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Abstract: Understanding the cultural and environmental influences on roadway crash pat-
terns is essential for designing effective prevention strategies. This study applies advanced
AI techniques, including Bidirectional Encoder Representations from Transformers (BERT)
and Shapley Additive Explanations (SHAP), to examine traffic crash patterns in the United
States and Jordan. By analyzing tabular data and crash narratives, the research reveals sig-
nificant regional differences: in the USA, vehicle overturns and roadway conditions, such
as guardrails, are major factors in fatal crashes, whereas in Jordan, technical defects and
driver behavior play a more critical role. SHAP analysis identifies “driver” and “damage”
as pivotal terms across both regions, while country-specific terms such as “overturn” in the
USA and “technical” in Jordan highlight regional disparities. Using BERT/Bi-LSTM mod-
els, the study achieves up to 99.5% accuracy in crash severity prediction, demonstrating the
robustness of AI in traffic safety analysis. These findings underscore the value of contextu-
alized AI-driven insights in developing targeted, region-specific road safety policies and
interventions. By bridging the gap between developed and developing country contexts,
the study contributes to the global effort to reduce road traffic injuries and fatalities.

Keywords: BERT; SHAP; cross-cultural; LSTM; traffic safety; machine learning

1. Introduction
Road crash injuries are projected to become the fifth leading cause of mortality globally

by 2030, highlighting the pressing need for effective prevention strategies in transportation
safety management [1]. Accurate forecasting of traffic crashes is a critical component of
these strategies, as it enables the identification of potential risks and the development of
targeted interventions [2,3]. Crash pattern analysis, which involves examining the factors
contributing to road crashes, plays a vital role in identifying these risks. However, it is
essential to recognize that crash patterns and contributing factors can vary significantly
across cultural and geographical contexts. Traditional crash analysis methods often rely
on statistical models that struggle to capture the nuanced and non-linear relationships
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present in crash narratives. Additionally, there is a lack of cross-cultural comparisons that
leverage advanced AI techniques to address these gaps. Studying crash patterns in diverse
regions provides valuable insights into how cultural, social, and environmental factors
influence road safety, enabling the formulation of more tailored and effective prevention
measures [4].

This study focuses on crash patterns in two culturally and infrastructurally distinct
regions, the United States and Jordan, to explore how varying socio-economic, legal, and
environmental factors shape traffic safety outcomes. The United States, as a developed
nation with extensive road networks and advanced traffic safety measures, presents a
markedly different context compared to Jordan, a developing country facing challenges
such as older vehicle fleets, variable enforcement of traffic laws, and unique cultural driving
behaviors. By analyzing these contrasting settings, the study aims to uncover shared and
region-specific factors influencing road safety, enhancing understanding of diverse traffic
safety challenges.

By leveraging state-of-the-art natural language processing (NLP) techniques, this
research performs a detailed analysis of crash narratives from the two regions, focusing
on fatal and non-fatal crashes. Bidirectional Encoder Representations from Transformers
(BERT) are employed for topic modeling and classification tasks, while Shapley Additive
Explanations (SHAP) enhance model interpretability. This approach fills a critical research
gap by providing a detailed, AI-driven comparative analysis of crash patterns across
developed and developing countries, enabling a more comprehensive understanding of
global traffic safety challenges. By addressing gaps in existing research, this study uncovers
novel insights into cultural, infrastructural, and legal factors influencing crash outcomes
and develops actionable recommendations for improving road safety in both developed
and developing countries. The objectives of this study are threefold:

• To analyze crash patterns in the USA and Jordan, identifying cultural, infrastructural,
and legal factors that contribute to crash outcomes.

• To apply BERT-based models and SHAP to enhance predictive accuracy and model
transparency, uncovering critical risk factors.

• To provide region-specific policy recommendations for road safety, including infras-
tructure improvements, vehicle safety standards, and emergency response strategies.

By integrating AI-driven methods and focusing on two distinct cultural contexts, this
research aims to bridge methodological gaps and contribute to global road safety efforts.

2. Literature Review
Traditional data-driven regression models have been widely used to model crash sever-

ity, offering valuable mathematical interpretations and insights into individual predictor
variables. However, these models are limited by their reliance on underlying assumptions,
such as linear link functions and error distribution terms, which, if violated, can lead
to biased estimates and reduced predictive accuracy [5,6]. This limitation is particularly
critical when modeling complex crash dynamics, where interactions between factors are
non-linear and highly context-dependent. Advanced data collection techniques, such as
mobile LiDAR systems and point cloud applications, have significantly improved traffic
safety analysis by capturing detailed spatial and environmental data [7]. Despite their
contributions, these technologies often fall short of providing contextual insights, such as
driver behavior and cultural factors that significantly influence crash dynamics.

In contrast, text-based Natural Language Processing (NLP) methods like BERT enable
the extraction of nuanced crash factors from narrative reports, offering insights into the cul-
tural and behavioral elements surrounding crash incidents. A recent study highlighted the
potential of deep NLP approaches, including ensemble learning with pre-trained transform-
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ers, for improving crash severity classification, demonstrating their capability in harnessing
unconventional data sources for traffic safety analysis [8]. Integrating narrative analysis
with spatial data facilitates a holistic understanding of road safety factors, addressing gaps
left by traditional approaches.

Various methodologies, including association rule mining, spatial statistical analysis,
kernel density estimation (KDE), and sequence analysis, to investigate crash patterns and
understand crash patterns [1–5]. These methods have proven effective in identifying spatial
and temporal crash trends, crash-prone areas, and crash sequences, forming a foundation
for targeted safety measures [1–5]. Machine learning-based models, including support
vector machines, decision trees, and deep learning, have emerged as promising tools in
road safety research, particularly in addressing the limitations of traditional statistical
approaches [6,9–12]. These models leverage real-time traffic data, such as traffic flow,
speed, and volume, to identify crash-related trends and circumstances [13–17]. Resampling
approaches have been recommended to enhance the predictive performance of machine
learning algorithms in handling imbalanced crash datasets [18,19], thereby improving the
reliability of predictions. A recent study by Jaradat et al. (2024) introduced a multitask
learning framework that utilizes social media data, specifically Twitter, to analyze and
detect real-time crash patterns, enabling faster and more targeted traffic management
responses in dynamic conditions [20]. This innovation demonstrates the potential of AI in
harnessing unconventional data sources for road safety improvements.

NLP techniques, such as BERT, facilitate the extraction of nuanced crash factors,
allowing for a richer understanding of the elements influencing road safety in diverse
cultural contexts. The flexibility and scalability of BERT in processing unstructured text
have expanded the horizons of crash data analysis, enabling researchers to explore complex
relationships within narrative data [21].

Numerous studies have investigated the factors affecting road crashes. Researchers
investigated the effectiveness of artificial neural network models in simulating motorway
crashes and established that the core reason for the occurrence of crashes is the average
daily traffic volume and average vehicle speed [22]. Text-mining analyses have been em-
ployed to classify road traffic injury collision features, demonstrating their utility in road
injury prevention [23]. Giummarra et al. (2022) performed text mining to classify crash
circumstances by road user group and found that it can be used to uncover the features of
road traffic injury [23]. These studies emphasize the value of text analysis in understanding
crash dynamics across various contexts. Wang et al. (2017) analyzed the severity of traffic
crash injuries at intersections and different sections of roads and showed the importance of
understanding the differences in collision injury severity and their contributing factors [19].
This is complemented by studies like Darus et al. (2022), which highlight road charac-
teristics and traffic conditions as critical contributors to collision severity and emphasize
the necessity of incorporating multiple parameters into injury classification models [24].
Donnelly-Swift and Kelly (2015) used generalized linear regression models to identify
variables related to fatal or serious injuries in single-vehicle road traffic crashes. Their study
was important because it provided insight into the multidimensional aspects that result in
injury severity [25].

Text mining methods, including thematic analysis, content analysis, and NLP, have
been used to mine and analyze crash narrative textual data [26–28]. These methods can
be employed to identify the contributing components that characterize crash patterns and
explore the causation of crashes within unstructured narrative reports [27,29]. Association
rule mining has played an instrumental role in identifying parameters associated with
crash types, such as senior-driver crossing crashes [28]. Combining real-time traffic data
with insights gleaned from crash narratives yields a more complete understanding of crash
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risk and causation. This holistic mechanism establishes the foundation for developing
forecasting models for crashes in real-time, which are reliable, effective, and fundamental
for proactive traffic management and safety enhancement [6,30].

Topic modeling is an unsupervised machine learning technique aimed at identifying
abstract “topics” by clustering groups of words within a set of documents. The evolution
of topic modeling techniques has significantly advanced the field of NLP, beginning with
the introduction of Latent Semantic Analysis (LSA) and culminating in the development of
Bidirectional Encoder Representations from Transformers (BERT) [31]. LSA, introduced by
Deerwester et al. [32], marked the inception of extracting latent topics from text by decom-
posing term-document matrices, thereby uncovering the underlying semantic structure of
the corpus. Following LSA, Blei et al. [33] introduced Latent Dirichlet Allocation (LDA).
This generative probabilistic model improved upon LSA by allowing documents to be
represented as mixtures of multiple topics, thus providing a more flexible and detailed
method for topic discovery. Despite their effectiveness, both LSA and LDA are limited by
their reliance on bag-of-words representations, which ignore the order of words and the
contextual nuances of language. The advent of deep learning brought about significant ad-
vancements in topic modeling, with the introduction of models that could understand the
context and semantics of words in text. BERT [34] represents a paradigm shift, leveraging
a transformer architecture to generate deep contextualized word embeddings. Although
LDA and BERT are established techniques in natural language processing, the present study
distinguishes itself by applying these methods to a novel cross-cultural context in traffic
safety analysis. The integration of BERT for topic modeling and text classification with
the addition of SHAP for model interpretability offers a fresh perspective that enhances
the understanding of crash patterns in different cultural settings. This approach applies
advanced NLP techniques to a new domain and introduces a comprehensive methodology
that can be adapted for broader applications in road safety research. This work, therefore,
contributes meaningfully to the field by bridging the gap between methodological rigor
and practical application in a critical public safety domain.

Traffic crashes have been studied from a cross-cultural perspective in numerous
research. These studies have assessed risks in road behavior, the incidence of aggressive
driving, and driving behaviors across various nations and cultures [35–38]. The results
reveal that driver anger and road safety behaviors are significantly influenced by cultural
factors, underscoring the interplay between societal norms and driving practices [39–41].

Given the global nature of road safety challenges, there is a critical need for research
that transcends national boundaries and incorporates cross-cultural comparisons. Existing
studies have left significant gaps in understanding how diverse socio-economic, infras-
tructural, and cultural contexts influence crash patterns and outcomes. Moreover, while
advancements in analytical methods, such as Natural Language Processing (NLP) and
machine learning, have greatly enhanced crash analysis, their application to cross-cultural
comparisons remains limited. Despite progress in leveraging advanced models, many stud-
ies predominantly focus on single-country analyses or specific datasets, failing to account
for the complex interplay of cultural, legal, and environmental contexts in crash causation.

This gap is particularly evident in the comparison of crash narratives between coun-
tries with vastly different socio-economic and cultural contexts. For instance, the United
States, a highly motorized and developed nation, features extensive roadway networks
and advanced traffic safety measures. In contrast, a developing nation, Jordan presents
challenges such as varied traffic law enforcement and distinct driving behaviors. This study
addresses these gaps by integrating BERT-based topic modeling and text classification with
SHAP interpretability to analyze crash data from the USA and Jordan. Unlike prior studies
focusing solely on infrastructural or behavioral factors, this research incorporates cultural,
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legal, and environmental elements to inform region-specific road safety interventions. The
contributions of this study are as follows:

• Evaluate state-of-the-art AI models, such as BERT, for crash severity classification,
thereby enhancing predictive accuracy.

• Leverage SHAP for AI model transparency, offering actionable insights into crash
severity factors for informed policymaking.

• Analyze crash narratives to uncover nuanced safety risks and support comprehensive
safety measures.

• Provide cross-cultural safety insights, facilitating the adaptation of successful inter-
ventions globally.

• Identify unique and shared crash severity factors in the USA and Jordan, guiding
targeted safety interventions.

• Safety countermeasures are recommended to prevent crashes and reduce their severity
in both countries.

3. Methodology
3.1. Proposed Framework

This study utilizes state-of-the-art AI techniques, including BERT and BERT/Bi-LSTM,
to analyze factors contributing to fatal and non-fatal crashes using datasets from the
USA and Jordan. The proposed research framework, illustrated in Figure 1, involves
multiple stages:

1. Data Collection from USA and Jordan crash datasets, encompassing both tabular and
narrative data.

2. Preprocessing to standardize and prepare the data for analysis.
3. Exploratory and Textual Visualizations, including Exploratory Data Analysis (EDA),

Topic Modeling, unigrams, bigrams, similarity matrices, and hierarchical structuring.
4. Text Classification using BERT/Bi-LSTM with SHAP interpretability.
5. Generating actionable insights and policy recommendations based on the analysis.

This comprehensive framework thoroughly compares crash patterns and highlights
region-specific factors influencing road safety.

3.2. Dataset

This study utilizes crash data from two distinct regions: Jordan and the USA. Each
dataset contains both tabular and narrative crash data. The tabular data includes core vari-
ables such as Severity, Crash Type, Light Condition, and Number of Vehicles. Additional
contextual features like Weekday, Month, Season, Car Type, Accident Time, and Driver
Age were extracted for deeper analysis.

3.2.1. Jordan Dataset

The Jordan dataset consists of 6359 traffic narrative reports from five major freeways:
Airport Roads, Desert Highways, Jordan Highway, Route 30, and Route 35. These reports,
obtained from the Jordan Traffic Institute (JTI), include both tabular and narrative data.
Crashes were categorized into four levels: Fatal, Severe Injury, Moderate Injury, and
Minor Injury.

3.2.2. USA Dataset

The USA dataset was obtained from the Missouri State Highway Patrol, covering
reports from 2019–2020. Crashes were classified into three categories: Fatal, Property
Damage, and Personal Injury. An equal sample size of 6359 crashes was selected from the
USA dataset to ensure comparability, maintaining balance across categories.
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3.2.3. Narrative Data and NLP Analysis

Crash narratives provided a rich source of contextual information. Given structural
differences between datasets, these narratives became the primary focus for comparison.
Using BERT and BERT/Bi-LSTM, the study analyzed key factors contributing to crash
severity. This approach enhanced understanding of underlying crash dynamics in Jordan
and the USA, as illustrated by sample narratives in Tables 1 and 2.
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Table 1. USA dataset of fatal and non-fatal crash samples.

Crash Narrative Severity

VEHICLE 1 WAS WESTBOUND ON HIGHWAY D, TRAVELING
TOO FAST FOR CONDITIONS. DRIVER 1 FAILED TO NEGOTIATE

A CURVE TO THE LEFT. VEHICLE 1 BEGAN TO SLIDE AND
TRAVELED OFF THE LEFT SIDE OF THE ROADWAY, THEN

OVERTURNED.

Non-fatal

ATAL CRASH NEXT OF KIN NOTIFIED TROOP A FATAL CRASH
#24 AND FATALITY #27 FOR 2019. THE CRASH OCCURRED AS

DRIVER 1 FAILED TO NEGOTIATE A CURVE; VEHICLE 1
TRAVELED OFF THE ROADWAY AND OVERTURNED. DRIVER 1
WAS EJECTED AND STRUCK A TREE. VEHICLE 1 AND DRIVER 1

CAME TO REST IN A DITCH OFF THE SOUTH SIDE OF US-50.
DRIVER 1 PRONOUNCED ON SCENE AT 1346 BY DEPUTY

CORONER TODD ASBURY. ASSISTED BY CPL R. W.
SHAUL/528/AND PETTIS COUNTY SHERIFF’S DEPARTMENT.

Fatal

Table 2. Jordan dataset of fatal and non-fatal crash samples.

Crash Narrative Severity

As a result of a sudden leaking change violation by the driver of
vehicle two, he collided with vehicle number one in N, and the crash

resulted in material damage estimated by a specialized technician
Non-fatal

While vehicle no. 1 was traveling from Ma’an Governorate to Aqaba
Governorate, and in the al-humaima area, we were charged with a

violation of failure to take necessary traffic safety precautions
Fatal

3.3. Data Preprocessing
3.3.1. Standardization for Cross-Cultural Analysis

To enable meaningful comparisons between the Jordan and USA crash datasets, crash
severity levels were standardized into two categories: Fatal and Non-fatal. Shared variables,
including Severity, Crash Type, Light Condition, and Number of Vehicles, were retained for
core analysis. Additional contextual features, such as Weekday, Month, Season, Car Type,
Accident Time, and Driver Age, were extracted for deeper investigation. Unique variables
were excluded to maintain cross-dataset comparability.

3.3.2. Text Preprocessing

A systematic preprocessing approach was implemented to ensure consistency and
data quality. Key steps included:

Text Normalization: Text was converted to lowercase, and non-textual charac-
ters, URLs, and commonly repeated irrelevant terms (e.g., “VEHICLE”, “KIN”, “PRO-
NOUNCED”, “FATALITY”) were removed to reduce noise while preserving critical crash-
related terms, such as “death”, “killing”, and “notified”.

Minimal Preprocessing: Techniques such as tokenization, stop-word removal, and
stemming were deliberately avoided to retain important contextual information, particu-
larly region-specific nuances such as rollover dynamics in the USA or vehicle-related terms
in Jordan.

3.3.3. Advanced Encoding

Advanced transformer models like BERT were employed to process crash narratives
effectively. Raw text inputs were encoded using DistilBERT, with each narrative truncated
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or padded to a maximum length of 200 tokens to standardize input dimensions. This ap-
proach aligns with modern research emphasizing minimal preprocessing for deep learning
models, ensuring that nuanced meanings and contextual details are preserved.

Following preprocessing, exploratory data analysis (EDA) was conducted to uncover
initial insights and patterns. This included descriptive statistics and visualization tech-
niques to highlight prevalent terms and relationships in the data. The standardized and
refined datasets provided a robust foundation for downstream analyses, including the
application of BERT/Bi-LSTM models and SHAP-based interpretations to uncover key
crash factors.

3.4. Exploratory Data Analysis (EDA)

Following preprocessing, we conducted Exploratory Data Analysis (EDA) to uncover
patterns, trends, and potential outliers in the data. Descriptive statistics and graphical rep-
resentations, such as unigram and bigram frequency visualizations, highlighted prevalent
terms and relationships, providing valuable insights into crash dynamics across the two
datasets. However, we acknowledge that aligning crash severity categories during data
standardization may introduce potential biases, as cultural and contextual differences in re-
porting practices could affect the comparability of datasets. For example, terms describing
technical defects in Jordan may differ in granularity from terminology used in the USA,
necessitating careful interpretation of results.

This robustly refined dataset, which retained its contextual integrity, provided a solid
foundation for subsequent analysis, as summarized in Tables 3 and 4.

Table 3. USA data descriptive statistics.

Feature Original/Extracted Value # %

Severity Original
Non-fatal 5883 92.515

Fatal 476 7.485

Crash Type Original

Fixed Object 2654 41.736

Overturn 2553 40.148

Motor Vehicle in Transport 699 10.992

Animal 185 2.909

Other Object 97 1.525

Immersion 35 0.550

Other Non-Collision 34 0.535

Pedestrian 31 0.487

Working Motor Vehicle 24 0.377

Pedalcycle 17 0.267

Parked Motor Vehicle 10 0.157

Fell/Jumped from MV 8 0.126

Jackknife 6 0.094

Railway Vehicle 3 0.047

Animal Drawn
Veh/Animal Ridden Trans 2 0.031

Fire/Explosion 1 0.016
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Table 3. Cont.

Feature Original/Extracted Value # %

Light Condition Original

Dark-Unlighted 4286 67.401

Daylight 1822 28.652

Dark-Lighted 241 3.790

Unknown 7 0.110

Other 2 0.031

Dark-Unknown Lighting 1 0.016

No of Vehicles Original

1 3488 54.851

2 2452 38.560

3 316 4.969

4 67 1.054

5 27 0.425

6 7 0.110

11 1 0.016

8 1 0.016

Weekday Extracted

Monday 995 15.647

Tuesday 960 15.097

Wednesday 958 15.065

Thursday 901 14.169

Friday 880 13.839

Saturday 835 13.131

Sunday 830 13.052

Month Extracted

4 698 10.977

5 692 10.882

6 682 10.725

7 655 10.300

8 649 10.206

9 640 10.064

10 611 9.608

11 506 7.957

12 418 6.573

1 349 5.488

2 339 5.331

3 120 1.887

Season Extracted

Autumn 2039 32.065

Winter 1948 30.634

Spring 1263 19.862

Summer 1109 17.440
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Table 3. Cont.

Feature Original/Extracted Value # %

Car Type Extracted

Motor Vehicle 3292 51.769

Truck 2085 32.788

Commercial Vehicle 416 6.542

Motorcycle 413 6.495

Emergency Vehicle 113 1.777

Electric vehicle 39 0.613

School Bus 1 0.016

Late_night 1595 25.083

Acc Time Extracted

Morning 1492 23.463

Midday 925 14.546

Afternoon 888 13.964

Evening 801 12.596

Night 446 7.014

Early_morning 212 3.334

Driver Age Extracted

<25 3297 51.848

25–54 1298 20.412

>55 985 15.490

>64 779 12.250

Table 4. Jordan data descriptive statistics.

Variable Original/Extracted Value # %

Severity Original
Fatal 123 1.934

Non-fatal 6236 98.066

Crash Type Original

Deterioration 308 4.844

Collision 5928 93.222

Run over 123 1.934

Light Conditions Original

day 4421 69.524

Night and insufficient
lighting 525 8.256

Night and road with
adequate lighting 1050 16.512

sunset 197 3.098

sunrise 35 0.550

darkness 131 2.060



Electronics 2025, 14, 272 11 of 35

Table 4. Cont.

Variable Original/Extracted Value # %

No of Vehicles Original

1 1358 21.356

2 4554 71.615

3 366 5.756

4 52 0.818

6 6 0.094

5 21 0.330

7 2 0.031

Weekday Extracted

Thursday 363 5.708

Tuesday 396 6.227

Sunday 361 5.677

Wednesday 308 4.844

Saturday 342 5.378

Monday 337 5.300

Friday 406 6.385

Month Extracted

9 205 3.224

11 197 3.098

1 190 2.988

2 206 3.240

3 258 4.057

4 209 3.287

5 202 3.177

6 219 3.444

7 210 3.302

8 209 3.287

10 218 3.428

12 190 2.988

Season Extracted

Spring 620 9.750

Autumn 4515 71.002

Summer 586 9.215

Winter 638 10.033
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Table 4. Cont.

Variable Original/Extracted Value # %

Car Type Original

Small ride-on car 4076 64.082

The tug had not prepared
for shipment 415 6.526

shipping 801 12.596

Shared transfer 763 11.999

bus 63 0.991

Works/construction vehicle 12 0.189

Medium ride 161 2.532

Vehicle category 5 0.079

Special use vehicle 35 0.550

Shipping locomotive and
trailer 5 0.079

Motorized bicycle 21 0.330

Shipping locomotives and
semi-trailers 1 0.016

Agricultural vehicle 1 0.016

Crash Time Extracted

Evening 677 10.646

Midday 680 10.694

Afternoon 393 6.180

Late_night 155 2.437

Night 362 5.693

Morning 220 3.460

Early_morning 26 0.409

Driver Age Original

<25 1044 16.418

25–54 4700 73.911

>55 390 6.133

>64 204 3.208

Based on the descriptive statistics provided in Tables 3 and 4, we conducted a com-
parative analysis of traffic crash patterns between Jordan and the USA, revealing notable
differences and similarities across various dimensions. In terms of crash severity, both
countries predominantly experience personal injury outcomes, yet Jordan has a signifi-
cantly lower fatality rate (1.93%) compared to the USA (7.49%). Crash types in Jordan are
overwhelmingly collisions (93.22%), in stark contrast to the USA’s diverse crash types, in-
cluding fixed object collisions and overturns. Light conditions further differentiate the two,
with most crashes in Jordan occurring during daylight (69.52%) and the USA experiencing
a majority under dark-unlighted conditions (67.40%). Jordan exhibits a higher incidence of
multi-vehicle collisions (71.62%), whereas single-vehicle crashes are more prevalent in the
USA (54.85%).

Seasonal trends show Jordan peaked in crashes during Autumn (71%), aligning more
closely with the USA’s increased crashes in colder months. Vehicle types involved in crashes
also vary, with Jordan dominated by small ride-on cars (64.08%) and the USA showing a
broader distribution, including motor vehicles and trucks. Crash timing indicates Jordan’s
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crashes peak during evening and midday, contrasting with the USA’s pattern of nighttime
crashes. Lastly, the driver age group involved in crashes in Jordan is predominantly the
25–54 age group (73.91%), whereas the USA sees a broader age distribution, including a
notable involvement of younger drivers. These findings underscore the complex interplay
of environmental, societal, and regulatory factors influencing road safety in each country,
highlighting the need for tailored road safety measures and policies. In the USA, a vast
majority of crashes occur during the day, with a significant drop-off as lighting conditions
worsen, suggesting that visibility plays a critical role in traffic safety.

Conversely, in Jordan, crashes are more evenly distributed between daylight and dark
but lighted conditions, with fewer incidents occurring in the dark unlighted, which may
indicate better adaptation or less traffic during these times. This comparison reveals stark
differences in how light conditions affect driving safety in the two countries. While the USA
clearly prefers daytime driving safety, Jordan displays a higher tolerance for less optimal
lighting conditions. This insight could inform targeted strategies for improving road safety
tailored to the unique driving environments of each country.

3.5. Topic Modeling Using BERT

BERT’s ability to capture bidirectional contexts has advanced the development of
sophisticated topic modeling approaches that go beyond simple word co-occurrence, al-
lowing for the extraction of semantically coherent and contextually relevant topics. This
evolution from earlier models like Latent Semantic Analysis (LSA) to BERT highlights the
shift from linear algebra-based and probabilistic methods to deep learning, marking signifi-
cant progress toward richer, more nuanced text representations for topic modeling. The
use of contextual embeddings has made BERT a valuable tool for identifying underlying
themes in crash narratives. A critical component of topic modeling involves selecting a
hyperparameter, denoted as k, which represents the number of latent topics. However,
determining the optimal number of topics is often challenging, as it affects the quality and
meaningfulness of the extracted topics [34].

BERT continues to be widely employed for natural language processing (NLP) tasks
due to its ability to capture deep contextual information. This strength lies in its foundation
on the transformer architecture introduced by Vaswani et al., which employs protocol-
defined encoder blocks to process text in parallel rather than sequentially [42]. BERT
leverages its bidirectional and context-sensitive nature to improve language understand-
ing and prediction accuracy. Since textual data can often include symbols and numbers
that introduce noise during data processing, standard preprocessing techniques like text
cleaning, stop-word removal, tokenization, stemming, and word embedding are applied.
However, these preprocessing steps can sometimes remove valuable contextual or semantic
information from sentences or phrases. BERT addresses this limitation by being fine-tuned
with an additional output layer, making it adaptable for a wide range of NLP tasks—such as
question answering and language inference—without significant task-specific architecture
changes.

Pre-trained on large datasets like English Wikipedia and the Book Corpus (800 M
words), BERT is capable of handling tasks in over 100 languages. Its training in next-
sentence prediction and masked language modeling further enhances its versatility. BERT
incorporates three embedding layers: token, segment, and position embeddings [31].
In classification tasks, the Bi-Directional Long Short-Term Memory (Bi-LSTM) network
processes the 768 hidden states of the [CLS] token representation produced by BERT.

Models like TK-BERT and BERT-LDA have been shown to outperform traditional
methods such as Latent Dirichlet Allocation (LDA) and Non-negative Matrix Factorization
(NMF) by integrating contextual semantics and thematic narratives [43]. Coherence was



Electronics 2025, 14, 272 14 of 35

the primary metric in this study, as it reflects the logical association between words within
a topic, ensuring the validity and relevance of the generated topics. Hyperparameter
selection for k was performed in collaboration with domain expert to maximize coherence
and interpretability. While Coherence was central to our evaluation, future studies may
benefit from incorporating additional metrics, such as exclusivity, to further enhance the
uniqueness and interpretability of topics.

3.6. Text Classification Using BERT/Bi-LSTM

Long Short-Term Memory (LSTM), a form of recurrent neural network (RNN), has
been extensively used in natural language processing and sequential data analysis, due
to its ability to capture long-term dependencies [44]. Unlike RNNs, LSTM networks
utilize memory cells and gating techniques to store and retrieve information over long
sequences in an elegant manner. This architectural design resolves the vanishing and
exploding gradient issues when training deep networks on sequential data, making LSTMs
particularly suitable for language modeling, text classification, and time series prediction,
among other applications. Their ability to model sequential relationships is critical in
analyzing crash narratives, where temporal context plays a vital role.

The LSTM network, a specialized variant of recurrent neural networks (RNNs), ex-
hibits unique capabilities in handling short- and long-term correlations within time series
data. The network’s architecture includes a memory unit, where a central memory cell,
denoted by the red circle, plays a pivotal role. This structure enables the LSTM network
to effectively capture dependencies and patterns in sequential data, making it particu-
larly advantageous for various applications where understanding short- and long-term
relationships is essential [44].

3.7. Evaluation Metrics

The BERT/Bi-LSTM model was validated on the test dataset. Key metrics included
accuracy, precision, recall, F1-score, SHAP, and coherence score.

• Accuracy measures the overall correctness of the model in classifying fatal and non-
fatal crashes. The BERT/Bi-LSTM model achieved 99.5% accuracy for the USA dataset
and 99% accuracy for the Jordan dataset, highlighting its effectiveness in classifying
crash severity.

• Precision indicates the proportion of correctly predicted fatal crashes out of all pre-
dicted fatal crashes. High precision reduces the occurrence of false positives, which is
critical for reliable crash severity prediction.

• Recall evaluates the model’s ability to capture all actual fatal crashes out of the total
true fatal crashes. This metric is vital for ensuring that no fatal crashes are overlooked.

• The F1-score balances precision and recall, ensuring the model performs well in both
aspects. It is particularly important in this study to ensure both false positives and
false negatives are minimized. The F1-scores for BERT/Bi-LSTM models exceeded
98% for both datasets.

SHAP interpretability values were employed to interpret the model predictions, iden-
tifying key features such as “overturned” and “attempted” for fatal crashes in the USA,
and “damage” and “technical” issues for Jordan. This interpretability is crucial for under-
standing the underlying factors contributing to crashes in different cultural contexts.

For topic modeling, the coherence score was used to evaluate the semantic association
of words within each topic. Higher coherence indicates better quality topics. The USA
dataset achieved the highest coherence with 25 topics, while Jordan peaked with 10 topics,
reflecting the differences in crash narratives between the two regions.
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The coherence score Cv was computed using four different statistics: the segment
of confirmed co-occurrences of two words, the probability of these two words appearing
together, and their probabilities. The Cv for a single topic is as follows [45]:

Cv =
M

∑
m=2

m−1

∑
l=1

score(wm, wl)

M(M − 1)/2

where Cv is the coherence score for a single topic, measuring the logical association between
words within that topic; M is the number of words in a topic; m is the positions of words in
a topic; and score(wm, wl) is a function that calculates a score for the relationship between
two words, wm and wl , at positions m and l within the topic.

4. Experimental Setup
4.1. Model Selection

The BERT and BERT/Bi-LSTM models were selected for this study due to their proven
superiority in handling complex natural language processing (NLP) tasks, especially when
context and sequence play a crucial role, as in the analysis of crash narratives. These models
were chosen over traditional approaches such as Naive Bayes, Support Vector Machines
(SVM), and Random Forests for several reasons:

1. Contextual Understanding
BERT’s bidirectional nature captures the full context of words by analyzing both
preceding and following text. This makes it well-suited for interpreting nuanced
crash narratives, where the sequence of events and relationships between terms can
significantly affect crash severity analysis [46].

2. Handling Sequential Data
The integration of Bi-LSTM (Bidirectional Long Short-Term Memory) enhances BERT’s
ability to process sequential data in both forward and backward directions. This is
critical for understanding the progression of events leading up to crashes, as it captures
long-range dependencies within crash narratives [47,48]. This feature is especially
important for temporal event analysis, where the order of events directly impacts the
interpretation of severity.

3. Interpretability with SHAP
The inclusion of SHAP (Shapley Additive Explanations) provides transparency into
the model’s predictions, offering insights into the most influential factors driving
crash severity. This interpretability ensures that complex models, like BERT/Bi-LSTM,
do not function as “black boxes”, but instead provide clear explanations for decision-
making processes [49].

4. Generalization Across Datasets
BERT’s pre-trained architecture and its ability to be fine-tuned on large datasets
provide excellent generalization capabilities, making it suitable for cross-cultural
crash analysis. This generalization is particularly useful when analyzing datasets
from different regions, such as the USA and Jordan [50].

4.2. Classification Models

In this experiment, three models: Naive Bayes, AdaBoost, and BERT/Bi-LSTM were
evaluated. These models were selected for their relevance to text classification tasks
and their ability to capture both simple and complex relationships within crash narra-
tives [51,52]. Based on the initial results, BERT/Bi-LSTM outperformed the other baseline
classifiers and was subsequently used for the remainder of the experiment.
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We selected the BERT/Bi-LSTM model because it combines BERT’s contextual un-
derstanding with Bi-LSTM’s sequential processing capabilities. Compared to GPT-based
models, which are primarily designed for generative tasks, BERT/Bi-LSTM is better suited
for classification and interpretability in analyzing structured crash data.

The conceptual framework integrated an LSTM-based language model (i.e., BERT/Bi-
LSTM), as illustrated in Figure 2. To enhance the model’s performance, we divided the
dataset into three subsets: training, validation, and testing, constituting 70%, 15%, and 15%
of the data, respectively. The last layer weights generated by the pre-trained models were
fed into the Bi-LSTM layer to perform the fine-tuning classification task. The optimization
of the LSTM model involved experimenting with configurations, resulting in three types
of dense layers. The first layer has 64 units with ReLU activation and a 0.2 dropout
layer, followed by another layer with 32 units, ReLU activation, and a 0.2 dropout layer.
The final layer is an output layer with two units using the SoftMax activation function.
Furthermore, our configuration includes 128 LSTM cells with a learning rate of 10−4, a
batch size of 32, Adam optimizer, and Cross Entropy Loss as the chosen loss function [34].
The hyperparameters used in the BERT/Bi-LSTM configuration are presented in Table 5.
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Table 5. BERT/Bi-LSTM model configurations.

Parameter/Hyperparameter Value

MAX_LENGTH 200

Pre-trained Model DistilBERT

Tokenizer DistilBertTokenizer

Number of LSTM Units 128

Number of Dense Layers 3

Hidden Units in Dense Layers [32, 64]
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Table 5. Cont.

Parameter/Hyperparameter Value

Dropout Rate 0.2

Batch Size 32

Activation Function Softmax

Loss Function Cross entropy

Optimizer Adam

Learning Rate Scheduler ReduceLROnPlateau

Learning Rate 10−4

Minimum Learning Rate 0.000001

Patience 3 (Early Stopping), 1 (Reduce LR)

Training Batch Size 16

Number of Training Epochs 6

4.3. SHAP Interpretability

Shapley Additive Explanations (SHAP), a method grounded in Shapley values, is
implemented to interpret the predictions of the classification models globally [53]. SHAP
assigns each feature a value that reflects its contribution to a prediction, providing a com-
prehensive understanding of feature importance. This technique enhances transparency
and trust by offering insights into the decision-making process of complex models.

By elucidating how specific features, such as crash type or driver-related factors,
influence fatal and non-fatal crash outcomes, SHAP facilitates both global and local inter-
pretability. This enables the identification of the most influential factors across the dataset,
ensuring a deeper understanding of model behavior and its alignment with real-world
crash dynamics.

SHAP was chosen over other interpretability frameworks, such as LIME, because it
provides consistent, additive feature attributions for global and local explanations. Unlike
LIME, which relies on perturbation and is model-agnostic, SHAP’s game-theoretic founda-
tion ensures stability and robustness when applied to complex deep learning models like
BERT/Bi-LSTM.

In the final stage, we integrated the outcomes of topic modeling and text classification
by combining the identified themes and topics with the interpretability provided by SHAP.
This holistic approach allows us to comprehensively understand the datasets, revealing
nuanced insights into the factors that influence crash occurrence and severity. By integrat-
ing these analyses, this study aims to provide actionable insights for policymakers and
practitioners, contributing to advancing road safety research and interventions.

5. Analysis and Results
5.1. Modeling Results

Tables 6 and 7 display the experimental outcomes for the USA and Jordan datasets.
The USA classification models, including NB-TFIDF and AdaBoost-TFIDF, showed high
accuracy (96–98%). The BERT/Bi-LSTM model achieved superior performance with 99.5%
accuracy and macro metrics (precision, recall, and F1-score) exceeding 98%. In the Jordan
dataset, NB-TFIDF and AdaBoost-TFIDF exhibited 99% accuracy, while BERT/Bi-LSTM
maintained 99% accuracy with balanced macro/weighted metrics (precision, recall, and F1-
score exceeding 0.87). This suggests BERT/Bi-LSTM’s efficacy in capturing crash narrative
nuances in diverse contexts. Jordan’s models showed slightly lower recall, indicating
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the complexity of classifying crash narratives in this context. Further insights into model
convergence and generalization are provided by the visual representation of training and
validation accuracy in Figures 3 and 4.

Table 6. Experiment results: USA dataset.

Embedding Accuracy Macro
Precision

Macro
Recall

Macro
F1-Score

NB-TFIDF 0.96 0.98 0.80 0.86

AdaBoost-TFIDF 0.98 0.98 0.98 0.98

BERT/Bi-LSTM 99.5 0.99 0.98 0.98

Table 7. Experiment results: Jordan dataset.

Embedding Accuracy Macro
Precision

Macro
Recall

Macro
F1-Score

NB-TFIDF 0.99 0.99 0.65 0.73

AdaBoost-TFIDF 0.99 0.88 0.84 0.86

BERT/Bi-LSTM 0.99 0.99 0.99 0.99
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5.2. Topic Modeling Results

The coherence score graphs for topic modeling in the USA and Jordan datasets show
distinct peaks, indicating each dataset’s optimal number of topics. For the USA, the peak
coherence is achieved with about 25 topics, suggesting a wider variety of distinct discussion
points within crash narratives. In contrast, Jordan’s dataset reaches peak coherence with
approximately ten topics, indicating a more concentrated range of themes that best capture
the discussions within the crash data. This comparison highlights the complexity of the
USA’s crash narratives and a more focused thematic structure within Jordan’s dataset.
The larger number of topics in the USA dataset reflects its more diverse crash circum-
stances, potentially linked to differences in infrastructure, driving behaviors, and reporting
practices.

Figure 5 shows the USA and Jordan Topics per dataset. The following insights are
extracted from the figure. In the USA dataset, topics like “overturned” and “roadway”
suggest a concentration on accidents and road conditions, which may be indicative of
the country’s extensive road networks and the higher incidence of vehicle rollovers on
highways. Conversely, Jordan’s topics, such as “lane” and “change”, reflect concerns more
closely related to driver behavior and road usage, possibly due to denser traffic conditions
and the importance of maneuvering in more constrained driving environments. The
keywords presented in Figure 5 further emphasize these regional differences, with the USA
dataset reflecting challenges associated with high-speed driving and wildlife interactions,
while the Jordan dataset highlights technical issues and traffic safety measures.
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These topic insights reveal key differences in driving culture and infrastructure be-
tween the two countries. For the USA, terms like “deer” and “guardrail” appear, high-
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lighting interactions with wildlife and road safety features unique to sprawling, diverse
landscapes. In Jordan, the recurrence of “precautions” and “safety” indicates a heightened
awareness and perhaps a more precautionary approach to driving, influenced by regional
driving norms and infrastructure development stages. The figure underscores how regional
themes drive distinct safety priorities, with the USA focusing on mitigating high-speed
risks and Jordan emphasizing adherence to safety precautions in urban contexts.

In this experiment, the coherence score is systematically computed for topics ranging
from 2 to 50. The results in Figure 5 revealed that the highest coherence score is achieved at
k = 25 and 10 for the US and Jordan datasets, respectively. Table 8 provides an illustrative
example of some topics identified in the process. This analysis highlights the adaptability
of the topic modeling approach to identify region-specific issues, which can inform tailored
policy interventions.

Table 8. Top 10 words across the first three topics per dataset.

Dataset Topic # Keywords

USA dataset

Topic 1
[(‘overturned’, 0.061), (‘roadway’, 0.059), (‘curve’, 0.050),

(‘negotiate’, 0.050), (‘right’, 0.049), (‘ditch’, 0.046), (‘occurred’,
0.044), (‘ran’, 0.044), (‘traveled’, 0.043), (‘crash’, 0.039)]

Topic 2
[(‘rear’, 0.093), (‘vehicle’, 0.078), (‘turn’, 0.050), (‘struck’, 0.049),
(‘traffic’, 0.041), (‘stopped’, 0.039), (‘left’, 0.036), (‘make’, 0.034),

(‘slowed’, 0.032), (‘lane’, 0.028)]

Topic 3
[(‘crash’, 0.040), (‘vehicle’, 0.037), (‘assisted’, 0.036), (‘occurred’,

0.034), (‘county’, 0.032), (‘sheriffs’, 0.028), (‘tpr’, 0.028),
(‘department’, 0.027), (‘rest’, 0.026), (‘came’, 0.025)]

Jordan dataset

Topic 1
[(‘lane’, 0.052), (‘change’, 0.044), (‘sudden’, 0.042), (‘vehicle’,

0.019), (‘damage’, 0.019), (‘estimated’, 0.017), (‘material’, 0.017),
(‘specialized’, 0.017), (‘result’, 0.017), (‘expert’, 0.017)]

Topic 2
[(‘precautions’, 0.048), (‘failure’, 0.047), (‘necessary’, 0.043),

(‘driving’, 0.028), (‘violation’, 0.025), (‘safety’, 0.025), (‘vehicle’,
0.022), (‘technical’, 0.019), (‘driver’, 0.019), (‘result’, 0.019)]

Topic 3
[(‘sequence’, 0.072), (‘close’, 0.071), (‘vehicle’, 0.027), (‘number’,

0.027), (‘collided’, 0.027), (‘driver’, 0.027), (‘followup’, 0.025),
(‘violation’, 0.025), (‘expert’, 0.024), (‘technical’, 0.023)]

5.3. SHAP Interpretation of Crash Outcomes in the USA and Jordan

The SHAP analysis provides insights into the influential factors associated with fatal
and non-fatal crashes in the USA and Jordan, revealing distinct and shared contributors
across both regions. While SHAP values offer valuable interpretability by indicating which
factors have a strong association with crash outcomes, it is essential to recognize that
SHAP relies on observed data and does not establish causation. SHAP’s correlation-based
approach cannot account for unobserved variables, which may also play critical roles in
crash dynamics.

5.3.1. Causality Limitations and Unobserved Factors

One major limitation of the SHAP framework, as noted, is its inability to identify root
causes or account for unobserved factors influencing crash outcomes. This limitation is
particularly important in real-world crash analysis, where certain influential factors, such
as driver distraction, road conditions, or unseen vehicle malfunctions, may not be explicitly
captured in the dataset. While SHAP highlights important associations, a well-posed causal
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discovery framework could provide a more comprehensive understanding by directly
identifying relationships beyond those observed.

Future research could incorporate causal inference methods alongside SHAP to better
address unobserved variables. Techniques such as structural equation modeling, propensity
score matching, or latent variable models could help capture hidden factors influencing
crashes. By expanding the analytical approach in this way, researchers could develop a
more nuanced understanding of crash causality, enhancing the insights provided by SHAP.

5.3.2. Key Findings in the USA

In the USA dataset, SHAP analysis identifies prominent factors for fatal crashes, with
terms such as “overturned” and “attempted” indicating rollover risks and failed evasive
maneuvers as significant dangers. Other factors, including “hours”, “scene”, “hospital”,
and “alcohol”, highlight the role of delayed emergency response, serious injuries, and
substance impairment in fatal outcomes. Environmental factors like “tree” and “fire” also
appear in fatal cases, underscoring the impact of roadside obstacles on crash severity (see
Figure 6: USA dataset SHAP values for fatal and non-fatal).
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For non-fatal crashes, terms such as “control”, “wheels”, “fence”, and “facing” suggest
that vehicle stability issues and interactions with roadside structures are common influences
on injury outcomes.

5.3.3. Key Findings in Jordan

In Jordan, the SHAP analysis indicates a distinct pattern in crash outcomes, with
keywords like “damage” and “resulted” serving as primary factors in both fatal and non-
fatal crashes, suggesting a direct correlation between the extent of damage and crash
severity (see Figure 7: Jordan dataset SHAP values for fatal and non-fatal).

Additional factors in fatal incidents include “towards”, “highway”, “bridge”, and “vi-
olation”, which emphasize the influence of high-speed roadways, infrastructure elements,
and traffic violations. The presence of “technical” issues in fatal cases suggests that vehicle
maintenance and technical faults are common concerns in Jordan, where older vehicle
fleets may increase crash risks. For non-fatal crashes in Jordan, terms such as “island”,
“pedestrian”, “defect”, and “device” point to pedestrian involvement and technical vehicle
issues as prominent factors.
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5.4. Hierarchical Clustering

The clustering dendrograms for Jordan and the USA depict the thematic structures of
each country’s crash reports. Jordan’s data suggests focusing on specific issues like vehicle
damage and driver skills, along with safety and prevention measures. It also shows distinct
discussions on fuel and animal interactions. The USA’s dendrogram, in contrast, reveals a
more complex array of topics that intertwine various aspects of road incidents, including
animal crossings, vehicular dynamics, and legal responses, suggesting richer narrative
detail and a broader spectrum of crash-related factors. Figures 8 and 9 show the topics for
the USA and Jordanian datasets, respectively.
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5.5. Similarity Matrix

A similarity matrix is a mathematical representation used in text analysis to measure
the pairwise similarity between data points, such as documents, words, or topics. In
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crash data analysis, similarity matrices are employed to identify thematic overlaps and
clusters, offering insights into patterns within the dataset. For instance, the USA’s crash
data similarity matrix (Figure 10) highlights thematic overlaps in vehicle-related damage
and human factors, forming distinct clusters for specialized incidents such as pedestrian
injuries and animal-related crashes. This clustering reflects a clear separation of themes,
capturing specific regional crash characteristics in the USA. Conversely, Jordan’s similarity
matrix (Figure 11) reveals a more intricate web of interrelated topics, often emphasizing
infrastructure and vehicle dynamics. Distinct intersections in crash narratives, such as
those linking road conditions, vehicle types, and crash scenarios, suggest a high degree
of thematic connectivity. Both datasets exhibit unique patterns that mirror their regional
traffic incident characteristics, with the USA showing greater thematic integration and
Jordan displaying more defined separations in specific themes. Such matrices provide a
nuanced understanding of the structural and thematic differences in crash data reporting,
revealing how regional factors influence traffic incident analysis [54–56].

Electronics 2025, 14, x FOR PEER REVIEW 22 of 34 
 

 

 

Figure 10. USA similarity matrix. 

 

Figure 11. Jordan similarity matrix. 

5.6. Unigrams 

In both the USA and Jordan datasets, “driver” and “damage” are vital terms in fatal 
crashes, highlighting the role of driver behavior and the extent of vehicular damage. “Ex-
pert” and “specialized” terms in Jordan�s data emphasize technical analysis, whereas 
“strike”, “roadway”, and “overturn” in the USA data point to collision dynamics and road 

Figure 10. USA similarity matrix.

5.6. Unigrams

In both the USA and Jordan datasets, “driver” and “damage” are vital terms in
fatal crashes, highlighting the role of driver behavior and the extent of vehicular damage.
“Expert” and “specialized” terms in Jordan’s data emphasize technical analysis, whereas
“strike”, “roadway”, and “overturn” in the USA data point to collision dynamics and road
conditions. For non-fatal crashes, “technical” and “violation” terms in Jordan imply rule
violations and technical issues, while “strike” and “travel” in the USA indicate movement
and collisions as common themes. Despite similarities, each dataset reflects unique regional
traffic issues and reporting nuances, as shown in Figures 12–15.
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5.7. Crash Narratives

In both the USA and Jordan datasets, non-fatal crash narratives are generally shorter,
suggesting a direct recounting of events. Fatal crash narratives are longer and more varied,
likely due to the need for detailed descriptions in fatal cases. The length and detail in
narratives correlate with the crash’s severity, reflecting the thoroughness required in fatal
crash reporting, as shown in Figures 16 and 17.
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6. Discussion
The study presented in this paper provides a comprehensive analysis of traffic crash

patterns between the United States and Jordan, employing advanced Natural Language
Processing (NLP) techniques, specifically Bidirectional Encoder Representations from Trans-
formers (BERT), combined with Shapley Additive Explanations (SHAP) for interpretability.
This cross-cultural examination sheds light on significant differences and underlying factors
contributing to crash types and outcomes in developed versus developing country contexts.

The utilization of BERT and SHAP in this research represents a significant advance-
ment in crash pattern analysis. Traditional statistical models, while helpful, often fall short
of capturing the nuanced and complex nature of crash data narratives. The application of
BERT allows for a more nuanced understanding of textual data, capturing the context and
subtleties within crash reports. Coupled with SHAP, this approach provides clear insights
into factors contributing to crash severity, enabling a more detailed and understandable
analysis than previously possible with conventional methods. For example, SHAP analysis
in Jordan identified “technical issues” as a critical factor, pointing to the need for stricter
vehicle inspection policies and public awareness about vehicle maintenance. Similarly, in
the USA, “alcohol-related incidents” emerged as a significant risk factor, emphasizing the
importance of enhanced DUI enforcement and community education campaigns. These
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insights demonstrate the potential of SHAP to bridge the gap between data-driven findings
and actionable policy measures.

The findings highlight distinct differences in crash characteristics between the two
countries. In the United States, factors such as vehicle overturns and attempted maneuvers
are prevalent in fatal crashes, possibly reflecting a higher incidence of high-speed or evasive
driving scenarios. Conversely, in Jordan, crash severity is more closely associated with
damage extent and resultant actions, suggesting variations in vehicle safety standards and
road conditions. Seasonal variation in crash occurrences, with higher rates in Autumn
for Jordan and winter for the USA, indicates environmental and cultural influences on
driving patterns.

To provide a clearer visualization of these regional differences, Figure 18: Comparative
Analysis of Key Crash Factors (SHAP Values): USA vs. Jordan has been added. This
figure consolidates the SHAP-derived insights for fatal and non-fatal crashes across the
two regions, highlighting the key contributing factors and their relative importance.
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Moreover, the high accuracy of the BERT/Bi-LSTM models in predicting crash severity
demonstrates the potential of machine learning in enhancing traffic safety research by
identifying specific risk factors and informing targeted interventions. This adaptability is
particularly relevant for other regions, as BERT models can be fine-tuned for additional
languages and cultural contexts, ensuring a flexible framework for crash narrative analysis
worldwide. Table 9 compares our study’s findings with other relevant studies, showing the
relative accuracy and objectives across different research contexts.
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Table 9. Comparison of our study with relevant studies.

Reference Model Accuracy Topic Modeling Objective Data

[57] BERT 95.8% Not used

Proposed
algorithm and
model for
categorizing
imbalanced
Chinese traffic
crash texts

Chinese crash
text data

[58]

The hybrid
model between
word-embeded
and SVM

91% No topic modeling

The paper
discusses the
analysis of
named-entity
effect on text
classification of
traffic crash data
using machine
learning
techniques.

Social media
data

[59]
A Latent
Dirichlet
Allocation

69% “lane”, “leave”, “park”,
“right” and “side”

The paper
discusses the use
of text mining
methods to
analyze crash
data, including
the classification
of crashes based
on textual
descriptions.

Munich data

Our Study BERT/Bi-LSTM 99.5%
Several topics
depending on fatal and
non-fatal crash

Cross-cultural
comparison
between the USA
and Jordan data

Textual and
tabular data
from different
freeways in
Jordan and the
USA

6.1. Results in Relation to Existing Literature

The findings of this research align with existing literature on traffic safety and accident
analysis. Key elements such as driver error, vehicle overturning, and mechanical issues
are consistent with studies that identify these factors as significant contributors to accident
severity. Both datasets highlight the substantial impact of human error, reinforcing earlier
research that emphasizes the universal influence of driver conduct on road incidents [60–65].
Additionally, the increase in crash severity during nighttime driving is supported by road
safety trends, where reduced visibility is linked to higher accident risks [66]

This study also advances the understanding of vehicle-related factors by identifying
technical defects as a major predictor of crash severity in Jordan, which reflects challenges
seen in other developing regions where aging vehicle fleets and inadequate maintenance
standards prevail. Unlike in Western contexts, where impaired driving, particularly related
to alcohol use, is a dominant factor, this study emphasizes the importance of vehicle age
and technical defects in shaping crash risks, offering insights into region-specific road safety
challenges [67]. These insights illustrate the methodology’s ability to generalize findings
for diverse cultural and infrastructural contexts, enabling its application to datasets from
other countries with minimal adaptation.



Electronics 2025, 14, 272 29 of 35

6.2. Implications for Road Safety Policy and Practice

This study’s cross-cultural analysis highlights important regional differences and
shared risk factors in road safety for the USA and Jordan, underscoring the necessity of
tailoring road safety strategies to local conditions. By utilizing BERT and SHAP models,
we ensure that key crash patterns are interpretable, enhancing the validity of the cross-
cultural analysis by identifying distinct and shared contributors without relying solely on
observed correlations. The methodology’s modular design allows it to be extended to other
countries, facilitating comparative studies across regions with varying socio-economic and
infrastructural conditions.

6.2.1. United States Road Safety Policy

The frequent occurrence of rollover accidents and high-speed incidents in rural areas
suggests a need for targeted rural highway safety strategies. Decision-makers could con-
sider increased guardrail usage, road curve optimization, and adjusted speed limits in rural
zones to reduce rollover risks. Additionally, the prevalence of terms like “attempted” in
crash reports indicates that evasive maneuvers may contribute to crash severity. Strength-
ening driver training programs, especially for emergency responses, could help mitigate
such risks.

6.2.2. Jordan Road Safety Policy

In Jordan, where crash reports frequently highlight issues related to vehicle age and
technical defects, policy efforts could benefit from more rigorous inspection criteria and
improved maintenance regulations. Given the aging vehicle fleet, periodic inspections
to enforce safety standards are essential. Public education campaigns that emphasize
the importance of vehicle maintenance could also reduce crash risks associated with
mechanical failures.

6.2.3. Global Road Safety Insights

This study reveals common factors affecting road safety in both countries, including
driver behavior and environmental conditions, such as nighttime driving and adverse
weather. These insights offer valuable guidance for international road safety organizations
in developing awareness campaigns that address global risks, such as inadequate lighting
and poor weather conditions.

6.2.4. AI Application in Road Safety Monitoring

The use of BERT/Bi-LSTM models with SHAP values improves the precision and
transparency of crash predictions. These technologies can be integrated into road safety
monitoring systems for real-time crash analysis, enabling authorities to identify emerg-
ing risk factors more effectively. SHAP’s explainability makes the models accessible to
policymakers, allowing them to make informed, data-driven decisions.

7. Policy Recommendations
The comparative analysis of crash patterns between the USA and Jordan highlights

critical policy implications for both nations. This research suggests several key areas where
targeted interventions can improve road safety outcomes tailored to the unique driving
environments and crash dynamics observed in each country.

7.1. Road Infrastructure Improvements

In the USA, the high frequency of overturned vehicles in crash narratives indicates a
need for enhanced road infrastructure, particularly on highways and rural roads. Investing
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in improved guardrails, better road curvature design, and enhanced road signage could
help mitigate rollovers and vehicle ejections, which are prevalent in fatal crashes. On the
other hand, Jordan’s crash narratives emphasize multi-vehicle collisions and technical
issues, suggesting that improving urban road designs—such as clearer lane markings and
dedicated lanes for high-traffic areas—would address common road usage challenges.
Enhancing road maintenance efforts to accommodate Jordan’s aging vehicle fleet could
also play a pivotal role in reducing crashes related to technical defects.

7.2. Vehicle Safety Standards and Maintenance Regulations

The prominence of technical issues in Jordanian crashes highlights the need for more
rigorous vehicle inspection and maintenance standards. Implementing regular vehicle
safety checks and enforcing strict penalties for non-compliance could help prevent crashes
caused by mechanical failures. Additionally, promoting public awareness campaigns on
the importance of vehicle maintenance would ensure better upkeep, especially in regions
where older vehicles are more common. In contrast, the USA might benefit from focusing
on driver safety education to prevent rollovers and single-vehicle crashes. Advanced driver
assistance systems (ADAS), such as electronic stability control, should be more widely
promoted to help reduce the number of fatal crashes.

7.3. Emergency Response and Medical Preparedness

The USA’s crash data reveals a higher fatality rate, with many fatalities involving
multiple vehicles and complex crash dynamics like vehicle ejections and rollovers. Im-
proving emergency response times and equipping rural and highway areas with advanced
medical response systems could save lives in these fatal cases. Furthermore, training first
responders to deal with high-severity crash scenarios, especially involving overturned
vehicles, could lead to better outcomes. Jordan’s crash narratives, while generally involving
less fatal crashes, suggest that enhancing emergency medical services (EMS), particularly
in rural and underdeveloped regions, could significantly reduce fatality rates by ensuring
faster and more effective medical interventions.

7.4. Targeted Road Safety Campaigns

The distinct differences in crash factors between the USA and Jordan underscore
the need for tailored road safety campaigns. In the USA, the prominence of terms like
“alcohol”, “roadway”, and “overturn” suggests a need for campaigns targeting substance
abuse prevention and safe driving practices on rural roads. Conversely, Jordan’s crash
narratives, which emphasize technical issues and vehicle defects, indicate the need for
public education around safe vehicle operation, regular maintenance, and road safety
measures. Focusing on these specific areas would better align safety interventions with the
realities of driving conditions in each country.

7.5. Data Collection and Reporting Improvements

The study’s findings highlight the importance of standardizing data collection and
reporting practices to enable more accurate cross-cultural comparisons. In the USA, the
detailed reporting of environmental conditions and vehicle dynamics provides valuable
insights but could be enhanced by capturing real-time driving conditions, such as weather,
road surface, and visibility at the time of the crash. In Jordan, improving the completeness
and consistency of crash reports, especially in rural areas, could provide more reliable data
for analysis. Both countries could benefit from adopting unified data collection protocols,
incorporating comprehensive vehicle, environmental, and behavioral factors to enhance
the quality of crash data and, ultimately, road safety policies.
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7.6. International Collaboration and Knowledge Sharing

The cross-cultural differences observed in this study highlight the need for global
collaboration in road safety. By establishing data-sharing partnerships and engaging in
international research efforts, both countries can benefit from shared insights into effective
road safety strategies. The USA’s focus on mitigating rollovers and addressing wildlife
interactions, and Jordan’s emphasis on technical defects and urban collisions, suggest that
combining these insights could lead to innovative road safety interventions that address a
broader range of risk factors across different regions.

8. Conclusions
This study pioneers a cross-cultural examination of road traffic crashes in the United

States and Jordan by deploying advanced text-mining techniques to elucidate the nuanced
factors that influence injury severity outcomes. Utilizing traffic crash narratives alongside
quantitative data, the research aims to extract distinctive contributory elements from two
divergent driving contexts, thereby offering a richer understanding of the factors correlating
with injury severities. The study is grounded in a methodical framework encompassing
standardization and harmonization of datasets, exploratory data analysis (EDA), and
sophisticated AI modeling with BERT classifiers, supplemented by SHAP interpretability to
ensure transparency in AI predictions. This multifaceted approach allows for an in-depth
comparative analysis of crash severity determinants between the culturally distinct regions,
highlighting unique and shared factors. A balanced sample size of 6359 crashes from each
country’s national transportation agency data ensures a bias-free comparison.

The USA models display high accuracy in crash severity classification (99.5%), while
Jordan’s models maintain 99% accuracy and slightly lower recall, underscoring the com-
plex narrative classification in this context. SHAP analysis reveals that ‘overturned’ and
‘attempted’ actions dominate USA fatalities, while ‘damage’ and ‘resulted’ are more critical
in Jordan. For non-fatal, ‘failed,’ ‘one’, and ‘yield’ issues dominate in the USA, whereas
’technical’ concerns and ‘collision’ are prevalent in Jordan. Topic modeling further distin-
guishes the datasets: the USA narratives are diverse, covering wildlife and legal entities,
whereas Jordan focuses on technical vehicle details. The USA’s thematic complexity is
mirrored in its broader range of topics discussed in crash narratives, as opposed to Jordan’s
focused themes.

This analysis underscores the significance of environmental, societal, and regulatory
factors shaping road safety. The cultural disparity is evident, for instance, in the prominence
of alcohol-related incidents in the USA, absent in Jordan’s data due to cultural differences.
Jordan’s emphasis on technical aspects, like vehicle defects, contrasts with the USA’s
broader safety and legal discussions. The study presents an intricate portrayal of crash
dynamics, emphasizing the importance of culturally informed interventions. It showcases
the need for tailored road safety measures reflecting the specific conditions and behavioral
patterns in each country to effectively mitigate the occurrence of road traffic crashes and
their repercussions.

Limitations and Future Research Directions

While this study provides valuable insights into crash severity factors across diverse
cultural contexts, several limitations must be acknowledged. The reliance on SHAP for
interpreting model predictions, though effective, is constrained by its dependency on
observed data, leaving unobserved variables—such as road conditions, driver fatigue,
and environmental factors—unaccounted for [68]. Latent factors, such as infrastructure
quality or vehicle maintenance, which could significantly influence crash severity, remain
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unexplored due to data unavailability. These constraints are particularly critical in complex
crash scenarios, where such variables play a significant role but are challenging to capture.

To address causality more comprehensively, future research could integrate causal
inference frameworks such as Directed Acyclic Graphs (DAGs), structural equation model-
ing, or Bayesian Networks for Latent Variables (BN-LV) [69,70]. These approaches would
complement SHAP by systematically identifying and modeling relationships between ob-
served and unobserved factors, enabling a more nuanced understanding of crash dynamics
and mitigating current methodological limitations.

The topic modeling approach primarily relies on the Coherence metric to assess topic
relevance. While useful, this reliance may lead to broad topics dominated by common
terms, reducing the granularity of insights and limiting their practical application for
tailored road safety interventions. Future research could refine topic modeling by incor-
porating additional metrics like exclusivity or by integrating expert input, to ensure more
contextually meaningful and actionable results.

Although model performance was validated using precision, recall, and F1 metrics,
future studies could benefit from simulation-based approaches to enhance findings. Sim-
ulations replicating various crash scenarios would provide a dynamic perspective on
real-world implications, enabling evaluations of road safety interventions under diverse en-
vironmental and cultural contexts. This approach would supplement performance metrics
and deepen the analysis of causal relationships between crash factors and outcomes.

The imbalance between fatal and non-fatal crashes in the dataset poses another chal-
lenge, as the prevalence of non-fatal cases may bias model predictions. Future research
should explore techniques such as data augmentation or resampling to address this im-
balance, thereby enhancing model robustness. Furthermore, incomplete crash reports
and differences in reporting practices between regions limit the comprehensiveness of the
analysis. Standardizing crash reporting protocols across regions could mitigate these gaps
and provide a more uniform basis for analysis.

Finally, incorporating real-time data and additional contextual variables—such as road
type, weather conditions, and traffic density—would improve the model’s applicability to
road safety research. Leveraging real-time monitoring systems could enhance prediction
accuracy and enable proactive safety measures. Extending this cross-cultural analysis
to other regions and adapting the methodology to various cultural and infrastructural
contexts would support targeted interventions tailored to specific regional road safety
challenges. These directions build upon the unique elements of this study, providing a
roadmap for future advancements in traffic safety research.
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