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v

Abstract

In this thesis, a periodic systems of N -point particles with Lennard-Jones

potential are simulated by using Monte Carlo technique in three dimensional

space. Since Lennard-Jones is a short range potential, it is considered to be

zero beyond some cut off radius r∗cut. The optimum r∗cut found is 2.5. The

maximum allowed displacement used in a Monte Carlo simulation of any N -

particles system controls the convergence to the potential energy of the system

at equilibrium. The optimum maximum allowed displacement is found to be

associated with 50% acceptance rate; which is the ratio of accepted Monte Carlo

moves to the total number of moves. An explicit mathematical formulas for the

optimum maximum allowed displacement (O-dmax) are obtained as a function

of both temperature and density. Those formulas are calculated at different

values of temperature and density by fitting the Monte Carlo simulation results,

using the fitting tool in Matlab.
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1

Chapter 1

Introduction

The Lennard-Jones (LJ) potential is one of the most important mathematical models

that describes the energy of interaction between two particles, usually, neutral atoms

or non polar molecules. The starting point of LJ potential comes from his insistent

on Aufbau principle, which is a building up principle that gives a sequence in which

various orbitals are filled up with the electrons in the increasing order of their energy

[1]. In the LJ potential, however, the electron dynamics could be ignored based on

Born-Oppenheimer approximation [2], which states that the electrons dynamics is

sufficiently rapid, that electrons can be assumed to respond instantaneously relative

to the time scale for the atomic motion [3, 4, 5, 6, 7].

The LJ potential is used to study the nature and stability of small clusters of

interacting particles in crystal growth and random geometry of liquids [8, 9]. This

potential also appears in molecular dynamics to simulate many particle systems rang-

ing from solids, liquids and gases. Also, this potential appears in the study of the

motion of stars and galaxies in the universe among other applications [10].
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The common used form of the LJ potential between two neighboring particles

is given by

ULJ(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
, (1.1)

where the parameter ε represents the strength of the attraction between particles. The

parameter σ represents the intermolecular separation at which the potential energy

vanishes, and r is the distance between the two particles. This simple form of potential

was originally transformed from Mies expression [11] to describe not only the atomic,

but also the intermolecular interactions expressed as the sum of all possible forces

between all molecules of two atoms [12].

The minimum value of the LJ potential occurs at r0 = 2
1
6σ. If the distance

between particles is greater than r0, attraction happens between particles. However,

if the distance is smaller than r0, a repulsion happens. The first term of Equation (1.1)

describes the repulsive potential between particles, and arises from Pauli’s Exclusion

Principle (PEP) [13]. The second term of Equation (1.1) describes the attractive

potential. This part of LJ potential depends on van der Waal’s forces which is the

sum of the attractive forces between molecules (or between parts of the same molecule)

[14].

In 1929, the subject of molecular spectra and molecular structure had attracted

the attention of many scientists like, Hund F., Mulliken R. S., Raman C. V., Henri

V. and Herbberg G. [15]. To this specialist audience, Lennard-Jones presented his

first paper on the theory of Molecular Structure [15, 16]. He suggested that for large

molecules the atoms with the inner gas structure of completed outer shells could not

show bonding. Except for the London force, they must repel one another. By starting

from pairs of such atoms and removing electrons one by one, Lennard-Jones could

arrive the structure of these large systems.
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Lennard-Jones work on intermolecular forces is best known today though his

theories of liquids and of surface catalysis. Although The LJ work in molecular

structure, is represented in a relatively small number of papers, but it shows better

understanding of the fundamental aspects of the subject and injecting ideas which

are still very useful [15].

In 1933, the molecular orbital theory had become much more accepted as a

valid and useful theory. In 1934, LJ presented a paper on hydrocarbon free radicals,

including CH2, in which group theory is used to help assign the order of the orbital

energies and explain the electronic and geometrical structures [15, 17].

Hückel E. [15] acknowledged that the first quantitative use of molecular orbital

theory was the paper of LJ published in 1929. Perhaps this contact with Hückel

prompted Lennard-Jones next molecular paper [15] on the treatment of conjugated

hydrocarbons. This paper is still quoted as the formative paper in the treatment of

Polyacetylene since it allowed for the continual alternation of double and single bond

character despite the length of the molecule.

The first accurate calculation of a molecular orbital wave function using LJ

potential was done by Coulson [15], then, his method was extended to the Lithium

molecule [15]. Although Lennard-Jones gave partial explanations much earlier, the

final resolution for the problem of justifying the use of atomic orbitals for the inner

electrons and diatomic orbitals only for the valence electrons was not achieved until

1949. LJ showed [15] that the determinant wave function had unitary transformations

which left it invariant but could be used to transform the molecular orbitals into

localized equivalent orbitals without loss of accuracy. In this papers he gave a rigorous

derivation of the orbital equations from the Schrödinger equation using a method he

had introduced [15].

It was not until the third paper in this series [15] that molecular orbitals were
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completely defined as eigenfunctions of the self-consistent field method Hamiltonian.

At this point the molecular orbital theory became fully rigorous and consistent. After

that, more accurate potential functions have been obtained, but LJ potential function

remains widely used [18]. The LJ function is the best for modeling many systems, like

inter-robot interactions, as well as interactions between robots and their environment

[19].

In this thesis, N-point identical particle systems moving under the action of LJ

potential are studied using Monte Carlo (MC) simulation. MC simulation is widely

used to prove many theories like inverse problem theory, and it is also applied to get

properties of molecular and atomic systems. It is considered as a controlled statistical

sampling techniques (experiment) that is used, in conjunction with a model, to ob-

tain approximate answers for questions about complex with multi-factor probabilistic

problems.

Monte Carlo simulation has a lot of advantages, it is computationally simple

scheme, and relatively modest computation times. It can also be adapted for calcula-

tions of averages in ensembles. In MC simulation, the random sampling is designated

to ensure ergodicity where the ensemble average equals the time average. Thus, the

system moves from a given state to any another neighboring state with equal prob-

abilities. This sampling rests on a Markov Chain of states, whereby the outcome of

the current state depends only on the previous state.

Studying systems by MC simulation occupies wide range of researchers inter-

est. For example, Jayalatha K. et.al. studied Silver nano-particles with LJ potential

[20]. They used LJ potential to analyze the nature of particle interaction and to

estimate the cohesive energy of silver nano-particles. David M. et.al. studied and

analyzed the LJ fluid [21]. Sesma J. solved Schrödinger equation with LJ poten-

tial by using a procedure that treats in a rigorous way the irregular singularities
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at the origin and at infinity [22]. Tai-Chia Lin et.al. found a class of approximate

Lennard-Jones (LJ) potentials with a small parameters [23]. Faro et.al. developed a

simple pair-additive Lennard-Jones plus Coulomb potential for molecular simulations

of the trivalent cation AL3+ in water [24]. Sergey A. et.al. studied liquid-solid phase

transition in the Lennard-Jones system [25].

In this work, each state of the system is introduced by performing one random

move of one particle of the system. The state space is defined by all outcomes.

The most important parameter that determines the convergence of the Markov chain

and must thus be adequately selected is the maximum displacement allowed for the

particle. If the maximum displacement is too small, the phase space is explored too

slowly, whereas too many states are rejected if this displacement is too large [26, 27].

The maximum allowed displacement affects the acceptance rate, which is defined

by the ratio of the accepted states divided by the total number of states. Experience

indicated that an acceptance rate of approximately 50% is often desirable for a MC

simulation. In fact there is no theoretical basis for using an acceptance rate of 50%.

In some cases it may be actually detrimental to efficient sampling. Mountain and

Thirumalai proposed an algorithm for determining the efficiency of MC simulations.

They reported that an acceptance ratio of 20% was twice as efficient in generating

a satisfactory sample as compared with the traditional acceptance rate of 50% [28].

Wood and Jacobson also suggested that an acceptance ration of 10% maximizes the

root mean square displacement of atoms as a function of computer time [29]. The

main objective of this thesis, therefore, is to produce a stable computer simulations

of the LJ potential by using Monte Carlo simulation, in order to get an optimum

maximum allowed displacement (O-dmax) in three dimensional case (3D). In this

work, the study of optimum maximum allowed displacement is associated with the

acceptance rate of 50%.
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In chapter two, LJ potential is presented in details. The important concepts, like

thermodynamics, principle ensembles, statistical physics, force and potential energy,

intermolecular forces and van der Waals forces, Pauli’s exclusion Principle and Aufbau

principle, that are essential for understanding it, are also introduced in chapter two.

In chapter three, molecular simulation, statistical methods, Metropolis Monte Carlo

algorithm are introduced and explained in details. Acceptance rate, maximum allowed

displacement, statistical measures that are used in fitting are also discussed in this

chapter. In chapter four, the simulation results are presented and discussed. The

mathematical formulas for the optimum maximum allowed displacement as a function

of both temperature and density, that are obtained by fitting the simulation which

represents the relation between the optimum maximum allowed displacement with

density and temperature are also presented in chapter four. In addition, conclusions

and future plan are also discussed in this chapter.
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Chapter 2

Lennard-Jones Potential

Lennard-Jones potential is one of the most important pair potentials that is used

very often in many branches of science. Deep information in physics and chemistry

are needed to understand this potential. This chapter presents some important con-

cepts and definitions that are essential in understanding the origin of this potential.

Therefore, the concepts of force, potential energy, intermolecular interactions, Born-

Oppenheimer approximation, Paulis exclusion principle, and Aufbau principle are

included in this chapter. A step by step derivation of LJ potential is also presented

in this chapter. In addition, a brief discussion is done in order to show that LJ model

could be universalized for any given material at any given conditions.

2.1. Thermodynamics

Thermodynamics is the science which deals with heat and its relation to other forms

of energy and work. It has studied processes that manage large systems when they un-

dergoes from one thermodynamics state to another due to change in their properties.

This means that, the state of a system can be described by values of thermodynamics
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parameters [30]. Thermodynamics, therefore, represents the relation between heat

and motion; and it deals with the processes involving heat, work, and other forms of

energy. In general, thermodynamics gives better understanding of physical systems.

Four principle laws of thermodynamics lead to the definition of the thermody-

namics properties: The zeroth law, the first law, the second law, and the third law.

The zeroth law of thermodynamics involves some simple definitions of equilibrium

states and it implies that “if systems A and B are each in thermal equilibrium with a

third system C, then A and B are also in thermal equilibrium with each other”. By

thermal equilibrium, we mean that the system reaches the minimum energy. The first

law of thermodynamics states that “the energy can neither be created nor destroyed”;

which is the statement of conservation of energy. The second law of thermodynamics

states that “entropy can be created, but not destroyed”. The third law of thermody-

namics states that “the entropy of a pure crystalline substance is zero at the absolute

zero temperature” [31, 32, 33, 34].

Our results presented in this thesis can be used to bring LJ systems to the

thermal equilibrium state in an optimum way. Therefore, researchers who are working

in this field, can use the present results to get low computational cost while simulating

a system with LJ potential .

2.2. Principal Ensembles and Statistical Physics

In order to study various thermodynamics properties of a system from microscopic

model, a new branch of physics appeared: the statistical physics (it is also called

statistical mechanics). Historically, statistical physics has been developed after the

thermodynamics. The main purpose of this branch of physics is computing ther-

modynamics properties of a system with known thermodynamics state. Statistical
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mechanics also provides a theoretical framework for understanding macroscopic phe-

nomena from the knowledge of the individual molecules composing these systems.

This implies that statistical physics gives a very good understanding of macroscopic

systems by studying the microscopic properties of these systems.

Statistical mechanics then used to get macroscopic system properties with fixed

thermodynamics variables. Macroscopic conditions (like volume, temperature, and

number of particles) are translated to microscopic world as boundary conditions or

constraints. Microscopic system is defined by extensive variables (variables that scaled

in size like volume or number of atoms) that are constant in macroscopic world. In this

work, a microscopic system of particles is studied using mathematical and statistical

methods, that will be explained in the next chapter.

A useful and important concept in statistical physics, which was introduced by

Josiah Willard Gibbs is an ensemble [35]. An ensemble can be defined as a large

collection of microscopic systems that share a given set of thermodynamics variables

but have different molecular configurations [36]. The ensemble itself has a constant

total energy Etot. It has been introduced to represent a possible state that the system

could be in. Each ensemble consists of one extensive and one intensive variable. In

this work, canonical ensemble is used [35], where all the microscopic systems have a

constant number of molecules (N), constant volume (V), and constant temperature

(T). The canonical ensemble, therefore, is referred to NVT ensemble [37]. To generate

a canonical ensemble, a collection of systems is placed in thermal contact with a

heat path at fixed temperature. The walls of these systems allow heat transfer but

not allowing molecules to pass through while maintaining a constant volume. After

equilibration, the heat bath is removed and the entire collection of systems is isolated

from the surroundings.

Other common ensembles, that can be used in thermal physics, are the grand
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canonical ensemble (with constant chemical potential, constant volume, and constant

temperature), and microcanonical ensemble (with constant number of particles, con-

stant volume, and constant energy). For each ensemble, there is a thermodynamics

state function that shares the same natural independent variables [35, 37, 38, 39]. We

can keep on making other ensembles by switching in intensive or extensive variables

[27, 40].

2.3. Force and Potential Energy

Physicians have defined the force as “any interaction which tends to change the motion

of an object” [41], and they have defined the energy as “the ability to do work”[42].

The relation between the force and the potential energy can be illustrated as follows.

When a non zero resultant force (~F ) acts on a system, a net work (WF ) is done on

this system by ~F [43]. Since the net work done on this system is the change in its

kinetic energy (∆Ek), then

∆Ek = WF . (2.1)

Forces can be classified as conservative or non conservative [44]. If a force depends

only on the distance between the two particles, then this force is called conservative

force. In this case, the energy produced by changing the distance between the two

particles is defined as the potential energy (Ep). Because the change in the potential

energy equals minus the work done by the conservative forces, Equation (2.1) can be

written as [45]

∆Ek = Wcf +Wncf , (2.2)

WhereWcf andWncf denotes the work done by conservative and non-conservative

forces, respectively. Equation (2.2), can also be written as
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∆Ek = −∆Ep +Wncf , (2.3)

or ∆Ek + ∆Ep = Wncf , (2.4)

The change in the kinetic energy plus the change in the potential energy is called the

change in the total energy of the system. Hence, Equation (2.4) can be written as

Etotal = Wncf . (2.5)

It is worth noting that a conservative force (in general) is defined as the derivative of

a potential energy with respect to position. That is [44]

~Fcon = −~∇U(~r), (2.6)

where ~∇U(~r) is the gradient of the potential energy U(~r) with respect to the position

~r.

In N-particle system, Lennard-Jones studied the energy of a particle with re-

spect to another particles as a result of their positions [46]. In his study, he used

various theories that describe the forces between the particles. The LJ potential,

therefore, describes the interactions between molecules (or atoms) of a given system.
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2.4. Intermolecular interactions and Van der Waals

forces

Pure substances are formed of elements (elements are also grouped into metals and

non-metals). All of these elements have a basic building block of atoms, which are

the smallest form of an element. Atoms can also be combined to form molecules.

Molecules could be founded in covalent. Covalent means a sharing of electrons be-

tween two atoms, in which their orbits overlap and they form a bond or (multiple

bonds). When covalent bonding exists, molecules are produced. If the electron den-

sity is symmetric, no positive and negative poles, then the molecule is called non-polar

molecule. In polar molecule, however, the electron density is antisymmetric, like hy-

drogen chloride (HCl). In the case of a polar molecule, one end of the molecule is

positive and the other end is negative, and hence an electric dipole is induced [47].

Particles (molecules, atoms or ions) exert an attractive or repulsive forces between

themselves, which is called intermolecular forces. Intermolecular forces are responsi-

ble on the existence of gases, liquids and solids in nature, and determines the physical

and chemical properties of them. Intermolecular forces between neighboring particles

are weak compared to the intramolecular forces, which are the chemical bonds (like

covalent bond) that holds atoms together [48, 49].

The basic concepts of the quantum-mechanical theory of intermolecular forces

were formulated about 90 years ago. Even though, the number of studies on in-

termolecular interactions are rapidly increased during the last several decades. This

development has emerged for two reasons. Firstly, a general development of quantum-

chemical methods of calculating the electronic structure of molecules has taken place,

partly due to the availability of high-speed computers and the use of more refined
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mathematical methods. Secondly, more reliable experimental methods have appeared

which have allowed the theoretical predictions to be verified [50].

There are several types of intermolecular forces which due to their internal

structure. Ion-Ion forces, Dipole-Dipole forces, Ion-Dipole forces, Hydrogen bonding,

Induced dipole forces, and Induced Dipole-Induced Dipole forces (also called Disper-

sion forces). Ion-Ion forces (also called Coulomb’s forces) contains electrically charged

entries and it is strong as those in covalent bond. They are long ranged and it can be

attractive or repulsive forces. The potential energy in this type of forces is propor-

tional to r−1, where r is the distance between the two particles. Dipole-Dipole forces

resulting between polar molecules, and it can be attractive or repulsive or zero. The

polar molecules are tried to align themselves such that the positive end of one molecule

is near the negative end of another. It does not take a particular shape especially in

gas and liquid. The potential energy between both polar molecules separated by the

distance r falls off as r−3. Ion-Dipole forces occurs when a polar molecule is near an

ion. Positive ions are attracted by the negative end of the dipole and repelled by the

positive end. Hydrogen bonding forces are the strongest intermolecular forces which

occurs when a hydrogen atom bonded to a smallest highly electronegative atom, such

as Oxygen, Nitrogen, or Fluorine. Induced Dipole forces occurs between non polar

molecules and atoms where the electrons are symmetrically distributed. The electron

distribution can be distorted by approaching electrical charge as follows. If we have an

atom that has electrons with symmetrically distribution and another positive charged

ion approaching to that atom, the ion will attracts the electrons on the side near it

more strongly than the electrons on the far side, and that will induced a temporary

dipole moment in the atom. The Induced Dipole forces are weak and are effective

only at short range. Dispersion forces are occurs between neutral atoms or non-polar

molecules, and they are always attractive. Such a temporary dipole on one molecule
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will induce a temporary dipole in the other molecule. Dispersion forces are falls off

as r−6, so that they are short ranged [49, 51, 52, 53].

In general, attractive intermolecular forces that are between the same substance

is called cohesive force. Force of cohesion is maximum between solid molecules, less

between liquid molecules and least between gas molecules (zero in ideal gas). Because

of this reason, solids and liquids have definite volume while gases have no fixed volume.

The force of attraction between different substance is called adhesive force. Because

of this force, the water sticks to the glass and gum sticks to the paper [54].

On the other hand, the repulsive intermolecular forces arise between particles

is due to the electron clouds when they start overlapping. The repulsive forces in-

creases much more sharply with decreasing separation in comparison to the attractive

intermolecular forces. However, the repulsive forces range is much shorter than that

of the attractive one [55]. Two mathematical models are used to describe repulsive

forces. The exponential form, Ae−r/ρ, which is successful in applications when A and

ρ are chosen to fit experimental data. The second mathematical form is the inverse

power r−n, where n is quite large, is also successful in many applications[52].

Van der Waals forces is a term used to describe some types of attractive in-

termolecular forces that acts between particles (molecules or atoms). Van der Waals

have two main characteristics: they are weak and additive. Several explanations for

Van der Waals have been proposed. In 1920, Debye presented Debye force, (also

called induction force) to describe the attractive Dipole-Induced Dipole force. In

1921, Keesom presented Keesom force (also called dipole orientation force) to de-

scribe the attractive Dipole-Dipole forces . In 1930, London presented what is called

London force (or dispersion force) to describe the attractive Dispersion force [56].

Lennard-Jones has considered the Van der Waals forces in deriving the attrac-

tive part of his potential. Therefore, the LJ potential consists of two parts, attractive
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and repulsive. The attractive part has been derived based on Van der Waals forces

between non-polar molecules as will as between neutral atoms [49, 57]. While for the

repulsive part, the choice of n = 12 in inverse power form r−n is widely used [52].

Since LJ potential could be applied to particles, the issue arises is the ap-

plicability of LJ potential on electrons. The well known Born-Oppenheimer(B-O)

approximation [58], which is the most important method for determining molecular

wave functions and associated energies allows to model the system by LJ potential

with ignoring the electrons movements. In general, B-O approximation assumes that

the low-mass, (rapidly moving, negatively charged electrons) can immediately adjust

their distribution to the positive potential of slowly moving (heavy, massive nuclei).

2.5. Pauli’s Exclusion Principle

In the empirical study of atomic spectra, Pauli has discovered a simple generalization

which is applicable to all atomic spectra in 1925 [59]. He noticed that there are four

quantum numbers assigned to each electron. The first quantum number is commonly

known as the principal quantum number. This number is integer and was used

in establishing Bohr’s model. The second number is called, the azimuthal angular

momentum. It refers to the sub-shells or (sub-levels) that occur within each principal

energy level in the atomic spectrum. The third number is the magnetic one. The

magnetic quantum number specifies the particular orbital within a sub-shell where

an electron is highly likely to be found at a given point in time. The forth number

is called the spin quantum number. The spin of the particle is its essential angular

momentum and a characteristic of a particle.

Pauli’s Exclusion Principle states that “no two electrons in any atom can share

the same set of four quantum numbers”, where the quantum numbers describe the
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possible states that the electrons can occupy in an atom [60, 61]. This was a paradox-

ical discovery at the time it was made, because it preceded the hypothesis of electron

spin, which leads to the interpretation of the fourth quantum number. Although

interpretation of this quantum number in terms of electron spin was soon given, the

meddlesome fact remains that the two individual sets of four quantum numbers of

each of two electrons cannot be alike. This is known as Pauli’s Exclusion Principle

(PEP) [13, 62]. The PEP states that as quantum states filled up, electrons are kept

further and further from the nucleus. This is balanced by the attractive electric force

between the electron and positively charged nucleus. Therefore, two electrons cannot

occupy the same quantum state. This means that, two identical electrons cannot

occupy the place at the same time with the same orientation.

The PEP has been derived only in relativistic quantum mechanics using the

spin statistic theorem. Although the PEP is physically correct, but the reason of this

correctness is still unknown. Some hypotheses say that the PEP repulsive comes from

an extremely strong virtual particle exchange on very short distance scales [63]. Some

theorists say that it is caused by an anti-symmetric wave function [63]. Examples of

particles that obey PEP are electrons and neutrons, while bosons and protons do not

obey this principle.

PEP was the origin of Aufbau principle. Aufbau is a German word which means

building up or construction. This is the reason that this principle is also known

as building up principle (or the construction principle). This principle gives us the

manner in which various orbitals are filled up with the electrons in an increasing order

of their energies [64]. Lennard-Jones has considered the Pauli Exclusion Principle

(PEP) to state the repulsive part of his potential.
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2.6. Lennard-Jones Potential

The energy models are divided into three categories, empirical models (which are

functional forms with parameters fitted to experimental or calculated data), the semi-

empirical models (which are quantum mechanical in form but empirical in parame-

ters), and the quantum mechanical models (which start from Schrödinger equation

and then make approximation of the solution). The LJ potential model is an em-

pirical one. In empirical models, in some scene, the only need is to take some form

for the energy and fit it to any data. Sometimes, the data is quantum mechanically

computed.

The LJ potential has been proposed based on the material physics. It is used

to model interactions of a punch of particles (molecules or atoms) and sum there

energy from pairwise interactions which depend on the distance between any two

particles. The LJ potential is attractive at relatively long distances and repulsive at

short distances.

In this work, LJ potential with the two-particle interactions are considered in

calculations. That is, the pairwise force between two particles is unaffected by the

positions of the other particles. This kind of approximation is suitable for gases, and

liquids. In this work, the intermolecular forces are also assumed to be independent

of the molecules (or atoms) velocities.

In general, the intermolecular potential energy Utot is the sum of two-particle contri-

butions and is given by

Utot =
N−1∑
i=1

N∑
j=i+1

U(rij), (2.7)

where the function U(rij) is the pair potential energy function of particles i and j,
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rij is the distance between the centers of particles i and j, and N is the number

of particles in the system. The simplest pair potential energy form U(rij) between

particles i and j, that is commonly used is the LJ potential, is given by

U(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6 ]
, (2.8)

where the parameter ε represents the strength of the attraction between particles. The

parameter σ represents the intermolecular separation at which the potential energy

vanishes [65].

The first term of Equation (2.8) is repulsive. This happens when the particles

become close together, where the electron clouds overlap. In this case, the electrons

can not occupy exactly the same quantum state according to PEP [66, 67, 68], as

mentioned before. The second term of Equation (2.8) is attractive and comes from

the interaction between fluctuating dipoles, like atoms with filled electron shills (as

noble gases).

In fact, there is no physical justifications for r−12 that Lennard-Jones has used

for repulsive part. The power 12 makes it easy to calculate the potential since it is the

square of r6 which is already calculated [69, 70, 71, 72]. In the following argument the

second term of LJ potential is derived . The LJ potential is a form of Mie potential,

which has the form [11]

U(r) =
A

rm
− B

rn
. (2.9)

In Bohr atom, an electron is pictured as orbiting around a proton. The smallest

distance between the electron and proton is known as the first Bohr radius ao and is

the radius at which the Coulomb energy e2

4πεoao
is equal to 2hv. That is

ao =
e2

4πεo2hv
, (2.10)
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where v is the electronic absorption frequency, v = 3.3 ∗ 1015s−1, so that hv =

2.2 ∗ 10−18J . This is the energy of an electron in the first Bohr radius and is equal

to the energy needed to ionize the atom. The Bohr atom has no permanent dipole

moment, however, at any instant there exists an instantaneous dipole of moment,

given by

U = aoe. (2.11)

Whose field will polarize a nearby neutral atom, giving rise an attractive interaction

that is entirely analogous to the dipole-induced dipole (Debye) interaction. The

energy of this interaction in a vacuum will therefore be given by [73, 74]

UDebye =
−u2bo

(4πεoε)2r6
, (2.12)

where bo is the electrostatic polarizability of the second Bohr atom, ε is dielectric

permittivity, which is given by [75]

bo = 4πεoR
3, (2.13)

where R being the radius of the atom which is (in this case) the Bohr radius ao.

Equation (2.13) is approximately 4πεoa
3
o. Using this expression for bo and Equation

(2.10) for ao, the preceding interaction energy can be written as

U(r) =
−b2ohv

(4πεo)2r6
. (2.14)

Except for a numerical factor, Equation (2.14) is the same as that derived by London

in 1930 using quantum mechanical perturbation theory. London’s famous expression
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for the dispersion interaction energy between two identical molecules (or atoms) is

U(r) = −3

4

b2ohv

(4πεo)2r6
. (2.15)

The stabilizing repulsive of LJ potential has no real scientific justification; it is ba-

sically just a repulsive potential to make sure that the particle is repulsive at close

distances. It is related to Pauli’s Exclusion interactions which are (usually) follow an

exponential function

U(r) = e(−
ro
r
). (2.16)

But for simplicity, they are usually modeled as power laws

U(r) = − ro
rn
, (2.17)

where n is in between 9 and 12. Although the commonly used power in Equation

(2.9) are n = 6 and m = 12, the researchers in this field can use different values of

those powers [72], for example n = 3 and m = 9. But those choices may problematic,

since those powers depends sometimes on the structure of the material.

To get the minimum of LJ potential, ∂U
∂r

must be zero. This happens when r=

rmin. So, rmin must satisfy the condition

2

(
σ

rmin

)12

=

(
σ

rmin

)6

. (2.18)

That is

rmin = 2
1
6σ. (2.19)
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Therefore, the minimum potential energy U(rmin) is given by

U(rmin) = −ε. (2.20)

When expressing temperature, pressure and density in normalized units, as

shown in Table (1.1) [27], all LJ systems are identical. The LJ model for a given

material in reduced unites always equals to the LJ model for another material at

different conditions of temperature and pressure.

Table 2.1: Reduced unites that can be used generally in any LJ model for a given
material

Property Real Reduced

Length r
σ

r∗

Density N
V ∗ =Nσ3

V
ρ∗

Temperature TKB
ε

T ∗

Energy U
ε

U∗

Pressure Pσ3

ε
P ∗

In terms of reduced units, Equation (2.8) becomes

U∗(r∗) = 4

[(
1

r∗

)12

−
(

1

r∗

)6 ]
, (2.21)

where r∗ ∈ Rn.

Figure (1) represents the LJ potential between two particles in reduced unites. As

seen in Figure (1), the minimum occurs at r∗min = 2
1
6 , and at that distance the

reduced minimum potential energy equals to -1.

One of the good advantages of a LJ potential is that it falls off quickly, and

only those particles within a nearby environment have much effect. As a result, it is

possible to limit (or cut off), the maximum range of the interaction. The choice of

the reduced cut off distance r∗cut of LJ potential energy, which is commonly used, is



22

Figure 1: LJ potential energy between two particles in reduced unites. The reduced
distance (r∗) is ranging from 0.95 to 3 with step size 0.01

in the range 2 and 3 [76, 77]. A typical value for this distance is r∗cut = 2.5 [78].

The LJ potential potential shown by Equation (2.21) is used in its truncated and

shifted form for all simulations. This method requires applying an energy correction

during the calculation of the potential energy. This energy correction is [27]

U∗(r∗) =


4

[ (
1
r∗

)12 − ( 1
r∗

)6 ]
, if r∗ ≤ r∗cut

0, if r∗ > r∗cut

 . (2.22)
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Chapter 3

Monte Carlo Simulation

3.1. Introduction

Recently, the method of modeling and computer simulation has become a bridge be-

tween the theoretical and experimental branches of science. Modeling and computer

simulation are important in understanding the behavior of the parts of a system, and

of the system as a whole [79]. Mathematical models are theoretical structures that

describe the behavior of real systems through the quantification and manipulation of

variables [80], where simulation is essentially a controlled statistical sampling tech-

nique that is used, in conjunction with a model, to obtain approximate answers for

questions about complex probabilistic problems [81].

The importance of the modeling and computer simulation comes from differ-

ent reasons. One of the most important reasons, is controlling parameters, which

gives a quick understanding of the behavior of the system. Modeling and computer

simulation, give the possibility to predict results before testing the system in real

life. Modeling and computer simulation are used when the experiment is too hard to

be done either physically or financially. By modeling and computer simulation, we
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can systematically investigate, prove or disprove hypothesis. Thus, they complement

both theoretical and experimental research [82].

Monte Carlo is considered to be the most important simulation technique, that

is usually used for solving problems in statistical physics. In Monte Carlo technique,

the basic idea is to evaluate thermal averages of materials by statistically sampling

desired region of the phase space of a model using computers. Therefore, the use of

probability and statistics is essential in statistical physics [83].

The quick development of computational resources, and the expansion of new

algorithms, allow Monte Carlo simulations to be a base for studying lots of subjects

of statistical physics [84]. One of the most challenges and difficulties that face the

computer simulations is the computer speed and computer memory [76].

The results of this work are based on Monte Carlo simulations. Hence, a brief

look at the general idea behind equilibrium thermal Monte Carlo techniques is done in

this chapter. Four important ideas are introduced: importance sampling, transition

probability, detailed balance, and the Metropolis algorithm. In addition, this chapter

presents goodness of fit and difficulties in computer simulations.

3.2. Molecular Simulation and Statistical Methods

Molecular simulation, is a term including both Monte Carlo (MC) and Molecular

dynamics (MD) computing methods. Molecular simulation is primary used to pro-

vide exact results for statistical mechanical problems in preference to approximate

solutions. The feature that distinguishes molecular simulation, from other computing

methods and approximations is that, the molecular simulation of the system, is done

in accordance with a very strict and demanding calculation of intermolecular ener-

gies or forces. Molecular Simulation can be described as a Computational Statistical
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mechanics. It allows to determine macroscopic properties by evaluating exactly a

theoretical model of molecular behavior using a computer programs.

The main difference between both implementations (MC and MD) is that in

MD, the Newtonian equations of motion has to be integrated in some scheme. Con-

trarily in MC, a scheme to accept or reject configurations of the system, which have

been generated through random processes, is needed [85, 86].

Different ways used in MD and MC simulations for calculating certain chemical

or physical properties. In MD simulation, one way is tracking a certain property over

time, so we can calculate a certain property for a given microscopic state for a given

configuration. The microscopic averages for a certain property, and their integral

over time then, can be calculated over time.In that average, only states that can be

reached with the MD simulation are included, since we simulate over a finite time.

This means that, averages only include phenomena that occurs in the time scale of

MD simulation. If we want averaged properties over long time; statistical sampling

may be more efficient. In this case, it may be better to use statistical methods such

as Monte Carlo techniques.

In Monte Carlo simulations, the idea is to sampling microscopic states, that is

statistically significant for long- time averages. In order to perform a sample in any

statistical method, two things we have to be decided: which population we sample

from, and with what probability we sample them [27, 87].

In this thesis, the MC program has main routine which is containing the main

MC procedure and it contains subroutines which are called during the running of the

program. Data analysis is performed by saving the results of the simulations to excel

files and analyze them in Matlab.

Considering problems of statistical mechanics, we may be attempting to sam-

ple a region of phase space in order to estimate certain properties of the model. The
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task of equilibrium statistical mechanics is to calculate thermal averages of interact-

ing many-particle systems. MC simulations can do that, taking proper account of

statistical fluctuations and their effects in such systems. Unlike in the application of

many analytic techniques, the improvement of the accuracy of Monte Carlo results

is possible not just in principle but also in practice. Therefore, the range of different

physical phenomena which can be explored using Monte Carlo methods is exceedingly

broad [28, 27, 76, 88, 89].

3.3. Metropolis Monte Carlo Algorithm

Modern form of MC simulation originated with Ulam and Segré in Los Alamos and

ENIAC computer (but really goes back to Fermi) [90]. Before that, sampling was

used as a method for integration of functions, Comte de Buffon (1777) [91].

Many ways of sampling are exists. The most important ways of sampling is sim-

ple sampling and importance sampling. In simple sampling, M states are randomly

picked up from ensemble, and average property is then calculated. The basic idea of

importance sampling is to sample the important states, in MC simulation. The state

with low energy and fluctuates around it will founded, and the states will be picked

up with a biased probability [27].

The main purpose of equilibrium statistical mechanics is calculating observable

quantities of the material. This needs to average an observable quantity Q, as in the

canonical ensemble, over all of the states of the system, and weighting each by the

Boltzmann probability [92, 93]:

P (ni) ∝ e(−Eni/T ), (3.1)

where Eni is the energy of the system in state ni, T is the temperature measured in
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unites of 1/kB, and kB is the Boltzmann constant. Therefore, the average value of Q

is given by:

〈Q〉 =

∑
ni
Qnie

(−Eni/T )∑
ni
e(−Eni/T )

, (3.2)

such that Qni is the value of Q at some state ni.

Except for a few systems, the exact solution of such quantities is impossible. To

obtain a good estimates of important thermodynamical variables, approximations are

required. One way is to evaluate the quantity given in Equation (3.2) by summing

over a large but finite number of states. With the advent of modern computers, this

approach becomes more practical. The question is, how to choose a finite number of

states in order to obtain an accurate estimate of Q, The simplest choice is to pick all

of these states at random with equal probability from the phase space of the system.

Although the simplicity of this choice, averaging over them is not likely to get any

reasonable estimate of the average value of Q, since most of these randomly chosen

states will not make a statistically considerable contribution to the sums given by

Equation (3.2).

This means that a few terms of the sums given by Equation (3.2) will be con-

trolling. For example, at low temperatures, the system spends almost all of its time in

the ground state, or at one of the lowest excited states, as there is not enough thermal

excitation to excite the system passes through every state during the measurement,

even though every state appears in the sums of Equation (3.2). It cannot be supposed

that the system passes through every state during the simulation. However, if instead

of choosing the states at random with equal probability, they are selected based on

some probability distribution P (n), then it is possible to improve the accuracy of the

estimate provided by averaging over these states.

The importance of this approach lies in the ability to choose the probability
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P (ni) such that the selected states used in the evaluation of 〈Q〉 are statistically

considerable. This approach is called as importance sampling. Suppose we choose a

subset {n, n, ...., nM} at random, each with probability {P (n), P (n), ...., P (nM)},

then the best estimate of Q will be given by [93]

〈Q〉M =

∑M
ni=

QniP
−1
ni
e(−Eni/T )∑M

ni=
P−1ni

e(−Eni/T )
, (3.3)

as a result, Equation (3.3) shows that the estimation of 〈Q〉 , which is 〈Q〉M , becomes

more accurate as the number of the selected states M increases. In addition, when

M goes to infinity, 〈Q〉M goes to 〈Q〉. Boltzmann distribution given by Equation

(3.1), would be the most simple and efficient choice of Pni in Equation (3.3), which

is a probability distribution with many applications in physics and chemistry. It

forms the basis of the kinetic theory of gases, which explains many fundamentals gas

properties [94].

〈Q〉M then becomes just a simple arithmetic average:

〈Q〉M =

∑M
ni=

Qni

M
, (3.4)

The choice of the Boltzmann distribution assure that the average of Q is calculated

using the most statistically significant states. Markov process is the best procedure to

use to select states according to the Boltzmann probability. It can be described as a

series of random states such that the current state ni+, depends on the previous state

ni [95]. Markov process is a stochastic process, where future states are independent

of the past states and depends only on the present state. It could be be recurrent,

where if starting from ni, there is a way of returning to the same state. If it is not

recurrent, then its called transient [96, 97]. In this process, successive states ni+ are

generated from the previous states ni through a transition probability, W (ni → ni+),
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such that in the limit, M →∞, the distribution function of the states generated by

this Markov is given by the Boltzmann distribution. Such a process have to satisfy

the following four conditions [27]:

1. The state ni+ is generated every time is determined by the state ni.

2. The transition probabilities must satisfy the constraint

∑
i

W (ni → ni+) = 1 (3.5)

3. Reaching any state of the system from any other state is possible if the program

is run for a long enough time(i.e., the condition of ergodicity).

4. In equilibrium, the rate at which the system makes transitions into and out of

any state ni must be equal(i.e., the condition of detailed balance).

Mathematically, the condition of detailed balance can be written as

P (ni)W (ni → ni+) = P (ni+)W (ni+ → ni) (3.6)

Using the Boltzmann probability distribution given by Equation (3.1), Equation (3.6)

thus gives

W (ni → ni+)

W (ni+ → ni)
=
P (ni+)

P (ni)
= e(−(Eni+−Eni )/T ) (3.7)

Equation (3.7) indicates that the transition probability ratio for a move from state ni

to ni+ depends only on the energy difference, Eni+ − Eni . One simple and efficient

choice for the transition probability which satisfies Equation (3.7) is the Metropolis

algorithm [98]. This algorithm was proposed by Metropolis and his co-workers in 1953

in the simulation of hard-sphere gases [98]. In this optimal algorithm the transition
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probability from the state ni to ni+ is given by

W (ni → ni+) =

e
(−(Eni+−Eni )/T ), if Eni+ > Eni

1, if Eni+ ≤ Eni

 (3.8)

In fact, a sequence of states is build up, then a property will be sampled over these

states. That property will be a function of sampling.

In this work, LJ potential energy has considered as a function of MC sweeps.

Typically, the first part was cutoff and removed, as the simulation started at random

state, the energy was faraway from the law energy state, and so, by cutting that off,

much faster relaxation of the average has been gotten, as in the first states the energy

was very high. Thus, after the system being in the equilibrium, the averages has been

calculated.

One aim of MC simulations is to detect phase transition at which we can get

physical properties. In MC simulations, we have enormous degrees of freedom about

the moves we do, these are essentially the perturbations we attempt to get to the

next state in the Markov chain.

In Metropolis algorithm, a new state ni+ will be selected, which has an energy

lower than or equal to the present state ni, the transition to that state is accepted.

If the new state has a higher energy, it may be accepted with the probability given

in Equation (3.8). To accept or reject a new state which has a higher energy than

the previous one, a uniform random number ξ ∈ [0, 1] is chosen. If the transition

probability is greater than ξ, then the new state is accepted and the system moves

to the ni+ state. Otherwise, the new state is rejected and the system stays in the ni

state.

In fact, the choice of moving from states ni to ni+ has much freedom, which are

limited by the condition that W is symmetric (i.e,W (ni → ni+) = W (ni+ → ni)).
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If many degrees of freedom is changed simultaneously, the transition probability will

has so small value, and thus, the system may largely remain in its previous state as

most of the desired moves would not be selected at all. Hence, one efficient and simple

strategy is to change only one degree of freedom, such as moving only one particle at

a time in LJ system.

Therefore, the optimal Metropolis algorithm used in the present work proceeds

according to the following eight steps:

1. Choose the initial state, ni, of the system.

2. Generate a new state, ni+, by changing one particle position randomly.

3. Compute the difference in the energy, ∆E, between the new state and the old

one (i.e,∆E = Eni+ − Eni).

4. Calculate the transition probability according to Equation (3.8).

5. Generate a uniform distribution random number, ξ, between zero and one.

6. Compare ξ with calculated W (ni → ni+). If W (ni → ni+) is greater than ξ

accept the move, otherwise leave the particle position as it is and retain the old

configuration.

7. Repeat steps 2-7 as necessary.

8. Store the required observable quantities of the system every nM Monte Carlo

sweep per particles number (MCS/N) to calculate the averages.

For more details about MC procedure, excellent texts on this subject could be re-

viewed [82, 83, 99].
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Since simulations are applied to infinite systems, boundaries of the lattice could

be treated. Because the short-range interactions in the simulations have been con-

sidered, problems of finite size may be treated easily by applying periodic boundary

conditions. The calculations in this thesis based on the potential energy between the

particles, the total energy that mentioned earlier in this chapter is considered to be

the total potential energy Utot [27, 83, 87, 93, 100, 101].

3.4. Acceptance Rate and Maximum Allowed Dis-

placement

The most important parameter in Metropolis algorithm, which has to be chosen

carefully is the particles displacement vector. Given the present state ni, a particle is

picked up and randomly moved to get the new state ni+. The energy of each state

has been calculated, and then the Metropolis algorithm acceptance criteria is used to

get the accepted state.

The particles displacement vector affects important properties of the Monte

Carlo simulation, and it is needed to adjust optimally, as it affects the efficiency of

the particles moves. In fact, By choosing optimum maximum allowed displacement

dmax, the most efficient sampling procedure will be achieved, and the Monte Carlo

simulation converges in the optimum behavior, thus the fast equilibration times will be

satisfied, and fast relaxation times and correlation times will be obtained, as shorter

runs required to produce averages of good statistical quality.

The optimum allowed displacement move leads to high statistical accuracy, and

saving lot of time needed to obtain the desired averages in an optimum simulation

convergence, without affecting the equilibrium values [92].

Two main conditions the displacement vector has to satisfy. It must be chosen
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randomly, and that can be achieved by random number generator in the computer.

Also, its magnitude has to be chosen carefully, where the magnitude of moving is

defined by δ = dmax · (~1 − 2 · ~ξ), may be out of the whole box length, or it may be

very small length, this depends on dmax.

The displacement move of a particle in every Metropolis MC sweep is defined

by [98]:

~rnewi = ~roldi + dmax · (~1− 2 · ~ξ), (3.9)

where ~rnewi and ~roldi are the new and old locations of particle i respectively. dmax

is the maximum allowed displacement, ~ξ ∈ [0, 1] × [0, 1] × [0, 1]. The probability of

this move using Equation (3.8) will be given by

W (~roldi → ~rnewi ) = min

[
1,
P (~rnewi |Ri)

P (~roldi |Ri)

]
. (3.10)

Here, P (~ri|Ri) is the conditional probability to find the particle at the position ~ri

when locations of all otherN−1 particles, defined by the set Ri = {~r, ....., ~ri−, ~ri+, ~rN},

are fixed:

P (~ri|Ri) = const · e

[
− 1
KB

N∑
j=1,j 6=i

U(~ri−~rj)
]
, (3.11)

where U(~ri−~rj) is the energy of a two-body interaction. As shown from Equa-

tion (3.9) and Equation (3.10). The acceptance ratio, which is defined as a ratio of

the number of accepted states to the total number of states in a given Monte Carlo

run, depends on the maximum allowed displacement dmax. If the magnitude of dmax

chosen to be big, a lot of particles movements will not going to be accepted. On

the other hand, if it is chosen to be small, neighbors configurations will be highly

correlated, since all the states in the Markov chain are the same, and any essential

change of the configuration will need many particles displacements [98]. Both cases
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lead to increasing the computational work.

The optimum acceptance rate that commonly used in simulation without theo-

retical basis, is between 0.3 and 0.5 [27, 76, 89]. Three different definitions follow to

define the optimum acceptance rate (or maximum allowed displacement).

1. The first definition was proposed in [102]. It was suggested that the optimum

value of dmax corresponds to the maximized diffusion. The mean square particle

displacement at Monte Carlo cycle m is defined as

< rm >=< |~ri(m)− ~ri(0)|2 >, (3.12)

where ~ri(0) is the initial position of the particle i and ~ri(m) is the particle

position after cycle m, and the averaging is taken over all particles. The self

diffusion coefficient, defined by

Dself = const lim
m→∞

< rm >

m
, (3.13)

is used to measure the diffusion, and the value of the acceptance ratio cor-

responding to maximum Dself is considered as optimum. Based on Equation

(3.13), the conclusion of [103, 104, 105] is that the optimal value of the accep-

tance ratio is between 0.3 and 0.4.

2. Another measure was proposed in [106], and is rested on the measurement of

normalized autocorrelation function for an observable A(m):

ψA(m) =
< A(m)− A(0) > − < A >

< A > − < A >2
, (3.14)

Actually, the function ψA(m) is used to determine the strength of a correlation
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between two values of a quantity sampled at two different times. The common

approximation for the autocorrelation function is given by [107]

ψA(τ) ≈ e
− τ
τA,dcor , (3.15)

where τA,dcor is the de-correlation time. It is easy to see that in this approxi-

mation

τA,dcor =

∞∫
0

ψA(τ)dτ. (3.16)

Therefore, the decorrelation time can be estimated by:

τA,dcor =
1

2
+
∞∑
2

ψA(i). (3.17)

The optimal acceptance rate in this approach corresponds to minimum de-

correlation time. It was shown in [106], using common Monte Carlo method,

that the acceptance rate of 0.5 yields minimal de-correlation time.

3. Another measurement that can be used for the optimal acceptance rate is the

relaxation time, which is the time beyond which, on the average, serial corre-

lations are disrupted. For an observable A, the relaxation is described by the

function [107]

RA(m) =
A(m)− A(∞)

A(0)− A(∞)
. (3.18)

In order to reduce statistical errors in the calculation of the relaxation function

RA(m), it is reasonable to perform some number of Monte Carlo runs starting

from the same initial configuration but with different sequences of random num-

bers. The relaxation function averaged over these runs RA(m)av can be used to
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estimate the relaxation time similar to 3.17:

τA,rel =
1

2
+
∞∑
2

Rav
A (i). (3.19)

3.5. Goodness of fit

Most regression software packages used in the present work, ToolboxTM in Matlab,

generate so-called goodness of fit measures. These measures describe how well a

statistical model fits a set data. Below some of these measures:

• The sum of squares due to error (SSE), which is explained as follows, for the

ith observation, the difference between the observed value of the dependent

variable, yi, and the predicted value of the dependent variable, ŷi, is called the

ith residual. The ith residual represents the error in using, ŷi, to predict yi.

Thus, for the ith observation, the residual is yi - ŷi. The sum of squares of these

residuals or errors is the quantity that is minimized by the least squares method.

This quantity, also known as the sum of squares due to error, is denoted by SSE

[108]

SSE =
∑

(yi − ŷi)2 (3.20)

• R-square (R2), which is the percentage of the total variation in the dependent

variable that is explained by the regression model. A higher R2 means that the

model explains more of the variation in the dependent variable. In the extreme,

if the model were a perfect fit, the R2 would attain its maximum possible value

of 1. If the model explained none of the variation in the dependent variable,
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the R2 would attain its minimum possible value of 0 [110].

R2 =
SSR

SST
, (3.21)

where (SSR) is the sum of squares due to regression, and (SST) is the total Sum

of Squares.

To measure how much the yi values on the estimated regression line deviate

from ỹi, another sum of squares is computed. This sum of squares, called the

sum of squares due to regression, is denoted by SSR [108]

SSR =
∑

(yi − ỹi)2. (3.22)

The Total Sum of Squares (SST) is the difference between the observed data

and the mean value across all observations [109].

SST = SSR + SSE (3.23)

• Adjusted R-square, which is developed as it is shown mathematically that R2,

the coefficient of determination, can only increase when add predictors to the

regression model. No matter how irrelevant it is for the response y, any new

predictor can only increase the proportion of explained variation. Therefore,

R2 is not a fair criterion when compared models with different numbers of

predictors (k). Including irrelevant predictors should be penalized whereas R2

a fair measure of goodness-of-fit is the adjusted R-square which is a criterion of

variable selection.It rewards for adding predictor only if it considerably reduces
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the error sum of squares

Adjusted R-square = 1− SSE/(n− k − 1)

SST/(n− 1)
. (3.24)

Comparing with R2, adjusted R-square includes degrees of freedom into this

formula. As a result, R2 always increases when a new variable is added whereas

R2
adj may decreases. The adjusted R-square statistic can take on any value less

than or equal to 1, with a value closer to 1 indicating a better fit. Negative

values can occur when the model contains terms that do not help to predict the

response [111].

• Root mean squared error (RMSE), which is the square root of mean squared

error (MSE). RMSE measure the differences between values predicted by a hy-

pothetical model and the observed values. In other words, it measures the

quality of the fit between the actual data and the predicted model. RMSE is

one of the most frequently used measures of the goodness of fit of generalized re-

gression models. In the application of regression models, unless the relationship

or correlation is perfect, the predicted values are more or less different from the

actual observations. These differences are prediction errors or residuals. These

residuals are measured by the vertical distances between the actual values and

the regression line. Large distances are indicative of large errors. To acquire

RMSE, one can square and average the individual prediction errors over the

whole sample. The average of all the squared errors is the MSE. As the square

root of a variance (MSE), RMSE can be interpreted as the standard deviation

of the unexplained variance.

RMSE =
√
MSE (3.25)
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Thus, RMSE is always above zero. RMSE is an indicator of the fit between an

estimate and real data points. Smaller RMSE reflects greater accuracy [112].
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Chapter 4

Results and Discussion

The main objective of this thesis, as mentioned earlier, is to produce stable computer

simulations of a system of point particles under the effect of LJ potential by using

NVT-MC technique in order to get a mathematical formula as a function of reduced

temperature (T ∗) and reduced density ρ∗ for the optimum maximum allowed displace-

ment (O-dmax) that associated with the acceptance rate of 50% in three dimensional

case (3D). An NVT-MC code was written in C++ language using C++ builder 6 and

tested on Windows 2007, 32 bit. Once the simulation runs stable measurements of

respective energy is performed. The output data files was saved in Microsoft Ex-

cel format, and the output figures was saved as output Matlab figures. The reason

for installing C++ builder 6 instead of the other builders is that, it could be linked

directly with Matlab 2008, and Microsoft office excels 2010. In NVT-MC code, the

right balance between readability, taking advantage of C++ features, and performance

have been considered in this thesis. The LJ potential energy behavior of the point

particles, that simulated in 3D lattice, is studied to obtain the O-dmax that leads to

get fast equilibration optimally with minimum number of MC sweeps. During the

simulation, the calculations of the LJ potential follow the expected physical behavior,
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and the periodic boundary conditions worked correctly.

The simulation using NVT-MC technique was chosen to simulate a system of

128 particles with 100000 MC sweeps. The number of particles and MC-sweeps are

chosen to be sufficient to get the desired results. Also the values of the reduced

temperature T ∗ and the reduced density ρ∗ has been carefully chosen to cover both

low and high conditions that the system could be in. In addition, the reduced cut

off distance r∗cut used in all simulations is 2.5. The choice of r∗cut is very important as

it affects the physical behavior of the system, and hence affects the accuracy of the

mathematical calculations.

The choice of small r∗cut values reduces the simulation time and cost. While the

choice of large r∗cut values leads to much simulation time and cost. The effect of the

value of r∗cut on the physical behavior of the LJ point particle system that simulated

in this thesis, is studied and analyzed. Figures (1, 2, 3, and 4), show the LJ potential

energy versus MC sweeps for simulation of 128 point particles at different T ∗ and

ρ∗ values for different values of r∗cut. At low temperature (T ∗=1) and for both low

(ρ∗=0.25) and high (ρ∗=2) densities, the data presented in Figures (1, 2) shows that

the LJ potential energy in the range r∗cut (2.5-4) has almost the same values. Similarly,

at high temperature (T ∗=4.2) and for both low (ρ∗=0.25) and high (ρ∗=2) densities,

the data presented in Figures (3, 4) shows that the LJ potential energy in the range

r∗cut (2.5-4) has almost the same values.
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Figure 1: The simulation results which represents the relation between the LJ poten-
tial energy and MC sweeps for simulation of 128 particles using NVT-MC technique
at T ∗=1 and ρ∗=0.25 for different r∗cut values. It is worth noting that sub-Figure (B)
used to clarify the data presented in sub-Figure (A).

Figure 2: The simulation results which represents the relation between the LJ poten-
tial energy and MC sweeps for simulation of 128 particles using NVT-MC technique
at T ∗=1 and ρ∗=2 for different r∗cut values. It is worth noting that sub-Figure (B)
used to clarify the data presented in sub-Figure (A).
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Figure 3: The simulation results which represents the relation between the LJ poten-
tial energy and MC sweeps for simulation of 128 particles using NVT-MC technique
at T ∗=4.2 and ρ∗=0.25 for different r∗cut values. It is worth noting that sub-Figure
(B) used to clarify the data presented in sub-Figure (A).

Figure 4: The simulation results which represents the relation between the LJ poten-
tial energy and MC sweeps for simulation of 128 particles using NVT-MC technique
at T ∗=4.2 and ρ∗=2 for different r∗cut values. It is worth noting that sub-Figure (B)
used to clarify the data presented in sub-Figure (A).

As mentioned earlier, the maximum allowed displacement (dmax) affects the

value of the acceptance rate. For each value of T ∗ with fixed value of ρ∗ or vice versa,
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the O-dmax is chosen to be associated with the acceptance rate of 50%. Because there

is no theoretical basis for the using the acceptance rate of 50% in MC simulation,

different dmax values have been chosen to be associated with different acceptance rate

values, and the behavior of the point particles under the effect of the LJ potential is

simulated and studied using NVT-MC technique.

Figure (5) shows the LJ potential energy versus MC sweeps for the simulation

of 128 point particles using NVT-MC technique at law temperature (T ∗=1.5), and

ρ∗ =2 for different dmax values. The data presented in Figure (5) also shows the

acceptance rate for each dmax value. It is clearly seen that the O-dmax have the best

convergence to equilibrium. On the other hand, Figure (6) shows the LJ potential

energy versus MC sweeps for the simulation of 128 particles using NVT-MC technique

at high temperature (T ∗=6), with ρ∗ =2 for different dmax values. The data presented

in the Figure (6) also shows the acceptance rate for each dmax value. Similarly, Figure

(6) shows that the O-dmax have almost the best convergence to equilibrium.

Figure 5: The simulation results which represents the relation between the LJ poten-
tial energy and MC sweeps for simulation of 128 particles using NVT-MC technique
at T ∗=1.5 and ρ∗ =2 for different dmax values, with their associated acceptance rate
values.
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Figure 6: The simulation results which represents the relation between the LJ poten-
tial energy and MC sweeps for simulation of 128 particles using NVT-MC technique
at T ∗=6 and ρ∗ =2 for different dmax values, with their associated acceptance rate
values.

By considering the value of r∗cut=2.5, a particular T ∗ was chosen and the sim-

ulation of 128-point particles system was started with different ρ∗ values to find the

O-dmax that associated with the acceptance rate of 50%. For example, at T ∗ = 4.2,

the simulation was started at ρ∗=0.25 with some dmax values chosen by different

trials. The results of this simulation as well as the best fitting curve are shown in

Figure(7). The data presented in the Figure shows that the relation between the

acceptance rate and dmax has an exponential form. By fitting the simulation results

shown in Figure(7), using the fitting tool in Matlab, the best mathematical form with

minimum error is given by

f = a eb dmax + c ed dmax , (4.1)

where f is a function of dmax that represents the corresponding value of the accep-

tance rate. In Equation (4.1), a, b, c and d are constants which have the values
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0.7779, -15.05, 0.3047, 0.1614, and 0.09329, respectively. The best statistical mea-

sures obtained from the fitting curve presented by Equation (4.1) are SSE=1.732e-005,

R-square=0.9997, adjusted R-square=0.9995, and RMSE= 0.002403.

This procedure was repeated at T ∗=4.2 for different values of ρ∗ (ρ∗=0.3125,

0.375, 0.4375, 0.5, 0.625, 0.75, 1, 1.25, 1.5, 1.75, and 2) as shown in Figures (8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18), respectively. All the fitting curves shown in Figures

(8-18) follow Equation (4.1) with different values for the constants a, b, c, and d as

presented in Table (4.1). This implies that the constants a, b, c, and d depends on

the value of ρ∗. The corresponding statistical measures regarding each curve for each

ρ∗ value are shown in Table (4.2). Since the values of the constants c and d are zero

for almost all values of ρ∗ ( except at ρ∗=0.25), Equation (4.1) can be written as

f = a eb dmax . (4.2)

Equation (4.2) can also be written as

dmax =
1

b
log (

f

a
). (4.3)

Using Equation (4.3), the mathematical equation that can be used to get the

O-dmax that associated with the acceptance rate of 50% is given by

O − dmax =
ln 0.5

a

b
. (4.4)

Using Equation (4.4), and the values of the constants a, b that presented in

Table (4.1), the values of O-dmax are calculated for each value of ρ∗ at T ∗=4.2 and

the results are presented in Table (4.3).
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Figure 7: The simulation results and the best fitting curve which represents the
relation between acceptance rate and dmax for simulation of 128 particles using NVT-
MC technique for 100000 MC sweeps at T ∗=4.2 and ρ∗=0.25. Statistical measures
used is R-square = 0.9997.

Figure 8: The simulation results and the best fitting curve which represents the
relation between acceptance rate and dmax for simulation of 128 particles using NVT-
MC technique for 100000 MC sweeps at T ∗=4.2 and ρ∗=0.3125. Statistical measures
used is R-square = 0.9988.
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Figure 9: The simulation results and the best fitting curve which represents the
relation between acceptance rate and dmax for simulation of 128 particles using NVT-
MC technique for 100000 MC sweeps at T ∗=4.2 and ρ∗=0.375. Statistical measures
used is R-square = 0.9992.

Figure 10: The simulation results and the best fitting curve which represents the
relation between acceptance rate and dmax for simulation of 128 particles using NVT-
MC technique for 100000 MC sweeps at T ∗=4.2 and ρ∗=0.4375. Statistical measure
used is R-square = 0.9993.
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Figure 11: The simulation results and the best fitting curve which represents the
relation between acceptance rate and dmax for simulation of 128 particles using NVT-
MC technique for 100000 MC sweeps at T ∗=4.2 and ρ∗=0.5. Statistical measure used
is R-square = 0.9996.

Figure 12: The simulation results and the best fitting curve which represents the
relation between acceptance rate and dmax for simulation of 128 particles using NVT-
MC technique for 100000 MC sweeps at T ∗=4.2 and ρ∗=0.625. Statistical measure
used is R-square = 0.9999.
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Figure 13: The simulation results and the best fitting curve which represents the
relation between acceptance rate and dmax for simulation of 128 particles using NVT-
MC technique with 100000 MC sweeps at T ∗=4.2 and ρ∗=0.75. Statistical measure
used is R-square = 0.9998.

Figure 14: The simulation results and the best fitting curve which represents the
relation between acceptance rate and dmax for simulation of 128 particles using NVT-
MC technique for 100000 MC sweeps and T ∗=4.2 and ρ∗=1. Statistical measure used
is R-square = 0.9997.
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Figure 15: The simulation results and the best fitting curve which represents the
relation between acceptance rate and dmax for simulation of 128 particles using NVT-
MC technique for 100000 MC sweeps and T ∗=4.2 and ρ∗=1.25. Statistical measure
used is R-square = 0.9998.

Figure 16: The simulation results and the best fitting curve which represents the
relation between acceptance rate and dmax for simulation of 128 particles using NVT-
MC technique for 100000 MC sweeps at T ∗=4.2 and ρ∗=1.5. Statistical measure used
is R-square = 0.9991.
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Figure 17: The simulation results and the best fitting curve which represents the
relation between acceptance rate and dmax for simulation of 128 particles using NVT-
MC technique for 100000 MC sweeps at T ∗=4.2 and ρ∗=1.75. Statistical measure
used is R-square = 0.9996.

Figure 18: The simulation results and the best fitting curve which represents the
relation between acceptance rate and dmax for simulation of 128 particles using NVT-
MC technique for 100000 MC sweeps at T ∗=4.2 and ρ∗=2. Statistical measure used
is R-square = 0.9951.
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Table 4.1: The values of the constants a, b, c and d obtained from fitting the simu-
lation results, that presented in Figures (8-18).

ρ∗ a b c d

0.25 0.7779 -15.05 0.3047 0.1614
0.3125 0.8919 -7.753 0 0
0.375 0.9557 -10.43 0 0
0.4375 0.9612 -12.29 0 0

0.5 1.004 -15 0 0
0.625 1.027 -19.81 0 0
0.75 1.039 -25 0 0

1 1.078 -38.12 0 0
1.25 1.122 -54.7 0 0
1.5 1.145 -71.51 0 0
1.75 1.207 -99.76 0 0

2 1.135 -120 0 0

Table 4.2: Statistical measures obtained from fitting the simulation results, that
presented in Figures (8-18).

ρ∗ R− square
0.25 0.9997

0.3125 0.9988
0.375 0.9992
0.4375 0.9993

0.5 0.9996
0.625 0.9999
0.75 0.9998

1 0.9997
1.25 0.9998
1.5 0.9991
1.75 0.9996

2 0.9951
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Table 4.3: The values of the O-dmax that obtained from Equation (4.4) and the data
shown in Table (4.1) at T ∗=4.2 for different values of ρ∗.

ρ∗ O − dmax
0.25 0.09329

0.3125 0.074647997
0.375 0.062112748
0.4375 0.053179366

0.5 0.046475947
0.625 0.036334635
0.75 0.029256236

1 0.020153585
1.25 0.014776234
1.5 0.011586517
1.75 0.008834053

2 0.006831499

The values of O-dmax with the corresponding ρ∗ values that presented in Table

(4.3), with its best fitting curve, are plotted as shown in Figure (19).

Figure 19: The simulation results and the best fitting curve which represents the rela-
tion between O-dmax and ρ∗ for simulation of 128 particles using NVT-MC technique
for 100000 MC sweeps at T ∗=4.2 and different ρ∗ values. Statistical measure used is
R-square=0.9748.
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The best curve represents the relation between O-dmax and ρ∗ was found to be

g = k el ρ
∗
, (4.5)

where g is a function of ρ∗, that represents O-dmax at T ∗ = 4.2. In Equation (4.5),

k and l are constants which have the values 0.1451 and -2.114, respectively. The

best statistical measure obtained from the fitting curve presented by Equation (4.5)

is R-square=0.9748.

The above procedure was repeated for different values of T ∗ (T ∗= 1, 1.5, 2, 2.5,

2.9, 3.4, 3.8, 4.2, 5 and 6). At each value of T ∗, the simulation was done for different

values of ρ∗ (ρ∗=0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 1, 1.25, 1.5, 1.75, 2). The

simulation results with their fitting data for each values of T ∗ mentioned above are

presented in Appendix(A). The data presented in Appendix(A) as well as the data

obtained by using Equations(4.5, and 4.4) are plotted as shown in Figure(20) using

the same procedure presented earlier.

Figure 20: The values of the O-dmax versus ρ∗ for simulation of 128 particles using
NVT-MC technique for 100000 MC sweeps at different values of T ∗.
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It is worth noting that all the curves shown in Figure (20) satisfy the same

mathematical formula that represented by Equation (4.5), with different values for

the constants k and l. Table (4.4) shows the values of the constants k and l with

the corresponding T ∗ value. This means that k and l depend on the value of T ∗ .

Therefore, Equation (4.5) can be written as

g = k(T ∗)el (T
∗)ρ∗ . (4.6)

To obtain a mathematical formulas for k(ρ∗) and l(ρ∗) as a functions of T ∗,

the relation between k and l versus T ∗, with their best fitting curves, are plotted as

shown in Figures (21) and (22), respectively. The best fitting curves for that shown

Figures (21) and (22) are given by

k(T ∗) = −0.2468T ∗−0.3376 + 0.2974. (4.7)

l(T ∗) = 0.9205T ∗−1.6 − 2.201. (4.8)

Table 4.4: The values of the constants k and l obtained from fitting the simulation
results, that presented if Figure (20).

T ∗ k l

1 0.05003 -1.279
1.5 0.08302 -1.728
2 0.1027 -1.896

2.5 0.1153 -1.975
2.9 0.1243 -2.024
3.4 0.1344 -2.083
3.8 0.1405 -2.104
4.2 0.1451 -2.114
5 0.1532 -2.12
6 0.1633 -2.149
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Table 4.5: Statistical measures obtained from fitting the simulation results that pre-
sented if Figure (20)..

T ∗ R− square
1 0.9913

1.5 0.9949
2 0.9874

2.5 0.9814
2.9 0.9784
3.4 0.9766
3.8 0.9752
4.2 0.9748
5 0.9719
6 0.9685

Figure 21: The constant k as a function of T ∗ as well as the best fitting curve obtained
from the simulation of 128 particles using NVT-MC technique for 100000 MC sweeps.
Statistical measure used is R-square = 0.9996.
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Figure 22: The constant l as a function of T ∗ as well as the best fitting curve obtained
from the simulation of 128 particles using NVT-MC technique for 100000 MC sweeps.
Statistical measure used is R-square = 0.9988.

To get a mathematical formula for O-dmax as a function of T ∗, the simulation

results shown in Appendix(A), again, are used to get that formula using the same

procedure presented earlier. For example, Table(4.6) shows the values of O-dmax at

different T ∗ values with ρ∗=1. The data presented in Table(4.6) are plotted as shown

in Figure(23). Also, Figure(23) shows the best fitting curve for the simulation results.

The data presented in the Figure clearly shows that the relation between O-dmax and

T ∗ has an exponent form. By fitting the simulation results, using the fitting tool in

Matlab, the best mathematical form with minimum error is given by

w = s T ∗h, (4.9)

where w is a function of T ∗ that represents O-dmax at ρ∗ = 1. The values of

the constants s and h have the values 0.01347 and 0.2796, respectively. The best

statistical measure obtained from the fitting curve presented by Equation (4.9) is

R-square=0.9953.
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Table 4.6: The values of the O-dmax, as well as the best fitting curve, that obtained
from the simulation of 128 particles using NVT-MC technique for 100000 MC sweeps
at ρ∗=1 for different T ∗ values.

T ∗ O − dmax
1 0.013899843

1.5 0.01481074
2 0.016246951

2.5 0.01728666
2.9 0.018060831
3.4 0.018933327
3.8 0.019569384
4.2 0.020153585
5 0.021211268
6 0.022353234

Figure 23: The values of the O-dmax versus T ∗ for simulation of 128 particles using
NVT-MC technique for 100000 MC sweeps at ρ∗=1. Statistical measure used is R-
square = 0.9953.

Again, the above procedure was repeated for different values of ρ∗ (ρ∗= 0.25,

0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 1, 1.25, 1.5, 1.75 and 2). For each value of ρ∗,

the simulations were run for different values of T ∗ (T ∗=1, 1.5, 2, 2.5, 2.9, 3.4, 3.8,

4.2, 5, and 6) and the results are plotted as shown in Figure (24). Therefore, Figure
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(24) shows 12 curves, and each curve represents the relation between O-dmax and T ∗

at the corresponding ρ∗ value.

Figure 24: O-dmax versus T ∗, as well as the best fitting curve, for simulation of 128
particles with 100000 MC sweeps for different ρ∗ values

It is worth noting that all the curves shown in Figure (24) satisfy the same

mathematical formula that represented by Equation (4.9), with different values for

the constants s and h, that obtained form fitting the data presented in the Figure(24),

using the fitting tool in Matlab. The values of the constants s and h are shown in

Table (4.7). This means that s and h depend on the value of ρ∗ . Therefore, Equation

(4.9) can be written as

w = s(ρ∗)T ∗h(ρ
∗), (4.10)

To obtain a mathematical formulas for s(ρ∗) and h(ρ∗), the relation between s

and h, versus ρ∗ with their best fitting curves, are plotted as shown in Figures (4.11)

and (4.12), respectively. The best fitting curves for the data shown in Figures (4.11)

and (4.12) give
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s(ρ∗) = 0.0668ρ∗−1.599. (4.11)

h(ρ∗) = 0.9509e−4.382ρ
∗

+ 0.1489e0.6287ρ
∗
. (4.12)

Table 4.7: The values of the constants s and h obtained from the simulation of 128
particles using NVT-MC technique for 100000 MC sweeps for different values of ρ∗.

T ∗ s h

0.25 0.04639 0.4839
0.3125 0.03998 0.4282
0.375 0.03591 0.3806
0.4375 0.03262 0.3421

0.5 0.02978 0.3079
0.625 0.02455 0.2729
0.75 0.01982 0.2721

1 0.01347 0.2796
1.25 0.009645 0.3086
1.5 0.006446 0.4124
1.75 0.004478 0.4798

2 0.003337 0.4963

Table 4.8: Statistical measures obtained from the simulation of 128 particles using
NVT-MC technique for 100000 MC sweeps at for different values of ρ∗.

T ∗ R− square
0.25 0.9436

0.3125 0.9534
0.375 0.964
0.4375 0.9771

0.5 0.9846
0.625 0.9981
0.75 0.9996

1 0.9953
1.25 0.9732
1.5 0.9945
1.75 0.9981

2 0.9983
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Figure 25: The constant s as a function of ρ∗ as well as the best fitting curve ob-
tained from the simulation of 128 particles using NVT-MC technique with 100000 MC
sweeps. Its equation has the form represented by Equation (4.11). The statistical
measure used is R-square = 0.9979.

Figure 26: The constant h as a function of ρ∗ as well as the best fitting curve ob-
tained from the simulation of 128 particles using NVT-MC technique with 100000 MC
sweeps. Its equation has the form represented by Equation (4.12). The statistical
measures used is R-square = 0.9571.

To obtain the mathematical formula for O-dmax as a function of both T ∗ and

ρ∗, the values of O-dmax, as well as the best fitting surface, are plotted using the
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fitting tool in Matlab, as shown in Figure(27). The best mathematical expression

that represents the relation between O-dmax, T
∗, and ρ∗ is given by

y(T ∗, ρ∗) = 0.0526 + 0.034T ∗ − 0.1497ρ∗ − 0.004354T ∗2 − 0.02704T ∗ρ∗

+0.1311ρ∗2 + 0.0002467T ∗3 + 0.001082T ∗2ρ∗ + 0.006881T ∗ρ∗2−0.03546ρ∗3,

(4.13)

where y(T ∗,ρ∗) represents the O-dmax at any T ∗ and ρ∗ values.

Figure 27: The best fitting surface obtained from the simulation of 128 particles
using NVT-MC technique for 100000 MC sweeps at different T ∗ and ρ∗ values. The
mathematical Equation for the surface has the form represented by (4.13). The
statistical measure used is R-square = 0.98.

4.1. Conclusions and Future work

A system of N-point particles with Lennard-Jones potential is simulated using Metropo-

lis Monte Carlo method at constant number of particles, volume and temperature.

The optimum cut off radius found for the Lennard-Jones potential is 2.5 in the di-

mensionless system. The periodicity of the system is considered in the calculations.
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Number of particles used is N=128, which is sufficient in order to get good statistics

results. Densities used are in the range [0.25,2], and the dimensionless temperature

used is in the range [1,6]. The maximum allowed displacement dmax associated with

50% acceptance rate is found to be optimum. This gives the best convergence of sim-

ulation to the Lennard-Jones potential at equilibrium. Mathematical formula that

represents the relation between dmax and acceptance rate is concluded and is repre-

sented by Equation (4.1) with accepted error values. At the acceptance rate 50%

an explicit mathematical formula that describes the relation between temperature

T ∗, density ρ∗ and the optimum maximum allowed displacement is concluded and

is represented by Equation (4.13). As a future work, we are planning to add the

kinetic energy calculations and take in our consideration the radius of the atom to

apply the simulation at real systems. Moreover, we will incorporate the dipole-dipole

interaction in the Lennard- Jones system, and find the optimum maximum allowed

displacement of the angle and check out the relation between the best angle and best

displacement obtained in this work.
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Table 9: The values of the constants a, b, c and d obtained from fitting the output
data that results from the simulation of 128 particles using NVT-MC technique for
100000 MC sweeps at T ∗=1 and different ρ∗ values.

ρ∗ a b c d

0.25 0.9857 -19.49 0 0
0.3125 0.9949 -21.21 0 0
0.375 1 -22.37 0 0
0.4375 1.008 -23.65 0 0

0.5 1.018 -25.2 0 0
0.625 1.035 -30.16 0 0
0.75 1.063 -38.23 0 0

1 1.13 -58.66 0 0
1.25 1.125 -90.17 0 0
1.5 1.158 -134.5 0 0
1.75 1.159 -187 0 0

2 1.088 -232 0 0

Table 10: Statistical measures obtained from fitting the output data that results from
the simulation of 128 particles using NVT-MC technique for 100000 MC sweeps at
T ∗=1 and different ρ∗ values.

ρ∗ R− square
0.25 0.9981

0.3125 0.9984
0.375 0.9991
0.4375 0.9994

0.5 0.9998
0.625 0.9999
0.75 0.9999

1 0.9987
1.25 0.9992
1.5 0.9933
1.75 0.9939

2 0.9957
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Table 11: The values of the O-dmax obtained by using Equation (4.4) and the data
presented in Table (4.1) at T ∗=1 for different ρ∗ values.

ρ∗ O − dmax
0.25 0.034825241

0.3125 0.032439139
0.375 0.030985569
0.4375 0.029645469

0.5 0.027881847
0.625 0.024122964
0.75 0.019729068

1 0.013899843
1.25 0.008993348
1.5 0.006244175
1.75 0.004495747

2 0.003326845

Table 12: The values of the constants a, b, c and d obtained from fitting the output
data that results from the simulation of 128 particles using NVT-MC technique for
100000 MC sweeps at T ∗=1.5 and different ρ∗ values.

ρ∗ a b c d

0.25 0.8571 -9.552 0 0
0.3125 0.9119 -12.44 0 0
0.375 0.9375 -14.86 0 0
0.4375 0.9869 -17.95 0 0

0.5 1.015 -20.85 0 0
0.625 1.032 -26.42 0 0
0.75 1.056 -33.81 0 0

1 1.115 -54.15 0 0
1.25 1.173 -79.33 0 0
1.5 1.104 -105.2 0 0
1.75 1.184 -157.1 0 0

2 1.074 -190.8 0 0
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Table 13: Statistical measures obtained from fitting the output data that results from
the simulation of 128 particles using NVT-MC technique for 100000 MC sweeps at
T ∗=1.5 and different ρ∗ values.

ρ∗ R− square
0.25 0.995

0.3125 0.9965
0.375 0.9984
0.4375 0.9993

0.5 0.9999
0.625 1
0.75 0.9999

1 0.9998
1.25 0.9998
1.5 0.994
1.75 0.9959

2 0.9952

Table 14: The values of the O-dmax obtained by using Equation (4.4) and the data
presented in Table (4.1) at T ∗=1.5 for different ρ∗ values.

ρ∗ O − dmax
0.25 0.056422372

0.3125 0.048305646
0.375 0.042359074
0.4375 0.037880814

0.5 0.033958551
0.625 0.027427928
0.75 0.022112847

1 0.01481074
1.25 0.010748919
1.5 0.007529345
1.75 0.005487242

2 0.004007008
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Table 15: The values of the constants a, b, c and d obtained from fitting the output
data that results from the simulation of 128 particles using NVT-MC technique for
100000 MC sweeps at T ∗=2 and different ρ∗ values.

ρ∗ a b c d

0.25 0.85 -7.767 0 0
0.3125 0.9344 -11.04 0 0
0.375 0.9423 -13.01 0 0
0.4375 0.9511 -15.14 0 0

0.5 0.9963 -18.29 0 0
0.625 1.022 -23.93 0 0
0.75 1.05 -30.99 0 0

1 1.107 -48.92 0 0
1.25 1.17 69.32 0 0
1.5 1.184 -100.9 0 0
1.75 1.226 -141.9 0 0

2 1.221 -186.7 0 0

Table 16: Statistical measures obtained from fitting the output data that results from
the simulation of 128 particles using NVT-MC technique for 100000 MC sweeps at
T ∗=2 and different ρ∗ values.

ρ∗ R− square
0.25 0.9968

0.3125 0.9975
0.375 0.9981
0.4375 0.9984

0.5 0.9992
0.625 0.9996
0.75 0.9999

1 0.9998
1.25 0.9993
1.5 0.9996
1.75 0.9975

2 0.9947
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Table 17: The values of the O-dmax obtained by using Equation (4.4) and the data
presented in Table (4.1) at T ∗=2 for different ρ∗ values.

ρ∗ O − dmax
0.25 0.068318302

0.3125 0.056639177
0.375 0.048709884
0.4375 0.042471011

0.5 0.037694933
0.625 0.029874997
0.75 0.023941186

1 0.016246951
1.25 0.012264151
1.5 0.008543565
1.75 0.006320677

2 0.004782096

Table 18: The values of the constants a, b, c and d obtained from fitting the output
data that results from the simulation of 128 particles using NVT-MC technique for
100000 MC sweeps at T ∗=2.5 and different ρ∗ values.

ρ∗ a b c d

0.25 0.8514 -6.957 0 0
0.3125 0.8477 -8.627 0 0
0.375 0.9179 -11.52 0 0
0.4375 0.9722 -14.53 0 0

0.5 1.007 -17.42 0 0
0.625 1.029 -22.79 0 0
0.75 1.046 -29.04 0 0

1 1.096 -45.4 0 0
1.25 1.161 -63.39 0 0
1.5 1.192 -91.24 0 0
1.75 1.168 -120.5 0 0

2 1.107 -152.2 0 0
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Table 19: Statistical measures obtained from fitting the output data that results from
the simulation of 128 particles using NVT-MC technique for 100000 MC sweeps at
T ∗=2.5 and different ρ∗ values.

ρ∗ R− square
0.25 0.9981

0.3125 0.9984
0.375 0.9984
0.4375 0.9993

0.5 0.9997
0.625 0.9999
0.75 0.9998

1 0.9998
1.25 0.9993
1.5 0.9993
1.75 0.9972

2 0.9975

Table 20: The values of the O-dmax obtained by using Equation (4.4) and the data
presented in Table (4.1) at T ∗=2.5 for different ρ∗ values.

ρ∗ O − dmax
0.25 0.076509121

0.3125 0.061193775
0.375 0.05273267
0.4375 0.045764174

0.5 0.040190746
0.625 0.031668918
0.75 0.025417374

1 0.01728666
1.25 0.013289618
1.5 0.009521917
1.75 0.007040996

2 0.005222082
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Table 21: The values of the constants a, b, c and d obtained from fitting the output
data that results from the simulation of 128 particles using NVT-MC technique for
100000 MC sweeps at T ∗=2.9 and different ρ∗ values.

ρ∗ a b c d

0.25 0.8686 -6.752 0 0
0.3125 0.8617 -8.334 0 0
0.375 0.9697 -11.96 0 0
0.4375 0.9762 -13.97 0 0

0.5 1.006 -16.7 0 0
0.625 1.029 -21.86 0 0
0.75 1.059 -28.16 0 0

1 1.09 -43.15 0 0
1.25 1.164 -60.73 0 0
1.5 1.22 -87.46 0 0
1.75 1.125 -108 0 0

2 1.109 -142 0 0

Table 22: Statistical measures obtained from fitting the output data that results from
the simulation of 128 particles using NVT-MC technique for 100000 MC sweeps at
T ∗=2.9 and different ρ∗ values.

ρ∗ R− square
0.25 0.998

0.3125 0.9986
0.375 0.9992
0.4375 0.9994

0.5 0.9998
0.625 0.9999
0.75 0.9999

1 0.9997
1.25 0.9989
1.5 0.9996
1.75 0.9985

2 0.995
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Table 23: The values of the O-dmax obtained by using Equation (4.4) and the data
presented in Table (4.1) at T ∗=2.9 for different ρ∗ values.

ρ∗ O − dmax
0.25 0.081794227

0.3125 0.065310665
0.375 0.05538283
0.4375 0.047892583

0.5 0.041864027
0.625 0.033016223
0.75 0.026650293

1 0.018060831
1.25 0.013914203
1.5 0.010198926
1.75 0.007508613

2 0.005609901

Table 24: The values of the constants a, b, c and d obtained from fitting the output
data that results from the simulation of 128 particles using NVT-MC technique for
100000 MC sweeps at T ∗=3.4 and different ρ∗ values.

ρ∗ a b c d

0.25 0.8812 -6.503 0 0
0.3125 0.8779 -8.099 0 0
0.375 0.8998 -10.11 0 0
0.4375 0.9717 -13.19 0 0

0.5 0.9806 -15.35 0 0
0.625 1.023 -20.76 0 0
0.75 1.042 -26.55 0 0

1 1.084 -40.87 0 0
1.25 1.129 -57.33 0 0
1.5 1.11 -74.92 0 0
1.75 1.111 -99.97 0 0

2 1.118 -129.6 0 0
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Table 25: Statistical measures obtained from fitting the output data that results from
the simulation of 128 particles using NVT-MC technique for 100000 MC sweeps at
T ∗=3.4 and different ρ∗ values.

ρ∗ R− square
0.25 0.9983

0.3125 0.9988
0.375 0.9984
0.4375 0.999

0.5 0.9993
0.625 0.9998
0.75 0.9999

1 0.9998
1.25 0.9996
1.5 0.9987
1.75 0.9929

2 0.9978

Table 26: The values of the O-dmax obtained by using Equation (4.4) and the data
presented in Table (4.1) at T ∗=3.4 for different ρ∗ values.

ρ∗ O − dmax
0.25 0.087140784

0.3125 0.069505444
0.375 0.058117153
0.4375 0.050374452

0.5 0.043879904
0.625 0.034483944
0.75 0.027656841

1 0.018933327
1.25 0.014206863
1.5 0.010644784
1.75 0.007986473

2 0.006237896
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Table 27: The values of the constants a, b, c and d obtained from fitting the output
data that results from the simulation of 128 particles using NVT-MC technique for
100000 MC sweeps at T ∗=3.8 and different ρ∗ values.

ρ∗ a b c d

0.25 0.8876 -6.332 0 0
0.3125 0.8867 -7.929 0 0
0.375 0.9404 -10.43 0 0
0.4375 0.945 -12.3 0 0

0.5 0.9891 -14.92 0 0
0.625 1.003 -19.71 0 0
0.75 1.052 -26.03 0 0

1 1.081 -39.4 0 0
1.25 1.11 -54.64 0 0
1.5 1.201 -76.4 0 0
1.75 1.128 -97.51 0 0

2 1.093 -122.2 0 0

Table 28: Statistical measures obtained from fitting the output data that results from
the simulation of 128 particles using NVT-MC technique for 100000 MC sweeps at
T ∗=3.8 and different ρ∗ values.

ρ∗ R− square
0.25 0.9985

0.3125 0.9988
0.375 0.9987
0.4375 0.9989

0.5 0.9994
0.625 0.9995
0.75 0.9999

1 0.9998
1.25 0.9978
1.5 0.9999
1.75 0.9974

2 0.9955
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Table 29: The values of the O-dmax obtained by using Equation (4.4) and the data
presented in Table (4.1) at T ∗=3.8 for different ρ∗ values.

ρ∗ O − dmax
0.25 0.090636938

0.3125 0.072253576
0.375 0.060565409
0.4375 0.051754214

0.5 0.045233336
0.625 0.035319264
0.75 0.028576269

1 0.019569384
1.25 0.014595666
1.5 0.011469918
1.75 0.008343691

2 0.006399946

Table 30: The values of the constants a, b, c and d obtained from fitting the output
data that results from the simulation of 128 particles using NVT-MC technique for
100000 MC sweeps at T ∗=5 and different ρ∗ values.

ρ∗ a b c d

0.25 0.771 -14.71 0.3148 0.1899
0.3125 0.829 -14.03 0.2167 0.3376
0.375 0.9502 -9.814 0 0
0.4375 0.9803 -11.92 0 0

0.5 1.004 -14.38 0 0
0.625 1.021 -18.77 0 0
0.75 1.036 -23.8 0 0

1 1.073 -36 0 0
1.25 1.114 -51.28 0 0
1.5 1.155 -66.88 0 0
1.75 1.056 -76.41 0 0

2 1.072 -102.6 0 0
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Table 31: Statistical measures obtained from fitting the output data that results from
the simulation of 128 particles using NVT-MC technique for 100000 MC sweeps at
T ∗=5 and different ρ∗ values.

ρ∗ R− square
0.25 0.9997

0.3125 0.9998
0.375 0.999
0.4375 0.9984

0.5 0.9997
0.625 0.9998
0.75 0.9999

1 0.9998
1.25 0.9998
1.5 0.999
1.75 0.9981

2 0.9974

Table 32: The values of the O-dmax obtained by using Equation (4.4) and the data
presented in Table (4.1) at T ∗=5 for different ρ∗ values.

ρ∗ O − dmax
0.25 0.09901

0.3125 0.07775
0.375 0.065423313
0.4375 0.056480751

0.5 0.048479778
0.625 0.03803568
0.75 0.030609846

1 0.021211268
1.25 0.015622159
1.5 0.012518653
1.75 0.009784523

2 0.007433462
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Table 33: The values of the constants a, b, c and d obtained from fitting the output
data that results from the simulation of 128 particles using NVT-MC technique for
100000 MC sweeps at T ∗=6 and different ρ∗ values.

ρ∗ SSE R− square adjustedR− square RMSE

0.25 0.7849 -13.43 0.289 0.6109
0.3125 0.895 -7.035 0 0
0.375 0.956 -9.443 0 0
0.4375 0.9601 -11.15 0 0

0.5 0.965 -12.98 0 0
0.625 1.007 -17.6 0 0
0.75 1.041 -22.75 0 0

1 1.067 -33.91 0 0
1.25 1.106 -48.01 0 0
1.5 1.118 -60.63 0 0
1.75 1.07 -71.97 0 0

2 1.089 -96.05 0 0

Table 34: Statistical measures obtained from fitting the output data that results from
the simulation of 128 particles using NVT-MC technique for 100000 MC sweeps at
T ∗=6 and different ρ∗ values.

ρ∗ R− square
0.25 0.9999

0.3125 0.9995
0.375 0.9989
0.4375 0.9992

0.5 0.9993
0.625 0.9995
0.75 0.9999

1 0.9997
1.25 0.9998
1.5 0.9992
1.75 0.995

2 0.9991
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Table 35: The values of the O-dmax obtained by using Equation (4.4) and the data
presented in Table (4.1) at T ∗=6 for different ρ∗ values.

ρ∗ O − dmax
0.25 0.105

0.3125 0.082759861
0.375 0.068638125
0.4375 0.058513843

0.5 0.050656395
0.625 0.039779704
0.75 0.03223424

1 0.022353234
1.25 0.016536078
1.5 0.013272119
1.75 0.010571152

2 0.008104186


