reformulate in kernel 

form, while the other is better for huge datasets. 

 
𝐹𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝑁 ∶  𝛽 = 𝐻𝑇 (

1

𝐶
+𝑊𝐻𝐻𝑇)

−1

𝑊𝑇 
3.3.14 

 
𝐹𝑜𝑟 𝐵𝑖𝑔 𝑁 ∶  𝛽 = (

1

𝐶
+ 𝐻𝑇𝑊𝐻)

−1

𝐻𝑇𝑊𝑇 
3.3.15 

Finally, the output for the complete network calculates using the following equation: 

 

𝑓(𝑥) = 𝑓𝑢𝑛(ℎ(𝑥)𝛽) 

𝑓𝑢𝑛(ℎ(𝑥)𝛽) = {
𝑠𝑖𝑔𝑛,     𝑖𝑛 𝑏𝑖𝑛𝑎𝑟𝑦 𝑝𝑟𝑜𝑏𝑙𝑚𝑠

𝑎𝑟𝑔𝑚𝑎𝑥  (ℎ(𝑥)𝛽)𝑙 ,     𝑙 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠    
 

3.3.16 

Due to the large sets represent the ID problems; the equation (3.3.15) was used to solve this 

problem. 

We are concerned with finding the best 𝐿, 𝐶, activation function and weight scheme that 

will be used to build the ELM ID solution. The selection considerations according to the 

dataset will be illustrated in subsections 4.2.2 and 4.3.2. 

3.3.3 Accuracy Paradox and Cost-Function Scheme   

The paradox of accuracy occurs frequently when most pattern recognition models were 

built using unbalanced classes, it is easier for the ML algorithms to classify either all or most the 

records of the small classes into one or more of the major classes, this happens with negligible 

effect of the total accuracy. But the problem gets worse when these minor classes be crucial in the 

environment. Cost function is one of the methods were suggested to address this problem [17] 

[18]. it affects the learning process by giving different weights to the records that belong to 

different classes. Different cost function methods were used, which are: 
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First scheme, the default weight scheme where all classes have the same weight value 

which equal to 1. 

Second scheme [17], it depends on the ratio between the numbers of records in the corpus 

to the number of records for each class, the following equation is used to calculate the 

weights for each class: 

 𝑊𝑖 = 
𝑁

𝑛𝑖
 3.3.17 

We used 𝑊𝑖  to represent the weight for all records which belong to 𝑖𝑡ℎ𝑐𝑙𝑎𝑠𝑠 , N to 

represent the number of records in the corpus and 𝑛𝑖 to represent the number of records 

belong to class 𝑖̇  in the corpus for all equation in this sub-section. 

The third scheme [16], it is used the golden ratio 0 . 618 1⁄  multiplied with the inverse of 

the number of the records belongs to each class; it is illustrated by the following equation: 

 
𝑊𝑖 = 

{
 

 
0.618

𝑛𝑖
      𝑖𝑓 𝑛𝑖 > 𝐴𝑉𝐺(𝑛𝑖)

1

𝑛𝑖
            𝑖𝑓 𝑛𝑖 ≤ 𝐴𝑉𝐺(𝑛𝑖)

 
3.3.18 

Due to convergence issues of the deployed algorithms, the second method was used with 

the WSVM, while the third one was used with WELM in addition to the default weight 

scheme with both. But the default weight scheme with both algorithms can better improve 

the overall accuracy and mitigate the unbalanced class issue of the ID problem, this clearly 

appears in Experiments and Results chapter. 
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3.3.4 General Method Procedure 

The general procedure that was used in performing all experiments on NSL-KDD dataset 

and the secondary experiments on UNB ISCX2012 dataset is shown in Figure 3.3 and is 

illustrated by Algorithm 1: in detail. 

Figure 3.3: The flow chart of the general method procedure 
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Algorithm 1: The general procedure that was used in building the ID models   

 

Input: Dataset, the number of partitions method P, cost-function, regularization parameter C, number of 

hidden layer neurons L (only for ELM), (𝑘𝑒𝑟𝑛𝑒𝑙 | 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑔(. )); 

Output: P number of models, ResultObject; 

 

Data Preprocessing: 

 // Converting nominal fields into numerical 

 for field in dataset, do 

 if is_nominal(field) then 

 uniqueList ← 𝐮𝐧𝐢𝐪𝐮𝐞𝐄𝐥𝐞𝐦𝐞𝐧𝐭𝐬(field) ; 

 sortedList ← 𝐬𝐨𝐫𝐭(uniqueList) ; 

 for k = 1 to size(field), do 

index ← 𝐜𝐨𝐦𝐩𝐚𝐫𝐞&𝐟𝐢𝐧𝐝𝐒𝐨𝐫𝐭𝐞𝐝𝐥𝐢𝐬𝐭𝐈𝐧𝐝𝐞𝐱(sortedList, field[variable]); /* Find 

the index of unique element that have the same value of the 𝑘𝑡ℎ element of field 

column*/ 

 numfield[variable]  ← index ; 

dataset = 𝐫𝐞𝐩𝐥𝐚𝐜𝐞 (dataset, numfield, field); /* replace the old field with the new numeric 

field*/ 

end if; 

 

// Applying the standardization method on the dataset fields 

for field in dataset, do 

for variable = 1 to size(field), do 

field [variable] ←
field[variable]− mean(field)

standerd deviation(field)
  

 

// Partitioning the dataset into P sub-sets 

 // Calculate the fraction of each class i 

fi ←
number of recordsi

𝐒𝐢𝐳𝐞(dataset)
   

 DatasetList ← 𝐒𝐭𝐫𝐚𝐢𝐟𝐢𝐞𝐝𝐒𝐚𝐦𝐩𝐥𝐢𝐧𝐠(dataset, N, f) 

 

// Generating the weight array which elements represent a weight for distinct class i 

if  cost-function == default then 

 W = ones(num_Classes) 

else 

for 𝑐𝑙𝑎𝑠𝑠𝑖 to num_Classes, do 

If  cost-function == second then 

 wi ←
𝐒𝐢𝐳𝐞(dataset)

number of records i 
 

else If  cost-function == third then 

 if  Size( 𝑐𝑙𝑎𝑠𝑠𝑖) ≤  𝐒𝐢𝐳𝐞(dataset) num_Classes⁄   

  wi ←
𝟏

number of records i 
 

else 

wi ←
0.618

number of records i 
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end if; 

end if; 

        end if; 

 

Main: 

  γ =
1

𝐍𝐮𝐦𝐨𝐟𝐅𝐞𝐚𝐭𝐮𝐫𝐞(Dataset)
 

for i = 1 to P do 

Train  ← dataset − { ithpartiton} 

Test  ← dataset[ithpartition] 

If model == SVM then 

modeli ← 𝐁𝐮𝐢𝐥𝐝𝐖𝐒𝐕𝐌𝐌𝐨𝐝𝐞𝐥(Train, Kernel , C, default γ,W)  

testing phase results = 𝐓𝐞𝐬𝐭𝐖𝐒𝐕𝐌(modeli, Test, i
thpartitionLabels) 

else if model ==ELM then 

modeli ← 𝐁𝐮𝐢𝐥𝐝𝐖𝐄𝐋𝐌𝐌𝐨𝐝𝐞𝐥(Train, g(. ), L , C, default γ,W)  

testing phase results = 𝐓𝐞𝐬𝐭𝐖𝐄𝐋𝐌(model𝒊, Test, i
thpartitionLabels) 

end if; 

ResultObject = computeAllMetrics() /*Compute the overall accuracy and the accuracy for each 

class for the training data*/ 

  

 return P number of models, Result. 
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3.4 Metrics Selection 

Several metrics and definitions [32] [24] are used in evaluating the multi-class pattern 

recognition models. Some of these are Confusion matrix, True Positive (TP), False Positive 

(FP), True Negative (TN), False Negative (FN), Accuracy, Precision, Recall, Detecting 

Rate, Misclassification, G-mean, F-measuring and Receiver Operating Characteristics curve 

(ROC). 

It is important to clarify the concept of each term, these concepts will be oriented toward 

the ID problem, that is included in the following paragraphs. 

TP: the records are predicted to the correct type of attacks. 

FP: the records are predicted as attacks while they are normal. 

TN: the normal records which are classified correctly. 

FN: the records predicted as normal while they are attacks. 

Misclassification: the hostile records are predicted to the wrong type of attacks. 

FAR: the rate of normal records which classified as attacks.  

Confusion matrix: It is one of the common methods used to view the result of the pattern 

recognition models; it represents a two-dimensional square matric. The fields of both 

dimensions are the classes of the problem, and the values of the cells represent the 

distribution of the predicted records on the target classes. Table 3.1 illustrate the Confusion 

matrix description for IDS problem. 

 



35 

Accuracy: It is one of the main metrics that is used to measure the overall performance of 

the pattern recognition models; it is represented by the following formula: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑𝑇𝑃 + 𝑇𝑁

∑𝑇𝑃 + ∑𝐹𝑃 + 𝑇𝑁 + ∑𝐹𝑁 + ∑𝑀𝑖𝑠𝑠𝐶𝑙−,−
 3.4.1 

Precision: It is the percentage of records which are predicted to certain class correctly to all 

records predicted in that class. It is calculated using the following equation: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = 
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 +𝑀𝑖𝑠𝑠𝐶𝑙(−,𝑖)
 3.4.2 

Table 3.1: Confusion matrix description for IDS problem 

  
Predicted Classes 

  
DoS Normal Probing R2L U2R 

 A
ct

u
al

 C
la

ss
es

 DoS TP FN 𝑀𝑖𝑠𝑠𝐶𝑙(𝑑,𝑝) 

 

𝑀𝑖𝑠𝑠𝐶𝑙(𝑑,𝑟) 𝑀𝑖𝑠𝑠𝐶𝑙(𝑑,𝑢) 

Normal FP TN FP FP FP 

Probing 𝑀𝑖𝑠𝑠𝐶𝑙(𝑝,𝑑) FN TP 𝑀𝑖𝑠𝑠𝐶𝑙(𝑝,𝑟) 𝑀𝑖𝑠𝑠𝐶𝑙(𝑝,𝑢) 

R2L 𝑀𝑖𝑠𝑠𝐶𝑙(𝑟,𝑑) FN 𝑀𝑖𝑠𝑠𝐶𝑙(𝑟,𝑝) TP 𝑀𝑖𝑠𝑠𝐶𝑙(𝑟,𝑢) 

U2R 𝑀𝑖𝑠𝑠𝐶𝑙(𝑢,𝑑) FN 𝑀𝑖𝑠𝑠𝐶𝑙(𝑢,𝑝) 𝑀𝑖𝑠𝑠𝐶𝑙(𝑢,𝑟) TP 

Recall or Sensitivity: It is the percentage of the correctly predicted records of one of the 

attack classes to the number of records belonging to that class in the target table. 

                      𝑅𝑒𝑐𝑎𝑙𝑙𝑖  =  
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖 +𝑀𝑖𝑠𝑠𝐶𝑙(𝑖,−)
 3.4.3 

Specificity: It is the percentage of normal records which are predicted as normal to the 

number of records belonging to the normal class in the target table. 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + ∑𝐹𝑁
 3.4.4 

G-mean [33]: It is an overall metric which measures a geometric mean of specificity for 

normal class and the sensitivity for all hostile classes, it is used to measure the performance 
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in cases where the imbalanced classes exist. The following formula is used to measure the 

G-mean metric: 

 G-mean = (∏𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 

𝑚−1

1

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

1

𝑚

 3.4.5 

F-measuring or F-score: It is the harmonic mean of precision and recall and it is 

calculated using the following equation: 

 F-measuring =  
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 3.4.6 
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4 Experiments and Results 

The primary experiments were performed on the NSL-KDD dataset, while the secondary 

experiments were performed on the UNB ISCX2012 dataset to justify the occurrence of 

thesis goals. The WSVM and WELM algorithms were used to perform multiple class 

classification experiments on both datasets. Before starting in the issues of the algorithms, 

it should be determined the best data normalization method which should be used later in 

all experiments. This selection depends on the properties of the data in the datasets, the 

existence of outlier records is the crucial properties of the ID datasets. This step will be 

addressed in the next subsection. WSVM was used to build pattern recognition models as 

ID solution. The MATLAB version of well-known library which is called LIBSVM [29] 

was used to build that models. It uses C-SVC algorithm with one against one scheme and 

voting strategy to build multiple classes classification solutions. The algorithm supports 

different kernels which are polynomial, sigmoidal and RBF kernel. The RBF kernel has 𝜸 

parameter. The sigmoidal kernel has coef0 parameter in addition to 𝜸. The polynomial 

kernel has degree parameter in addition to coef0 and 𝜸 parameter. To make tradeoff 

between the distance of the separating margin and the training error, WSVM algorithm uses 

the regularization parameter 𝐶. A MATLAB version of the proposed WELM algorithm in 

[17] was used to perform parts of our experiments. The performance of the WELM 

algorithm depends on the selection of the various parameters of this algorithm; these 

parameters are the number of hidden layer neurons (L), the activation function of the 

hidden layer neurons and the regularization parameter 𝐶. Two activation functions were 

used, they are sigmoidal and Gaussian activation function. Parameters optimization is an 
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important step to improve the algorithms performance knowing that the results of this step 

depend on the dataset used. The default values of 𝑐𝑜𝑒𝑓0 = 0 and 𝑑𝑒𝑔𝑟𝑒𝑒 = 3 parameters 

for WSVM kernels parameters were used, while 𝛾 was calculated using 
𝟏

𝐧𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐟𝐞𝐚𝐭𝐮𝐫𝐞𝐬
 

formula [29]. 

The next point was testing the effect of different weight schemes on the performance of 

both algorithms. Both default weight scheme and first weight scheme were combined with 

WSVM, while the default weight and the second weight schemes were used with WELM. 

The objective of the set of experiments conducted using the WSVM algorithm was finding 

the best kernel, 𝐶 and weight scheme that will be used to build the SVM ID solution on. As 

well, the objective of the set of experiments conducted using the WEVM algorithm was 

finding the best 𝐿, 𝐶, activation function and weight scheme that will be used to build the 

ELM ID solution. All combinations of both algorithms parameters are listed in Table 4.1. 

The cross-validation method called leave-one-out [26] was mainly used to build, evaluate 

and validate all models. Based on leave-one-out method the experiments repeated n times, 

for each round 𝑖  the data will divide to 𝑛 partitions, the 𝑖𝑡ℎ partition is used for testing 

phase while the (𝑛 − 1)  other partitions are used for building the model.  

This thesis took into account making consistent and equitable assessment. Some of recent 

works which proposed multiple class classification solutions for ID problem on complete 

NSL-KDD dataset were selected to evaluate our models. Some of these works used twofold 

and others used tenfold cross-validation. Twofold cross-validation is more generalized than 

tenfold. In twofold cross-validation, both training and testing phases are performed on 

distinct 50 percent of dataset records, while in tenfold cross-validation the training phase 



40 

are performed on 90 percent of the dataset records and the remaining 10 percent of dataset 

records are used to perform the testing phase. So, two-fold cross-validation was mainly 

used to perform the experiments on the first dataset. The stratified sampling method was 

used to maintain the same ratio of number of records for any class to the number of records 

for all classes in all partitions and in the complete set. 

Table 4.1: Various combinations of parameters were used to build thesis models. 

The optimized Parameters, 

Number of Hidden Neurons 
Weight 𝐂 

Kernels, 

Activation 

Function 

Algorithm 

  NSL-KDD 

𝛾 = 0.0244 

 

UNB ISCX2012 

𝛾 = 0.0909 

{

𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝑠𝑐ℎ𝑒𝑚𝑒:
 𝑤𝑖 = 1 ∀ 𝑖

𝑆𝑒𝑐𝑜𝑛𝑑 𝑠𝑐ℎ𝑒𝑚𝑒: 
𝑤𝑖 = 𝑁 𝑛𝑖⁄   

 

{
 
 
 
 
 

 
 
 
 
 
1
10
50
102

300
500
102

103

104

105

106

 

Sigmoidal 

WSVM 
 𝑐𝑜𝑒𝑓

= 0 

Gaussian 

RBF 

𝐷𝑒𝑔𝑟𝑒𝑒
= 3 

Polynomial 

{
 
 

 
 
500
700
103

1500
2000

 

{
 
 

 
 

   
𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝑠𝑐ℎ𝑒𝑚𝑒: 𝑤𝑖 = 1 ∀ 𝑖      
𝑇ℎ𝑖𝑟𝑑 𝑠𝑐ℎ𝑒𝑚𝑒:𝑤𝑖 =                  

{
0.618 𝑛𝑖, 𝑖𝑓 𝑛𝑖 > 𝑎𝑣𝑔(𝑁)⁄

1 𝑛𝑖⁄ , 𝑖𝑓 𝑛𝑖 ≤ 𝑎𝑣𝑔(𝑁)
  

 

Sigmoidal 

WELM 

Gaussian 

The recent thesis which is referenced by [25] was used to make evaluation with our models 

that were built on UNB ISCX2012 dataset. It assumed that it used 1 percent from each 

attack class records randomly to build the models, and 10 percent to test the built models. 

There is inconsistency between the number of records as that thesis mentioned and the 

correct number of records. So, the same number of records was used to build our primary 

experiments on this dataset. The number of records was chosen in this way to make 

consistent and equitable assessment. 

The overall accuracy and F-score evaluation metrics were used with parameter optimization 

phase, while the confusion matrix, recall, precision, F-score, FP, miss-detection, miss-
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classification in addition to the overall accuracy were used to measure the performance of 

the proposed models. 

4.1 Standardization Method Selection Considerations 

The NLS-KDD dataset was used to select one of the data cleaning methods which were 

standardization and Min-Max normalization. The cross-validation leave-one-out with 𝑛 =

2  method was used to build WSVM models; these models used default 𝐶 and 𝛾  parameters 

of the Gaussian RBF Kernel. The experiments were performed twice, at first time the data 

was cleaned with standardization method. In the second round the data was cleaned using 

MIN-Max normalization method. 

 
Figure 4.1: The effect of the Min-Max and Standardization normalization on the 

performance of WSVM models. 

The models were built using 50% of NSL-KDD records which were selected based on 

stratified sample method then they were tested using the remainder records. These 

preliminary experiments were performed using the WSVM method showed that the 
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standardization method got better performance at all, this is shown in Figure 4.1. It shows 

the comparison between the two methods with respect to three different metrics, two of 

them are overall metrics which are the overall accuracy and the G-mean while the third is 

the F-score for each class. It is known that the standardization method does better in any 

environment that includes outlier records [26]. So, Standardization method was used to 

clean the data for the following experiments. 

4.2 NSL-KDD dataset Experiments  

Both WSVM and WELM algorithms were used to build ID solutions on NSL-KDD dataset. 

The best WSVM model with certain kernel, 𝐶 and weight scheme and the best WELM 

model with certain 𝐿, 𝐶, activation function and weight scheme were proposed to address 

our thesis problem. Several experiments were performed to look for the optimized models, 

they are listed in the following subsections. 

4.2.1 WSVM Experiments on NSL-KDD Dataset 

The objective of the set of experiments conducted using WSVM algorithm was finding the 

best kernel, 𝐶 and weight scheme that will be used to build the SVM ID solution. All 

combinations of these parameters are listed and shown in Table 4.1. The list that included 

all experiments that were performed to achieve this goal are: 

Test 1: Several two-fold cross-validation models of WSVM with sigmoidal kernel were 

built to find the 𝐶 value and the weight scheme that achieved the optimized model. Table 

A.1 includes the complete results of these models. A weak result appeared of applying the 
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sigmoidal kernel with WSVM as an ID solution. So, WSVM with sigmoidal kernel was 

excluded.  

Test 2: Several two-fold cross-validation models of WSVM with Gaussian RBF kernel 

were built to find the 𝐶 value and the weight scheme that achieved the optimized model. 

Table A.2 includes the complete results of these models. It shows that the best 𝐶 value with 

the default weight scheme and the first weight scheme was 103. It is clear that when the 𝐶 

values increased; most results of assessment metrics increased until certain value then 

stabilized.  The results of the optimized first weight scheme model were adequate while the 

results of optimized default weight scheme model were the winner. Table 4.2 shows the 

optimized models results for this test in detail. 

Test 3: Several two-fold cross-validation models of WSVM with Polynomial kernel were 

built to find the 𝐶 value and the weight scheme that achieved the optimized model. Table 

A.3 includes the complete results of these models. It shows that the best 𝐶 value with the 

default weight scheme was 103 while the best 𝐶 value with the first weight scheme was 

500. It is clear that when the 𝐶 values increased; most results of assessment metrics 

increased until certain value then stabilized. The results of the optimized first weight 

scheme model were adequate while the results of optimized default weight scheme model 

were the winner. Table 4.3 shows the optimized models results for this test in detail. 

Test 4: A ten-fold cross-validation models of WSVM with Gaussian RBF kernel, 𝐶 = 100 

and first weight scheme were built on the NSL-KDD dataset. Table A.4 includes the 

complete results of these experiments. This test was added to compare with the work 

referred by [9].  
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Summary: the default weight scheme was the best tested weight scheme, the WSVM with 

Gaussian RBF was the best model with 𝐶 = 103. Its assessment was 99.19 percent in the 

overall accuracy and 99.87, 99.30, 98.79, 92.50, 70.46 percent in the F-score of DoS, 

Normal, Probing, R2L, U2R classes. 
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Table 4.2: Test 2 optimized models results. 

WSVM, Gaussian RBF Kernel, 𝐶 = 103, Default weight scheme. 

  Accuracy G-mean FAR Round 1 

  99.19% 93.73% 0.73%     

Precision Recall  F-score FP 

Miss 

Classification 

Miss 

Detection   Confusion matrix  

DoS 26657 34 2 0 0 99.89% 99.87% 99.88% 0.09% 0.01% 0.13% 

Normal 25 38265 71 92 74 99.27% 99.32% 99.30% 99.27% 0.00% 0.68% 

Probing 1 87 6946 5 0 98.95% 98.68% 98.81% 1.01% 0.09% 1.24% 

R2L 2 125 1 1602 44 94.01% 90.30% 92.12% 5.40% 2.65% 7.05% 

U2R 2 34 0 5 185 61.06% 81.86% 69.94% 24.42% 3.10% 15.04% 

                        

  Accuracy G-mean FAR Round 2 

  99.20% 93.39% 0.76%     

Precision Recall  F-score FP 

Miss 

Classification 

Miss 

Detection   Confusion matrix  

DoS 26654 35 1 2 0 99.85% 99.86% 99.85% 0.12% 0.01% 0.13% 

Normal 31 38281 72 69 73 99.24% 99.36% 99.30% 99.24% 0.00% 0.64% 

Probing 6 89 6940 3 0 98.93% 98.61% 98.77% 1.03% 0.13% 1.26% 

R2L 3 132 1 1609 30 95.21% 90.65% 92.87% 4.08% 1.92% 7.44% 

U2R 0 37 1 7 181 63.73% 80.09% 70.98% 25.70% 3.54% 16.37% 

WSVM, Gaussian RBF Kernel, 𝐶 = 103, First weight scheme. 

  Accuracy G-mean FAR Round 1 

  99.06% 94.16% 0.55%     

Precision Recall  F-score FP 

Miss 

Classification 

Miss 

Detection   Confusion matrix  

DoS 26657 28 6 0 2 99.88% 99.87% 99.87% 0.08% 0.03% 0.10% 

Normal 22 38096 108 237 64 99.45% 98.88% 99.16% 99.45% 0.00% 1.12% 

Probing 4 74 6956 5 0 98.33% 98.82% 98.58% 1.53% 0.13% 1.05% 

R2L 2 81 2 1671 18 86.90% 94.19% 90.40% 12.32% 1.24% 4.57% 

U2R 3 29 2 10 182 68.42% 80.53% 73.98% 24.06% 6.64% 12.83% 
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  Accuracy G-mean FAR Round 2 

  98.93% 93.86% 0.61%     

Precision Recall  F-score FP 

Miss 

Classification 

Miss 

Detection   Confusion matrix  

DoS 26655 32 3 2 0 99.84% 99.86% 99.85% 0.11% 0.02% 0.12% 

Normal 30 38012 123 293 68 99.39% 98.67% 99.03% 99.39% 0.00% 1.33% 

Probing 7 90 6936 4 1 98.16% 98.55% 98.36% 1.74% 0.17% 1.28% 

R2L 4 75 2 1681 13 84.51% 94.70% 89.32% 14.73% 1.07% 4.23% 

U2R 1 35 2 9 179 68.58% 79.20% 73.51% 26.05% 5.31% 15.49% 

 

Table 4.3: Test 3 optimized model results. 

WSVM, Polynomial Kernel, 𝐶 = 103, Default weight scheme. 

  Accuracy G-mean FAR Round 1 

  99.13% 93.90% 0.68%     

Precision Recall  F-score FP 

Miss 

Classification 

Miss 

Detection   Confusion matrix  

DoS 26651 38 2 2 0 99.86% 99.84% 99.85% 0.11% 0.01% 0.14% 

Normal 29 38236 80 107 75 99.32% 99.24% 99.28% 99.32% 0.00% 0.76% 

Probing 5 86 6936 10 2 98.80% 98.54% 98.67% 1.14% 0.24% 1.22% 

R2L 2 110 2 1603 57 92.61% 90.36% 91.47% 6.18% 3.44% 6.20% 

U2R 2 28 0 9 187 58.26% 82.74% 68.37% 23.36% 4.87% 12.39% 

  Accuracy G-mean FAR Round 2 

  99.12% 93.83% 0.75%     

Precision Recall  F-score FP 

Miss 

Classification 

Miss 

Detection   Confusion matrix  

DoS 26650 36 3 3 0 99.76% 99.84% 99.80% 0.19% 0.02% 0.13% 

Normal 52 38240 75 76 83 99.25% 99.26% 99.25% 99.25% 0.00% 0.74% 

Probing 7 96 6926 9 0 98.84% 98.41% 98.63% 1.07% 0.23% 1.36% 

R2L 4 132 2 1600 37 94.06% 90.14% 92.06% 4.47% 2.42% 7.44% 

U2R 0 25 1 13 187 60.91% 82.74% 70.17% 27.04% 6.19% 11.06% 
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WSVM, Polynomial Kernel, 𝐶 = 500, First weight scheme. 

  Accuracy G-mean FAR Round 1 

  98.96% 94.70% 0.48%     

Precision Recall  F-score FP 

Miss 

Classification 

Miss 

Detection   Confusion matrix  

DoS 26651 26 8 8 0 99.84% 99.84% 99.84% 0.14% 0.06% 0.10% 

Normal 37 38023 121 250 96 99.52% 98.69% 99.10% 99.52% 0.00% 1.31% 

Probing 2 70 6962 5 0 98.11% 98.91% 98.51% 1.71% 0.10% 0.99% 

R2L 1 65 3 1658 47 85.91% 93.46% 89.52% 12.95% 2.87% 3.66% 

U2R 3 23 2 9 189 56.93% 83.63% 67.74% 28.92% 6.19% 10.18% 

  Accuracy G-mean FAR Round 2 

  98.83% 95.06% 0.53%     

Precision Recall  F-score FP 

Miss 

Classification 

Miss 

Detection   Confusion matrix  

DoS 26651 35 1 5 0 99.75% 99.85% 99.80% 0.21% 0.02% 0.13% 

Normal 57 37936 142 274 117 99.47% 98.47% 98.97% 99.47% 0.00% 1.53% 

Probing 6 85 6937 9 1 97.94% 98.56% 98.25% 2.00% 0.23% 1.21% 

R2L 4 61 1 1674 35 84.85% 94.31% 89.33% 13.89% 2.25% 3.44% 

U2R 0 21 2 11 192 55.65% 84.96% 67.25% 33.91% 5.75% 9.29% 
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4.2.2 WELM Experiments on NSL-KDD Dataset 

The weighted ELM algorithm was used to perform several experiments on NSL-KDD 

dataset. Three parameters were adjusted to improve the performance of the algorithm. The 

first parameter was the number of the hidden layer neurons (L). The second parameter was 

the activation function of the hidden layer neurons. The third parameter was the value of 𝐶 

parameter. The objective of the set of experiments conducted using WEVM algorithm was 

finding the best 𝐿, 𝐶, activation function and weight scheme that will be used to build the 

ELM ID solution. All combinations of these parameters are listed and shown in Table 4.1. 

The list that included all experiments that were performed to achieve this goal are: 

Test 5: The default weight scheme with WELM were used to perform several experiments 

on the NSL-KDD dataset. The used L values are [500 700 1000 1500 2000] and the used 𝐶 

values are [1 10].  All combinations of Various 𝐿 and 𝐶 values were used in performing the 

experiments. Table A.5 shows the algorithms results based on the activation functions and 

different L and C values. As it shown, the number of hidden neurons was an important 

parameter of improving the performance of the algorithm, the performance increased when 

L increased, the best results were obtained when 𝐿 = 2000. The default 𝐶 (𝐶 𝑒𝑞𝑢𝑎𝑙 1) was 

sufficient with the default weight scheme. When default value of C was used which equal 

to one, the overall accuracy of the WELM algorithm with sigmoidal activation function 

increased in ascending order when L increased. The overall accuracy values of various 

models were 98.06, 98.78, 98.35, 98.59 and 98.89 percent when these models were built 

using the following values of L which were 500, 700, 1000, 1500 and 2000 respectively. 

The same behavior appeared when the Gaussian RBF was used as an activation function of 
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hidden layer neurons, the overall accuracy values of these tests were 97.61, 97.97, 98.41, 

98.67 and 98.78 percent when L values were 500, 700, 1000, 1500 and 2000 respectively. 

The sigmoidal activation function of hidden layer neurons was better than the Gaussian 

RBF. The two-fold cross-validation of WELM with the combination of sigmoidal 

activation function, 𝐿 = 2000 and 𝐶 = 1 has the best accuracy in case of using the default 

weight scheme. Table 4.4 shows the average of overall accuracy and the average of F-score 

for each class for the optimized WELM model.  

Test 6: The third weight scheme was used with WELM algorithm to build multiple class 

classification solutions of ID problem on NSL-KDD dataset. All combinations of 𝐿 and 𝐶 

as they appear in Table 4.1 were used to perform the experiments. Table A.6 shows the 

algorithms results based on the activation functions and different L and C values. As it 

shown, both the number of hidden neurons and 𝐶 parameters represent important parameter 

of improving the performance of the algorithm, the performance increased when L and 𝐶 

increased, the best results were obtained when 𝐿 = 2000 and 𝐶 = 105. The overall 

accuracy with sigmoidal activation function increased in ascending order {L = 500: 97.07, 

L = 700: 95.66, L = 1000: 96.37, L = 1500: 97.63, L = 2000: (𝐶 = 1: 87.59, 𝐶 =

105: 97.96, 𝐶 = 106: 97.95)} percent when L and C increased. The same thing appeared 

with Gaussian RBF, the overall accuracy values were {L = 500: 95.67, L = 700: 96.43, L = 

1000: 96.87, L = 1500: 97.39, L = 2000: (𝐶 = 1: 86.90, 𝐶 = 105: 97.70, 𝐶 =

106: 97.67%)} percent.  
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 The WELM with Sigmoidal activation function and 2000 neurons for the first layer and 

with 𝐶 = 105 was gained best result.  Table 4.4 shows the average of overall accuracy and 

the average of F-score for each class for the optimized WELM models.  

Table 4.4:The average results of the optimized models of Test 5 and Test 6. 

  

Default weight scheme, Sigmoidal, 

2000 neurons and 𝐶 = 1 

Third weigh scheme, Sigmoidal, 

2000 neurons and 𝐶 = 105 

Accuracy 98.89% G-mean 92.26% 97.96% G-mean 94.59% 

  Precision Recall F-score Precision Recall F-score 

DoS 99.74% 99.76% 99.75% 99.74% 99.69% 99.72% 

Normal 99.16% 99.02% 99.09% 99.69% 96.86% 98.25% 

Probing 97.84% 98.24% 98.04% 95.75% 98.81% 97.26% 

R2L 91.05% 88.19% 89.59% 70.92% 94.39% 80.99% 

U2R 58.94% 78.10% 67.17% 36.53% 84.07% 50.88% 

 

4.2.3 Discussion of the Results 

WSVM and WELM algorithms were applied on the NSL-KDD dataset, different weight 

schemes were employed and different parameters related to these algorithms were 

optimized, all these experiments appeared that both WSVM and WELM algorithm with 

default weight scheme has better performance with respect to the overall accuracy and the 

F-score for all classes. On the hand, the WSVM with default weight and its optimized 

parameters had better performance than the ELM with default weight and its optimized 

parameters. Although the suggested weight schemes with both algorithms failed to improve 

the overall accuracy and the F-score for all classes, they succeeded in improving the recall 

for the vast majority of cases, but this is associated with precision reduction. Table 4.5 

shown the list of all tests that were performed on NSL-KDD dataset with the optimized 

parameters and results. 
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Table 4.5: The List of all Tests that were performed on NSL-KDD dataset with the optimized parameters. 
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Several works are published newly that intersect with this work of concern, three of closest 

ones are used to evaluate this work consistently which referred by [9] [23] [24]. As 

mentioned in the related works section, the works referred by [9] [23]built multi-level 

pattern recognition models. While CART algorithm was used in [9] to generate rule system 

to distinguish the normal from abnormal records, then a generated features by  DWT was 

used with SVM and NN to build the predictive models for the abnormal classes, the work 

in [23]  built a hybrid multi-level (SVM-ELM-SVM-SVM-SVM) model with selected 

records from the 10% KDD Cup99 using K-means clustering algorithm. The last work [24], 

proposed a framework that based on multiple kernels combination called MARK-ELM. 

The Table 4.7 presents our results compared with both works addressed by [23] [24].  As it 

is shown in the table, the proposed WSVM and ELM methods outperform the hybrid (SVM 

and EML) multi-level model in the overall accuracy and all sub-classes. The average 

accuracy for our twofold WSVM and twofold WELM were (99.19 and 98.89 percent 

sequentially) vs 95.75% for the hybrid multi-level model. On the other hand, the FAR 

average for our twofold WSVM and twofold WELM were (0.72 and 0.84 percent 

sequentially) vs 1.87% for the hybrid multi-level model. Final, detection rate for the minor 

classes which are R2L and U2R for our two-fold WSVM and twofold WELM were ((90.48, 

80.97) percent and (88.19, 78.10) percent sequentially) vs (21, 93%, 31.39 %.) for the 

hybrid multi-level model. 

The winner method of hybrid kernel MARK-ELM framework which is called F-Poly kernel 

is compared with the proposed weighted methods, even it got a better result in overall 

accuracy, G-mean, and normal class; our model can compete them in DOS and R2U classes 

and it does better in the Probing and U2R classes. Although our proposed algorithms have 
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higher FP degree than the poly-kernel MARK-ELM algorithm, they decrease the miss 

detection and the miss-classification of the DoS, Probing and U2R attacks, this means that 

the proposed methods make worse in classification the records to either normal or attacks 

but they succeeded in classifying the attacks to the correct attack. 

On the other hand, Figure 4.2 shows the tested accuracy for our tenfold model and the 

multi-level models suggested in [9], both works used ten-fold cross-validation on the same 

data. To perform meaningful comparison, between these works which performed 

separately, the ten rounds results were sorted in ascending order and then the chart was 

made. It is obvious that our model is the most stable one; On the other hand, it outperforms 

the multi-level SVM in all rounds and multi-level Neural Network in the most rounds. 

Moreover, the less fortunate class U2R was excluded from the start in multi-level model’s 

vs the superior accuracy was achieved by our model. 

 
Figure 4.2: Comparison between The Testing result of our 10 Folds model and the Multi-

level ID methods for abnormal network behaviors work [9]. 
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Table 4.6: The average of overall accuracy for three models of the work assigned in [9] 

 

Based on the foregoing, our model reaps the superior results in the minor classes and 

competitive results in overall accuracy and the accuracy of the major classes. It increases 

the ability to detect the most hazardous attacks.  

 

Multi-level SVM Multi-level NN NaïveBayes

Average of overall 

accuracy
96.54% 96.68% 89.02%
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Table 4.7: Comparison among the optimized models in this thesis, Multi-level SVM & EML model and MARK-ELM F-Poly 

kernel set model. 

Classes 

The proposed methods on NSL-KDD dataset MARK-ELM [24] 

WSVM: 2-Fold cross-validation, Gaussian RBF, 

Default weight scheme, and 𝐶 = 103 

Accuracy 99.19% 

F-Poly kernel set 

Accuracy 99.77% 

G-mean 93.56% G-mean 96.0% 

FAR 0.72% FAR   

Recall  

Average  

F-Score 

Average 
FP 

Miss 

Classification 

Miss 

Detection 
Recall FP 

Miss 

Classification 

Miss 

Detection 

DoS 99.86% 99.87% 0.10% 0.01% 0.13% 99.96% 0.03% 0.03% 0.04% 

Normal 99.34% 99.30%     0.66% 99.89%     0.15% 

Probing 98.64% 98.79% 1.02% 0.11% 1.25% 97.42% 0.04% 2.52% 1.76% 

R2L 90.48% 92.50% 4.74% 2.28% 7.24% 94.94% 0.07% 0.69% 5.05% 

U2R 80.97% 70.46% 25.06% 3.32% 15.71% 62.87% 0.01% 13.89% 25.25% 

Classes 

The proposed methods on NSL-KDD dataset Multi-level                            

 SVM & EML [23] 
WELM: 2-Fold cross-validation, Default weight 

scheme, Sigmoidal, 2000 neurons and C=1 

Accuracy 98.89% 

G-mean 92.26% Accuracy 95.75% FAR 1.87% 

FAR 0.84%   

Recall 

 Average  

F-Score 

Average 
FP 

Miss 

Classification 

Miss 

Detection 
Recall 

DoS 99.76% 99.75% 0.19% 0.09% 0.14% 99.54% 

Normal 99.02% 99.09%     0.98% 98.13% 

Probing 98.24% 98.04% 1.93% 0.23% 1.53% 87.22% 

R2L 88.19% 89.59% 6.60% 3.47% 8.34% 21.93% 

U2R 78.10% 67.17% 25.25% 8.63% 13.27% 31.39% 

 

 



56 

 

 

4.3 UNB ISCX2012 Dataset Experiments  

Evaluation inconsistency is one of the important issues related to ID solutions, which is one 

of the points that has been taken into account in this work. The dataset was collected in 

seven days, three of them had normal records only while the other four days had distinct 

attack scenario for each day as illustrated before. The number of normal and attack records 

in mentioned four days is shown in Table 2.2. A newly published thesis which referred by 

[25] that was used mainly to evaluate our work on this dataset. Table 4.8 shows the number 

of records that were used in the experiments of that previous thesis. The previous thesis 

used 11 percent of the more frequent classes (1 percent for training and 10 percent for 

testing phase) and all records for the low frequent attacks which are Botnet and DoS. As it 

is shown in Table 2.2, the number of records for the Botnet and Dos attacks are (37460, 

3776 records in sequential order), which shows inconsistency in the number of records 

between the dataset and the mentioned number of records in the previous thesis. To 

overcome this problem, two set of experiments were performed. The primary experiments 

had the same numbers of records of the previous thesis for each class, they shown in  Table 

4.8: Number of records of UNB ISCX2012 dataset as they are included in [24]. This 

enables us to make a consistent and fair comparison. The secondary experiments were 

performed using complete attacks records, in addition to 65000 normal records that 

randomly selected from the normal records of the day that included the scenarios of botnet 

attack, the number of normal records selected to be equal to the number of the attacks 

records; this based on the fact that most network traffic is normal. The secondary 

experiments were built on the general method of thesis. 
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To make the results of the experiments that based on randomly selected records more 

representative, each experiment was repeated ten times but using different sets of records 

each time then the average results were calculated.  

4.3.1 WSVM Experiments on UNB ISCX2012 Dataset 

The objective of the set of experiments conducted using WSVM algorithm was finding the 

best kernel, 𝐶 and weight scheme that will be used to build the SVM ID solution. All 

combinations of these parameters are listed and shown in Table 4.1. The list of the 

primary experiments that were performed to achieve this goal are: 

Test 1: the sigmoidal kernel was tested with the WSVM algorithm using the set of 

suggested parameters, its results were not competitive, so this kernel were excluded early. 

Table 4.8: Number of records of UNB ISCX2012 dataset as they are included in [24] 

Class Name # of Train records # of Test records 

Infiltrating the network from inside 60 605 

HTTP Denial of Service 4 36 

Distributed DoS using an IRC Botnet 3 2 

Brute Force SSH 46 463 

Normal 1227 12285 

Sum of the records 1340 13391 

Test 2: The default weight scheme was used with WSVM algorithm to perform some 

experiments on the UNB ISCX2012 dataset. All combinations of kernel and 𝐶 parameters 

were tested and the results are shown in Table B.1. The upper part of the table included the 

result of WSVM algorithm with polynomial kernel while the lower part of the table 

included the result of WSVM algorithm with Gaussian RBF kernel, each column included 

the average of results of ten experiments that were repeated using different randomly 

selected subsets. The WSVM algorithm with Gaussian RBF kernel has best performance 

when C = 10, the overall accuracy was 99.36 percent and the F-score for the SSH, Botnet, 
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DoS, L2L, Normal classes are 98.88, 6.67, 47.63, 95.14, 99.72 percent respectively. As 

well, the Polynomial kernel has better performance when C = 1. It was gained 99.32 

percent in the overall accuracy besides the 98.80, 0.00, 46.92, 94.72, 99.70 percent as F-

score for the SSH, Botnet, DoS, L2L, Normal classes respectively. 

Test 3: The Second weight scheme was used with WSVM algorihtm to perform some 

experiments on the UNB ISCX2012 dataset. All combinations of kernel and 𝐶 parameters 

were tested and the results are shown in Table B.2. The upper part of the table included the 

result of WSVM algorithm with polynomial kernel while the lower part of the table 

included the result of WSVM algorithm with Gaussian RBF kernel. The Gaussian RBF 

kernel had better performance when C = 1, while the Polynomial kernel had better 

performance when C = 500.  The overall accuracy of the Gaussian RBF and Polynomial 

kernels were 97.30, 97.07 percent consecutively. Also, the F-scores for the SSH, Botnet, 

DoS, L2L and Normal classes respectively were 99.17, 1.33, 25.56, 84.08, 98.92 percent 

for the first kernel and they were 99.29, 0.29, 18.01, 54.50, 99.49 percent for the last kernel. 

The result of the primary experiments on UNB ISCX2012 dataset using WSVM algorithm 

shown that the default weights improve the performance than the second weight scheme. 

This clearly shown in Table B.1 and Table B.2, the overall accuracy of WSVM with both 

Gaussian RBF and Polynomial kernels and with default weight scheme were 99.39, 99.32 

percent respectively. On the other, the overall accuracy of WSVM with both kernels and 

with the second weight scheme were 97.30, 97.07 percent respectively. The default weight 

scheme with WSVM on the UNB ISCX2012 was selected to be used in the evaluation 

phase.  
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The secondary experiment that built on the general method of thesis was:   

Test 4: In this test, the complete attacks records in the UNB ISCX2012 dataset were used 

with the same size of randomly selected normal subsets. The general method of our thesis 

was used which was one-leave-out the two-fold cross-validation. The reason for this test 

which not included in the evaluation phase was to perform more generalized experiments, it 

based on the correct number of the records in the dataset. Only WSVM algorithm with the 

Gaussian RBF kernel was used to perform the experiments of this test. All combinations of 

weight schemes and 𝐶 parameters were tested and the results are shown in Table B.3. It 

clearly shown that the WSVM with Gaussian RBF and with default weight scheme had 

better performance when 𝐶 = 106. The overall accuracy for this case was 99.22 percent 

and the F-score for SSH, Botnet, DoS, L2L and Normal classes were 99.94, 99.05, 98.31, 

99.31 and 99.28 percent respectively. Also, the WSVM with Gaussian RBF and with the 

second weight scheme achieved best performance when 𝐶 = 106 , the overall accuracy for 

this case was 99.00 percent, and the F-score for SSH, Botnet, DoS, L2L and Normal classes 

were 99.76, 98.98, 96.05, 98.81 and 99.19 percent respectively. 
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4.3.2 WELM Experiments on UNB ISCX2012 Dataset 

The weighted ELM algorithm was used to perform some experiments on UNB ISCX2012 

dataset. Three parameters were evaluated to improve the performance of the algorithm. The 

first parameter was the number of the hidden layer neurons (L). The second parameter was 

the activation function of hidden layer neurons. The third parameter was the value of 

regularization parameter C. The objective of the set of experiments conducted using 

WEVM algorithm was finding the best 𝐿, 𝐶, activation function and weight scheme that 

will be used to build the ELM ID solution. All combinations of these parameters are listed 

and shown in Table 4.1.  

The list of the primary experiments that were performed to achieve this goal are: 

Test 5:  In this test, the default weight scheme was used. Table B.4 shows that there is no 

benefit from increasing the number of L or increasing the value of C. Both activation 

functions had better performance when C = 1 and with only 500 neurons. The WELM 

achieved better performance with the sigmoidal activation function. It achieved 99.32 

percent as an overall accuracy with sigmoidal function vs 99.10 percent with Gaussian RB 

function. 

Test 6: The third weight scheme was used with WELM on UNB ISCX2012 dataset. Table 

B.5 shown that algorithm performance was increased when L increased until certain value 

of L, then the performance was decreased. The WELM algorithm with sigmoidal activation 

function had the best performance when L, C = (2000,104) while the WELM algorithm 

with Gaussian RB activation function achieved the best performance when L, C =

(2000,500). The WELM achieved better performance with the Gaussian RB activation 
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function. It achieved 96.29 percent as an overall accuracy with sigmoidal function vs 97.65 

percent with Gaussian RB function. 

Two weight schemes were tested with WELM algorithm, the default weight improveed 

both the overall accuracy and the F-score metrics values. So, it was selected in the final 

evaluation stage. 

4.3.3 Discussion of the Results 

WSVM and WELM algorithms were applied on the UNB ISCX2012 dataset. In the 

primary experiments, different weight schemes were employed and different parameters 

related to these algorithms were optimized, all these experiments appeared that both 

WSVM and WELM algorithms with default weight scheme had better performance with 

respect to the overall accuracy and the F-score for all classes. Although the second and 

third weight schemes with both algorithms failed to improve the overall accuracy and the F-

score for all classes, they succeeded in improving the recall for the vast majority of cases, 

but this was associated with precision reduction. Table 4.10 shown the list of all tests that 

were performed UNB ISCX2012 dataset with the optimized parameters and results. 

The recent published work [25] which intersected with our work in concern was used to 

make consistent and equitable evaluation.  

The results of applying SVM algorithm on the UNB ISCX2012 dataset in the previous 

thesis shown in Table 4.9. As shown, the polynomial kernel performs better than Gaussian 

RBF kernel with SVM; the results represented the value of applying the experiments on a 

random subset of data which was insufficiently. The optimization step decreased the 

performance of the SVM algorithm with Gaussian RBF, which did not reflect the true 
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behavior of the algorithm. On the other hand, the primary experiments on the UNB 

ISCX2012 dataset in our thesis were repeated ten times for each scenario, then the average 

of that rounds was used to evaluate the applied models. 

Table 4.9: The results of SVM algorithm on the UNB ISCX2012 dataset as they appeared 

in the previous thesis [25]. 

Accuracy 99.11% SVM-P Confusion Matrix Table. 

  Normal L2L SSH Botnet DoS Precision Recall  F-score 

Normal 12224 27 19 9 6 99.56% 99.50% 99.53% 

L2L 31 574 0 0 0 95.03% 94.88% 94.95% 

SSH 0 0 463 0 0 95.86% 100.00% 97.89% 

Botnet 0 0 0 2 0 18.18% 100.00% 30.77% 

DoS 23 3 1 0 9 60.00% 25.00% 35.29% 

Accuracy 94.88% SVM-RBF Confusion Matrix Table. 

  Normal L2L SSH Botnet DoS Precision Recall  F-score 

Normal 12164 37 84 0 0 95.72% 99.02% 0.973393 

L2L 527 78 0 0 0 58.65% 12.89% 0.211382 

SSH 0 0 463 0 0 84.18% 100.00% 0.914116 

Botnet 0 0 2 0 0 0.00% 0.00% 0 

DoS 17 18 1 0 0 0.00% 0.00% 0 

The complete summary of the best-optimized results of the experiments which were 

included in the previous and this currents thesis are showed in Table 4.11. As shown, the 

optimized Gaussian RBF with WSVM in our work was better than the polynomial SVM in 

the previous work in the overall accuracy in addition to all F-score values except the Botnet 

F-Score.  The better F-score of the botnet that achieved by the previous thesis experiments 

on a random selected subset does not reflect better performance on that set because the 

weakness of the experiments. 
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Table 4.10: The List of all Tests that were performed on UNB ISCX dataset with the optimized parameters. 
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Table 4.11: Comparison among the primary optimized WSVM and WELM models in this thesis and the optimized WSVM 

models in the previous thesis. 

  The result of previous thesis [25]. The proposed methods 

  SVM-P SVM-RBF Gaussian RBF Kernel with WSVM  

 Accuracy 99.11%   Accuracy 0.94877   Accuracy 99.36%   

  Precision Recall  F-score Precision Recall  F-score Precision Recall  F-score 

SSH 95.86% 100.00% 97.89% 84.18% 100.00% 91.41% 98.92% 98.88% 98.88% 

Botnet 18.18% 100.00% 30.77% 0.00% 0.00% 0.00% 10.00% 5.00% 6.67% 

DoS 60.00% 25.00% 35.29% 0.00% 0.00% 0.00% 52.62% 44.17% 47.63% 

L2L 95.03% 94.88% 94.95% 58.65% 12.89% 21.14% 96.27% 94.07% 95.14% 

Normal 99.56% 99.50% 99.53% 95.72% 99.02% 97.34% 99.63% 99.81% 99.72% 

  The proposed methods 

  Polynomial Kernel with WSVM  WELM with Sigmoidal Function   WELM with Polynomial Function   

 Accuracy 99.32%   Accuracy 99.32%   Accuracy 99.10%   

  Precision Recall  F-score Precision Recall  F-score Precision Recall  F-score 

SSH 98.76% 98.88% 98.80% 98.95% 98.94% 98.94% 98.61% 98.51% 98.55% 

Botnet 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

DoS 53.90% 42.78% 46.92% 63.22% 31.39% 39.35% 36.50% 37.78% 35.33% 

L2L 96.03% 93.45% 94.72% 94.98% 93.90% 94.43% 94.47% 91.98% 93.18% 

Normal 99.59% 99.80% 99.70% 99.60% 99.82% 99.71% 99.63% 99.67% 99.65% 
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Conclusion and Future Works 

The development of IDSs in computer networks is a challenge for researchers because, with 

the growth of computer networks, new attacks appear constantly. IDS is a vital security 

tool. The daily Increase in the number of attacks encourages the development of the IDS. In 

this thesis, a method was proposed for detecting the intrusions by ML tools that 

consolidated stratified sampling and different cost function schemes with both SVM and 

ELM methods to build competitive ID solutions that improve the performance of these 

systems and deal with classes in the training set that contains many more samples than 

others in the same training set.  

The proposed method got a superior result than previous works in the accuracy paradox 

issue while preserved the accuracy improvement. In this way, the performance of ID 

capable of maintaining better levels of accuracy as well as improving the detection of the 

most dangerous classes. The WSVM is more effective than WELM algorithm, although 

that the WELM is a good competitor. The experiments that performed using both 

algorithms were achieved competitive results of both overall accuracy and F-score per-class 

performance scale on both datasets. The best algorithm in this study that applied on the 

NSL-KDD dataset was WSVM with Gaussian kernel. Using the default weight scheme and 

with 𝐶 = 700, the overall accuracy of this algorithm is 99.19 percent and the F-score for 

the DoS, Normal, Probing, R2L and U2R classes were 99.87, 99.30 98.79, 92.50 and 70.46 

percent respectively. As well, the WSVM with Gaussian RBF kernel and default weight 

scheme was the best applied algorithm on the UNB ISCX2012 dataset, but 𝐶 = 10 in this 

experiment. The overall accuracy in this experiment was 99.36 percent while the F-score 
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for the SSH, Botnet, DoS, L2L, Normal classes were 98.88, 6.67, 47.63, 95.14, 99.72 

percentage respectively. 

The truth associated with this problem is that none of the open issues have been solved 

completely and all points still opened although we covered some of ID points through this 

effort. In the future work, we will start using set of one-class classification methods which 

can be used in different manners. It is suggested to solve the unbalanced class problem, to 

build novelty models and outlier detection, models. While the first way pours into solving 

the imbalanced classes, the others contribute to building anomaly models which may 

improve the detection of zero-day attacks.  
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Appendix  

This part includes the result of all experiments that performed on NSL-KDD and UNB 

ISCX 2012 datasets to optimize some parameters of the WSVM and WELM methods. 

Appendix A 

This part includes the result of all experiments that performed on NSL-KDD dataset to 

optimize some parameters of the WSVM and WELM methods. 

Table A.1:The complete result of Test 1 experiments.  

WSVM, Sigmoidal Kernel, Default weight scheme. 

C 1 10 50 100 300 700 1000 

Accuracy 82.95% 83.35% 82.79% 82.76% 82.73% 82.71% 82.73% 

G-mean 0.00% 49.55% 50.24% 48.65% 44.30% 42.52% 42.05% 

  F-score   

DoS 90.92% 90.04% 90.76% 90.80% 90.74% 90.74% 90.76% 

Normal 86.67% 86.30% 86.87% 86.72% 86.69% 86.67% 86.67% 

Probing 45.74% 49.30% 44.26% 44.22% 44.29% 44.28% 44.31% 

R2L 17.79% 18.71% 18.35% 18.05% 18.79% 18.71% 18.86% 

U2R 0.00% 53.54% 56.53% 49.83% 37.69% 32.88% 30.91% 

WSVM, Sigmoidal Kernel, First weight scheme. 

C 1 10 50 100 300 700 1000 

Accuracy 78.38% 78.19% 77.82% 77.61% 77.81% 77.81% 77.81% 

G-mean 74.86% 73.59% 73.04% 72.48% 72.94% 72.94% 72.94% 

  F-score   

DoS 90.47% 90.29% 88.79% 88.73% 88.78% 88.78% 88.78% 

Normal 82.46% 82.36% 82.85% 82.56% 82.86% 82.85% 82.85% 

Probing 57.49% 57.37% 55.92% 55.88% 55.92% 55.92% 55.92% 

R2L 25.36% 24.06% 25.21% 24.77% 25.19% 25.19% 25.19% 

U2R 29.10% 28.66% 26.50% 27.64% 26.37% 26.37% 26.37% 

 

 

 

 



74 

 

 

Table A.2: The complete result of Test 2 experiments. 

WSVM, Gaussian RBF Kernel, Default weight scheme. 

C 1 100 300 500 700 1000 

Accuracy 98.25% 99.16% 99.17% 99.18% 99.19% 99.19% 

G-mean 52.60% 93.15% 93.56% 93.64% 93.59% 93.56% 

  F-score 

DoS 99.59% 99.86% 99.85% 99.86% 99.86% 99.87% 

Normal 98.43% 99.28% 99.29% 99.30% 99.30% 99.30% 

Probing 97.10% 98.67% 98.74% 98.74% 98.78% 98.79% 

R2L 83.99% 92.23% 92.37% 92.45% 92.48% 92.50% 

U2R 10.00% 68.50% 69.31% 69.50% 69.84% 70.46% 

WSVM, Gaussian RBF Kernel, First weight scheme. 

C 1 100 300 500 700 1000 

Accuracy 98.15% 98.92% 98.95% 98.98% 98.98% 99.00% 

G-mean 94.42% 94.38% 94.40% 94.19% 94.03% 94.01% 

  F-score 

DoS 99.75% 99.86% 99.87% 99.87% 99.87% 99.86% 

Normal 98.38% 99.05% 99.07% 99.09% 99.09% 99.10% 

Probing 97.07% 98.48% 98.48% 98.48% 98.47% 98.47% 

R2L 82.99% 89.48% 89.62% 89.76% 89.76% 89.86% 

U2R 57.73% 66.17% 68.71% 70.72% 72.54% 73.75% 

 

Table A.3: The complete result of Test 3 experiments. 

WSVM, Polynomial Kernel, Default weight scheme. 

C 1 100 300 500 700 1000 

Accuracy 97.65% 99.04% 99.10% 99.11% 99.12% 99.12% 

G-mean 54.55% 93.00% 93.31% 93.65% 93.75% 93.87% 

  F-score 

DoS 99.34% 99.80% 99.83% 99.84% 99.83% 99.83% 

Normal 97.81% 99.20% 99.25% 99.26% 99.26% 99.27% 

Probing 97.06% 98.52% 98.58% 98.59% 98.64% 98.65% 

R2L 72.95% 90.90% 91.53% 91.65% 91.64% 91.76% 

U2R 14.79% 67.97% 68.48% 68.71% 69.09% 69.27% 
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WSVM, Polynomial Kernel, First weight scheme. 

C 1 100 300 500 700 1000 

Accuracy 97.66% 98.78% 98.87% 98.89% 98.89% 98.89% 

G-mean 94.38% 94.84% 94.94% 94.88% 94.93% 94.78% 

  F-score 

DoS 99.45% 99.81% 99.82% 99.82% 99.82% 99.81% 

Normal 98.01% 98.96% 99.03% 99.04% 99.03% 99.02% 

Probing 96.96% 98.23% 98.32% 98.38% 98.36% 98.35% 

R2L 79.24% 88.17% 89.27% 89.43% 89.33% 89.41% 

U2R 50.94% 63.02% 65.99% 67.50% 68.22% 68.24% 

 

Table A.4: The complete result of Test 4 experiments. 

Ten-fold WSVM, Gaussian RBF Kernel,𝐶 = 100, First weight scheme 

Accuracy 99.08% G-mean 97.17% Round 1 

  Confusion matrix  Precision Recall  F-score FP 

DoS 5329 8 1 0 1 99.94% 99.81% 99.88% 0.04% 

Normal 2 7609 33 46 16 99.72% 98.74% 99.23%   

Probing 0 6 1400 1 0 97.63% 99.50% 98.56% 2.30% 

R2L 1 5 0 336 13 87.50% 94.65% 90.93% 11.98% 

U2R 0 2 0 1 42 58.33% 93.33% 71.79% 22.22% 

Accuracy 98.95% G-mean 93.85% Round 2 

  Confusion matrix  Precision Recall  F-score FP 

DoS 5331 4 4 0 0 99.85% 99.85% 99.85% 0.13% 

Normal 7 7603 22 52 21 99.58% 98.68% 99.13%   

Probing 1 12 1395 0 0 98.17% 99.08% 98.62% 1.55% 

R2L 0 10 0 331 14 85.75% 93.24% 89.34% 13.47% 

U2R 0 6 0 3 36 50.70% 80.00% 62.07% 29.58% 

Accuracy 99.02% G-mean 96.10% Round 3 

  Confusion matrix  Precision Recall  F-score FP 

DoS 5335 4 0 0 0 99.91% 99.93% 99.92% 0.07% 

Normal 4 7605 27 42 27 99.54% 98.70% 99.12%   

Probing 0 16 1391 1 0 98.03% 98.79% 98.41% 1.90% 

R2L 1 12 0 335 6 88.39% 94.63% 91.41% 11.08% 

U2R 0 3 1 1 40 54.79% 88.89% 67.80% 36.99% 
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Accuracy 98.98% G-mean 93.78% Round 4 

  Confusion matrix  Precision Recall  F-score FP 

DoS 5334 5 0 0 0 99.89% 99.91% 99.90% 0.11% 

Normal 6 7597 36 42 24 99.63% 98.60% 99.11%   

Probing 0 11 1396 1 0 97.42% 99.15% 98.28% 2.51% 

R2L 0 5 0 339 11 88.28% 95.49% 91.75% 10.94% 

U2R 0 7 1 2 35 50.00% 77.78% 60.87% 34.29% 

Accuracy 98.89% G-mean 92.77% Round 5 

  Confusion matrix  Precision Recall  F-score FP 

DoS 5334 3 0 1 0 99.93% 99.93% 99.93% 0.02% 

Normal 1 7592 34 56 22 99.53% 98.53% 99.03%   

Probing 0 11 1395 1 1 97.62% 99.08% 98.34% 2.38% 

R2L 3 14 0 331 7 84.44% 93.24% 88.62% 14.29% 

U2R 0 8 0 3 34 53.13% 75.56% 62.39% 34.38% 

Accuracy 98.88% G-mean 96.92% Round 6 

  Confusion matrix  Precision Recall  F-score FP 

DoS 5327 9 2 0 0 99.92% 99.79% 99.86% 0.04% 

Normal 2 7578 28 68 30 99.63% 98.34% 98.98%   

Probing 1 9 1398 0 0 97.90% 99.29% 98.59% 1.96% 

R2L 1 7 0 342 5 83.21% 96.34% 89.30% 16.55% 

U2R 0 3 0 1 41 53.95% 91.11% 67.77% 39.47% 

Accuracy 99.02% G-mean 95.70% Round 7 

  Confusion matrix  Precision Recall  F-score FP 

DoS 5333 3 2 1 0 99.83% 99.89% 99.86% 0.13% 

Normal 7 7599 17 60 22 99.69% 98.62% 99.15%   

Probing 0 9 1398 0 0 98.66% 99.36% 99.01% 1.20% 

R2L 1 9 0 336 9 84.21% 94.65% 89.12% 15.04% 

U2R 1 3 0 2 39 55.71% 86.67% 67.83% 31.43% 

Accuracy 98.98% G-mean 96.80% Round 8 

  Confusion matrix  Precision Recall  F-score FP 

DoS 5333 4 0 0 1 99.93% 99.91% 99.92% 0.06% 

Normal 3 7588 29 60 25 99.72% 98.48% 99.10%   

Probing 1 7 1397 1 1 97.97% 99.29% 98.62% 2.03% 

R2L 0 6 0 339 10 84.75% 95.49% 89.80% 15.00% 

U2R 0 4 0 0 41 52.56% 91.11% 66.67% 32.05% 
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Accuracy 99.08% G-mean 96.93% Round 9 

  Confusion matrix  Precision Recall  F-score FP 

DoS 5330 8 0 0 0 99.85% 99.85% 99.85% 0.15% 

Normal 8 7601 28 49 19 99.69% 98.65% 99.17%   

Probing 0 3 1403 0 2 98.04% 99.64% 98.84% 1.96% 

R2L 0 9 0 339 7 87.37% 95.49% 91.25% 12.63% 

U2R 0 4 0 0 42 60.00% 91.30% 72.41% 27.14% 

Accuracy 98.92% G-mean 95.39% Round 10 

  Confusion matrix  Precision Recall  F-score FP 

DoS 5329 9 0 0 0 99.89% 99.83% 99.86% 0.07% 

Normal 4 7589 36 56 21 99.57% 98.48% 99.02%   

Probing 1 9 1397 1 0 97.49% 99.22% 98.35% 2.51% 

R2L 1 8 0 339 7 85.61% 95.49% 90.28% 14.14% 

U2R 0 7 0 0 39 58.21% 84.78% 69.03% 31.34% 
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Table A.5: The complete result of Test 5 experiments. 

WELM, Sigmoidal Activation Function, Default weight scheme. 

L 500 700 1000 1500 2000 

C 1 10 1 10 1 10 1 10 1 10 

Accuracy 98.04% 98.06% 98.34% 98.35% 98.56% 98.59% 98.78% 98.78% 98.89% 98.89% 

G-mean 69.24% 69.74% 89.57% 89.79% 91.04% 91.15% 92.12% 92.22% 92.26% 92.54% 

  F-score 

DoS 99.49% 99.49% 99.57% 99.57% 99.67% 99.68% 99.75% 99.74% 99.75% 99.74% 

Normal 98.31% 98.32% 98.61% 98.62% 98.79% 98.81% 98.98% 98.98% 99.09% 99.10% 

Probing 96.45% 96.47% 96.87% 96.86% 97.35% 97.42% 97.98% 97.93% 98.04% 98.01% 

R2L 80.63% 80.88% 83.89% 84.20% 86.05% 86.20% 87.73% 87.85% 89.59% 89.78% 

U2R 38.12% 38.99% 65.96% 66.28% 67.04% 66.98% 67.42% 67.42% 67.17% 67.36% 

WELM, Gaussian RB Activation Function, Default weight scheme. 

L 500 700 1000 1500 2000 

C 1 10 1 10 1 10 1 10 1 10 

Accuracy 97.60% 97.61% 97.91% 97.97% 98.34% 98.41% 98.64% 98.67% 98.72% 98.78% 

G-mean 54.00% 53.75% 68.10% 68.49% 89.14% 89.80% 91.43% 91.68% 91.89% 92.37% 

  F-score 

DoS 99.39% 99.40% 99.54% 99.56% 99.63% 99.63% 99.71% 99.69% 99.71% 99.69% 

Normal 97.81% 97.82% 98.16% 98.22% 98.60% 98.69% 98.86% 98.90% 98.95% 99.02% 

Probing 96.59% 96.60% 96.86% 96.83% 97.09% 97.10% 97.58% 97.63% 97.63% 97.86% 

R2L 71.97% 72.00% 74.04% 75.69% 81.36% 83.28% 86.13% 87.20% 87.89% 88.49% 

U2R 14.38% 14.04% 39.55% 39.08% 67.37% 66.73% 67.49% 66.47% 66.67% 66.54% 
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Table A.6: The complete result of Test 6 experiments. 

WELM, Sigmoidal Activation Function, Third weight scheme. 

L 500 700 1000 1500 2000 

C 1 105 106 105 106 105 106 105 106 1 105 106 

Accuracy 83.81% 95.66% 95.66% 96.37% 96.37% 97.07% 97.07% 97.63% 97.63% 87.59% 97.96% 97.95% 

G-mean 87.90% 94.40% 94.40% 94.83% 94.84% 94.67% 94.71% 94.62% 94.54% 90.56% 94.59% 94.51% 

  F-score 

DoS 95.68% 99.23% 99.23% 99.42% 99.42% 99.53% 99.54% 99.70% 99.70% 96.88% 99.72% 99.71% 

Normal 84.35% 96.14% 96.14% 96.78% 96.78% 97.44% 97.44% 97.94% 97.94% 88.26% 98.25% 98.26% 

Probing 77.11% 94.76% 94.76% 95.28% 95.31% 95.95% 95.95% 96.70% 96.70% 82.90% 97.26% 97.26% 

R2L 35.65% 65.27% 65.28% 70.55% 70.58% 74.42% 74.38% 78.28% 78.24% 40.40% 80.99% 80.84% 

U2R 21.68% 39.29% 39.33% 40.54% 40.58% 47.05% 46.97% 49.41% 49.00% 30.21% 50.88% 49.92% 

WELM, Gaussian RB Activation Function, Third weight scheme. 

L 500 700 1000 1500 2000 

C 1 105 106 105 106 105 106 105 106 1 105 106 

Accuracy 82.69% 95.67% 95.68% 96.43% 96.42% 96.87% 96.88% 97.39% 97.40% 86.90% 97.70% 97.67% 

G-mean 86.23% 93.91% 93.86% 94.39% 94.37% 93.90% 93.91% 93.87% 93.90% 90.21% 94.49% 94.34% 

  F-score 

DoS 94.84% 99.26% 99.26% 99.40% 99.40% 99.51% 99.52% 99.58% 99.58% 97.12% 99.64% 99.65% 

Normal 83.08% 96.12% 96.13% 96.89% 96.89% 97.30% 97.30% 97.77% 97.78% 87.29% 98.07% 98.05% 

Probing 82.57% 94.47% 94.48% 95.28% 95.29% 95.69% 95.73% 96.62% 96.74% 85.61% 96.90% 96.93% 

R2L 31.57% 65.66% 65.75% 70.66% 70.62% 73.03% 73.06% 75.66% 75.67% 36.81% 78.28% 78.38% 

U2R 16.17% 39.35% 39.20% 40.00% 39.98% 43.25% 43.28% 47.83% 46.64% 26.75% 49.63% 46.65% 
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Appendix B 

This part includes the result of all experiments that performed on UNB ISCX 2012 dataset 

to optimize some parameters of the WSVM and WELM methods. 
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Table B.1: The complete results of Test 2 experiments. 

WSVM, Polynomial Kernel, Default weight scheme. 

Accuracy 99.32% 99.28% 99.22% 99.21% 98.99% 98.83% 98.65% 98.21% 97.60% 96.92% 

G-mean 0.00% 9.02% 9.03% 17.67% 17.65% 26.00% 25.84% 34.78% 25.82% 25.72% 

  F-score 

C values 1 10 50 100 300 500 1000 10000 100000 1000000 

SSH 98.80% 99.02% 99.02% 99.02% 99.02% 99.02% 99.03% 99.03% 99.03% 99.02% 

Botnet 0.00% 3.33% 3.33% 4.31% 3.86% 4.26% 4.12% 2.97% 1.74% 1.22% 

DoS 46.92% 44.91% 44.28% 44.40% 41.87% 40.77% 37.99% 33.29% 29.60% 29.60% 

L2L 94.72% 94.27% 93.96% 93.68% 92.65% 90.72% 88.70% 82.79% 72.16% 67.52% 

Normal 99.70% 99.70% 99.67% 99.67% 99.57% 99.53% 99.51% 99.40% 99.07% 98.68% 

WSVM, Gaussian RBF Kernel, Default weight scheme. 

Accuracy 99.21% 99.36% 99.35% 99.30% 99.25% 99.16% 99.11% 98.56% 98.05% 97.68% 

G-mean 0.00% 7.85% 9.11% 17.77% 17.77% 17.77% 26.05% 31.49% 22.16% 22.14% 

  F-score 

C values 1 10 50 100 300 500 1000 10000 100000 1000000 

SSH 98.62% 98.88% 98.88% 98.88% 98.88% 98.88% 98.88% 98.88% 98.88% 98.88% 

Botnet 0.00% 6.67% 10.00% 10.67% 10.48% 10.39% 10.72% 4.52% 1.66% 0.72% 

DoS 22.00% 47.63% 45.76% 44.85% 44.63% 44.55% 43.56% 36.97% 35.11% 35.11% 

L2L 93.81% 95.14% 95.11% 94.98% 94.60% 94.56% 94.42% 86.70% 77.16% 72.58% 

Normal 99.63% 99.72% 99.73% 99.71% 99.69% 99.65% 99.62% 99.56% 99.28% 99.07% 
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Table B.2: The complete result of Test 3 experiments. 

WSVM, Polynomial Kernel, Second weight scheme. 

Accuracy 96.96% 96.80% 96.87% 96.93% 97.06% 97.07% 96.93% 96.68% 96.22% 95.99% 

G-mean 37.36% 20.79% 14.24% 14.23% 0.00% 0.00% 0.00% 6.14% 17.55% 12.30% 

  F-score 

C values 1 10 50 100 300 500 1000 10000 100000 1000000 

SSH 99.26% 99.29% 99.29% 99.29% 99.29% 99.29% 99.29% 99.27% 99.27% 99.27% 

Botnet 0.99% 0.89% 0.62% 0.66% 0.28% 0.29% 0.36% 0.51% 1.24% 0.24% 

DoS 22.47% 16.63% 17.71% 18.03% 18.00% 18.01% 17.38% 18.38% 18.33% 18.36% 

L2L 70.57% 56.47% 55.66% 55.87% 54.61% 54.50% 52.13% 50.70% 50.03% 49.11% 

Normal 99.11% 99.33% 99.38% 99.41% 99.49% 99.49% 99.42% 99.28% 99.02% 98.89% 

WSVM, Gaussian RBF Kernel, Second weight scheme. 

Accuracy 97.30% 96.86% 97.00% 97.21% 97.32% 97.24% 97.27% 97.00% 96.60% 96.63% 

G-mean 45.15% 27.43% 21.04% 6.56% 6.32% 12.38% 12.56% 33.13% 34.41% 21.22% 

  F-score 

C values 1 10 50 100 300 500 1000 10000 100000 1000000 

SSH 99.17% 99.22% 99.23% 99.23% 99.23% 99.23% 99.23% 99.23% 99.23% 99.23% 

Botnet 1.33% 0.92% 0.69% 0.28% 0.28% 0.52% 0.58% 1.14% 1.62% 0.41% 

DoS 25.56% 17.32% 18.69% 19.78% 19.35% 18.74% 18.71% 19.20% 19.20% 19.20% 

L2L 84.08% 61.01% 60.94% 64.22% 65.33% 64.53% 64.59% 63.20% 58.55% 57.93% 

Normal 98.92% 99.37% 99.41% 99.45% 99.48% 99.46% 99.47% 99.31% 99.09% 99.10% 
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Table B.3: The complete result of Test 4 experiments. 

  WSVM, Gaussian RBF Kernel, Default weight scheme. 

Accuracy 97.84% 97.94% 97.99% 98.00% 98.06% 98.91% 99.06% 99.15% 99.15% 99.22% 

G-mean 88.60% 89.51% 89.52% 89.53% 90.07% 97.43% 98.58% 99.03% 99.06% 99.09% 

  F-score 

C values 1 10 50 100 300 500 1000 10000 100000 1000000 

SSH 99.69% 99.72% 99.69% 99.71% 99.77% 99.78% 99.79% 99.79% 99.93% 99.94% 

Botnet 98.77% 98.79% 98.82% 98.84% 98.85% 98.86% 98.86% 98.88% 98.90% 99.05% 

DoS 71.17% 73.29% 73.48% 73.59% 74.80% 94.03% 96.95% 98.25% 98.31% 98.31% 

L2L 95.84% 95.95% 96.00% 96.01% 96.13% 98.72% 99.21% 99.42% 99.39% 99.31% 

Normal 99.01% 99.12% 99.15% 99.17% 99.19% 99.20% 99.20% 99.22% 99.21% 99.28% 

  WSVM, Gaussian RBF Kernel, Second weight scheme. 

Accuracy 97.44% 97.17% 98.65% 98.74% 98.97% 98.98% 98.98% 98.99% 98.99% 99.00% 

G-mean 90.52% 96.67% 98.72% 98.83% 99.11% 99.12% 99.12% 99.07% 99.08% 99.08% 

  F-score 

C values 1 10 50 100 300 500 1000 10000 100000 1000000 

SSH 99.73% 99.73% 99.75% 99.77% 99.75% 99.73% 99.80% 99.77% 99.79% 99.76% 

Botnet 98.79% 98.83% 98.85% 98.85% 98.86% 98.86% 98.87% 98.86% 98.89% 98.98% 

DoS 68.34% 73.54% 90.91% 92.15% 95.60% 95.75% 95.79% 96.01% 95.98% 96.05% 

L2L 94.32% 92.77% 97.90% 98.16% 98.90% 98.94% 98.93% 98.95% 98.95% 98.81% 

Normal 99.08% 99.14% 99.17% 99.18% 99.20% 99.20% 99.20% 99.19% 99.18% 99.19% 
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Table B.4: The complete result of Test 5 experiments. 

WELM, Sigmoidal Activation Function, Default weight scheme. 

L 500 700 1000 1500 2000 

C 1 10 100 1 10 1 10 1 10 1 10 100 

Accuracy 99.32% 99.27% 99.10% 99.28% 99.23% 99.25% 99.18% 99.28% 99.19% 99.27% 99.21% 98.74% 

G-mean 0.00% 0.00% 8.36% 0.00% 0.00% 0.00% 8.39% 0.00% 8.39% 0.00% 8.43% 23.63% 

  F-score 

SSH 98.94% 98.87% 98.84% 98.91% 98.81% 98.89% 98.92% 98.89% 98.91% 98.91% 99.15% 99.15% 

Botnet 0.00% 0.00% 0.26% 0.00% 0.00% 0.00% 0.36% 0.00% 0.39% 0.00% 0.34% 0.69% 

DoS 39.35% 43.59% 39.96% 43.15% 42.88% 43.92% 42.80% 43.46% 40.05% 43.39% 41.46% 32.37% 

L2L 94.43% 94.24% 93.66% 94.15% 93.88% 94.11% 94.06% 94.38% 94.15% 94.34% 94.15% 92.08% 

Normal 99.71% 99.71% 99.64% 99.68% 99.68% 99.68% 99.66% 99.70% 99.67% 99.70% 99.69% 99.51% 

WELM, Gaussian RBF Activation Function, Default weight scheme. 

L 500 700 1000 1500 2000 

C 1 10 100 1 10 1 10 1 10 1 10 100 

Accuracy 99.10% 98.56% 97.22% 99.07% 98.30% 99.05% 98.34% 98.96% 98.16% 98.93% 98.22% 96.91% 

G-mean 0.00% 15.37% 22.44% 0.00% 14.81% 0.00% 14.95% 6.73% 14.94% 6.73% 15.05% 15.13% 

  F-score 

SSH 98.55% 99.09% 98.99% 99.08% 99.16% 98.71% 98.85% 98.75% 98.78% 98.81% 99.06% 99.15% 

Botnet 0.00% 0.51% 0.99% 0.00% 0.44% 0.00% 0.34% 0.21% 0.37% 0.20% 0.36% 0.31% 

DoS 35.33% 28.50% 19.93% 37.12% 26.72% 37.32% 29.62% 37.55% 30.43% 35.08% 27.32% 19.44% 

L2L 93.18% 91.49% 83.77% 92.44% 87.87% 92.83% 88.14% 92.75% 86.93% 92.43% 87.60% 78.10% 

Normal 99.65% 99.40% 98.83% 99.64% 99.36% 99.63% 99.39% 99.57% 99.30% 99.56% 99.32% 98.87% 
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Table B.5: The complete result of Test 6 experiments. 

WELM, Sigmoidal Activation Function, Third weight scheme. 

L 500 700 1000 1500 2000 

C 10000 100000 100 300 500 10 100 300 1000 10000 100000 1000000 1000 10000 100000 

Accuracy 95.97% 95.36% 95.93% 95.99% 95.80% 94.32% 96.14% 95.87% 95.90% 96.26% 95.81% 94.22% 96.03% 96.29% 96.24% 

G-mean 47.00% 48.50% 61.30% 56.65% 56.47% 77.76% 56.90% 56.59% 58.11% 49.79% 42.84% 31.04% 54.37% 49.87% 44.84% 

  F-score 

SSH 98.92% 98.56% 98.72% 98.84% 98.73% 95.24% 98.82% 98.98% 99.01% 99.03% 98.36% 98.35% 98.97% 98.93% 99.00% 

Botnet 1.56% 2.07% 1.62% 1.71% 1.62% 1.68% 1.62% 1.62% 1.63% 1.68% 1.39% 0.97% 1.76% 1.84% 1.42% 

DoS 15.58% 11.54% 22.16% 17.01% 15.15% 21.26% 22.27% 15.81% 17.36% 14.99% 13.05% 13.13% 17.13% 15.29% 15.54% 

L2L 66.03% 61.79% 80.94% 79.30% 75.79% 77.64% 82.42% 76.03% 68.94% 65.13% 67.43% 59.24% 69.33% 63.83% 70.31% 

Normal 98.65% 98.37% 98.06% 98.23% 98.27% 97.09% 98.19% 98.31% 98.54% 98.83% 98.52% 97.64% 98.62% 98.90% 98.72% 

WELM, Gaussian RBF Activation Function, Third weight scheme. 

L 500 700 1000 1500 2000 

C 100 300 10 100 300 500 1000 10000 100 300 500 1000 300 500 1000 

Accuracy 97.18% 97.17% 96.56% 97.24% 97.01% 97.25% 97.47% 96.58% 97.11% 97.38% 97.61% 97.55% 97.60% 97.65% 97.54% 

G-mean 49.08% 48.21% 69.67% 49.37% 49.45% 48.16% 33.71% 29.14% 48.83% 40.89% 34.44% 33.18% 41.06% 32.55% 31.40% 

  F-score 

SSH 98.75% 98.67% 98.83% 99.14% 99.14% 98.96% 98.87% 99.01% 98.98% 98.97% 98.97% 98.90% 98.93% 98.95% 98.97% 

Botnet 1.42% 1.85% 1.84% 1.36% 1.48% 1.63% 1.19% 0.80% 1.45% 1.37% 1.22% 1.05% 1.58% 1.22% 0.85% 

DoS 21.10% 19.10% 20.20% 23.81% 22.61% 21.43% 21.77% 16.81% 23.76% 23.47% 24.59% 24.98% 23.32% 23.55% 23.42% 

L2L 80.49% 78.22% 83.94% 79.04% 76.32% 77.74% 79.75% 75.41% 74.39% 76.75% 80.22% 81.31% 80.37% 81.16% 80.99% 

Normal 98.93% 98.99% 98.48% 98.99% 98.92% 99.04% 99.11% 98.74% 99.06% 99.15% 99.18% 99.11% 99.16% 99.17% 99.12% 
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