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ABSTRACT

The shortages in inventory models are a mixture of backorder and lost sales that result from the
unmet demands of customers during the shortage period. In this thesis, the multi-item inventory
model is presented with two shortage limitations. The first limitation depends on the expected
varying backorder cost and the second one depends on the expected lost sales cost. Our model is
formulated in both crisp and fuzzy cases to analyze how to conclude the optimal values of order
quantity and the reorder point for each item. As a result, the minimum expected total cost is
achicved where the Lagrange Multipliers technique is used for this purpose. In the presented
model, the demand during leading time is considered as a random variable that follows the normal
distribution. As an illustration, numerical examples are applied and the results of fuzzy and crisp

models are compared.
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INTRODUCTION

Inventory is the stock of goods and materials of any resource that is used to satisfy current
demand or future need. The control of inventories of physical goods is a common problem
to all projects of any sector of economy [22]. Inventories must be maintained, therefore,
customers will not be allowed to wait until their orders are filled. Inventory is used on daily
basis in life as equipment inventory, inventory of raw materials, spare parts, inventory of
vehicles, finished goods or semi-finished, etc. These goods and materials have an economic
value which can be sold to the customers in the form of items. These items are the basic
building block of the inventory system.

There are several reasons for classifying inventory. But, the most common reasons are
counting purposes, such as determining how much finished goods inventory the owners of
stores have, or for manufacturing plants; to determine how much materials are in process.
[nventories have been classified into direct and indirect. Direct inventories include items
which are directly used for production, which are categorized for three types as follows [8]:
The first type is the raw materials which are needed in primary production. Then the firms
transform them into semi-finished goods or finished goods. The second type is work in
process (WIP); the product that partially finished goods are waiting for accomplishing the
production. The third type is finished goods after their production is complicated but not yet
delivered stock according to the varying market demand.

Indirect inventories include such items which are required for manufacturing. They are

classified into six classes as follows:



I- The transit inventory which is also called transit pipe line inventory; goods are
transported from one location to another. For example, finished goods are being
shipped from production centers to distribution centers depending on the demand;
therefore, the inventory needs much time to be moved.

2- The buffer inventories or safety stock which indicates the extra inventory in case there
are future demand. This buffer will protect the inventory system from shortage or
stock out situations, thus it will give better customer services. The importance of
verifying the value of safety stock related to what happens to demand when there is
shortage.

3. The decoupling inventories which allows the different stages of production to
progress independently from any previous operation. Also, decoupling inventories
may be viewed as stocks that decouple the customer from the manufactures.

4- The seasonal inventories in which demands for many cases are seasonal. For example,
millions of kids go back to school at the beginning of the academic year and retailers
depend on large saies of book bags, notebooks, pens, etc. Hence, inventories have to
be kept satisfy high demand.

5- The lot size inventories which are held to take advantages of discounts and they are
usually available for purchase of large quantities.

6- The anticipation inventories which are stocked for the demand that are expected in
the future and that will avoid long customer wait times [8].

Another classification of inventory item is the ABC one. It is according to some measures of

importance and annual usage, usually annual doliar value [33]. Typically, three classes of



items are used: A (very important), B (moderately important) and C (least important). The
procedure begins by arranging all inventory items from highest to lowest value of annual
usage which can be computed by multiplying the annual quantity used by its unit cost. The
specific number of items on shelves and storage areas of the store must be known by owners
to control placing specific orders of items on their shelves and storage area in order to place
order on control. The objectives of inventory control are to decide the level of customer
service in order to have the right items, insufficient quantity at the right time to avoid
~ shortages, and taking costs in consideration to minimize investments in inventory. All
organizations in economics world should control inventeries so the goods have to arrive in a
specific system exactly when a demand for them occurs. Hence, customers would not have
to wait for filling their orders from a source, even so, customers will not be allowed to wait
for long periods of time. However; the control of inventory has to minimize investment in
inventories and verifying that production process or sales do not suffer at the same time. In
addition, the inventory model is needed to answer two basic questions in supervising the
inventory of any physical goods are; when to refil! the inventory and how much to order for
refilling {20]. There exist certain types of inventory problems such as those concerns with
storage area, number of orders, the budget available for inventory, customer service level...
ete.

Many mathematical models have been developed for controiling inventory system, and these
models are applied to the solutions of inventory problems. However, the history of inventory
models goes back to (1915) when Ford, N. Harries of Westinghouse corporations developed

a simple model, which is called the simple Jot of size formula [20]. The same formula is



developed referred to as the Wilson formula because it is also obtained by R.H. Wilson as an
integral part of the inventory control formula.

The approach of inventory models has attracted a large number of works based on
mathematical analysis. Hence, no single mode! can take into account all possible situations
of real life and suggest how much to be ordered and when to order [1]. Over the years,
hundreds of books, papers and survey papers have been published to present inventory
models with a wide selection of conditions and assumptions.

Hadley and Whitin [20] are considered to be the first researchers who have deeply discussed
the analysis of inventory system. The mathematical models they formulated depend on the
costs associated with purchasing the items stock, the costs of holding the items in inventory,
the costs of customer’s orders and the costs of shortage which are associated with demands
happening when the stock is consumed or expended. These costs incurred in an inventory
system are associated with determination of inventory policy. The different inventory models
must decide how much to order (the optimal order quantity Q%) in each time period (the
optimal reorder point (")) to meet demand. The basis for answering the two basic questions;
how much to order and when to order, is minimizing the total relevant costs. Hence, the
inventory cost function is defined by:

(Total inventory Cost) = (Purchase Cost) +{Order Cost) + (Holding Cost) + (Shortage cost).
Where,

e Purchasing Cost (PC) is the price per unit of an inventory item.

e Order Cost (OC) represents the fixed charge sustained when an order is placed.

¢ Holding Cost (HC) represents the cost of maintaining inventory in stock.



e Shortage Cost (SC) is the penalty sustained when stock is depleted.

The purchasing cost is supposed to be constant in most models. Hence, the purchasing cost
per unit will not be considered as a part of the total cost in some models since the order
quantity will be unaffected by the size of order quantity.

Many authors have studied the inventory models and have deduced the optimal solution for
the order quantity and the reorder point, with various assumptions and conditions. These
assumptions and conditions are represented in constraints with given limitations, and costs
where they constant or varying. For example, Kasthuri et al. [24] presented inventory model
under three constraints; the warehouse floor space, upper limit on the number of orders and
on investment amount on total production cost. These mathematical inventory models with
different constraints can be categorized into deterministic models and probabilistic of
demand. The demand for an item in inventory is the number of units that may be predictably
during a particular period. When the demand in future period can be forecasted with
considerable prediction, it is realistic to use an inventory policy that supposes accuracy of
forecasting. This state of known demand when a deterministic inventory model is used. in
spite of that, when demand cannot be predicted, it will become necessity to use a probabilistic
inventory model where the demand is a random variable for any period {25]. These cases
were dealt by Hadely and Whitin. Several researchers studied the probabilistic inventory
models with different distributions. For example, Fergany and Al-Saadani [17] presented
constrained probabilistic inventory models with varying holding cost. They obtained the
optimal solution for the order quantity and the reorder point when the lead time demand

follows the exponential or the Laplace distributions. El-wakeel [10] derived a probabilistic



inventory modet with uniform distribution. Also, Abou-El-Ata and Fergany {1] introduced a
multi-item inventory mode! with probabilistic demand and the varying order cost is
considered with two restrictions by using a geometric programming approach. Teng and yang
[35] generalized the Economic Order Quantity (EOQ) model to deterministic inventory lot
size models with varying demand. They also generalized the holding costs varying with time.
They showed that total relevant cost is a convex function of the number of replenishments.
Jung and kelin [23] presented the optimal inventory policies under decreasing cost functions
via geometric programming. Many inventory models were presented for a single item but
most inventory system in real economic life, stock a large number of items or multi- items.
Abou-El-Ata and Kotb [2] provided a simpie method to deduce the inventory policy of
multiple items. In this method, varying holding cost is considered to be a continuous function
of order quantity and the EOQ inventory model is derived with two constraints, the first for
holding cost and the other is the number of orders. Other related inventory modeis were
written by Gezahegan [18] and Lenard {26]. Febrycky and Banks [}1] presented the multi-
item and the probabilistic single item, single source inventory system using the classical
optimization

Most researchers have presented models with assumption of allowable shortages, which the
demand cannot be filled from store immediately then, there will be patient customers who
want 1o wait and receive their orders at the end of the shortage period (backorder), while the
other customers are not and want to satisfy their demand from other sources (lost sales).
Several inventory models with mixture or combination of backorders and lost sales were

proposed by Oyang [29] and Montogomery [27]. Also, Zipkin [28] showed that demands



occur during stock out are fost sales and backorders. El-wakeel [10] derived a probabilistic
inventory backorders model with uniform distribution. Bhunia and Maiti [7] represented two
deterministic inventory models for variable production depending on the inventory level
without allowing shortages for the first model and with shortages for the second one.
Moreover, Fergany and El-wakeel [14] presented constrained probabilistic continuous
review inventory system with mixture shortage and stochastic demand. Park [30] presented
a deterministic inventory models with partial backorders. The inventory costs are usually
imprecise in real situations due to the effects of various uncontrollable factors for example,
exchange rates from domestic money to foreign money. Therefore, these costs parameters
are detailed as approximately equal some specific amount and are characterized as fuzzy.
Heunce, many researchers are dealing with inventory problems with different shortage cases
where the cost components are considered as crisp or fuzzy values. For example, probabilistic
periodic review inventory model with varying shortage for crisp and fuzzy cost with
limitations was introduced by Fergany and Hassanein [15]. Recently, Fergany [13] analyzed
and solved probabilistic multi-item inventory model with varying mixture shortage cost with
limitations in crisp environment,

in this thesis, multi-item inventory model with shortage limitations in both crisp and fuzzy
cases is presented. The model will be developed on two limitations of mixture shortages. One
of the limitations depends on the expected varying backorder cost and the other limitation
depends on the varying lost sales cost. This model is a probabilistic multi-item with a demand
that follows normal distribution, which is formulated to analyze how to get the optimal order

quantity Q* and the optimal reorder point r™ for each item to obtain the main objective of



minimizing the expected total cost (E(TC)) by using Lagrange method. And an iflustration
numerical examples for three items will be presented. The fuzziness in the cost components
are represented by using trapezoidal fuzzy number. Comparison between the multi-item
probabilistic inventory models in crisp and fuzzy environment is shown according to optimal
Q*and r* and (min E(TC)). The structure of thesis is organized into three chapters; chapter
| gives a solid background of inventory models for single item. Chapter 2 offers the necessary
preliminaries. In chapters 3, the fuzzy multi-item inventory model is presented and

numerically verified.



Chapter 1

INVENTORY MODELS

The inventory models are mathematical equations or formulas that assist a firm or any

business organization to decide their inventory policy for ordering the economic quantity and

retaining the frequency ordering. So the flowing of goods to the customer will continue

without breaking off or lagging time in delivery. In this chapter we present the inventory

model in depth by means of the following sections.

1.1 Economic Order Quantity (EOQQ) Model

‘The most common and the simplest inventory model is the Economic Order Quantity (EOQ),

this mode! is widely used by firms and retailers. This model is applied when the stock levels

are depleted or decreased and then replenished again by the arrival of a batch of new units.

For this basic EOQ model, the considered costs are [38]:

C,: Order cost per unit item, which is the expenses incurred to place an order to a supplier.

C,, : Holding cost per unit item, which is the cost that associated with storing inventory that
still unsold.

The basic assumptions of the EOQ model

1. D: Demand rate, which is a rate based on the maximum quantity that a customer requires,
then it will be kept available for use, it will be considered in this known and constant (unit
per unit time).

2. Q: Order quantity of the item per unit time.
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3. Shortages are not aliowed, assuming that the required quantity can be satisfied from the
available stock.

4. No discount is considered; the discount is assumed in some models to encourage the
customers to buy the product in large batches because it results a reduction in cost.

5. All model’s parameters are unchanging over time.

6. The length of planning horizon is infinite, which is the amount of time an organization or
firm will look into future when preparing a strategic plan.

The order quantity Q replenished or increased the inventory level whenever it drops to 0.

Usually there is a delay between ordering items and their arrival [8]. The time befween the

placement of an order and its receipt is called lead time (L). The inventory level at which the

order placed is called the reorder point (r), Fig. (1.1) illustrates the model {33].

g

BAaxirnan investory

Reorder point

x Time

e

Lead tine

Figure 1.1: The inventory model.

We assume that the lead time of the basic EOQ model is constant, and the reorder point to be
set as follows [33]

Reorder point (r) = demand ratex Lead time

Also, the order costs are depicted by the formula [22]:
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Ordewcostw—gx(}” (i.1)

. D . .
Recause the number of orders is w@m decrease as Q increases, the order cost is inversely related

to order quantity. Therefore, order cost is a nonlinear function that inventory related to order

guantity ¢, as shown in Fig. (1.2).

Lost

Qecder gquantity

Figure 1.2: Order costs are inversely and non-tinearly related to order quantity.

The time between consecutive replenishments of inventory is referred to as a cycle. The

0

. . . O+0 .
average inventory level during a cycle is ) units,

So, the holding cost are obtained by the formula [4]:
. LA
Holding cost=C, S

Therefore,

00 O

2= I
hZD th ( 2)

Holding cost per cycle
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Holding cost is a linear function in direct proportion to changes in the order quantity Q. as
shown in Fig. (1.3).

Cost

Order quarndtity

Figure 1.3: Holding costs are linearly related to order quantity.
The total annual cost (7C ) is related with holding and ordering inventory when ( units are

ordered each time is {22]:

Total cost = C, L +C, e (1.3)
Q

2

Fig. (1.4) shows that the total cost curve is U-shaped which is convex with one minimum and

that it reaches its minimum at the quantity where holding and order costs are equal {34].

Q
3

\\ Total / /
\ cosf_’// Holding cost

"‘-..‘_...-

Pl Order cost

Qr

. Drder quantity

Figure 1.4: The total cost curve is U-Shaped.
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To find the optimal value of O denoted by Q0 that minimizes the total cost (1), by setting
the corresponding first derivatives of Eq. (1.3) equal to zero {20].

B(TC) _

0.
oQ
Then we obtain:
- C(J ] + gjﬂ!ﬂ = 0 »
=2
which leads to:
20 D
- o , 1 4
Q Ch ( )

which is a common EQQ formula [4], the corresponding cycle time is:

PR A S (1.5)
D\ DC,

We notice, when order cost increases, both optimal values (* and f* increase. But, these
optimal values decrease when the unit holding cost increases. Also, the increased demand

rate will yield increasing in Q" and decreasing in £*,

1.2 The EQQ Model with Shortages

The inventory shortage (stock out) occurs when the demand of the product exceeds the
available quantity, subsequently, the demand will not have filled immediately. There are two
main cases of the shortage:

1. Complete backorders, this case occurs when the inventory is out of stock. The customers

choose to wait until the next arrival of stock and the product becomes available again.
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2. Complete lost sales, this case happens when the customers are impatient and choose to

satisfy their demand immediately from another source during the temporary shortage

period.

In most practical situations, there is a combination or mixture of backorders and lost sales.

Therefore, the shortage cost can be computed as:

Shortage cost = backorder cost + lost sales cost

Fig. (1.5) presents the pattern of the EOQ model with shortage [22]. Symbols in Fig. (1.5)

are summarized as foliows:

[nvantory level

A

v

3

=

Figure 1.5: Inventory level

C, = Shortage cost per unit time.

NN
NN

as a function of time for the EOQ mode! with shortage.

q = Inventory level after a batch of O units is added to inventory.

@ ~ g = Shortage in inventory before a batch of O units is added.

The average inventory level; during time

time [22]. Hence, holding cost per cycle=

4 \nits the corresponding cost isC, —g— per unit
C,q C,q°
“éi(%] = (—2’—’%}, shortage occurs for a time
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The average amount of shortage during this time= (Q;q) units. The corresponding cost
¢ Q-4
2
Shortage cost per cycle = C, ,(MQE—Di)i
Therefore,

©~-q)°

% (1.6)

2
Total cost per unit rimemBC{, +C, L+Cg
Q 20

The optimal values for two decisions variables (g, Q*) are found by setting the first partial

HTC) p

derivatives nd orc) equal to zero .
oq
Thus,
aIC) _Cy_C.0-a) -
&q o Q
a0y _-DC, Gt GO-9 CO9 _, gy
Oy Qo 20 Q 20°
By solving these equations, we obtain:
. 12DC, C, (19)
"7 Ve Vgec |
. 2DC C,+C,
- [ il 3y 1. ¥ O
Q \/ Cfr \/ C.s' ( )

The optimal cycle length ¢ is given by:
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._o _ 26, [c.+C, RS
D Dcfr C\'

[2DC G
tengt = = 1.12
Q q C.’.’ C\‘+Ch ( )

The fraction of time that no shortage exists is given by [33]:

The maximum shortage is:

g /D C

&

0'/D C +C,

, which is independent of C,.

When C, — wwith C, constant, Q" ~ ¢~ — 0, where both Q" and t” converge to their
values for the basic EQQ model. On the other hand, when C, — cowith Cs constant,

¢" — 0,50 it just removes the shortage cost in inventory and gives high holding cost which

is uneconomical situation,

1.3 Periodic Review Model < @, N >

The main two types of inventory model that widely used are the continuous and the periodic
review model. Periodic review is also called Fixed Order Interval model.

In the periodic review, a periodic checking of physical counting and documenting inventory
at specified times (e.g., weekly or monthly) is done. The time between the placements of two
successive orders is called a period and is denoted by N. The policy for the periodic review

model < N > is that every N units of time, a sufficient quantity is ordered to raise the

me
inventory position to level Q,, where O, is the maximum inventory level. The decision of

how much to order of each item is made at the beginning of each period.
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The Q, or base stock level, as known in some literatures, must satisfy the demand during

protection interval (N -+ LT),where N is the lead time between the placement of an order and
its receipt, plus safety stock that is carried to reduce the risk of stock out during iead time.

The maximum inventory level becomes [2]:
O, = Expected demand during protection interval + Safety stock.
f‘ Fig. (1.6) depicts the typical behavior of this model [33].

Torventory level

Cim <

SIS T

> M Time
}

=l

¥

poaM T
P b

Place Receiye FEO®  Receive
arder order ordier  order

Figure 1.6: The behavior of the periodic review model.

The expected total cost is the sum of the associated costs including; the expected review cost,
expected order cost, expected holding cost, expected shortage cost including expected back
ordered and expected lost sales respectively [16] i.e.,

E(TC) = E(RC) + E(OC) + E(HCY + E(BC) + E(LC) (1.13)

Where,

r

1. E(RC)= —]%— ,C the cost of making a review.
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2. E(OCY = %,Cu the cost of placing an order per period.

3. E(HO)= %f{,C,, the holding cost of the item per period and I is the average inventory
level per pertod.
c, = P
4. E(BC) = m}\fﬂmyS , C, the backorder cost per period.S: is the expected shortage
(backorder in this case) incurred per period, y : is the backorder fraction of the item.
C, P .
5. E(LC) = 2 (1-7) S, C, the lost sale cost per period.
The expecied total cost in Eq. (1.13) is developed as follows:

E(TC)m.%+%+%+%y§+%(1—y)§ (1.14)
Fergany and Hollah [15] preéented a similar model with varying backorder and lost sales
cost and proposed 2 limitation on the backorder constraint. They derived the estimate of
expected total cost under crisp and fuzzy costs. Periodic review model is formulated by
Hadley and Whitin [20] i.n ‘which the demand is deterministic and probabilistic. Ouyang and
Chuang [29] have formuiated a periodic review inventory control system with variable lead
time. Fergany and Hefnaway [16] used Lagrange technique to analyze the probabilistic
periodic inventory model. An economic advantage in shipping or processing orders of a
model is that new orders are placed for many items at the same time from a particular
supplier at the start of each tir.ne.'The disadvantage of a periodic review is the need to protect
against shortage between review periods by carrying extra stock [32].

A gas station is a good example of periodic review since the deliveries of gas quantities

reach the station at the beginning of each week.



19

1.4 Continuous Review Model < @, 7 >:
The continuous review mode! also called Fixed Reorder Quantity model since the fixed
quantity Q is ordered whenever the inventory position decreases 1o reorder point (). In this
thesis, we concern with continuous review model. This system provides a continuous
monitoring and information on the present level of inventory of each item. Continuous review
is suitable for high cost items where constant review is desirable. This is especiaily suitable
for class A items which have a significant amount of inventory [33]. A fixed quantity @ is
ordered whenever the inventory position decreases to reorder (r) or lower. The main
advantage of continuous review is providing the same level of customer service. It requires
less safety stock than what can be provided by the periodic review model. The disadvantage

of this model is the extra cost of record keeping.

1.4.1 Two - bin System
Two-bin system where continuous review is not necessary because of low activity or low
unit cost. This system is suitable for organization with a large number of class C items. A
two-bin system is used to prevent interruption of the flowing of items to customers by using
two containers, one of them is the usage bin which items are withdrawn from it until its
contents are finished. The other is the preserve bin which contains stock to meet expected
demand until the order is filled, plus an extra stock to reduce the chance of stock out, if the
order is late or the demand is more than expected. The two-bin system is a cheap system

since there is no need to monitor the withdraws item from inventory [33].
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However, the disadvantages of this system is that the store owners must have more quantity
of stock than needed. It is not recommended for expensive product or for products with short

life times.

1.4.2 Continuous Review Model with Stechastic Demand

When there is a significant uncertainty about future demand, the stochastic inventory models
are needed. The inventory policy: is whenever the inventory level of the item decreases to (
r) units, place an order for Q more units to refill the inventory. The order cost and holding
cost are sustained each time an order is placed. When stock is distributed to customer to
satisfy the demand, the inventory drops until it reaches the reorder point {r). At this peint,
the order is placed and then the order is received. The difference between placed and received
order is the lead time. Demand during lead time is denoted by Dyr which expressed as {33]:

r=D,, =DxLT , asshownin Fig. (1.7)

Q

i

L

-

| 1215
ol

b7
Figure 1.7: the reorder point.
During the lead time, if the demand is greater than expected (£, >r), then shortage or

unmet demand will occur. Moreover, asserted shortage cost is sustained for each unit, This
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model is closely associated to the EOQ model with shortage introduced in previous section.
But this model has uncertain demand. So, some safety stock should be added. Safety stock
(SS) can be carried to guard against shortage because of uncertainty of demand during lead
time (Dy7). Hence, the reorder point () becomes [25]:

r=D,,+S8S (1.15)

Fig. (1.8) shows the new value of reorder point.
|

Drr

58

o TIME

[D—

LT

Figure 1.8: Safety stock during lead time.

If the demand follows any distribution with certain mean, then the expected demand during
lead time is considered to decide the reorder point with the safety stock at shortage level a.
The reorder point can be expressed as:
r=FE(D )+S8S, (1.16)
Where, SS» is the safety stock at shortage level a. Now, the probability of shortage is
expressed as [22]:

P (D,, >r)=a = shortage level. (1.17)
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Furthermore, the cases for inventory policies according to the nature of the demand and lead

time are demonstrated in Table 1.1 [33]:

Table 1.1: The cases for inventory policies according to the nature of demand and fead time.

Inventory Policy When to order

How much to order

1. Constant rate demand (D)

O=DT

2. Constant lead time(LT) F=DxLT T= inventory period
generalized stochastic (7) equation r=D+7 o
@ = shortage level Q=0T
1. Stochastic demand D~ N(gp,0 5)
for normatl distribution r=u,(LTY+Z,0, \/ZT Q= u,T
2.Constant (LT)
1. Stochastic demand
2. Stochastic iead time P gty + 2, \/HLTC"E 5+ /12:)0",/7, Q=u,T

LT ~N(u,p,0°0r)

Where,

e i, Mean of lead time demand.

e o ’.r: Variance of lead time demand.
i, Mean of demand.

e o’p: Variance of demand.

e  D: The expected demand rate.
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° Za - The Safety factor, Fig. (1.9) depicts the value of Z based on the rormal distribution.

The probability of
shortage

Lz

Figure 1.9: The safety factor based on a normal distribution.

in the following chapters we present the continuous review inventory model, when the

demand is a random variable follows the normal distribution and lead time is constant.
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Chapter 2
MULTI-ITEM INVENTORY MODEL WITH SHORTAGE

LIMITATIONS IN CRISP CASE

2.1 Multi-item Inventory Model

Most of the classical inventory models interest with single-item model. Actually, such this
model rarely happens. The multi-item inventory models are frequent and closer to reality
than the single item models. So, this thesis concerns with three items inventory model. Many
inventory models were presented for a single-item, single source (SISS), but most inventory
systems stock a large number of items. It is common to find thousands of items stocked, so
there is neediness to develop inventory models of such a large number of items. The goal
stays the same for single item as weli as for muiti-item inventory. The analysis for a single
item inventory is almost corresponding to that of multi-item one. Also, the results achieved
are almost parallel to single item and in muiti-item inventory. Multi-item classical inventory
models with constraints that imposed from resources can be found in common books [8, 19,
20]. Ben-Daya and Raouf {5] have improved an approach to solve a more practical and
realistic inventory problem. They examine a multi-item inventory model with budget and
available space constraints. Their model was with stochastic demand that follows uniform
probability distribution. Bhattachary {6] has discussed a two-item inventory model for

deteriorating items constraint space and investment and they obtained some inventory results.
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Lenard and Roy [25] have defined another approach for the specification of inventory
policies depended on the theory of efficient policy surface. They expand this theory to multi-
item inventory control. Rosenblatt [31] has proposed multi-item inventory system with
budgetary constraint using both the fixed cycle approach and the Lagrangian. [n the next
section, we represent the probabilistic multi-item inventory model with shortage limitations

and derive the optimal control of this model.

2.2 Probabilistic Continanous Review < @, r > Multi-item Inventory Model
The multi-item single source inventory model (MISS) is the most general procurements

system that can be characterized as follows; an inventory of n-items {n >1) is retained to

of the izh item per period [13]. The goal is to conclude, when to order each item and how
much of each item to be ordered, taking into consideration the system and the cost
parameters. The multi-item inventory model is deterministic when each influencing factor is
known completely. But, in real life the certainty seldom occurs. There are states of inventory
problems with uncertainty for some factors, such as price demand and lead time. In the
inventory models where only demand is probabilistic or random, the demand pattern maybe
have discrete probability distribution or continuous distribution. Therefore, it will be
modeled by a defined distribution density function that will get better model in reality [38].

The continuous review < 0O, > multi-item model has to answer the two basic questions that

have been previously mentioned. When the demand is probabilistic, levels of inventory; the

inventory position and net inventory, should be categorized. This model in which the
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replenishment occurs whenever the inventory level drops sufficiently low. Hence, a fixed
quantity Q is ordered whenever the inventory position drops to reorder point (r) or lower.
The inventory position (available stock) is defined here by the following formula [32]:
(Inventory position) = (On Hand) + (On order) — (backorders) — (committed).

Where, on hand stock is stock that is physically on the shelf; it determines whether a certain
customer’s demand can be satisfied directly or not. The on-order stock is stock which is
demanded but has not received yet. The committed quantity is desired if such stock cannot
be used for other objectives in the short run.

(Net inventory) = (On hand) - (backorders). Net inventory can be negative, if there are

backorders.

2.3 Mathematical Model of Probabilistic Continzous Review Model < @,r > with
Varying Mixture Shortage Cost with Shortage Limitations in Crisp Case
Sometimes, there are some customers do not mind waiting until their orders are available
once the next arrival of the stock (the backorder case), and the remaining customers may be
impatient to wait and they would to satisfy their demand from other source immediately (the
lost sales case). However, inventory models which include both cases are known as mixture
shortage. A similar model with fixed reorder point and a variable lead time was derived by
Ouyang et al. [29]. Hariga et al. {21] represented both periodic and continuous review models
with mixture of backorders and lost sales when the information of demand is full and partial.
Also, Fergany et al. [17] solved constrained probabilistic lost sales inventory system with

normal distribution and varying order cost. Moreover, Abou- El-Ata et al. [1] discussed
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probabilistic multi-item inventory model with varying order cost with two limitations. The
first is the expected order cost and the second is the expected holding cost. Fergany et al. 121
described periodic review model] with zero lead time with limitations and varying order cost.
In this section, the mathematical model of a probabilistic continuous review multl -item,
single source (MISS) inventory mode! in crisp case is presented with varying mixture
shortage cost with two limitations. One of them is on the expected varying backorder cost
and the other on the expected varying lost sales cost. Moreover, this model is presented and

verified by a numerical example. Fig. (2.1) shows the behavior of this model [13].

Inventory fevel

F 3

QEr T, - Inventory
- Pl position

ey e
. g\ M\fg R . Net inrventory
< . : o
M N R RN

4 Backorders

e Time

- Lost sales

Figure 2.1: The behavior of the continuous review system with backorders and lost sales.

The optimal order quantity (", the optimal reorder point r. and the minimum expected

total cost [min E{TC)] are obtained.
The following notations are adopted for developing the model

The stock is reviewed continuously < Q,7 > . The shortages are allowed [1]:

D, : The demand rate of the ith item per period.
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Di: The expected demand rate of the ith item per period.
0, The order quantity of the ith item per period.

(" The optimal order quantity of the ith item per period.
r, + The reorder point of the ith item per period.

r*;: The optimal reorder point of the ith item per period.

L,: The lead time between the placing of an order and its receipt of ith item.

X,: The random variable represents the lead time demand of the itk item per period.
f(x,): the probability density function of the lead time demands.

E(X,): The expected value of x,.

r, —x,: The random variable illustrates the net inventory when the procurement quantity

arrives if lead time demand x £ .

R(r): P(X, > r) = the reliability function = The probability of shortage.
E(I})i The expected shortage quantity per period.

C,, : the order cost per unit of the ith item per period.

C,,: the holding cost per unit of the itA item per period.

. - the shortage cost per unit of the ith item per period.

C,,; : the backorder cost per unit of the ith item per period.

C,: the lost sales cost per unit of the ith item per period.

B - A real number selected to give the best fit estimation for expected cost function.

¥,: The backorder fraction of the ith item, 0 <y, <1.
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E(OC) : The expected order (procurement) cost per period.
E(HC) - The expected holding (carrying) cost per period.
E(SC) : The expected shortage cost per period.

E(BC): The expected back order cost per period.

E(LC) : The lost sales cost per period.

E(TC) : The expected total cost function.

MinE(TC): The minimum expected total cost function.

K,,: The limitation on the expected varying backorder cost for the backorder model of the

ith item.

K,.: The limitation on the expected varying lost sales cost for the lost sale mode! of th ith

item.

We present the mathematical model with varying mixture shortage cost with two limitations
where the demand is a continuous random variable, the lead time is constant and the
distribution of the demand during the lead time is known. The development of the expected
total cost, where it consisted of three components: the expected order cost, the expected

holding cost and the expected varying shortage cost, can be expressed simply by:

E(TotalCost) =Y |E(orederCos)+ E(HoldingCos) + E(shortageCost))

=1

=S [E(OC) + E(HC) + E(BC) + E(LC)]. 2.1
=]
Where
. N 5:‘ E." Ly .
E(OrderCost) = E(OC)y =C, é—, QO the number of orders of the ith item per period.

Then, we find the average on hand inventory per period (I ywhich is obtained by [20] :
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7 _ (Max. on hand -+ Min. on hand) _[(Q,. + E(r, = x, )+ E(r, —x,)}
B 2 - 2

Therefore;
- _Q_'_ - -
I= 5 E(xy+(1-7,)5(r)
which yields,

E(Holdingcost) = E(HC)=C,I=C, (-% w1, —Ex)+(1-7)S(r)) . (22)

Let S be the shortage quantity which is given by the formula {14]:

0 , otherwise

Then, the expected shortage cost is obtained by:

Sun = | S,/ Gdx =] (6= r)f (5. @3)

.
We assume the varying backorder cost function, where the backorder cost is an increasing

function of the number of orders. Then, the expected backorder cost is given by:

D 1 - D; +1 T -
E(BC) = C[,,—}/,(-é“)ﬂ S(f”i) - Cb;‘}”;‘ (“é'")ﬁ J (xf W'Vf).f (‘xi )dxi‘ (24)

Let 1—y =% ,where 7/ is lost sales fraction of the ith item.
?/! i ?/!

Also, we assume the varying lost sales cost function, where the lost sales cost is an increasing

function of the number of orders. Then, the expected lost sales cost is given by: -

. ~ v 1 D + v ! 51 + K;
E(LC) = C’h,“}/ i (—Q—~)ﬁ lsf”'i = C;,,-}’,-(‘é“}ﬁ ‘J (x," - ri).f(xf)dxi . (25)
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Therefore, the expected total cost per period is:

sre<orsl= 3 [e.Ehee, (& or - EGw))
Er' ,g...im .
*Curi( ) [ Gn=r)f(x)dx,

+<cf,-<~g-‘}>ﬁ” co | &o-mfdx ] @6

K ’

To minimize the expected total cost £ [TC < (O, >]with two fimitations:

Di oan=
Cbi?’i(’é—)ﬂ lS(”})""K.ﬁi <0

i

f Dy + o
Cﬁ?’f('é“")ﬂ ‘S("f)"’Kﬁ <0. (2.7)

i}

We rewrite the function (2.7) in the following form:

Efrc<ors>1=3" [c, (gw +Cy Err -5

D 1 e D +] v
"i"Ci:i?/f("”C‘r)ﬁ S(’?)'i“(cﬁ(“é”."}ﬂ +C )y S (2.8)

a2 [

Subject to:

v Di pag
ij:}/,.(—Q-—)ﬁ IS(F;) < Kbi

i

Cliy:(%)ﬁ">! E(}?) <K,. (2.9)

We get the optimal values Q) , #~ which minimize Eq. (2.8) by using the Lagrange multiplier

technique under constraints [11].
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KO, 7 A )=S0 [ca,-(—gw"«)w,,,- & or B

Di paa
+C.f)i?/j(5"')’0 'S(r)

H

+(C, (—3—)’6” + Cf”.)}/ﬁ(ri)

i

Di gu
+ A4y, (G, ('é—)ﬁ i S(r)—Ky)

{

' Bf +
# Ao (CariC5™ S0 =K i (2.10)
where A, A, are the Lagrange multipliers. To calculate the optimal values (0 and r~, set

each of the corresponding first partial derivatives of Eq. (2.10) equal to zero [15].

aL oL

=0, —==0.
00, or,;
We obtain:
C, 0" =200 D-24(B+1DS(;) =0 (2.1
CkiQfﬁH

R(r| )= -t
A4+Cyl0;

(2.12)
where 4=D! " [5,C, 1+ 4)+7.C,(1+ 2 |
Clearly, there is no closed form solution of Eq. (2.11) and Eq. (2.12).

The demand D follows the normal distribution with parameters g and o® [21]:

L -
f(D)= e m T~ - o< <o, >0,

oN27
Where 4 is the mean and o is the standard deviation. In the case that the lead time demand

follows the normal distribution with parameters Ly and Lot
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1 Wéb[,\gﬂi}’
flxy= e o —max<ow, -~ waul<w, Lo>0.
o~ 2nl
The reliability function R(r) gives the probability of shortage that given by [25]:

R(m = J fi{x)ydx.

e L pr—pl
Also, R(mM=1- [\/L} ('D[g\/f}

Where
¢[m§}m]ﬂﬂﬂ.
And JJ%L} j f{x)dx.
[fwelet z= J&L = f‘mZ{T\/Zﬂ‘“/L!L.
o

The expected shortage is obtained by:

S = (-
:T xf(x)dx—r ] J(x)dx

L% = r— gl
= Lye 2 Az~ (] - P
m/ﬁ! (zoNL + ulye * o Lydz - (] ¢(oﬁ))

dz+

WI ze J’_I e dz—r(] m¢(%“:%i)} (2.13)
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where (—““ ,uL) = ——;‘T‘J ye'%dy
Then,
RN rHLy Ty 2.14
o ‘”%JZ“’“‘“"%JZ) w(m/z) (2.14)

So, Eq. (2.13) becomes:

)+(#L"—f)co(r ff' (2.15)

S(r) = oL !//(

Therefore, the expected total cost can be minimized by substitution Eq. (2.15) into Eq. (2.11)

to obtain the following equations:

c,0" =200 D-24(8 +1) aﬁq;( )+(,uLv~ r) o r-ml)y =0 .16
m/]i

Ju[’ (:."N‘Q"‘ﬁ-{.l
N ) 2.
R(r[ )= gp( \/L {A +C, (- y:')Q*ﬁH j! o

Special Cases
Two special cases of the presented model are concluded as follows [2]:

Casel:let y, =0, =0, K, — o and 4 =0.The Egs. (2.16) and (2.17)

become:

Q*m\/w(cﬁqsm) nd ROy = CQ"
Cy C,0 +CD

This case represents that ali the shortage is lost sales. Notice that the unconstrained lost sales

continuous review inventory mode! with constant units of the cost are the same result as in

[4].
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Case2: let », =1, B=0, K, = o and A, =0.The Eqgs. (2.16) and {2.17) become:

A= e -
o’ :\/2,0((3'0 +C, S(rY) and R(r) = C,Q

Ch C!) D

This case represents that all the shortage is backorders. This is the unconstrained backorders
continuous review inventory model with constant units of the cost, which correspond with

the result of [4].

Numerical Example:

Let the demand for three items is fitted to normal distribution. Table (2.1) shows the cost of
units for three items. Table (2.2) represents the limitations for both backorder, lost sales and
their fractions. The optimal values @* and " for three items can be obtained using Eq. (2.16)
and Eq. (2.17) respectively. The following iterative procedure will be used to solve the
equations [15].

Use the following procedure:

+ Step 1: Assume that S =0 and r= E(X),then from Eq. (2.16) we get:

2C,, D
QO B Ca’ri

- Step 2: Substituting @, into Eq. (2.17) we obtain 7,
« Step 3: Substituting by 7, from step 2 into Eq. (2.16) we can obtain ¢;.
« Step 4: the procedure is to change the values of A; in step 2 and step 3 until the smallest

value of A; > 0 is found such that the constraints varying shortage for the different values of

5.
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The numerical computations are done by using Mathematica program for three items of
different values of §. Tables (2.3), (2.4) and (2.5) show the optimal values Q",r" and
min E(TC) at different values. Therefore, we draw the optimal graphs of Q",r" and

min E(T'C) versus f. For all three items as depicted in Fig. (2.2), Fig. (2.3) and Fig. (2.4).

Table 2.1: The mean, the standard deviation and the costs of the items.

item 1 item 2 ltem 3

Mean 10000 8500 110600
SD 2500 2800 2250
Costs

C, 25 35 32

Ch 3 i1 8
Shortage costs

Cy 3 10 5

Gy 12 28 20

Tabie 2.2: The limitations for backorder, lost sales and their fractions.

[tems Ks Ky ¥ -y
fterm 1 310 970 0.56 0.44
ftem 2 2255 2830 0.67 0.33
Item 3 1280 2200 0.70 0.30




Table 2.3: The optimal value of @*,7* and min E (T C)at the different values of B for item 1.

37

B A A p 0 Min E(TC)
0.1 0.0310 0.0312 16317 1428.8 23050
0.2 0.0312 0.0313 16647.5 1440 23983.2
0.3 0.0510 0.0520 16975 1487 24968.5
0.4 0.0530 0.0540 17275 1541 25891.27
0.5 0.060 0.062 17600 1560.75 26849

Table 2.4: The optimal value of Q*, 7" and min E(T()at the different values of B for item 2.

B A A r o Min E(TC)
0.1 0.0010 0.0012 15808 126927 93877
02 0.0013 0.0014 16228 1296.65 08357
03 0.0013 0.0015 16648 [359.07 103153
04 0.0015 0.0017 16984 1377.77 107838
05 0.0020 0.0028 17376 142835 113070.8
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Table 2.5: The optimal value of @*, 7" and min E(TC)at the different values of B for item 3.

B A A r 0 Min E(TC)
0.1 0.11 0.12 16861 1533.26 58374.17
02 0.13 0.16 [7232.5 1539.72 61005.6
03 0.10 0.14 175925 1568 63885
0.4 0.11 0.17 17863 1643 66477.14
0.5 0.12 0.19 18177 1702 6885138

The optimal routes of @, 7 and min E{TC) versus Sfor all items is exhibited by Fig. (2.2),

Fig. (2.3) and Fig. (2.4), respectively.

Q*
1800

1700
1600
1500
1400 |
1300 *
1200
1100 -

1000 - - - : . B
0 01 0.2 03 0.4 0.5

T et TR L
© el item?2
e (£ 2113

Figure 2.2: The optimal values of Q" versus f.
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Figure 2.3: The optimal values of v versus 5.
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Figure 2.4: The optimal values of min E(TC) versus f.
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Chapter 3
MULTI-ITEM INVENTORY MODEL WITH SHORTAGE

LIMITATIONS IN FUZZY CASE

In the most of the existing literature, usually the inventory costs are assumed to be
deterministic and designated as real numbers. However, in real situations the inventory costs
are often imprecise or vague in nature because of the influence effect of different
uncontrollable factors. Such as, costs may depend on some foreign monetary units, such as
exchange rates from domestic to foreign money, the costs will not give precise values.
Moreover, the shortage cost is mostly difficult to give a precise value in the case when it
expresses a loss of customer’s will. Hence, these cost parameters are described as
approximately equal some certain amount, and it is reasonable to characterize these
parameters as fuzzy. However, fuzzy set theory can be used in the formulation of inventory
models. The same assumptions and notifications will be considered in this chapter during
represented model with varying mixture shortage cost with two limitations when the demand
is continuous random variabie, the lead time demand has a known distribution and the lead
time is constant.

3.1 Fuzzy Set

The fuzzy set theory can be used in wide range of domains in which is incomplete or
imprecise. We introduce some definitions in order to define the fuzzy set.

Definition 3.1.1 Membership function [37]

For a set A, we define a membership function such that:
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I, xe4
iy (x}= (3.0)
0, xgd

Definition 3.1.2 Fuzzy Set
A fuzzy set is a nonempty set which maps each element belongs to a nonempty set; X'to [0,
1] by membership function:
Uy X = [0,1]
We can say that the function s maps the elements in the universal set X to the set {0, i}
e u, (x): X—{0,1}.
Definition 3.1.3 Normal Set: 4 fuzzy set 4 is called normal if there is at least one point X
belongs to X such that pacx) = 1.
Definition 3.1.4 Convex Set: A fuzzy set A is convex if for any x,, x, belong to X and he
{0, 17 we have:
i, (A, + (1= Adx,y zmin g, (x,), 4,(x;)
Now, we will use the previous definitions to define the fuzzy number.
3.2 Fuzzy Numbers
Definition 3.2.1 Fuzzy Number {37]
A fuzzy set A is a fuzzy number if it is satisfying the following conditions:
1. Convex fuzzy set.
2. Normalized fuzzy set.
3. The membership function is piecewise continuous.

4. The membership function defined on the set of real numbers.
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Definition 3.2.2 Trapezoidal Fuzzy Number

A trapezoidal fuzzy number 4 =(a,b,c,d)is a fuzzy number which has a membership

function as:
0 x<a, xzd
g—:—« , a<x<bh
H{x)= B (3.2)
, bgx<e
x—d c<x<d
c—d

Definition 3.2.3 The alpha cut or alpha level set of a fuzzy set is a crisp set defined as follows:

A

a :{x:VxeX,y/,(x)?:a}

The a-cut method of the fuzzy numbers is used, which is:

Let 4 ={(a,b,c,d) atrapezoidal fuzzy number, then: [Aa =a+alb—a),d—ald ——c)] i5 the
alpha-cut of 4.

3.3 Mathematical Model in Fuzzy Case

Consider continuous review inventory model similar to the model in the crisp environment,
but assuming that the cost components C;, Cp, C, and C; are all fuzzy numbers, to control

various uncertainties from different effects, where there may be effect on the cost

components. We represent these costs by trapezoidal fuzzy number as given below:

E’J”:(C”—CS‘], Cc>—§2’ Cn+§3’c{)+54)
E:: =(C, =5, C11”§6= CI:+579C11+58)
Eb:(cbmei’ C,—0,, C,+6,,C, +6,)

T, =(C =0, C=0,, C+6,C,+6,), (33)
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where$, and, 6, i=1,2,..,8 are arbitrary positive numbers and should satisfy the

following constraints [28]:

We represent the order costas a trapeioidal fuzzy number as shown in Fig. (3.1) and similarly

for the remaining costs.

(Co = 8y 13 (Co +8z.1)

]
H
x o Ul

0 /’ :\ —— X

(Cpy = 8,03 {Co+ 8. 0

Figure 3.1: Order costas a trapezoidal fuzzy number.

Note that the membership function of Co is T at points Co — 02 and Co + &3 decreases as the

point deviate from C, — dz and C, + J3, and reaches the zero at the endpoints C, — & and C,

+ 04 [37].
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The left and right limits of & — cut of Cy, Cp, Cp and C; are given by:
C.l=C, -8 +(5 -6,
¢ {a)y=C,+5,~ (6, -y
¢, (0)=C =6 +(8—5,)a
. e)=C,+8~ (86
Cin@=C,=0+ (6~
Cnl)=C,+0,- (6,~0,)u
CLle)=C—0+ (6;-6)e

C.()=C+8— (6,-0)a . (3.4)
The expected total cost for the fuzzy case with two limitations; the expected backorder and

the expected lost sales, can be expressed simply by:

BE,. &, &, a}=z[6,,,.<g¢>+a,,<

% +r = E(x))
o=t Df .
+ Curi (=) S0,
_Qf) ()
+ (C, (g-i)ﬁ“ +C,) 7 St ] (3.5)

Subject to:

éhf yi(wg_{")ﬁivl E(?‘.‘) = Khi

= ' 5’ oo
¢ ?;(*é‘)ﬂ 'Sty < K, (3.6)

To find the optimal values Q% and r* which minimize Eq. (3.5) with two limitations Eq. (3.6),

the Lagrange multiplier technique is used as foliows:
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Di. = 0 ~ D
Y+ C (v ~E(x N+ C, 7, (—
Qf-) 111(2 J ( .')) I} }/(QI

= D, -+ - o
+ (G, ("“Q“'“)ﬁ " G S )

i

Ple, . &, .8, . &l=Cx YIS ()

oi *

o D=
+ A (Cy ?/;(“él")ﬁ 'S (r)-Ky)

i

~— D =
+ ’%N(Cﬁ 7/;’ ('Q‘i")ﬁ S (F;‘)"Ku) (3'7)

The left and right o — cut of the fuzzified cost function (3.7) can be obtained respectively by:

s~ & =l.s Doz 0 o B
tf.. .6 Bl =Cu@y GG en-Fen + G ntg?"S @

=~ Diga, & \ .13
+ (C.'w' (a)ﬁ l + Cflw') }/f S (‘Fr)

i

v 4@, (mg%!f"‘?é () -K,)

i

v 4@ 7! (—%’)‘?”E )-K) G.8)

!

B .= O D
N+ C, (= Ex N+ C,, v (=S (r
Q,- ))+ hm( 2 ’; (x;)) i ;VI(Q‘.) (Fl)
D, + Fe PR

(b—')" Y G S ()

i

E [6 6{1[ » Em 2 Efﬁ :Iu uaﬂ’”’ (

o

+(ff

fui

o~ D =
+ ;"h'(cbm' 7{(?)/}?%5 (Ff) —Kbi)

i

vt ! D: + e
+ Ay (Ch 7 (fQ“)ﬁ 'S (n)-Ky) (3.9)

i

Since (z,)(a) and (E,,)(a) exist and are integrable for @ €10, 1] as in Yao and Wu [36], we

have:

diL, 0)% [ @+ L (en)da . (3.10)
{
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First we get f: (a)+ f” (ax) as follows:
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Then,
1

a (I, 0= | (Eder+ I e)da
4]

N 5) D
A 8y i (Q)
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From the previous resulting equation, we notice the value of the costs as follows:

Order cost = (g) [ (j”_51+£§3;£§_2_)_ 4+ C‘()+54_((54—63) ]
AC, -6, -8, +8; + 6,
= 7 )(Q>
Q
Holdingco.sfu( )(Q~i~r Ex) [ €, -6, +( 25) +C, +6 @EL_;_{Q]

= (%Jrr-n}s(x))[(d‘ch“”ﬂgs f + 3, +<9) |

= G.(Zr-EG)

PCEANVICEDY

2

Backorder cost

PG, -
<Q> ()[

. _wéﬁﬂ— 4C, 6, — 6)-*-9-1—8
/(Q) ST ; 4 ]

il

D s =
y G, (“Q")'g S

i

;fS

Lost sales cost= (—= {(Q)ﬁ*'[(c -0, +£__:2£_) (C, -8, +(98;‘97) 1 +6, |
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Since:
G = (46‘0 - & —? + 8, +§4)
G, = (4(3,, — & —2}, + 8, ‘*‘53)
o, :(4@, -6, -6, +0, 4—64)
4
642(4(3,”“65 —§6+97+93)

By using the Lagrange multiplier technique similarly to the previcus model in crisp model to
get the optimal values 0" and r*; by setting each of the corresponding first partial derivatives
of Eq. (3.5) equal to zero.

oL oL
ie = , =
o,

00,

Then we obtain:
DI+ Gy, A+ )+ Gyl 1+ 4y SN +G, D" —%Q*M -0 (3.11)

G0

R(¥') === —
) DG, (14 A,) + DTGy (1 + M) + Gy’ 9

(3.12)

Clearly, there is no closed form solution of Eq. (3.11) and Eq. (3.12). These two equations

can be solved by using the same manner as in previous chapter.

3.4 Numerical example and Results

Consider the following for the previous model in chapter two of constrained fuzzy probabilistic

multi-item continuous review <, r > with varying mixture shortage:
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Let:
o, =24 6, =23 oy =1 &, =2
o, =2 o, =1 &, =1 Sy =2
H =2 a4, =1 &, =1 8, =2
g, =11 6, =10 8, =2 6, =3

By using the previous procedure in chapter two, the numerical computations are done by
using Mathematica program for three items at different values of § = 0.1,0.2, ...,0.5. We get

the following data:

Table 3.1: The optimal value of @*, ” and min E (T C) at the different values of p for item1.

B A 2 r* o Min E(TC)
0.1 0.0002 0.0552 16350 1220.91 22581
02 0.0553 0.0533 16700 1293.56 23550
0.3 0.0555 0.0556 17050 1296.45 24631.8
04 0.060 0.061 17350 1350.96 25578.3
0.5 0.0662 0.0663 17625 1438.9 26577
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Table 3.2: The optimal vaiue of Q*, 7™ and min E(T'C) at the different vatues of B for item 2.

f A" A r o Min E(TC)
0.1 0.002 0.0022 15920 1140.51 92625
0.2 0.0030 0.0034 16354 1158.88 97145
0.3 0.0035 0.0040 16760 i212.23 102185
0.4 0.0041 0.0043 17152 1252.94 106825
0.5 0.0045 0.0046 17530 1287.77 111468

Table 3.3: The optimal value of @, 7" and min E(TC) at the different values of 3 for item 3.

f A A, r 0" Min E(TC)
0.1 0.21 0.23 17018.75 1264.9 57360
0.2 0.22 0.25 17367.5 1380.19 60180
0.3 0.30 0.32 17738.75 1417.38 63141
0.4 0.32 0.34 18065 1477.14 65867.7
0.5 0.33 0.35 18368.75 1559 68258

The optimal routes of Q*, 7" and min E(TC) versus ffor all items is exhibited by Fig. (3.2},

Fig. (3.3) and Fig. (3.4), respectively.
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By comparison within the expected total cost crisp and fuzzy cases when using different
values of B. We can conclude that the expected total cost is sensitive of fuzziness in the cost
components which indicates that the fuzziness is very realistic and gets minimum expected

total cost less than the crisp. This is clarified in Fig. (3.5), Fig. (3.6), and Fig. (3.7).

MinE{TC)

28000
27000 ‘,5:5:‘

26000

25000 / g itemy] Crisp
24000 .// wii=iteml fuzzy

23000 //

£ 22000 e : B
0 0.1 0.2 0.3 0.4 0.5

Figure 3.5: The comparison between the crisp and fuzzy cases for itern 1.

| MinE(T0)

© 118000
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110000 |- A
106000 - N
102000
. 98000
94000 &

90000 - - P
0 0.1 0.2 0.3 0.4 0.5

—titemZ Crisp

~—itern? fuzzy

Figure 3.6: The comparison between the crisp and fuzzy cases for item 2.
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Figure 3.7: The comparison between the crisp and fuzzy cases for item 3.
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CONCLUSIONS

Multi-item inventory model with two {imitations on shortage cost is presented. These
limitations include; the expected backorder cost and the lost sales cost with varying values.
The limitations are identified by assuming a fraction of demand is backordered and the
remaining fraction is lost sales during the shortage period. This model is a probabilistic multi-
item, single source with a demand that follows normal distribution, which is formulated as a
continuous review to analyze how to get the optimal order quantity Q" and the optimal
reorder point r*, This is done to obtain the main objective of minimizing the expected total
cost E(TC). We have developed this model in fuzzy case. The fuzziness in the costs is
presented by using trapezoidal fuzzy number. For the results of the illustrative numerical
examples, we have deduced the minimum expected total cost by using Lagrange multiplier
technique and the solutions of optimal values of Q and r* are evaluated for each value of
and the Lagrange multipliers; A";, A", for three different items are obtained. Our work shows
that when 8 increases, »* increases and thus @ increases which indicates that min E(T()
increases. By comparing between the minimum expected total cost for crisp case and fuzzy
case, a sensitive to the fevel of fuzziness in the cost components is revealed. Three curves for
0%, r* and min E(TC) are displayed to illustrate them for each item versus the different

values of . Finaily, the min E(TC) is achieved at minimum value of .
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MATHEMATICA COMPUTATIONS

ttemi{criap)
Bm3.1

wirie {3 {816}~ 1.1}+{{{4c000 " 1.13{{1.68« 1.8318)+(5.28» 1.6312} 1) +{3 20,44 #{BLG " 1.1V
putfrops BLOBSTE34Z

migte Trvtegrotel®.4«y * Expl~(y 23+ 12}, {y, 2.527, e} ]
oufsls 0.0164216

i FindInstanced3 07 2,1~ (2525%40000% 04 0.1}~ 2% 1.144.68%({1.68%1.0310)
#{5.28+1.6312)}% {40880 1.1}== 0, C]

owpraie {{Q -5 1428.811}

wftope 1,68 (4006D+ 1428.8) 4 1.1}+4.68
ol The 30T 153

nftehs 5,28 % (406005 1428.8} 7 1.1}%4.68
oufigt= 965,333 i

Pteni{crisp}
Bm0.2

pispe (3% (B16) A 1,2} + ({ (400004 1.2){(1.68%1.6312)+(5.28 % 1.0313))}+{3+0.44% (816~ 1.2}})
ugzze ©.BO390797

s Integratef@, 4wy« Expl~{y » 2)42], {y, 2.659, w}]
cufzei §.0116618

wazps FindInstanced3#04 2.2~ (2+25#48000%Q70.2}- 22 1.2#3,.15063+{(1.68+1.03132)
+{5.28%1.0313)} % (460667 1.2)u= @, ]

cogezie {{Q - 1440,00}}

wjsafs 1,68 «{{400004 1446} 1.2}« 3.15063
ezt 285,854

wisap 5.28 % ({40000 & 1430) # 1.2)#3,15963
outtiaps 898,397



62

Fhenl {4:!‘% s}
BEw@.4

e £3 % (BI6Y A 1.4+ {{{40000~ 1. 41 {{1.68 % 1. 0520} +{5.208 % 1.8540) } {3 % 0. 45w {BIE* 1.4} }}
Guipys ©.GQLTETES

i Integratd®.foy wExpl~{y 2342}, v, 2.81, «}]

et €. GUSTET4E

B FindInstoncd3% 52,4~ {24354 40000%G 0. 4)~ 2% 1.4+ 3. 688+((1.68+ 1.0536)
+{5.28 % 1. 8548} } % {30088 ~ L. 4) ==, 0]

gt {40 -» 1541.95}}
wpigie L.6B % {40BDO F1541.89F 4 1.4} % 1,686
iy 272,887

weis 5,28 #{ {40060+ 1531.85) % 1.4) % 1,636

tutite BED . BIE

Tremlforisp}
Bawd.3

e (2 %{816) % 1.3)&{{{40000 " 1. 2){{1.58% 1. 0516) +{5.28« L. 8520) ) J+ (B xB. 4% {816~ 1.2} }}

et §.00250TES

wn Integratef®. ey Expl={y * 2} +2F, {v, 2. 7%, w}]

e &, BORIGLAT

piEe FindInstanmced 3485 2.3= {2425 408RE% ¢~ 0.3}~ 241.3+2.267#{{1.68% 1. 8519)
#{5.28 % L. 0528} }+ {40868 1.3 w=0, ]

ousge {0 - 14E7.03}}

Wi 1,58 %{ {40800 % LABTE > 1.3} % 2. 26T

thefels 27 5. 564

Wiw 5.28%{ (400084 1487 1.3} e 2. 267

e B84, 488



63

ttenifordap}
Bwm 8.5

nitas {2 #{816) 5 1.5} {{ {40008~ 1.5){{1.58 % 1. 060} + (5. 2842 0628} }+(3+8.43 % (B16 " 1. 5Y})

ool 8. B011825]

s Integratd B v e Expl=f{y © 21+, {v. 2.02, w}]

sugiiy: 0. 00435832

T FindInstance[5+4 % 2.5« {2 %25+ o00a #O @5 - 2% 1.5 % 1.3826 # ({1,858« 1,050}
#{5.28x1.082) )+ {40060 ~ 1. 8}emo, 9]

g {42+ 1588, 75)}

R P&
1.68%{ {40000+ 1560.75) ~ 1.5)% 1.1876

Sugtlp ZET.TTE

Wi 5,28 # ({30006 4 1560.TH} 4 1.5+ 1. 1826

ufite 812,143

w2 { crisph
BEm@. 1
wutipe (13 # (6B} 115+ {{1040. 30 {628~ 5.1} )+ {{cB080 ~ 1.3 {{6. 7Tx 1. ReY0) & {5. 245 2. 0022} )1}

mpials B . BEA4EE3S

wisge Integratd@.d% v e Expl-{y ~ 2)+2], {v, 251, w}]
Doz 9. B132688

pfites FindInstancd1I#0 2.1~ (2% 3546060850 0.1)~ 2% 1. 1% 4.3661%((6.7%1.0018}
#{%.24% 1. 0812} b+ (50880 L. 1) mmd, O}

ouygsspe £ {4 1289, 35} }

267 B. 7 {66800 1268.35) ~ 1. ) # 4. 3661
ool 29F3.27

i 924 % { {GOORDS 1269-25) ~ 1-1)%4-3661
veyife 2884.83



64

$tewziorisp)

B=6.2
sisope £11% (818~ 1,234 {{1146.33 +(518 * 1.2§) + ({68000 " L. 2}( (6. 7T%£%1.8813)+({8.24%1.9034}))}
auise ©.00283806

sz Intagrete0. 4oy wExp]~{y * 222}, {v, 2.76, w}]
Gz O, BOBBESRL

s FindInstancePiwin 2,2 - (2#35£50688% 3 0.2)— r41.242.8884%{{6.7+1.8813})
+{B.2421,9814} } = (60808 1.2}mm 8, ]

casepe f{Q -+ 1796.85}}

mwape 5.7 %1 {60006+ 1296, 65} T.2}# 2. B8RS

oo 1928 85

Batps 9,24 % {60000+ 1296, 85} 4 1.2)4 2. 8884
ougstle 2638, 83

thend forisg)
BmE.3
wpipe {11 % {518F % 1.2} 4 {{11%6.33 % (618 ~ 1.3} } + ({60000 * 1.33{{5.7%1.8013)+{9.24 % 1.80815}}1}

e ©.BOLTETTE

s Integrated0. 44y eExpl-{v » 2)+2], {¥, 2.985, eo}]
Desps 0 0OEER2I2 '

wie FindInstancd11#G4 2.2~ (2435 %GORBB#0 A 0.3)= 74 1.2%7.85168+{{6.7+1.913}
#{8.24% 1,015} )+ {60808 ~ 1.3)um @, (]
s {10 =+ 1358.87}}

fed 6.7 ¥{{EEBE0+ 1355.67) ~ 1.2)% 2, 85168
S 18890, 46

g 3,24 % {{6OUB041259.8TF 1. X}*2.85168
o 2687 .14



65

itewz{orisp)
Bw@.4

meerzpe {114 (818} * L.a}+{{1149.33 % {528 ~ 1.4} ) + ({50080 14} {5. 71,6035 # (5. 24% 16027} })}
curfsinge B, 00118756

e Integratdd. 4+ v s Exple-{y ~ 2+ 2}, {v, 3.84, w}]

Gfilige §.ROFBETEY

pprsge FindInstanced 114072 4= (2%35460000% 0% 8, 4)~ Z%1.4% 1.3744%{{5.7 % 1.8816})
#4{5.24% 1. 0017} j» (60E80 " E. 4)mm , (]

cunregpe 4G5 1377 TTLY

Bt 6.7 % {60080 # LITT.TT) " 1.4} 4 13744
g 1814 48

bprrse B.24 % { {EODOBE 1BTT.TTI A 1.4)#1.3744
ot ighe 250238

ttemi{crisp)
Bwr@.D

mfrspe 1L % (BB}~ 1.5} +{{{a0000 * 1.EM{6.T91.0028) {2, 240 1. 0628) j e {11 ¢ 0 .38 #{61E ~ 1.5)}}
ot e 8. QORT1S43

s Integratd B, 4 ey« Bxpl={y ~ 2)+2], {v, 38.17, o}}
a1 i 9, BO2630S

pira BindInstancd11% 0 2.5 = (2435 % 608884 G " &. 5= 2% E.540.97856«{{6.7%1.0028)
# {2, 244 1.0828) )« (66568 * 1.5)=u 6, O]

supiinge {{Q - 1428.35}}

Bpttie 6.7 ¢ ({60000 + 1428, 35) ~ 1,5} 6.87858
fuiig 1TES. 00

Efioie D, 24 ¢ { {GOOGE & LAZE. 35} ~ 1.5) « 0. 97858
cuifrip ZHGL.T



66

trawif{crisp}

fm@.l
it {8 # {848,502 1.1} +({{s0600 » 1.1}{(3.5% 1. 20} + {6+ 1.12}}}+ {B#0.3%{845.5 * 1.1}}]
fusis 0, 60445501

s Integratd®, 3 v & Expl={y * 2} 42} {v, 2.685, ek}
et 0. 0134825

e FindInstanced8% g r 2. k= (2432450008202 8.2}~ 2% 1.1%4,185%{{3.5&1. 51}
#{6% 1.12) )% {50080~ L. 1}wx g, Q]

e 40 - 1533, 28} }

pes 2.5 %4 {BOGI5+ 1533.26) % 1. 1)+ 4. 136
Cefitpe 1276, 54

bitpe 6 % { (2EODO+ 1533, 26} 1. 1€ 4,135
oupripe 218835

tham 3 fordspl

Bo@.2
wiegpe $8 % {ga8, 5} 1. 25+ {{D0800 * 1.23({3.5%1.18)+ {6+ 3.16%)) ¢ {8+ 8.3 {BAB.5 ~ 1.2}}}
e B GDZTIEAE

spptgs Integrated®. 84y % Exp[«{y » 2} # 2%, {w, 2.77, o]
oo B BORE2EED

nihw FindInstancdB3 %0~ 2.2- {24324 30908%Q " B.E}w 24 1.2%2.482745+{{3.5%1.13)
+{64 1,16}« {00080 " 1.2)um 8, 0}

pegzize {0~ 153%.72}}

pfige 2.5« ({0000 41525, T2}~ £, 2} 2. 483745

ey 1145, 94

npg= 6%{(I0V0B 4+ 15639.72} 4 1.2) % 2. S82TAE
deif2age 1964 .46



67

fpemi{oeizp)

Bm@.3
mpige (8 {Ba. 5y 1.3)+{{{oB000 » 1.3){{2.5¢3. 18} {54124} 3} {B# 0.3 x{848.5 " 1.3}})
oegitsl B BH1T4SLT

wge Tntegrate{B. 44y w Exp={y * 2} 2}, {, 2.91, wd]
rpeRe B BOSTETAR

s BindInstencd 840 2.3 - {2432+ 30080%0 " B.24= 2¢1.3%1.60%{(2.541.28)
#{6#1.14)} % {30000 1. 3)mud, Gf

oz {10 = 1568.86}} '

pevibe % 5w {SBGOU 4 156, BE) 4 B3} % 1.65

gegripe 1331F.11

s @ % {{NO0ED & 1568.68) © L.3j# 2. 65
pere 191584

ttemd{orisp}
Baml.d

et (Be{a4g. 5} 1. 4%+ {{{poGEE " 1.43{{3.5% 2. 22 462 1. 17} # {8+ 0.2 4(848.5 » L. 4}})
el 0. BOIOTRRR

e Integratde A ey s Expl={y ® 2§42}, {v, 205, oud }

cogmape ©, BOELBES

wps FindInstancd@e( 2, 4= {2432%5000080 ~ B4}~ 2% 1. 4% 1.1619%{{3.5%1.11}
+{641.17)}+ (s " 1. 4}mm 2, G]

sy {{G-»1643.1}

w3, 55 {{oBOO0+ 1543}~ 1. 4)# 1,252
D 1121.42

w6 % { (D008 & 1643] 4 1. 4) % 1. 253
S 2042.43



68

e Ttemi3ioris o
Bead.B

wpetpe {6 % {R4B,B) " 1.5} +{{ {apaas Lﬁ}{{:a.5-»»L&z}ﬂsﬁl.m}‘;]*{awﬁwawma.ﬁ ~1.5%)}
ool 8. B00BE2837T

e Iﬂtegratﬁ@.#*vkExp[w{y azya2}, {w, 3.22, w}l

Gyt ©. 00246882

cgngn FindInstance@sg " 2.5 (2+32w0800&G " B.5)= 2% 1.5%8.803%{{3.5+1L. 2%
{8 %1.19) % {30000 " 1.8)j== @, ¢

ot {10 b 1TB2. 71}

e 3. 5% ({09866 4 1TOR.T) 4 1. 5}4 B, 803
cugess LOEE. B4

it 6 #{ {00000 % X702, 7}~ 1.6) « 6.888
cufpisy LBSL.5 '

teaml {Fazay)

Bm®.l

{a+{6L13) " L. 1j+{{3#0.44%{611" 1. 1}y e{ (40080 1.2){{1.68% 1.9556)4{3.52% 1.0552}1}}
oegiage B . GOEAGSBE

pign Integrate .44y Expl~-{y ~ 24421, dy, 2.54, w}]
tatate B . GLIBEEE

opssie FindInstancel.1+4.89723%({1.68+% 1.6550)+(3.52%1.0552}} % {40008 " 1.1}
# (14948000800 8. 3)—{3%G" 2.0 2 mm e, ]

o {{ =+ 1226, 81}

e 1.68((5600841226.91} 4 1.1}#4.8872
ogsts 3B2. 95 '

oG 3.52{ (360984 1229.51} ~ 1.1j ¢ 4. BET72
toitae 808,508



69

Fiami { Fureyl

Bwm@.2

e {3 e {ELE} Y 123 {3 e g4 {511" 1.2}}#{{ac008 "~ 1.25{{L.58% 1.8563)%{3.52%1 8554311}
centie © . GU2E1244

e Iovbegrate 0.3 ey % Expl={y 2} +2], fw, 268, w}]
e © . GLIE2E61

e FindInstencel. 2 ¢ 3. 36104 ({1.68% 1.8553) +{3.52 % 1.8554) ) {48860 » 1.2}
% (14440008830 0. 25-{340" 2.2 o 2 e @, 2]
stz L{Q -+ LR 56}

e 1.684 (40998412093 .58} 3,7} % 3.3614
R T

wppste 3,52{ (4BOSE+1293.56) 4 1.2)#3.3615
deagtspe 728, REE

fem { fuzzyl
BmE.2

wpige {3 {611} 2 1.2} #{{3¢ 8. 24 (620~ 1. a}}# ({40008~ 1.3){{1.68+ 1. 6555) #{3.52%1.9856) )1}
coeegpe © . GOEITRYT

ppte Tntegratef®. 4%y Expf ~{y * 2y+2}, {v, 2.82, w}]

fogdi ©.B0T5A27E

apspe FindInstancedl.3%2.456%{(1.68%1. @555} #{3.52 % 1.8556) p=(sa008 " 3.3}

& (14%40600%0Q 8. 3}~{340Q 2.3 #2Yyam@, ¢

ouyisps {{Q-»1296.458}}

wsae 1.68{(46088+1296.45)" 1.2)% 1,458
Sl 356, 15

i .52 (480084 129645} 1.2)w 2, 455
Gty 45,219



70

ikemiifuzzy)

Ba @, 8

wipme {3 #{513) 7 1.5 e {{3 s 0. aas{B11 " L.5)j+{(se080 " 1.5){{1.68 1. 0662} +{3.52% 1.8662} 1}

sty 5. G0IO2IHL

spae Integratel. 44y » Expl- {w s 2y+2}, {¥, 2-95, )]
i ©, GUETHASE

rpage FindInstancd 1.5% 2. 45364 {{1.68+ 38662} +{3.52« 1. @663}« (40000 1.5}
+ {lawdaepdel s @ 5)={3wl" 2.5+2)wm @, O]
i L {0 - 2458, 348} )

e 168 % { (#0000 & 3439} % 1.5} 1, 4516
et AT 4

Ew 3,52 % {{406004 1438}~ L.5)* 1. 4516
copispe T48.838

ttemif{furzy}
Buwb.d

mtsop (3 % {611 > 1.4)+{{3r 0. 44%{611" 1.4)y+{{s0a00 > 1.4} {{1.68% 1.888)#(3.52+1.061})))
s ©.BULBSRET
gase Integrated. 4%y s Explwiy 2y 4zl {v, 2.94, w}]

Cendgle O, B0E31038

Ingi Fin&Iﬂﬁtanﬂﬁl.éHﬁl,EiEzﬁi{l.EE*1.@6@}%{3:,52&&,@61}}*M@i‘@ﬁﬁ" 1.4}
+ {144 4009020 0.4~ {3 %0 2. 442])m 0, aj

ougsse $1Q -» 1356, 96} }

ifips 1,68 #{ {40800+ 1350.96] * 1.4)+ 1.8182
ot 3807

wss 3,52 %[ {40008+ 1350.96) 1. 4j+ 1. 8182
e T34, TS '



71

toemd {Fozzy}
Bw@.l

e {114 (511,68} 1. 1) +{{{58068" 1.1V {{B. T4 3.0028) 4+ {7.00% 2. 0820} e (1l 0. ¥3%{511.68 % 1.
fungaly B BOISTESS

sie Integratef, 3% v % Expl{v * 2} 421, fy, 2.65, =}
sutiite . BLIBAZE

i FindInstancd . 1% 3.9?‘8&11&“6.?*1.@@'28}*{?.92%i,ﬂiﬁzia}&lsﬁﬁﬁ@“ 5.1}
+ (244600000 8. 1)~ {21%0" 2.1 2w @, ]
outgasys { {3 ~» 1148.51F}

st &, 7 #{ {56680+ 1140.51) % 1.1}+ 3. 9768
st 2082.98

e T.924{ {60006+ 1140. 51} 1.1} 3.5768
confrope 2462, 23

Ytem {Furzy)

Bm®.2
miftee {3114 (B11.68) % 1.2y (poese 1.2){{6.7% 1.0038)+{7.92¢ 1.66343) 3+ (114 0. 35%{511.68 " 1.
feefsipe U, OO2AE442 ’

wpize Integratel@. 4wy s Expl-{y " 2=z, {v, 2.885, a}]
Gt ©.BUTERE

srigw FindEnstance1.2%2.65728{{6. 7% 1.08038)+{7.92% 1.0834) }» {6098E " 1.2}
+ {24+60600% 0" 8.2y~ {1i#0 " 2.242}m=0, 0]
outige {0 -2 1158, 88})

ppraps 6.7 w{{GHERO £ LI5R.BR) VX, )% 2552
st 1953, 33

i T.92%{ {60006+ 115888} 1 L2je 2 BET2
eafrdfe 2308, 81



72

wgrpm Hoemd (Faxzy}
BmB, 2

pzape (11 4531.68) " 1.2+ {{ {60008~ 1.3} ¢{c.7+1.0835)«{7.92 % 1.5840]} Je(11%0.33+ (511,68~ 1.
e €. BOLES

ope Integrated®, $+ v« Expl - (v » 2y 42}, {¥, 2.95, w=}}
il 9. 00515628

e FindInstancdi.2+1.B#{{6.7+1.8035)4{7.52% i.80486) )% {6E66E ~ 1.3}
# (244600803 8. 3)~ {1018 " 2.3+ 2)um B, ¢}

gz {{Q-»1212.23}}

e 6.7« {{6B00041212.23) 5 1. 3)+ 1.8
edsdpe 1924, 85

wpEse T.92% ({60DOD+ 1¥12. 23~ 1.3)%1.8
s 207475

i eamz { ey}
B4

sieie {12 % {511,688} 1.a}+{{{ca088" .{.ﬁ}({ﬁ.?*l.@ﬂ@l}+{T.92*1.&%43)}}&'{11*@.33*{51}.ES L
Cwgene B . GO0S4RBEE

mpie Integratef8. 44y % Expl~{y ~ 2} +23 4 fw, 3.8%, oo}]
Duitshe ©.00F3TESS

b Findinstance . 4% 1. 2412« {{6.7% 1.0081)+{7.92% L, 084%) J+ (66066 1.4}
+ {24%60000+0 " 0.4 -{119g 2.4+ 2)m=0, 0]
oo £{0 =2 1252.94}}

wits 6.7 #{{5PBO8 41252, 94) ~ 1, 4} 1.2412
GaBty LBT1.E6

s 792 % {{EEDDO 4 1252.24) % 1.4)w 2. 2412
rarsie 2212.498



73

Fremd{Furzy)
Bwd.B

simse (11 % (511.68Y % 1,57 {{ {60086~ 1.5} {{6.7+ 1.8645}+(T7.92% 1.6848) ) ¥+ {314 0.33 %{511. 68~ 1.
By ©.GOO5ERTET

wsife EntegrwbefB. 4% v w Expl - {y » 2} +2}, £y, 2.225, w}]
Goyaste & . 0O2205%4

g FindInstancdl.5%D.85133#{{6. 7+ 1. 045} +{7.92% 1.6046} )« {68680 » 1.5}
+ (24450000500 8.5~ {108 ¢ 2. 642} a6, Q]

wasgaege L0 ~» 1287, T7}}

w6, 7 % {{EBEBO L L2ET. 7T}~ 1.5} 8. 85133
oo 18314 .82

w7ips T.824 ({60008 X287 .77} 1.5)9 0,.85133
oopriie 214433

i Fheni{fuczy)

! Bl
wage (8 #{687.38)~ 1.1} {{{90080 " 1. 1}{{3.5% L.22) +{4.8 %1.23)))#{8% 0. 2w {687.38 1. L}})
SaiEie ©.BOEEBT1L

sptiipe Integrated 0. 4oy wExpl-{y * 2}+2}, {v, 2.678, «}}
oupionhe B.ELL1747

wiw FindInstancdl.14#2.933 % {{2.5%1.2:)+{4.8+%1.23}) % {96080~ 1.1}
+ {2L%5EB00%0 A 8. 1) -{B%G *2.142}um g, O]

g {40 =+ 12584.5}}
Brrege 3.5 %{{000R6+ 264,08}~ 1.1 %2, 533

amfrsge 11318, 88

wprgpe 4.8 % [ {DOE60+ 1I68.9) 4 1.1} % 2.933
! g 1534, 47



74

tren3{funry)
BawB.2

A6G (8% (GRT-28) A 1+ 2)4{ ({80000 « 1-2}{{3-5¥ 1-24}4{4-8 % 1-25}))F{B*0-3#{587-38 * 1-2}})
Ouitone © 80222753

oprete Integrotef.4wy e Expl-{r* 252}, {v, 2-82, k]
fegiie 9, 09728273

wpgs FindInstanced 2+ 2.2254{(3.5%1.24)+{4. 2+ 1.25}1%{onE00 » 1.2}
+ (21%90608%0 0. 2)=~{8% 0~ 2.242)==8, Q]
denggpe {40 2 1888, 153

bitttie 3.6#{ {00600+ 1386.18} 7 1.2}« 2.225
Gertseiy L171.81

e 4.8 % { {00006 +1380.19) 1. 2}% 2.228
otz 1655.98

ttamE {Fuzey)
B, 3

sispe {8 % {607, 38}~ 1.2} { ({30000 % 1. 3}{{2.5 #1.20%4{2. 843,32} b+ (B2 0.3 {687.38 # 1.3}}}
Custisae 9. 801289485

piatpe Integrate8. 44y % Expl -y * 2} %2}, {y, 2.985, ea¥}
magie O, 0045107

MpYEEba Fﬁndlﬂztancﬁlﬂ%1.38‘3*{{3..5‘#1.3@)-&-{&.8*1,32“%{9@@&@ A1.3Y
+ (21 %98008% G~ 6.3~ (B¥ Q2 2.342)m=d, Q]

g §40 -3 1417, 38} )

wpadps 3.5 % {90008+ 1417.38) % 1.2} w 1.38%
ot LBT2.28

e 4.5 % {{0U0U6+ 1417 .38}~ 1. 3}w 1. 389
Sutrasie 1478 T L



75

tem3{Ffuznye}
Bwb.4

wrore {B# ({68752} 4 1,43+ { ({00000 » 1. 4}{{3.6 % 1.32]+{5.8% 1.2 bed{B a0 20 {607 .38 5 1. 4}})
uftSte ©.0C0TRESTE

T Integrotef 3% ¥ FExp T {¥ 2 2y P2} f¥r 340 31
chfiaie ©.0GZE5138

iz Findinstoncdl.4%0.9488+{{3.5%1.32}+{4.8+1.234}}« {20008 " 1.4}
# {31%00000s0 N 8. 4~ {BRG 2. A4 2)nnE, ]
cuiesdps {4 -5 14TV 14} )

wprsaes 3.5 ¢ {{B9060 4+ 1477, 14} ~ 1.4} % B.D4ARE
OudtEgts LEAT . LL

EptEiie
4.8#{{o0000+ 147T. 14}~ 1. 4}+ 0. 5488

fattipe 1938, 04

dtemd { furzy)
B=d.5

wpnaye (B # (67.38) » .5} +{ ({96000 " 1.5}{(3.5% 1.3} +{4.8% 1.35} 1 pe{awn. 3 %{687.38 " 1.5}})
sl 9., OBR4ATISTE

s Integratd®. 4wy« Expl-{y » 2)+ 2}, {v, 3.275, e}]
feniie . GOIBTEEE

e FindInstanced 1,546, 6857 #{{3.5+1.33}+{4.BEx1.35} )+ {30000 * 1.5}
+ (21%30606%0 6. 5}~{82( " 2.5+2)==0, Q]

aarighe {4 -+ L1558, 9%} }
affipe 3.5 #{ {0000 4 1605.96) * 1.8 % 8. 5857

Swprrls 1134, 38

e 4.8« {{DOE00 + 1506.56) & 1.5}« &, 857
ougizts 1628, 22



76

ua.i:u\

i pacy 1 5 il Lo i Sy pr el samse 0y B 35k 8 g ¥ el
o 3ol RGN o ny 5T ally gl Slall 280 B o pig ol el
e S Ao g3y 12 jfauj ) ) ol 3 oo o ol o1 SVl 36 e cndd
e e e 50 bt s3] ey Clall S el gl ood G dals dlle 3 358 s
Sy S i) acefl ) I3 A sl 3581 ks ¢ 08t At G i 1552
Gy Bl y) &G i pelld %Lgyagaﬁu@mwzjdud@(dmuwm
PBes e i S wse ¢ ad gl e Y EEEH s o 2l i eV aelall



