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Abstract
This study is a significant endeavor involving the development and testing of a comprehensive methodology to incorpo-
rate driving behavior into the analysis and prediction of vehicle fuel consumption. It underscores the crucial importance 
of understanding how different driving behavior affect fuel efficiency. The framework we present is a theoretical construct 
and a practical tool. It provides a robust, multi-step process for linking driving behavior to fuel consumption, leveraging 
both traditional statistical methods and advanced machine learning techniques to derive actionable insights. To test 
the framework, we used a naturalistic data that includes about 5408 different road users in a mixed traffic environment 
and urban settings in Germany. We applied a microscopic fuel consumption model to calibrate the framework and an 
unsupervised clustering algorithm to classify the behavior of the driver interacting with each other and with vulnerable 
road users. The framework includes developing Linear regression model as a baseline, which yields an R-squared of 0.511 
and a Mean Squared Error (MSE) of 0.031, indicating moderate predictive accuracy. The final step includes choosing 
Random Forest as a better model, which achieves a higher R-squared of 0.956 and a lower MSE of 0.003. We also found 
that conservative and aggressive driving leads to significantly higher and more discrepancy in fuel consumption than 
normal driving behavior. These insights can promote more efficient driving practices, leading to significant fuel savings 
and environmental benefits.

Article highlights

• Driving behavior significantly impacts fuel consumption; smooth, controlled driving leads to greater fuel efficiency.
• Insights from this study can inform ADAS development, enabling real-time, fuel-efficient driving assistance systems.
• Promoting normal driving habits can reduce fuel use, aiding eco-friendly driving and sustainable transport solutions.
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1 Introduction

Vehicle fuel consumption prediction is an important factor that can help vehicle owners to reduce their fuel costs. The 
prediction of fuel consumption can be done through various methods. One of the most popular methods is based on 
driving behavior, which uses data from sensors in the vehicle to measure and analyze the driver’s driving style. This data 
can then be used to predict the vehicle’s fuel consumption. The driving behavior method of fuel consumption predic-
tion is because the way drivers drive their vehicles affects fuel consumption. The data includes the vehicle’s speed, 
acceleration, braking, and cornering levels. Based on this data, the system can determine how much fuel the vehicle 
will consume under different driving conditions. The driving behavior method of fuel consumption prediction has been 
tested in several studies and is accurate and reliable. For example, a study conducted by Vyas et al. [1] found that the 
driving behavior method was able to predict fuel consumption with an accuracy of 95%. This method is also useful for 
predicting the fuel economy of different types of vehicles, such as cars, SUVs, and trucks. Overall, the driving behavior 
method of fuel consumption prediction is a reliable and accurate way to predict fuel consumption. This method can be 
used to help vehicle owners reduce their fuel costs, as well as to improve the fuel economy of their vehicles.

Due to advancements in information and communication technology, it is now possible to gather vast amounts of 
driving data online to monitor the activity of vehicle fleets and ultimately increase fleet management performance [2]. 
Solving vehicle routing problems (VRP) is an essential component of fleet management systems [3]. This is done to assign 
vehicles and routes for accomplishing driving/delivery missions with a minimum number of vehicles and fuel costs. To 
optimize the VRP, predicting vehicle fuel consumption is necessary, taking into consideration the given route, period of 
day, driver, etc [4].

A model is used to predict fuel consumption, considering both driving behaviors and traffic conditions. However, 
certain variables that influence fuel consumption, such as vehicle weight and ambient conditions, cannot be measured 
or broadcasted from onboard systems. This means that fuel consumption must be modeled using only a limited number 
of keys and standard variables, including vehicle velocity and road slope [5]. In addition to vehicle velocity and road 
slope, vehicle acceleration plays a crucial role in determining fuel consumption. Variability in acceleration, particularly 
in stop-and-go traffic, has a significant impact on fuel efficiency. Fuel consumption models can be broadly classified 
into two types: (I) first-principle (physics-based) models that utilize a set of mathematical equations to simulate vehicle 
dynamics at each moment in time [6], and (ii) data-driven machine learning (ML) models that use a set of input/explana-
tory variables to create a mapping to an output space defined by target variable(s) [7].

Moreover, physics-based approaches can be accurate, but they often lack computing efficiency [8, 9]. Additionally, 
they require knowledge of various vehicle dynamics, powertrain parameters, and multidimensional maps, which are 
usually unavailable. To make VRP feasible, there is a need for a fast, macroscopic model that can accurately predict fuel 
consumption for an entire driving cycle. ML modeling approaches can be used to solve this problem, as they allow for 
automatic pattern learning from available data [10]. The most used models are random forest (RF) and artificial neural 
networks (NNs), which are universal approximators that can represent the nonlinear characteristics of a complex system 
through a nonlinear activation function [11].

In recent times, the utilization of convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in 
combination with deep learning (DL) techniques has led to a great improvement in the success rate of NNs for regres-
sion and classification tasks. A thorough analysis of different advanced ML models and DL techniques is provided, with 
the prediction accuracies of corresponding models being tested and compared in the context of a short-term electric 
microgrid load forecasting problem [12]. If a more intricate prediction job is to be carried out, it is necessary to consider 
probabilistic model output, which, instead of point predictions (i.e., related to expected values), requires the prediction 
of conditional probability distributions of dependent variables or related statistical indices (e.g., quantiles) [13].

Driving behavior significantly impacts vehicle fuel consumption, presenting an opportunity to reduce transporta-
tion energy costs and enhance the technology for behavior assessment in Advanced Driver Assistance Systems (ADAS). 
However, understanding and modeling driving behavior under dynamic and mixed traffic conditions is complex, making 
it challenging to quantitatively analyze the relationship between driving behavior and fuel consumption. Despite this 
complexity, accurately predicting fuel consumption based on driver behavior is essential for developing more ecologi-
cal driving assistance systems and improving vehicle fuel economy. The research gap addressed in this study lies in the 
lack of integrated models that combine both driving behavior and environmental factors for real-time fuel consumption 
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prediction. Our contribution is a comprehensive multi-step framework that links driving volatility measures with fuel 
consumption, validated using naturalistic driving data. This study aims to address these challenges by proposing a 
method that effectively identifies the relationship between driving behavior and fuel consumption at both macro and 
micro levels, enabling real-time fuel consumption calculations without the need for storing instantaneous data. This 
approach advances the understanding of driver behavior and facilitates the creation of real-time, fuel-efficient driving 
strategies, ultimately contributing to more sustainable transportation solutions.

2  Literature review

Recent advances in artificial intelligence and machine learning have enabled researchers to develop accurate and reli-
able models for predicting fuel consumption for vehicles. For example, Topić et al. [14] used linear regression models and 
neural networks to predict fuel consumption based on vehicle velocity, acceleration, and road slope time series inputs. 
The results showed that the proposed neural network-based approach was accurate, fast, and suitable for a variety of 
applications, such as vehicle routing optimization, driving cycle validation, and transport planning. Also, Li et al. [10] 
predicted the fuel consumption of a 13,000 TEU class container ship using in-service data collected based on two meth-
ods, an artificial neural network (ANN) and multiple linear regression (MLR), to select the input variables and prevent 
overfitting and multicollinearity. The models based on ANN showed the best prediction accuracy with a goodness of 
fit between 0.9709 and 0.9936. Additionally, sensitivity analysis indicated an optimal draught of 14.79 m for the ship, 
providing optimal fuel consumption efficiency. The models could be of great use for ship operators to make decisions 
for efficient operation. Moreover, Hamed et al. [15] proposed a machine-learning model based on the support vector 
machine algorithm to predict vehicle fuel consumption. The proposed model was tested on an on-board diagnostics 
dataset using 18 features and achieved an R-squared metric value of 0.97, which is higher than other related work using 
the same algorithm. The model could help manufacturers find successful Fuel Consumption Prediction models, thus 
improving business economics and satisfying domain needs. Furthermore, Alamdari et al. [16] used machine learning 
techniques to model and predict the fuel consumption of haul trucks in an open pit mine. Multiple linear regression, 
random forest, artificial neural network, support vector machine, and kernel nearest neighbor were tested on an actual 
dataset from an Iron ore open pit mine in Iran. The artificial neural network showed the best performance, with a coef-
ficient of determination of 0.903, mean square error of 489.173, and mean absolute error of 13.440. A sensitivity analysis 
was also conducted to evaluate the significance of the independent variables.

Additionally, Perrotta et al. [7] used three Machine Learning techniques (SVM, RF, and ANN) to model the fuel consump-
tion of articulated trucks using telematic data from standard sensors, as well as road characteristics from the highways 
agency pavement management system. Results of the study show that all three methods can be used to develop models 
with good accuracy, with the random forest model having the best performance. The model could be used to help fleet 
managers review existing vehicle routing decisions and road managers to better understand the fuel consumption 
of vehicles and how it is affected by road geometry. Besides, Yao et al. [2] discovered the correlation between driving 
behavior and fuel consumption by matching data collected from mobile phones and onboard diagnostic systems (OBD) 
in taxis. Three prediction models (backpropagation (BP) neural network, support vector regression (SVR), and random 
forests) were used to predict fuel consumption based on mobile phone data. The results show that speed, acceleration, 
deceleration, and cruising time are important fuel consumption indicators, and all three models had a relative error of 
less than 10%. Recent studies, such as those by Suarez et al. [17], Zhao et al. [18] and Pereira et al. [19] have highlighted 
the effectiveness of machine learning approaches, such as SVM and Random Forest, in fuel consumption prediction. 
These models are highly accurate and efficient, making them relevant for real-time fuel efficiency monitoring in trans-
portation systems.

Other studies focused on evaluating fuel efficiency. For example, Hao et al. [20] investigated the driving behavior 
evaluation model to evaluate fuel efficiency using data from five trucks and extracted four characteristic parameters. 
They used K-means clustering combined with a density-based clustering non-parametric algorithm (DBSCAN) to cluster 
the parameters into three types of driving behavior, which were labeled as low, medium, and high fuel consumption. 
The model was trained on data and was found to have a prediction accuracy rate of 77.13%. Moreover, Ping et al. [21] 
introduced two machine-learning methods for evaluating the fuel efficiency of driving behavior using naturalistic driv-
ing data. A model is developed through spectral clustering and deep learning-based object detection to predict the fuel 
consumption associated with different driving behaviors. This model can then be applied in advanced driving assistance 
systems to improve vehicle fuel economy, decrease the energy cost of transportation, and develop better behavior 
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assessment technology. We also acknowledge the inherent non-linearity in the relationship between acceleration and 
speed, as highlighted in previous works [22, 23]. These studies demonstrate that non-linear models can capture more 
complex driver behaviors and powertrain dynamics.

3  Methods

3.1  Proposed framework

The diagram shown in Fig. 1 presents a comprehensive framework for analyzing the relationship between driver behav-
ior and fuel consumption using a combination of data collection, modeling, and machine learning techniques. This 
framework is designed to incorporate driving behavior into fuel consumption models and extract meaningful insights 
that correlate driving patterns with fuel efficiency, ultimately aiming to inform better driving practices and enhance fuel 
economy.

The theoretical construct of the proposed method is centered around integrating driving behavior into fuel consump-
tion modeling, which entails employing a multi-layered approach. This framework is based on the premise that driving 
patterns significantly impact vehicle fuel efficiency and that understanding these patterns at both macro and micro 
levels can yield actionable insights for improving fuel economy. To achieve this, the framework uses a combination of 

Fig. 1  A comprehensive 
framework for analyzing the 
relationship between driver 
behavior and fuel consump-
tion
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real-world data analysis, machine learning, and physics-informed models, which forms a comprehensive system that 
bridges the gap between driver behavior and fuel consumption.

At its core, the framework starts by defining different driving behaviors—such as conservative, normal, and aggres-
sive—and linking these behaviors to corresponding fuel consumption rates. By analyzing extensive naturalistic driving 
data, such as the dataset of more than 13,500 road users in a mixed traffic environment, the method captures a wide 
variety of driving styles and traffic conditions. The first step involves establishing a baseline correlation between driving 
volatility measures (e.g., speed variations, accelerations, and decelerations) and fuel consumption through linear regres-
sion modeling. This statistical model serves as an initial indicator of how different driving behaviors affect fuel usage but 
is limited by its moderate accuracy.

This framework’s core is the Trajectory Data Collection phase, which aggregates data from various sources such as 
connected vehicles (CV), drones, sensors, and mobile applications. These sources collectively provide rich, high-resolution 
data on vehicle trajectories, capturing complex and instantaneous details of driving behavior. The next phase involves 
the Microscopic Fuel Consumption Modeling, specifically utilizing the VT-CPFM (Virginia Tech Comprehensive Power-
based Fuel Consumption Model). This model is employed to estimate fuel consumption at a granular level for each 
vehicle based on the collected trajectory data. The output of this phase is a detailed quantification of fuel consumption 
for each vehicle under study.

Following the data collection and initial fuel consumption modeling, the framework moves into the analysis phase, 
where Volatility Measures are extracted. These measures are crucial for characterizing the variability and aggressiveness 
in driving behavior, encompassing metrics such as acceleration, deceleration, and speed variations. With these measures 
in hand, clustering techniques are applied to identify three distinct driving behavior clusters, including normal, conserva-
tive, and aggressive. This clustering assigns each driver to specific behavior clusters, enabling a structured analysis of 
different driving styles.

The framework then proceeds to Feature Engineering, where the extracted volatility measures and identified driving 
behavior clusters (denoted as X  ) are paired with the corresponding fuel consumption data (denoted as Y  ). This step 
transforms the raw data into a structured format suitable for further analysis. Linear regression modeling is employed to 
establish baseline correlations. This baseline model helps in understanding the fundamental relationships between the 
features (volatility measures and driving behavior) and the target variable (fuel consumption). The output from this stage 
includes key correlation metrics and the identification of significant measures influencing fuel consumption. Parallel to 
the baseline modeling, advanced Machine Learning Modeling techniques are applied. These techniques are designed 
to capture more complex, non-linear relationships between the driving behavior features and fuel consumption. The 
output from this stage highlights the importance of various features, providing deeper insights into the factors that 
most significantly impact fuel efficiency. The framework concludes with an Error and Efficiency Comparison between the 
baseline linear regression model and the machine learning models. This comparison is crucial for determining the best 
predictive method, balancing accuracy and computational efficiency. Finally, the best prediction method is selected, and 
the framework generates practical insights. These insights correlate specific driving behaviors with fuel consumption 
patterns, offering actionable recommendations for drivers to optimize their driving habits and reduce fuel usage, which 
could be used as feedback for the feature engineering step.

Using driving behavior to predict fuel consumption is crucial because it directly influences the efficiency of vehicle 
operation. Factors such as acceleration, deceleration, and speed variability play significant roles in determining how 
much fuel a vehicle consumes. By understanding and modeling these behaviors, predictions can become more accurate 
and tailored to individual driving patterns. The advantages of this framework include its comprehensive data collection 
from diverse sources, detailed microscopic fuel consumption modeling, and the application of both traditional statisti-
cal methods and advanced machine learning techniques. This holistic approach ensures robust, precise predictions 
and offers actionable insights for drivers to improve their habits, leading to enhanced fuel efficiency, cost savings, and 
reduced environmental impact.

3.2  Dataset

The dataset includes about 5,408 drivers and was collected and reported in Germany. The dataset was collected in a 
mixed traffic environment and urban settings that involves cars, trucks, and bus users, as well as pedestrians and cyclists, 
at four intersections in 10 h of measurement and is called inD data (intersection Drone dataset) [24]. The data covers, 
for instance, the recording locations, times, and lengths along with the type of road user, the length of the track, or the 
average speed of each vehicle. The extracted trajectories in inD dataset include the x and y coordinations of the road user, 
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width of the vehicle, length of the vehicle, the velocity in the x and y directions, the acceleration in x and y directions, 
the velocity of a road user as it moves in a forward direction (i.e., longitudinal), speed of a lateral movement of a vehicle 
as it transitions through a turn or travels along a curved path, the component of the vector acceleration of a point in 
the vehicle in the x direction, the acceleration coming when car is rotating around the corner center, and the distance 
between a vehicle and the vehicle in front of it (i.e., heading).

3.3  Driver behavior classification model

We adopted a framework to classify the driving behavior. This was previously developed and tested in several studies 
[25–28]. In this research, we use the same main components of the framework. The first step is to extract features from 
the trajectory data of each driver using volatility measures, which have been used in the literature [25, 29]. This is to iden-
tify the behavior of drivers as a significant safety parameter. Higher volatility measures were also observed to indicate a 
greater likelihood of the driver being unstable and risky, suggesting increased aggressiveness [29, 30]. We used ten differ-
ent volatility measures ( VMi ), as shown in Table 1. These measures provide insights into the typical driving behaviors and 
their variabilities, which are crucial for developing predictive models of fuel consumption. Through the analysis of these 
metrics, the framework can link particular driving behaviors with fuel consumption, enabling more precise predictions 
and practical strategies to enhance fuel efficiency. Second, we use these extracted features as inputs for an unsupervised 
machine-learning algorithm to cluster the behavior of each driver into normal, conservative, and aggressive. Conservative 
drivers are drivers who typically drive at a lower speed than the average speed of other vehicles. They exhibit a higher 
possibility of making slower and more cautious lane-changing maneuvers. Normal drivers are drivers who generally 
adhere to speed limits and follow typical driving patterns. When required to change lanes, they do so smoothly without 
abrupt acceleration or deceleration, ensuring the maneuver is completed safely without disrupting the flow of traffic. 
Aggressive drivers typically exceed average speed limits and engage in risky maneuvers like overtaking and abrupt lane 

Table 1  Volatility measures (where V  : speed, Dlong : longitudinal deceleration, Along : longitudinal acceleration, and ADlong ∶ longitudinal decel-
eration or acceleration)
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Description Equation
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∑
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Quantile coefficient of variation of normalised speed 100 ×
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1
 and Q

3
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the sample 25th and 75th percen-
tiles.

VM
9

Quantile coefficient of variation of longitudinal acceleration
100 ×

QAlong3
−QAlong1

QAlong3
+QAlong1

VM
10

Quantile coefficient of variation of longitudinal deceleration
100 ×

QDlong3
−QDlong1

QDlong3
+QDlong1
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changes. They often choose to accelerate rather than slow down or stop, favoring speed over safety. In this study, we will 
use K-means algorithm, which was used successfully in previous studies [25–28].

3.4  Fuel consumption model

We used VT-CPFM as a microscopic fuel consumption model that depends on instantaneous vehicle power [31]. This 
model was designed to eliminate the necessity of calibrating parameters through field tests or simulators and to prevent 
the occurrence of the bang-bang control effect. It can avoid the bang-bang control as it has a second-degree polyno-
mial relationship with vehicle-specific power (VSP). Furthermore, the model can be applied to publicly available data, 
which makes it feasible to be used in any geographical location. This acknowledges the inherent non-linearity in the 
relationship between acceleration and speed, as highlighted in previous works [22, 23]. The model was also tested for 
different vehicle types, including light- and heavy-duty vehicles and buses [32, 33]. More details on the model and its 
implementation can be found in Rakha et al. [31].

First, power can be calculated using the following Eq. (1):

where P
(
ti
)
 = power at time step ti (kW), m = vehicle mass (kg), a

(
ti
)
 = vehicle acceleration at time step ti (m/s2), v

(
ti
)
 = 

vehicle speed at time step ti (km/h), � d = parameter of driveline efficiency, and R
(
ti
)
 = force of resistance at time step ti (N).

R
(
ti
)
 can be computed using the following Eq. (2):

 where � = air density (1.2256 kg/m3 at sea level and 15 °C), CD = coefficient of vehicle drag (unitless), Ch = factor to correct 
for elevation, Af  = area of vehicle frontal  (m2), G

(
ti
)
 = grade of roadway at time step ti , and cr , c1 , and c

2
 = parameters for 

rolling resistance (unitless). The drag coefficient values used for the energy consumption estimation vary depending on 
vehicle type and aerodynamic properties. For this study, the drag coefficient values were calibrated based on literature 
and specific data from the dataset. For vehicles in the dataset, the drag coefficient ranged from 0.30 to 0.35 for light-duty 
vehicles and from 0.58 to 0.78 for heavy-duty, which is typical in urban driving conditions [31, 32, 34, 35].

Fuel consumption ( FC ) is then computed applying Eq. (3). More details on the needed parameters and their values 
can be found in [31].

 where �
0
 , �

1,
 and �

2
 are constants to account for vehicle-specific calibration in the model.

3.5  Baseline prediction model

We employ Multivariate Linear Regression modeling to establish baseline correlations between driving behavior and fuel 
consumption. This statistical technique is an extension of simple linear regression and is used to model the relationship 
between two or more explanatory (independent; X  ) variables and a single response (dependent, Y  ) variable [36]. In this 
study, the independent variables include various volatility measures and driving behavior metrics, while the depend-
ent variable is fuel consumption. Multivariate Linear Regression helps in understanding the fundamental relationships 
between multiple features and their combined impact on fuel consumption. By fitting a linear equation to observed data, 
this model quantifies how changes in each of the independent variables influence the dependent variable, providing 
a comprehensive analysis of driving behavior’s effect on fuel consumption. The general form of the multivariate linear 
regression is shown in Eq. (4) [36]:
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 where Y  is the dependent variable (fuel consumption), �
0
 is the intercept term, �

1
, �

2
, … , � n are the coefficients cor-

responding to each independent variable, X
1
, X

2
, … , Xn are the independent variables (volatility measures and driving 

behavior metrics), and � is the error term. By applying this model, we can derive key correlation metrics, such as the coef-
ficients � , which indicate the strength and direction of the relationship between each independent and dependent vari-
able. Additionally, the model helps identify significant measures influencing fuel consumption, enabling us to pinpoint 
which aspects of driving behavior are most critical in determining fuel efficiency. The output from the multivariate linear 
regression model includes the coefficients, which indicate the impact of each independent variable on fuel consump-
tion; p-values, which assess the statistical significance of each coefficient; R-squared, which is a measure of how well 
the model explains the variability in the dependent variable, and Mean Squared Error (MSE), which is a measure of the 
average squared difference between the actual values and the values predicted by the model. It quantifies the model’s 
overall fit to the data; a lower MSE indicates a better fit [36].

This foundational analysis using multivariate linear regression provides a critical understanding of the interactions 
between driving behavior and fuel consumption, forming the basis for more advanced predictive modeling and insights 
into fuel-efficient driving strategies. While linear regression was used as a baseline model for its simplicity and interpret-
ability, we acknowledge that more advanced models, such as Machine Learning algorithms, better capture the dynamic 
and non-linear nature of driving behavior. We also used linear regression because we wanted to build on its results an 
informed machine learning algorithm.

3.6  Machine learning model

Parallel to the baseline modeling, we applied Random Forest to capture more complex, non-linear relationships between 
the driving behavior features and fuel consumption. Random Forest is a powerful machine learning algorithm commonly 
used for both regression and classification tasks [36]. It belongs to the ensemble learning methods, which combine 
multiple individual models to improve predictive performance. Random Forest consists of a collection of decision trees, 
where each tree is built using a subset of the data and a subset of the features. At each split in the decision tree, Ran-
dom Forest randomly selects a subset of features to consider, which helps in reducing correlation between trees and 
preventing overfitting. For regression tasks, the predictions of all the trees are averaged to obtain the final prediction. 
For classification tasks, a voting mechanism is used to determine the class label [36].

Random Forest is known for its robustness, scalability, and ability to handle high-dimensional datasets with many 
features [36–39]. It is also effective in capturing complex relationships between features and target variables, making it 
suitable for various predictive modeling tasks, including the analysis of fuel consumption patterns and the identifica-
tion of important driving behavior features. Random Forest has been applied in many civil engineering applications and 
has proved to be promising as predictive model [40–45]. The output from this stage is a real-time predictive model and 
highlights the importance of various features, providing deeper insights into the factors that most significantly impact 
fuel efficiency. It is evaluated using R-squared and MSE.

4  Analysis and results

4.1  Driver behavior results

Using the driver behavior classification model, drivers were categorized into Normal, Aggressive, and Conservative 
clusters based on speed and acceleration variability and other volatility measures, Table 2 shows the number of drivers 
in each cluster.

Table 2  Results of driver 
behavior classification model

Cluster Number 
of driv-
ers

Normal 2555
Aggressive 1133
Conservative 1720
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The Normal Cluster includes 2555 drivers, representing the most common driving style. These drivers maintain mod-
erate speed and acceleration volatility values, resulting in stable, predictable driving behavior. They have low variability 
in speed and acceleration, leading to consistent driving patterns that avoid abrupt changes. The Aggressive Cluster 
consists of 1133 drivers characterized by high volatility in speed and acceleration. Their driving style features frequent 
and substantial changes in speed, marked by rapid acceleration and braking. The Conservative Cluster includes 1720 
drivers who exhibit cautious driving behaviors. They have higher variability in speed and acceleration and prefer slower, 
more deliberate driving with smooth, gradual changes. These drivers tend to avoid high speeds and rapid maneuvers, 
optimizing fuel efficiency and enhancing safety by minimizing abrupt actions. The box plot in Fig. 2 illustrates the driving 
behaviors of the three driver clusters across a series of volatility measures (VM1 through VM10). Our analysis indicates that 
VM6 (Mean Absolute Deviation of Speed) and VM3 (Coefficient of Variation of Speed) had the most significant impact on 
fuel consumption. These measures capture variability in driving patterns, with higher deviations correlating to increased 
fuel usage, particularly in urban environments. These measures capture different aspects of driving volatility, including 
speed and acceleration variability.

4.2  Fuel consumption results

Using the VT-CPFM, we found the fuel consumption of each driver. The histogram and density plot in Fig. 3 offers valuable 
insights into the fuel consumption (FC) rate distribution among drivers, shedding light on how different driving behaviors 
influence fuel efficiency. Since the pattern is right-skewed, most drivers exhibit relatively low fuel consumption rates. 
The peak of the density plot is around an FC rate of 0.2, where the majority of drivers achieved moderate fuel efficiency.

The distribution highlights key driving behaviors: low FC rates (0.0 to 0.3) indicate fuel-efficient practices with 
steady speeds and minimal accelerations/decelerations. Moderate FC rates (0.3 to 0.6) suggest a mix of driving styles, 

Fig. 2  Volatility measure for 
the different drivers clustering

Fig. 3  Fuel consumption 
results
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occasionally less fuel-efficient. High FC rates (0.6 to 1.0) indicate aggressive driving with frequent accelerations and 
braking, prioritizing speed over fuel economy. We compared the resulted FC between different driving behavior. The 
box plot in Fig. 4 illustrates the FC across the three categories of driver behavior. Normal drivers exhibit the lowest and 
most consistent FC rates, with a median around 0.2 and an interquartile range (IQR) between 0.1 and 0.6. Conservative 
and aggressive drivers show a higher median FC rate of approximately 0.4 and a broader IQR from 0.1 to 0.9, reflecting a 
mix of driving behaviors. Results reveal that both conservative and aggressive driving behaviors lead to higher and more 
variable fuel consumption compared to normal driving. Normal drivers consistently maintain lower FC rates, indicating 
that smoother and more controlled driving behaviors are crucial for fuel efficiency. In contrast, the broader range and 
higher median FC rates for conservative and aggressive drivers highlight the inefficiencies and greater fuel demands 
associated with these driving styles. The higher mean fuel consumption for conservative drivers may be attributed to 
prolonged driving times at lower speeds, resulting in inefficiencies in fuel usage compared to more dynamic driving 
behaviors. Thus, promoting normal driving behaviors can significantly improve overall fuel economy and reduce vari-
ability in fuel consumption. The consistency in normal driving, characterized by adherence to speed limits and smooth 
lane changes, is the most fuel-efficient driving behavior. Despite their cautious driving, which includes slower speeds 
and more deliberate lane changes, the variability and occasional inefficiencies contribute to a higher and more variable 
FC rate in conservative driving. However, the aggressive driving style, involving high speeds and frequent aggressive 
maneuvers, leads to significantly higher fuel consumption and greater variability in FC rates.

4.3  Baseline prediction model

The baseline FC prediction model using Linear regression showed a reasonable fit, with an R-squared value of 0.511. This 
indicates that the model can explain approximately 51.1% of the variance in fuel consumption. The results are presented 
in Table 3. The mean squared error (MSE) of 0.031 reflects good prediction accuracy for the dataset. The variables of VM1 
(Standard deviation of speed), VM2 (Standard deviation of longitudinal deceleration or acceleration), VM5 (Coefficient 
of variation of longitudinal deceleration), and VM9 (Quantile coefficient of variation of longitudinal acceleration) have 
negative coefficients of − 0.136, − 0.355, − 1.242, and − 0.423 respectively. This implies that higher values of these vari-
ables are associated with reduced fuel consumption. On the other hand, VM3, VM4, VM6, VM7, VM8, and VM10 positively 
impact fuel consumption with various coefficients indicating a substantial increase in FC for higher values of these vari-
ables. The coefficient of the normal cluster is − 0.001, with a p-value of 0.904, indicating an insignificant impact on fuel 
consumption. This suggests that normal driving behavior does not notably alter the FC from the baseline. However, the 
conservative cluster exhibits a small but significant negative coefficient of 0.021, indicating an increase in fuel consump-
tion for conservative driving behaviors.

4.4  Machine learning prediction model

The machine learning prediction using Radom Forest model for FC has achieved outstanding performance, as indi-
cated by an R-squared value of 0.956 and a mean squared error (MSE) of 0.003. These metrics demonstrate the model’s 
strong predictive capabilities, with the R-squared value showing that the model accounts for 95.6% of the variance in 
fuel consumption. This high level of explained variance suggests that the model is highly accurate in predicting fuel 

Fig. 4  Scaled fuel consump-
tion rates
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consumption, with minimal errors, as reflected in the low MSE. The feature importance analysis, depicted in the bar chart 
in Fig. 5, highlights the significant contributions of various numerical features to the model’s accuracy. VM6 emerges as 
the most influential feature, causing the greatest decrease in model accuracy when omitted, suggesting its critical role 
in predicting fuel consumption. Other features, such as VM3, VM7, and VM8, also show considerable impacts, though to 
a lesser extent than VM6. These features collectively drive the model’s predictive strength, while VM1, VM2, VM4, VM5, 
VM9, and VM10 have relatively lower influence on model performance. When we compare linear regression to the random 
forest technique, we observe some similarities, such as the high effect of the VM3, VM4, VM6, VM7, and VM8 variables.

4.5  Evaluation and comparison

Predictive modeling, like linear regression and Random Forest, provides insights into performance. Linear regression 
yields an R-squared of 0.511 and an MSE of 0.031, indicating moderate predictive accuracy. In contrast, Random Forest, an 
ensemble technique, achieves a higher R-squared of 0.956 and a lower MSE of 0.003, demonstrating superior predictive 
precision by capturing 95.6% of the variance in the dependent variable. Figure 6 shows that Random Forest outperforms 
Linear Regression in R-squared and MSE metrics. Random Forest predictions align closer to the ideal line  =  compared 
to Linear Regression, indicating superior accuracy in capturing dataset patterns. The skew in Fig. 6 is due to the driving 
behavior distribution in the dataset. A significant proportion of drivers exhibited aggressive and conservative behavior, 
which led to higher fuel consumption predictions. While both models generally fit the data well, Random Forest excels in 
predictive precision. Choosing between linear regression and Random Forest depends on project requirements. Random 
Forest’s strong predictive capabilities are ideal for tasks demanding high accuracy. Conversely, linear regression remains 
suitable for scenarios valuing interpretability and simplicity over absolute predictive performance.

Table 3  Prediction model 
coefficients

Variable Coefficient P-value

Constant 0.218 < 0.05
VM1 − 0.136 < 0.05
VM2 − 0.355 < 0.05
VM3 2.034 < 0.05
VM4 0.763 < 0.05
VM5 − 1.242 < 0.05
VM6 1.101 < 0.05
VM7 0.542 < 0.05
VM8 2.284 < 0.05
VM9 − 0.423 < 0.05
VM10 0.272 < 0.05
Normal Cluster − 0.001 0.904
Conservative Cluster 0.021 < 0.05

Fig. 5  Random forest model 
results
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The choice between linear regression and Random Forest depends largely on the specific requirements of the project 
at hand and policymakers. Random Forest’s superior predictive capabilities make it ideal for tasks that demand high 
accuracy and precision. This model is particularly well-suited for complex datasets where capturing non-linear relation-
ships and interactions between variables is crucial. However, linear regression remains valuable in scenarios where 
interpretability and simplicity are prioritized over absolute predictive performance. Linear regression models are easier 
to understand and explain, making them useful for applications where transparency and straightforward analysis of 
the relationships between variables are important. For example, for Advanced Driver Assistance Systems (ADAS) and 
real-time fuel efficiency optimization, Random Forest, due to its ability to provide highly accurate predictions, crucial 
for real-time decision-making and precise fuel consumption monitoring. On the other hand, for preliminary analysis, 
network evaluation, or situations where stakeholders require clear and interpretable results, Linear regression can be 
chosen for its straightforward nature and ease of communication.

Recent studies have explored various eco-driving strategies [46], providing a strong foundation for the integration 
of real-time fuel consumption prediction models, such as ours, into ADAS. For instance, eco-driving for Fuel Cell Hybrid 
Electric Vehicles (FCHEVs) through signalized intersections has been approached as a coupled problem of speed plan-
ning and powertrain control under complex environmental constraints [47]. The insights gained from our model can be 
directly applied in ADAS to promote energy-efficient driving. ADAS systems rely on real-time monitoring and prediction 
of driver behavior, providing instant feedback to guide more efficient driving styles. By incorporating predictions from 
our Random Forest model, which accurately captures driving behavior’s impact on fuel consumption, ADAS can help 
drivers adopt ecological driving practices. These include smoother acceleration, maintaining optimal speeds, and reduc-
ing unnecessary idling, all of which contribute to lower fuel consumption. Several recent studies, including the works 
of Chada et al. [48], Shi et al. [49], and Bakiballah et al. [50], have demonstrated that driver-assistance technologies can 
significantly reduce fuel consumption by promoting energy-efficient driving behaviors in real-time.

5  Conclusion

Driving behavior plays a crucial role in determining vehicle fuel consumption. Investigating the link between driving 
behavior and fuel usage can help lower transportation energy costs and advance the technology for behavior assessment 
in Advanced Driver Assistance Systems (ADAS). Understanding this relationship is essential for creating more environ-
mentally friendly driving assistance systems and enhancing vehicle fuel efficiency. However, modeling driving behavior 
under dynamic conditions is complex, especially in mixed traffic environments and urban settings, where varying driver 
behaviors interact with each other and with vulnerable road users. This complexity makes quantitatively analyzing the 
connection between driving behavior and fuel consumption challenging.

The framework we propose serves both as a theoretical model and a practical tool, providing a comprehensive, multi-
step process to correlate driving behavior with fuel consumption. This approach integrates traditional statistical methods 
with advanced machine learning techniques to extract actionable insights. For validation, we utilized naturalistic data 

Fig. 6  Comparison between 
the linear regression and ran-
dom forest performance
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comprising approximately 5,408 distinct road users navigating mixed traffic environments and urban settings in Germany. 
We employed a microscopic fuel consumption model for framework calibration and an unsupervised clustering algorithm 
to classify driver behavior. The framework begins with the development of a baseline linear regression model, which 
produces an R-squared value of 0.511 and an MSE of 0.031, indicating moderate predictive accuracy. We transitioned 
to using Random Forest, a more sophisticated model that achieved a higher R-squared value of 0.956 and a lower MSE 
of 0.003. Our analysis also reveals that both conservative and aggressive driving behaviors result in significantly higher 
and more variable fuel consumption compared to normal driving. Normal drivers consistently maintain lower FC rates, 
indicating that smoother and more controlled driving behaviors are crucial for fuel efficiency. In contrast, the broader 
range and higher median FC rates for conservative and aggressive drivers highlight the inefficiencies and greater fuel 
demands associated with these driving styles. Thus, promoting normal driving behaviors can significantly improve overall 
fuel economy and reduce variability in fuel consumption.

While both linear regression and Random Forest models fit the data well, Random Forest excels in predictive precision 
and is better suited for applications requiring high accuracy. Linear regression, on the other hand, is more appropriate 
for scenarios where simplicity and interpretability are more important than the absolute level of predictive performance. 
These insights help inform the choice of modeling approach based on the specific needs and goals of the project. Our 
findings indicate that the proposed method effectively uncovers the relationship between driving behavior and fuel 
consumption at both macro and micro levels. This approach enables comprehensive fuel consumption feature prediction, 
which can be applied in advanced driving assistance systems. Integrating physics-informed models, such as those for the 
vehicle powertrain and driver behavior, can enhance the generalization of machine learning approaches by embedding 
domain knowledge that cannot be easily captured from data alone. This hybrid modeling can offer better predictive 
accuracy, particularly when applied to diverse driving conditions and vehicle types. While our methodology reduces the 
need for storing detailed instantaneous data, the calculation of volatility measures still requires memory for storing time-
series information, albeit in a compressed form. This method deepens the understanding of driver behavior and supports 
the development of real-time, fuel-efficient driving strategies, contributing to more sustainable transportation solutions.

Future research can include incorporating other fuel consumption models including incorporating for example a 
model for the vehicle powertrain and the driver, which could help towards the generalization of the machine learning 
approach. We will also test the use of cluster-agnostic algorithms (e.g. DBSCAN) for driving behavior modeling, which 
could increase the transferability of the model as well.
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