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  Abstract 

With the increasing sophistication of cyber-attacks and their evolving nature alongside 

advancements in network infrastructures, Intrusion Detection Systems (IDS) are facing 

growing challenges. Machine Learning offers a promising approach to efficiently analyze 

the diverse datasets generated by network traffic. This research investigates the impact of 

feature selection on enhancing the accuracy and efficiency of IDS. By applying our 

feature selection model on the CICIDS2017 dataset, we identified the top 10 most 

relevant features that significantly improve the performance of multiple Machine 

Learning models. In addition to evaluating our own feature selection methodology, we 

also applied the feature selection models used in previous studies on our system. The 

results demonstrate that our approach to feature selection still outperforms these previous 

models in terms of both accuracy and computational efficiency. Specifically, Random 

Forest achieved an accuracy of 96.1%, Naive Bayes reached 82.5%, and both AdaBoost 

and K-Nearest Neighbors (KNN) surpassed 98% accuracy. While K-Nearest Neighbors 

(KNN) demonstrated excellent accuracy, it required considerably longer computational 

time compared to the other models. This research emphasizes the role of feature selection 

in optimizing IDS performance, demonstrating how our approach in selecting the most 

relevant 10 features enhance detection accuracy while maintaining efficient processing 

times. Our findings confirm that the feature selection methodology employed in this thesis 

provides a clear advantage over prior models, improving both detection accuracy and real-

time applicability of IDS. 
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Chapter 1: Introduction 

This chapter explores the growing importance of communication over the Internet and its 

impact on individuals and organizations. The section aims to highlight the increasing 

reliance on online platforms, emphasizing the motivation behind this study. 

1.1 Motivation 

Every day, millions of individuals and hundreds of thousands of organizations engage in 

communication over the Internet. The number of Internet users has surpassed 5 billion, 

indicating the pervasive influence and importance of the Internet in modern society (Title 

in English: The Effect of Different Features and Algorithms on the Performance of the 

IDS Comparison and Analysis, no date; Internet World Stats, 2024). As the Internet 

becomes more integral to personal, professional, and governmental functions, the need 

for robust cybersecurity measures has never been more critical.  The estimated global cost 

of cybercrime is expected to soar to $23.84 trillion by 2027, a significant increase from 

$8.44 trillion in 2022, as projected by Statista. Notably, 2023 witnessed several significant 

cyberattacks, one of which targeted the US State Department (World Economic Forum, 

2024). As shown in Figure (1), the rapid increase in the number of Internet users 

demonstrates the continuous expansion of the digital landscape. 
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Figure 1. Internet growth (1995-2022) (Internet World Stats, 2024) 

According to a report by Cybersecurity Ventures, cybercrime is predicted to inflict 

damages totaling $10.5 trillion annually by 2025, making it the third-largest economy in 

the world after the US and China (Steve Morgan, 2020). The rise in the Internet usage is 

accompanied by an increase in cyber-attacks, targeting sensitive information, disrupting 

services, and causing significant financial losses. In fact, studies show that a business falls 

victim to a ransomware attack every 11 seconds (Steve Morgan, 2019). 

To safeguard information security, two primary methods are employed for attack 

detection: signature-based identification and anomaly-based detection. 

Signature-based techniques rely on pre-established databases to identify attacks. These 

systems compare incoming data against known attack patterns (signatures) to detect 

threats. While generally effective, these databases require continual updates to remain 

relevant and to accommodate new attack patterns. However, they remain susceptible to 

zero-day attacks—previously unseen threats not cataloged in the database. Consequently, 

such attacks evade detection. Despite their limitations, signature-based systems are 

widely used due to their simplicity and effectiveness against known threats (Leung and 
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Leckie, 2005). 

On the other hand, anomaly-based detection scrutinizes network flow to identify unusual 

behaviors. This approach has demonstrated efficiency in detecting novel attacks, 

including zero-day threats. Anomaly-based methods establish a baseline of normal 

network behavior and flag deviations from this norm as potential threats. This makes them 

particularly useful in identifying previously unknown attacks that signature-based 

methods might miss (Leung and Leckie, 2005). 

In the contemporary digital landscape, a substantial proportion of internet traffic is 

encrypted using SSL/TLS (Secure Sockets Layer/Transport Layer Security) protocols, a 

trend that continues to escalate (Sharafaldin et al., 2018). The pervasive encryption of 

internet traffic presents a formidable challenge for traditional signature-based detection 

mechanisms, which rely on inspecting packet contents for identifying malicious activity. 

However, emerging anomaly-based approaches offer a promising solution by scrutinizing 

network data based on intrinsic characteristics such as packet size, connection duration, 

and packet frequency. Unlike signature-based methods, anomaly-based detection does not 

necessitate decrypting encrypted traffic, enabling effective analysis of encrypted 

protocols. Consequently, anomaly-based detection methodologies are gaining 

prominence in the battle against network attacks, owing to their ability to operate 

effectively in encrypted environments without compromising privacy or security 

(Bhuyan, Bhattacharyya and Kalita, 2013a). 

Recent advancements in Machine Learning (ML) have opened new avenues for 

enhancing the performance of Intrusion Detection Systems (IDS). Machine Learning 

algorithms can process vast amounts of data, learn from it, and improve detection 
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accuracy over time. They can identify complex patterns and relationships in data that 

traditional methods might overlook. Integrating ML with IDS can potentially offer faster 

and more accurate detection of network anomalies, thus providing a robust defense 

against evolving cyber threats (Buczak and Guven, 2015; Sarker et al., 2020). 

Furthermore, the use of Machine Learning in IDS has proven to reduce false positive rates 

by up to 90% in certain applications, providing more reliable and actionable insights for 

cybersecurity professionals (Shah and Issac, 2018).According to a study by Accenture 

(68% of business leaders feel that their cybersecurity risks are increasing , no date), 68% 

of business leaders feel their cybersecurity risks are increasing. This is further 

compounded by the fact that it takes an average of 280 days to identify and contain a 

breach, costing businesses on average $3.86 million (What is the cost of a data breach in 

2020? - IBM Z and LinuxONE Community, no date). The pressing need for improved IDS 

solutions is clear. 

This thesis investigates the performance of Intrusion Detection Systems (IDS) by 

analyzing the impact of various features and algorithms on key metrics, including 

execution time, accuracy, and efficiency. The goal of this research is to provide insights 

into optimizing IDS performance by comparing the effectiveness of different feature-

algorithm combinations. Through rigorous analysis and experimentation, this study aims 

to identify the most efficient and reliable features that can enhance IDS performance. 

Consequently, this research contributes to the development of more robust, adaptable 

security systems, capable of safeguarding against both known and unknown threats. 

1.2 Research Questions and Significance 

This thesis investigates the performance of Intrusion Detection Systems (IDS) by 



5 

 

 

analyzing the impact of various features and algorithms on key metrics, including 

execution time, accuracy, and efficiency. The goal of this research is to provide insights 

into optimizing IDS performance by comparing the effectiveness of different feature-

algorithm combinations. Through rigorous analysis and experimentation, this study aims 

to identify the most efficient and reliable features that can enhance IDS performance. 

Consequently, this research contributes to the development of more robust, adaptable 

security systems, capable of safeguarding against both known and unknown threats. 

The significance of this thesis lies in its potential to improve the effectiveness of IDS by 

leveraging advanced feature selection methods and Machine Learning techniques. By 

optimizing the performance of IDS, this study aims to provide a more reliable defense 

mechanism against cyber threats, thereby enhancing the overall security posture of 

organizations and individuals alike. 

1.3 Scope of Study 

The scope of this thesis encompasses the following aspirations: 

• Investigating a range of Machine Learning algorithms suitable for the 

identification of network anomalies. 

• Focusing on key metrics such as execution time, accuracy, and efficiency 

to evaluate IDS performance. 

• Comparing different Feature-algorithm combinations to identify the most 

efficient and reliable options. 

• Aiming to optimize IDS performance by providing insights into feature-

algorithm combinations that enhance effectiveness. 
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• Contributing to the development of more robust and adaptable security 

systems capable of safeguarding against known and unknown threats 

• Making a meaningful contribution to the academic discourse by achieving 

results consistent with previous studies in the realm of network anomaly 

detection. 

• Evaluating the suitability of selecting common feature techniques in 

improving the performance of IDSs. 

1.4 Thesis Outline 

After the introductory chapter, Chapter Two introduces concepts and background aims to 

provide foundational information crucial for comprehending the study, including details 

on datasets, anomaly and attack classifications, in-depth descriptions of attacks, and 

Machine Learning algorithms employed. Chapter Three provides an overview of relevant 

literature, detailing similar studies conducted in the field. Chapter Four explains the 

methodology and it is divided into two sections. The first section is about, the tools and 

methods, outlines the software and hardware utilized in the study, as well as detailing the 

methods employed for performance evaluation. The second subsection, Implementation, 

encompasses the following steps: data preprocessing, partitioning of data into training 

and testing sets, implementation of feature selection techniques, and application of 

Machine Learning algorithms. Chapter Five is titled as the Results and Discussion, 

presents the findings obtained during the implementation phase, along with an in-depth 

analysis of their cause-and-effect relationships and exploration of alternative approaches. 

Within this chapter, Evaluation scrutinizes the methodology and results, providing critical 

assessment and potential limitations of the study's approach. Conclusions and Future 
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Work in Chapter six states the conclusions drawn from the study's findings and outlines 

avenues for future research based on the results.   
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Chapter 2: Background 

This chapter covers the basic concepts related to Intrusion Detection Systems (IDS), 

feature selection, the dataset used, and machine learning algorithms. It provides the 

necessary background to understand the approach and methods used in this research. 

2.1 Intrusion Detection Systems (IDS) 

Intrusion Detection Systems (IDS) play a crucial role in safeguarding computer networks 

and systems from malicious activities. These systems monitor network traffic or system 

activities for suspicious behavior that may indicate an intrusion attempt. IDS can be 

categorized into two primary types: signature-based IDS and anomaly-based IDS.  

Signature-based IDS relies on a pre-defined database of attack patterns or "signatures." 

When a new packet or behavior matches a known signature, the system flags it as a 

potential threat. However, this method is limited by its inability to detect novel attacks or 

zero-day vulnerabilities, which are not yet cataloged in the signature database. In contrast, 

anomaly-based IDS does not depend on prior knowledge of attacks. Instead, it establishes 

a baseline for normal network behavior and flags deviations from this baseline as potential 

threats. This makes anomaly-based systems more effective in identifying previously 

unknown threats, though they can sometimes generate higher false positives due to 

legitimate behavior that deviates from the norm (Axelsson, 2000) . IDS is critical in 

environments where confidentiality, integrity, and availability of information are of 

utmost importance. Organizations use IDS to complement firewalls, encryption, and other 

security measures. With the increasing sophistication of cyberattacks, modern IDS often 

integrate Machine Learning techniques to improve their detection capabilities. Machine 

Learning enables IDS to learn from data, improve detection accuracy, and reduce false 
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positive rates over time, making them more adaptive to evolving threats (Sommer and 

Paxson, 2010). 

2.2 Feature Selection 

Feature selection is a fundamental step in building efficient IDS, especially when dealing 

with large datasets that contain numerous features. The goal of feature selection is to 

identify and retain the most relevant features that contribute to accurate detection while 

discarding redundant or irrelevant ones. Effective feature selection enhances the IDS's 

performance by improving its accuracy, reducing computational costs, and minimizing 

the risk of overfitting (Guyon and De, 2003). 

There are three primary methods of feature selection: filter methods, wrapper methods, 

and embedded methods.  

2.2.1 Filter methods 

 Rank features based on statistical metrics such as correlation or mutual information. 

These methods are fast and independent of Machine Learning algorithms, but they may 

not capture feature dependencies effectively. 

2.2.2 Wrapper methods  

Evaluate subsets of features by training and testing the model multiple times using 

different combinations. While more accurate, wrapper methods are computationally 

expensive, especially with large datasets. 

2.2.3 Embedded methods  

perform feature selection during the training process of the Machine Learning model. 

These methods, such as Lasso Regression or Decision Trees, tend to strike a balance 
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between speed and accuracy by embedding feature selection within the model-building 

process (Chandrashekar and Sahin, 2014). 

2.3 Dataset 

In the realm of network anomaly detection using Machine Learning methodologies and 

access to substantial volumes of both malicious and benign network traffic is imperative 

for effective training and testing procedures. However, due to privacy concerns, the 

utilization of actual network data in the public domain is often infeasible. To address this 

challenge, numerous datasets have been developed and are continually being curated. 

This section provides an overview of several prominent datasets, followed by a 

comparative evaluation to determine the most suitable option for utilization in the 

implementation phase. 

2.3.1 DARPA 98 

This dataset (Haines et al., 2001), created by MIT Lincoln Laboratory with DARPA 

funding, aims to serve as a training and testing ground for Intrusion Detection Systems 

(IDS). It mimics the local computer network of the United States Air Force, emulating 

various activities like File Transfer Protocol (FTP) file transfers, web browsing, email 

exchanges, and Instant Relay Chat (IRC) messaging. Alongside regular network traffic, 

it includes 38 attack scenarios categorized into types such as Denial of Service (DoS), 

User to Remote (U2R), Probe, and Remote to Local (R2L) (Thomas, Sharma and 

Balakrishnan, 2008). 

While criticized for its departure from real-world network behavior, outdatedness, and 

lack of false positive scenarios (Gharib et al., 2016), the DARPA98 dataset remains 

influential as a precursor to widely-used datasets like KDD Cup 99 and NSL-KDD. 
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2.3.2 KDD99 

The University of California, Irvine developed this dataset (University of California, 

1999) specifically for Intrusion Detection Systems participating in The Third 

International Knowledge Discovery and Data Mining Tools Competition (The KDD Cup 

'99). It comprises data packets from the DARPA98 dataset, featuring 21 derived properties 

obtained through a feature extraction process tailored for Machine Learning applications. 

The dataset is split into two sections: a training set containing 4.9 million instances and a 

test set containing 311,029 instances. KDD99 encompasses 38 distinct attack types, with 

14 attacks unique to the test section, representing unknown attack scenarios. This design 

allows for the evaluation of the detection of unknown attacks in the test set. 

Compared to the DARPA99 dataset, KDD99 has gained preference in numerous studies 

due to its enhanced suitability for Machine Learning techniques, featuring a refined 

feature system and well-structured training and test partitions. While KDD99 served as a 

notable alternative to DARPA98, its extensive repetitions adversely affected research 

outcomes and Machine Learning algorithm performance. Moreover, due to its large size, 

researchers attempted to utilize only parts of it, but random selection failed to capture 

dataset nuances (Özgür and Erdem, 2016). 

2.3.3 NSL-KDD 

In 2009, Tavallaee et al. (Tavallaee et al., 2009) introduced NSL-KDD to address KDD99 

issues. This dataset rectified errors and redundancies present in KDD99, offering four 

distinct parts categorized into training and testing subsets (KDDTrain+ , 

KDDTrain+_20Percent, KDDTest+, KDDTest-21). These subsets contain both normal 

and attack data, providing a comprehensive range of scenarios for testing various machine 
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learning models. Each subset differs in size and purpose: KDDTrain+ contains a larger 

training set, while KDDTrain+_20Percent is a reduced version, which is often used for 

more efficient experiments. The test sets, KDDTest+ and KDDTest-21, are used to 

evaluate the performance of models on unseen data. 

2.3.4 CICIDS2017 

The CICIDS2017 (Intrusion Detection Evaluation Dataset), developed by the Canadian 

Institute for Cybersecurity at the University of New Brunswick, offers several advantages 

over other datasets (Gharib et al., 2016; Sharafaldin et al., 2018), (Sharafaldin, Lashkari 

and Ghorbani, 2018). It provides real-world data obtained from a testbed consisting of 

actual computers, featuring diverse operating systems including Mac, Windows, and 

Linux on both attacker and victim machines. Moreover, the dataset includes labeled data, 

essential for applying Machine Learning methods, with 85 extracted features available 

(Refer to Appendix A for the feature list) for analysis. Both raw data (pcap files) and 

processed data (CSV files) are provided, offering flexibility in analysis. Additionally, the 

dataset draws from the 2016 McAfee security report to include a wide and current array 

of attacks, encompassing a rich variety of protocols including Hyper Text Transfer 

Protocol (HTTPS) in addition to FTP, HTTP, Secure Shell (SSH) (SSH), and email 

protocols. To provide a comprehensive understanding of the attack scenarios simulated 

within the CICIDS2017 dataset (Sharafaldin, Lashkari and Ghorbani, 2018), a detailed 

Tables (1,2) are presented below: 

Table 1. Attacks simulated in the CICIDS2017 dataset 

Attack Description 

Brute Force FTP An attack where adversaries attempt to gain unauthorized access to an FTP server 

by systematically guessing usernames and passwords. 



13 

 

 

Brute Force SSH Similar to Brute Force FTP, this attack targets SSH servers, aiming to gain 

unauthorized access through iterative login attempts. 

Denial of Service 

(DoS) 

DoS attacks aim to disrupt the availability of network services by overwhelming 

target systems with a deluge of malicious traffic. 

Heartbleed Heartbleed exploits a vulnerability in OpenSSL, allowing attackers to read 

sensitive information from the memory of the target server. 

Web Attack Generic term for various attacks targeting web applications, such as SQL 

Injection, Cross-Site Scripting (XSS), and directory traversal. 

Infiltration Infiltration attacks involve unauthorized access to network systems or resources, 

often through exploitation of vulnerabilities in network protocols or applications. 

Botnet Botnets comprise networks of compromised devices (bots) controlled by 

attackers, often used to execute coordinated attacks or distribute malware. 

Distributed Denial of 

Service (DDoS) 

DDoS attacks involve coordinated efforts to flood target systems or networks 

with overwhelming volumes of traffic, rendering them inaccessible to legitimate 

users. 

 

Table 2. CICIDS2017 dataset files description 

File Name Day Attacks 

Monday-WorkingHours. pcap_ISCX.csv Monday Benign (Normal Activity) 

Tuesday-WorkingHours. pcap_ISCX.csv Tuesday Benign, FTP-Patator, SSH-

Patator 

Wednesday-workingHours.pcap_ISCX.csv Wednesday Benign, DoS GoldenEye, DoS Hulk, 

DoS Slowhttptest, DoS slowloris, 

Heartbleed 

Thursday-WorkingHours-Morning-WebAttacks. 

Pcap_ISCX.csv 

Thursday Benign, Web Attack - Brute 

Force, Web Attack – Sql Injection, 

Web Attack – XSS 

Thursday-WorkingHours-Afternoon 

Infilteration.pcap_ISCX.csv 

Thursday Benign, Infiltration 

Friday-WorkingHours-Morning.pcap_ISCX.csv Friday Benign, Bot 

Friday-WorkingHours-Afternoon-

PortScan.pcap_ISCX.csv 

Friday Benign, PortScan 

Friday-WorkingHours-Afternoon-

DoS.pcap_ISCX.csv 

Friday Benign, DDoS 

 

However, CICIDS2017 also presents some drawbacks (Gharib et al., 2016; Sharafaldin 
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et al., 2018). The raw and processed data files are notably large (47.9 GB and 1147.3 MB 

respectively), requiring substantial storage and processing resources. Unlike previous 

datasets such as KDD99 and NSL-KDD, CICIDS2017 does not provide separate files for 

training and testing, necessitating users to create these sections independently. 

Additionally, as a relatively new dataset, CICIDS2017 has not undergone extensive study 

and may contain minor inaccuracies, which are addressed in the data cleansing section. 

After a thorough comparison process, the decision has been made to select the 

CICIDS2017 processed data (CSV files) as the dataset for use in the implementation 

phase. Key factors contributing to this preference include the dataset's up-to-date nature 

and its extensive coverage of protocols and attack types. Furthermore, given the limited 

number of studies conducted with this dataset so far, utilizing it presents an opportunity 

for making a potentially significant contribution to the literature. 

2.4 Machine Learning 

Machine learning is an interdisciplinary field that combines scientific principles and 

artistic creativity to enable computers to learn from data (Géron, 2022). This process 

involves training models on a dataset (training set) and evaluating their performance on a 

separate dataset (test set), thereby reducing the need for human intervention in problem-

solving. Machine Learning is particularly valuable in domains where conventional 

approaches fall short, such as analyzing large, complex datasets, solving intricate 

problems beyond the capabilities of traditional methods, and adapting to evolving 

environments with minimal manual updates. Despite its advantages, not all Machine 

Learning techniques are suitable for every problem. For instance, deep learning, a subset 

of Machine Learning, requires vast amounts of data and computational resources, which 

may not be feasible with smaller datasets like CICIDS2017. Deep learning's complexity 
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and need for extensive datasets make it less suitable for scenarios with limited data. In 

such cases, other Machine Learning algorithms, such as supervised, unsupervised, semi-

supervised, and reinforcement learning, may be more appropriate choices depending on 

the nature and size of the dataset. 

Given these constraints, the choice between traditional Machine Learning and deep 

learning should be guided by the specific requirements and limitations of the task at hand. 

For applications where data is limited or computational resources are constrained, 

traditional Machine Learning methods may offer a more practical and efficient solution. 

Conversely, for tasks that can benefit from the high-level feature extraction and pattern 

recognition capabilities of deep learning, and have access to extensive datasets and 

computational power, deep learning may be the preferred approach. Machine Learning 

algorithms are typically divided into four main categories, distinguished by the labeling 

of their training data and the degree of supervision involved. These categories include 

supervised learning, unsupervised learning, semi-supervised learning, and reinforcement 

learning (Géron, 2022). 

• Supervised learning: In this approach, the training data is accurately 

classified and labeled. For instance, all data flows in the dataset are tagged 

with information about their nature, such as being normal or harmful. 

During the test prediction phase, these tags are matched against the 

algorithm's findings, and its success rate is determined. The method's 

performance is high, but supervised learning is expensive due to the need 

for external services, like manual tagging, for labeling. Decision Trees, K-

Nearest Neighbours, and Random Forests (RF) are examples of algorithms 

used here (Géron, 2022). 
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• Unsupervised learning: This method does not involve a labeling process. 

Instead, the algorithm categorizes the data into clusters based on different 

attributes and examines their relationships. It is widely applied in fields 

like anomaly detection, relationship learning, and dimensionality 

reduction. The cost is lower because it eliminates the need for outsourced 

expertise such as labeling (Géron, 2022). 

• Semi-supervised learning: This hybrid approach merges supervised and 

unsupervised learning methods. Typically, a small fraction of the data is 

labeled, while the remainder is not. It offers the high performance of 

supervised learning with the cost-effectiveness of unsupervised learning 

(Géron, 2022). 

• Reinforcement Learning: Fundamentally different from the other three, 

this method rewards the algorithm for correct decisions and penalizes it 

for errors during training, allowing it to develop its own set of rules 

(Géron, 2022). 

In this thesis, we will utilize supervised learning techniques to leverage a meticulously 

annotated dataset. Our objective is to attain superior performance benefits while avoiding 

excessive costs. The Machine Learning algorithms employed in the implementation stage 

encompass Naive Bayes (NB), Random Forest (RF), AdaBoost, and K Nearest 

Neighbours (KNN). NB and RF were selected because they are commonly used in the 

studies that will be compared, and they have demonstrated strong performance in feature 

selection tasks. K Nearest Neighbours (KNN) was chosen due to its simplicity and 

effectiveness in classification tasks, especially when dealing with high-dimensional data 
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where other models may struggle. AdaBoost, on the other hand, was selected for its ability 

to improve the performance of weak models by focusing on misclassified instances, 

making it particularly effective in cases where the data is noisy or contains outliers. These 

algorithms were selected not only based on their individual strengths but also for their 

relevance to the models used in the studies being compared. 

2.4.1 Naive Bayes 

The NB algorithm simplifies Machine Learning by introducing the independence 

condition to Bayes' theorem (Kotsiantis, Zaharakis and Pintelas, 2007). Operating on the 

assumption of strong independence, the NB classifier (NB) is a straightforward yet highly 

efficient probabilistic classification approach (Mukherjee and Sharma, 2012a). NB is 

favored for its simplicity and effectiveness in classification tasks, ranking among the top 

choices in terms of accuracy and computational efficiency (Ting, Ip and Tsang, 2011). NB 

forms a probabilistic network comprising a parent node representing the unobserved state 

and multiple child nodes representing observed states. While this approach assumes 

independence among the child nodes, this assumption often does not hold true in practice, 

potentially leading to lower accuracy compared to other Machine Learning methods 

(Kotsiantis, Zaharakis and Pintelas, 2007). Nonetheless, NB remains popular due to its 

brief training period and low computational cost. 

2.4.2 Random Forest 

RF Classifier utilizes decision trees in a technique where a "forest" is constructed by 

aggregating numerous decision tree structures generated in various ways (Breiman, 

2001). RF produces N decision trees from the training dataset, employing random 

resampling of the training set for each tree. Consequently, a set of N distinct decision trees 
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is obtained, each differing from the others. Subsequently, a voting mechanism combines 

new estimates derived from the N trees, with the highest-rated value being designated as 

the final outcome. RF offers several advantages (Kostas, 2018): 

1. It demonstrates effectiveness with extensive and intricate datasets. 

2. Unlike decision trees, RF remarkably mitigates this issue. 

3. Its versatility enables application across various Machine Learning problems. 

4. The algorithm adeptly handles missing values within datasets by substituting 

them with internally generated values. 

5. Additionally, RF incorporates the assessment and utilization of variable 

importance during classification, making it suitable for feature selection in Machine 

Learning tasks. 

However, RF's complexity arises from its composition of numerous decision trees. 

Understanding its functionality can be challenging, constituting a notable disadvantage. 

2.4.3 AdaBoost 

AdaBoost (Adaptive Boosting), classified as a boosting method, represents a Machine 

Learning algorithm designed to enhance classification performance (Schapire, 2003). The 

fundamental operational concept of Boosting algorithms entails initially dividing data 

into groups using rudimentary rules. Upon each iteration of the algorithm, new rules are 

incorporated into these initial rules, resulting in the acquisition of numerous weak and 

underperforming rules referred to as "base rules". Through successive iterations, these 

weak rules are amalgamated into a single rule of significantly greater strength and 

efficacy. Throughout this process, the algorithm assigns a weighting coefficient to each 
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weak rule, with the highest coefficient attributed to the rule exhibiting the lowest error 

rate. These weight values play a pivotal role in the selection of final rules, prioritizing 

those with higher scores (Schapire, 2003).  AdaBoost algorithm presents several 

advantages (Kostas, 2018): 

1. It obviates the need for variable transformation for implementation. 

2. It effectively operates on numerous weak rules. 

3. The occurrence of overfitting in AdaBoost is notably infrequent. 

4. Additionally, AdaBoost exhibits proficiency in handling missing values within 

datasets. 

Conversely, it is noteworthy to mention some disadvantages, including susceptibility to 

noise and outliers, and comparatively lower predictive values when juxtaposed with other 

algorithms. 

2.4.4 K Nearest Neighbour 

KNN (K Nearest Neighbour), recognized as a sample-based technique, stands out as one 

of the widely employed Machine Learning algorithms due to its straightforward and 

efficient structure. This approach operates on the premise that instances within a dataset 

exhibit proximity to instances sharing similar characteristics in another dataset 

(Kotsiantis, Zaharakis and Pintelas, 2007). In practical terms, KNN discerns the 

classification of novel data points by leveraging the known class types within the training 

dataset. This classification process entails scrutinizing the nearest neighbors of the novel 

sample lacking specific classifications (Kotsiantis, Zaharakis and Pintelas, 2007; Kramer 

and Kramer, 2013). The following table (3) compares the supervised learning techniques 
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utilized in this thesis: 

Table 3. Supervised learning techniques 

Algorithm            Principle of 

Working 

Model 

Parameters 

Advantages Applications                                         

Naive Bayes Calculates 

probabilities based 

on the assumption 

of feature 

independence, 

using Bayes’ 

theorem to classify 

data 

Probability 

estimates for each 

class, prior 

probabilities 

based on training 

data 

Simple and fast 

for classification 

tasks; performs 

well with high-

dimensional data 

Spam detection, 

sentiment analysis, 

document 

categorization 

Random Forest Builds multiple 

decision trees and 

merges their 

predictions for 

better accuracy 

Number of trees 

in the forest, 

maximum depth 

of each tree. 

Reduces 

overfitting 

compared to 

single decision 

trees; handles 

missing values 

effectively 

Feature selection, 

risk assessment, 

medical diagnosis 

AdaBoost Combines 

multiple weak 

classifiers to form 

a strong classifier 

through weighted 

voting 

Number of weak 

classifiers, 

learning rate for 

updating weights 

Reduces bias and 

variance; robust to 

outliers 

Face detection, text 

classification, 

customer churn 

prediction 

K Nearest 

Neighbour 

Classifies a new 

data point based 

on the majority 

class among its k-

nearest neighbors 

in the training 

dataset 

Number of 

neighbors (k), 

distance metric 

used for 

measuring 

similarity 

Simple to 

implement and 

understand; 

effective for small 

datasets 

Recommendation 

systems, image 

classification, 

anomaly detection 
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Chapter 3: Chapter Three: Literature Review 

This chapter reviews relevant studies and research related to intrusion detection systems, 

feature selection methods, and machine learning techniques. It highlights key findings, 

methodologies, and gaps in the existing literature that this research aims to address. 

3.1 Introduction 

In this chapter, we categorize and review the literature on Machine Learning approaches 

for intrusion detection based on three prominent datasets: KDD99, NSL-KDD, and 

CICIDS2017. This categorization allows for a structured examination of various studies, 

highlighting the methods, results, and contributions specific to each dataset. By exploring 

the performance and methodologies of previous research, we aim to provide a 

comprehensive overview of the advancements and challenges in the field of anomaly 

detection in computer networks. Each section will delve into the Machine Learning 

algorithms utilized, the specifics of the datasets, and the performance metrics that were 

achieved, offering a detailed and nuanced understanding of the current state of the art. 

3.2 DARPA 98 and KDD99 

In a study conducted by Chebrolu et al. (Chebrolu, Abraham and Thomas, 2005), 

investigated intrusion detection using the DARPA dataset, initially applying Principal 

Component Analysis (PCA) and Independent Component Analysis (ICA) for data 

compression, but these methods did not yield adequate results. This prompted the use of 

more advanced techniques like Markov blanket model-based feature selection and 

decision tree analysis. The researchers then applied a hybrid model combining Bayesian 

Networks (BN) and Classification and Regression Trees (CART), which led to impressive 

results. This ensemble approach achieved 100% accuracy for detecting Normal, Probe, 
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and Denial of Service (DoS) attacks, while User to Root (U2R) and Remote to Local 

(R2L) attacks had detection accuracies of 84% and 99.47%, respectively. These results 

suggest that hybrid approaches can be particularly effective in addressing the varying 

complexities of different attack types.  

Similarly, the work by (Khan, Awad and Thuraisingham, 2007) builds upon the challenges 

of intrusion detection, particularly in handling the less successful U2R and R2L attack 

categories. In their 2007 study, Support Vector Machines (SVM) were applied to the 

DARPA 98 dataset, yielding high accuracy for Normal (98%), Probe (88%), and DoS 

(84%) attacks but falling short with U2R and R2L (0% and 18%, respectively). To address 

these limitations, the integration of the Dynamically Growing Self-Organizing Tree 

(DGSOT) algorithm significantly improved performance, particularly for U2R (23%) and 

R2L (43%) attacks. This study highlights how combining SVM with supplementary 

algorithms can enhance detection rates, especially for harder-to-detect anomalies. The 

SVM + DGSOT method outperformed other approaches in terms of accuracy and 

efficiency, further underscoring the importance of leveraging ensemble or hybrid 

techniques, as seen in Chebrolu et al.'s work. 

The importance of feature selection, explored in the study by Wang (Wang et al., 2015), 

ties back to Chebrolu et al.’s use of data reduction techniques and ensemble models. 

Instead of focusing on all 41 features in the KDD99 dataset, [39] identified the top 10 

features using Information Gain (IG) and wrapper methods with Bayesian Networks (BN) 

and Decision Trees (C4.5). These reduced feature sets achieved detection rates of 99.8% 

with a false positive rate of 0.34%. This study reinforces the idea that careful feature 

selection can maintain or improve detection accuracy while enhancing system efficiency, 

echoing the earlier findings that reduced datasets can still produce high detection rates. 
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The focus on Distributed Denial of Service (DDoS) detection in (Wang et al., 2015) 

extends the application of feature selection to real-world environments, a practical 

advancement over earlier studies that primarily focused on laboratory datasets. 

Building on the theme of feature selection, (Peng et al., 2018) introduced the FACO (Ant 

Colony Optimization-based Feature Selection) algorithm, leveraging ant colony 

optimization principles to reduce redundancy and avoid local optima in feature selection. 

Tested on the KDD CUP99 dataset, FACO achieved a classification accuracy of 98% 

using a curated subset of features, further confirming the effectiveness of optimized 

feature selection in intrusion detection tasks. This aligns with (Wang et al., 2015)’s 

emphasis on the importance of reducing the number of features for greater efficiency, and 

it further extends the potential of advanced optimization techniques like Ant Colony 

Optimization for real-world intrusion detection scenarios. 

Finally, the study by Tao (Tao, Sun and Sun, 2018) proposed a novel approach by 

combining the strengths of SVM and Genetic Algorithms (GA) for intrusion detection. 

This research introduced the Fuzzy Weighting Preprocessing - Support Vector Machines 

- Genetic Algorithms (FWP-SVM-GA), which optimizes feature selection, weight 

adjustment, and parameter tuning. The use of GA to optimize SVM parameters, combined 

with a fitness function designed to minimize error rates and maximize true positive rates, 

resulted in faster convergence and better detection rates. This study is particularly relevant 

in light of the earlier works that highlighted the limitations of SVM when used in isolation 

for complex attack types like U2R and R2L. By integrating GA, (Tao, Sun and Sun, 2018) 

demonstrates the potential for overcoming these challenges, providing improved results 

across various performance metrics, including reduced false positives and shorter training 

times. This further supports the evolving trend toward combining multiple algorithms to 



24 

 

 

enhance intrusion detection system performance, as initially proposed by Chebrolu et al. 

and expanded upon in subsequent studies. 

3.3 NSL-KDD 

The study by Mukherjee (Mukherjee and Sharma, 2012b) serves as an essential starting 

point, aiming to enhance IDS accuracy by reducing the input feature set through the 

Feature Vitality Based Reduction Method (FVBRM). Compared to traditional feature 

selection methods such as Correlation-based Feature Selection (CFS), IG, and Gain Ratio 

(GR), FVBRM showed superior results, achieving an impressive classification accuracy 

of 97.78%. Although this method utilized a larger feature set, its effectiveness in 

classifying various attack types, especially DoS and probe, was remarkable. This indicates 

that FVBRM's approach of retaining more features proved to be efficient in boosting 

classification performance. Connecting this to study by Popoola (Popoola and Adewumi, 

2017), which adopted a different approach to improving intrusion detection accuracy, it 

employed Discretized Differential Evolution (DDE) alongside the C4.5 Machine 

Learning algorithm. By focusing on optimal feature selection, this method reduced the 

feature set and led to significant improvements in detection accuracy. The findings 

revealed that 16 critical features were sufficient to achieve high classification accuracy 

with minimal error rates, including a notable accuracy rate of 99.92% on the training 

dataset. This efficiency in feature selection was also reflected in the reduced training and 

testing times. When compared to FVBRM, which retained a larger feature set, DDE 

proved that fewer but more optimally selected features could still deliver comparable or 

even superior results in some instances, especially when considering processing time 

which adopted a different approach to improving intrusion detection accuracy, it 

employed Discretized Differential Evolution (DDE) alongside the C4.5 Machine 
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Learning algorithm. By focusing on optimal feature selection, this method reduced the 

feature set and led to significant improvements in detection accuracy. The findings 

revealed that 16 critical features were sufficient to achieve high classification accuracy 

with minimal error rates, including a notable accuracy rate of 99.92% on the training 

dataset. This efficiency in feature selection was also reflected in the reduced training and 

testing times. When compared to FVBRM, which retained a larger feature set, DDE 

proved that fewer but more optimally selected features could still deliver comparable or 

even superior results in some instances, especially when considering processing time. 

The integration of hybrid feature selection methods was explored in study by H. Dong 

(Dong, Shui and Zhang, 2021), where a combination of IG and PCA was applied in 

conjunction with RF. This approach addressed the challenges of high-dimensional data in 

industrial control networks. With classification accuracies of 99.84% and 99.80% for 

feature subsets from NSL-KDD and CICIDS2017 datasets, respectively, the IG-PCA-RF 

model clearly outperformed traditional classifiers like DT and SVM. Furthermore, 

benchmarking against contemporary methods, such as DE-ELM and Cosine-PIO, 

demonstrated that hybrid approaches could achieve superior classification accuracy. 

When comparing this with DDE, both methods focus on optimizing feature selection but 

through different techniques DDE leveraging evolutionary algorithms and IG-PCA-RF 

combining statistical and dimensionality reduction techniques. The study by Belavagi 

(Belavagi and Muniyal, 2016), utilized all 42 features from the NSL-KDD dataset and 

evaluated the performance of several Machine Learning algorithms, including Logistic 

Regression, Gaussian NB, SVM, and RF. RF emerged as the most effective, achieving a 

99% accuracy rate. This comprehensive analysis highlights the strength of RF in IDS 

applications, especially when working with the full feature set. In contrast to studies that 
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focused on reducing the feature set, this study demonstrates that, under the right 

algorithm, retaining all features can yield impressive results. 

On the other hand, study by Yin (Yin et al., 2017), shifted the focus towards deep learning 

by proposing a Recurrent Neural Network-based IDS (RNN-IDS). This study achieved 

notable detection rates for attack types like DoS and probe, outperforming traditional 

Machine Learning methods like J48 and RF. The performance of RNN-IDS underscores 

the potential of deep learning approaches in IDS applications, particularly in multiclass 

classification tasks. When comparing this with the previously discussed methods, RNN-

IDS stands out in its ability to model complex data patterns, but it also introduces more 

computational complexity compared to the simpler feature selection techniques like 

FVBRM and DDE. 

In study by Ambusaidi (Ambusaidi et al., 2016), the issue of redundant and irrelevant 

features in network traffic classification was addressed by introducing the Flexible 

Mutual Information Feature Selection (FMIFS) algorithm. FMIFS was designed to 

enhance the accuracy and efficiency of feature selection by eliminating the need for a 

redundancy parameter, thus streamlining the process. When integrated into the Least 

Square SVM-based Intrusion Detection System (LSSVM-IDS), this approach yielded 

remarkable performance improvements. Across multiple datasets, including KDD Cup 

99, NSL-KDD, and Kyoto 2006+, LSSVM-IDS paired with FMIFS achieved superior 

results compared to traditional methods. For instance, on the NSL-KDD dataset, the 

system attained a 99.91% accuracy rate, a detection rate of 98.76%, and a false positive 

rate of just 0.28%. This study's contributions are particularly notable when contrasted 

with other techniques discussed earlier. Study (Dong, Shui and Zhang, 2021), for 

example, employed a hybrid feature selection method combining IG and Principal 
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Component Analysis (PCA), which focused on reducing data dimensionality and 

redundancy, alongside boosting classification accuracy. While FMIFS prioritizes 

relevance by simplifying feature selection and reducing computational costs, the IG-PCA 

approach from study (Dong, Shui and Zhang, 2021) addresses dimensionality challenges 

more directly. Both methods, although different in their focus, have significantly 

advanced IDS capabilities by refining how features are selected and processed, offering 

distinct paths to improve the detection and classification of network intrusions. 

Furthermore, the performance metrics of FMIFS, particularly its low false positive rates 

and high detection accuracy, align closely with the objectives of reducing computational 

overhead without compromising on precision. This balance is critical for real-world 

deployment, especially in environments with high-dimensional data like industrial control 

systems or large-scale enterprise networks. 

However, as study (Ambusaidi et al., 2016) suggests, while FMIFS demonstrates great 

promise, future research could refine the search strategy to address challenges posed by 

unbalanced data distributions. This focus on optimization parallels discussions from study 

(Mukherjee and Sharma, 2012b), where the Feature Vitality Based Reduction Method 

(FVBRM) sought to maximize classification accuracy across different attack types while 

dealing with large feature sets. Both studies underscore the ongoing need to refine feature 

selection techniques to handle the complexities of modern Intrusion Detection Systems 

effectively. 

3.4 CICIDS2017 

As the field of intrusion detection continues to advance, the CICIDS2017 dataset has 

emerged as a crucial benchmark for evaluating the effectiveness of various Intrusion 

Detection Systems (IDS). Several studies have focused on leveraging this dataset to 
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develop and test innovative techniques aimed at improving detection accuracy and 

efficiency. In study by Yulianto [48], the researchers aimed to enhance AdaBoost-based 

Intrusion Detection Systems (IDS) by integrating multiple advanced techniques, 

including the Synthetic Minority Oversampling Technique (SMOTE), Principal 

Component Analysis (PCA), and Ensemble Feature Selection (EFS), applied on the 

CICIDS2017 dataset. The motivation behind this integration was to address the imbalance 

commonly found in Intrusion Detection datasets, where minority class samples 

(representing attack data) are underrepresented compared to majority class samples 

(representing normal traffic). The proposed system begins by applying SMOTE to 

balance the dataset by oversampling the minority class samples. This is a crucial step to 

avoid model bias toward the majority class and ensure more accurate detection of 

intrusion attempts. Following this, PCA is employed to reduce the dimensionality of the 

dataset, simplifying the dataset while retaining the most significant features. Feature 

selection is then performed using the EFS technique, which calculates the IG from each 

feature and ranks them. The final optimal set of features is chosen from this ranking to be 

used in the AdaBoost classifier. Through experimental evaluations, this combined 

system—SMOTE, PCA, EFS, and AdaBoost—achieved remarkable results. Notably, the 

system demonstrated an Area Under the Receiver Operating Characteristic curve 

(AUROC) of 92%. Additionally, it achieved an accuracy of 81.83%, precision of 81.83%, 

a perfect recall of 100%, and an F1 Score of 90.01%. These metrics highlight the system's 

effectiveness in not only identifying a large proportion of true positive instances (recall) 

but also maintaining precision and overall balanced performance. The study's outcomes 

are significant when compared to previous approaches, demonstrating improvements 

across multiple performance metrics. This highlights the importance of combining robust 
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Machine Learning techniques like AdaBoost with advanced data preprocessing methods 

such as SMOTE and PCA. The research emphasizes the growing need for high-

performance IDS models capable of handling increasingly complex and diverse network 

behaviors, as seen in modern network environments like those represented by the 

CICIDS2017 dataset.  

Building on this foundation of addressing data imbalance and feature selection, study by 

Jamadar (Jamadar, 2018) introduces a novel approach leveraging the decision tree 

algorithm to construct a Network Intrusion Detection System (NIDS). Here, the focus 

shifts toward anomaly detection, where the system utilizes Recursive Feature Elimination 

(RFE) after encoding categorical features from the CICIDS2017 dataset. The 

methodology emphasizes the importance of using unseen data for model validation, and 

the decision tree model developed in this study achieved a remarkable 99% accuracy on 

the test dataset, with a True Positive Rate (TPR) of 99.9% and a False Positive Rate (FPR) 

of just 0.1%. This further reinforces the argument that feature selection and model 

optimization are critical to the detection of network intrusions. Unlike the previous study, 

which used multiple techniques (SMOTE, PCA, EFS), this study focused on the decision 

tree as a single classifier, achieving impressive results with minimal complexity. 

In a complementary study by Kurniabudi (Kurniabudi et al., 2021), the focus broadens to 

tackle high-class imbalance within the CICIDS-2017 dataset using the IG feature 

selection technique. This study also employs the RF classifier, known for its robustness 

in handling multi-class datasets. The experimental results demonstrate that by using 22 to 

28 selected features, the classifier achieves an accuracy of 99.84% on the training data 

and 99.83% on the test dataset. This emphasizes the critical role of feature selection, as 

the reduced set of features still maintains high classification performance. The study 



30 

 

 

introduces two approaches aimed at extracting relevant features crucial for detecting 

attacks within high-dimensional, multi-class, and imbalanced datasets. Additionally, it 

successfully highlights how different classifiers can handle imbalanced datasets when 

supported by robust feature extraction techniques. Further experimentation with the IG 

technique is warranted to fully optimize feature selection, underscoring the study's 

superiority over existing methods in terms of accuracy, True Positive Rate, False Positive 

Rate, Precision, and Receiver Operating Characteristic metrics. 

In study by Reis (Reis, Maia and Praça, 2019), the dynamic evolution of network 

infrastructures and the escalating sophistication of cyberattacks underscore the need for 

robust Intrusion Detection Systems (IDS). Leveraging Machine Learning techniques, 

particularly feature selection and ensemble methods, the research focuses on the recent 

CICIDS2017 dataset to develop effective intrusion detection models. One of the key 

challenges addressed in this study is the need to balance high detection accuracy with 

efficient execution time. By employing permutation importance, the study efficiently 

distills the dataset's original 69 features into a concise set of 10, significantly enhancing 

model execution time without compromising detection performance. This method not 

only reduces the computational load but also facilitates faster intrusion detection 

processes, a critical factor in real-time network environments. Notably, the evaluation 

using the RF algorithm on both the reduced and full feature sets (10 vs. 69 features) 

reveals that the optimized dataset sustains high detection performance. This approach 

highlights a common challenge in IDS research: balancing feature reduction with 

maintaining or even improving detection rates. Metrics such as precision, recall, F1-score, 

false negatives, and false positives were calculated for various attack categories. The 

results indicate that feature selection can significantly impact detection efficiency, as 
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demonstrated by the RF algorithm achieving 93% precision, 91% recall, and a 91.9% F1-

score with the reduced feature set. This underscores the potential of feature selection 

techniques in refining IDS models for real-time detection scenarios. Additionally, the 

study examines false positive and false negative rates, crucial for any IDS, showing 

minimal false positives and primarily false negatives. For instance, with 10 features, the 

false negative rate (FNR) is 0.09 compared to 0.081 with 69 features, while the false 

positive rate (FPR) remains zero. When considering attacks confused with benign traffic, 

the FNR decreases to 0.043 with 10 features and 0.036 with 69 features, showing the 

effectiveness of the reduced feature set in real-world scenarios. While attacks like DDoS, 

Heartbleed, Infiltration, and SSH Patator are well-detected, the Web Bruteforce attack 

poses a greater challenge, with a 0.554 FNR, underscoring the complexity of detecting 

more subtle or obfuscated attacks. 

In study by Stiawan (Stiawan et al., 2020), the focus lies on enhancing traffic anomaly 

detection accuracy while reducing computational complexity  goals that closely align with 

those in study (Reis, Maia and Praça, 2019). The study employs IG as the primary feature 

selection technique to rank and group features based on minimum weight values. This 

method, similar to the permutation importance approach in (Reis, Maia and Praça, 2019), 

aims to extract the most relevant features from the CICIDS2017 dataset while minimizing 

computational overhead. Here, too, the challenge of balancing detection accuracy with 

execution time is evident. The study compares the performance of several classifier 

algorithms, including RF, Bayes Net (BN), Random Tree (RT), NB, and J48, revealing 

that the number of selected features significantly influences both detection accuracy and 

execution time. Notably, RF achieves the highest accuracy of 99.86% using 22 relevant 

features, though with longer execution times compared to J48, which attains a slightly 
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higher accuracy of 99.87% using 52 relevant features. This finding mirrors the trade-off 

observed in study (Reis, Maia and Praça, 2019), where a reduced feature set leads to faster 

execution but requires careful consideration to avoid sacrificing detection accuracy. The 

superiority of RF in achieving high accuracy with fewer features aligns with the 

conclusions drawn in study (Reis, Maia and Praça, 2019), where feature selection proved 

critical to improving model efficiency. However, study (Stiawan et al., 2020) also 

highlights the potential benefits of exploring different classifiers, as Bayes Net (BN) 

demonstrated proficiency in detecting all traffic types with specific feature subsets, 

though with slightly lower accuracy. The study further emphasizes the importance of 

reducing false positive rates, particularly for BN, which benefits significantly from 

effective feature selection. 

Study by Jany (Jany Shabu et al., 2021) investigates a new framework for Anomaly-based 

Intrusion Detection Systems (ADS) that aims to improve the performance of existing 

intrusion detection methods. Despite the application of various supervised and 

unsupervised Machine Learning techniques, achieving high detection accuracy remains a 

challenge due to limited public datasets and the variable performance of different 

classifiers in detecting specific types of attacks. To address these challenges, this study 

compares multiple feature selection methods and classification decision algorithms, 

integrating them into a unified framework with automatic parameter adjustment. This 

approach enhances the robustness of both feature selection and ensemble classification, 

reducing reliance on manual experimentation for optimal parameter settings. The 

experimental analysis uses the NSL-KDD dataset and the more recent CICIDS2017 

dataset, demonstrating the framework's efficiency in terms of accuracy and a significantly 

reduced False Positive Rate (FPR). The results show that automatic feature selection 



33 

 

 

combined with ensemble classifiers can markedly improve the effectiveness of Intrusion 

Detection Systems (IDS). The system’s reduced FPR makes it particularly effective for 

anomaly detection, enhancing its practical utility in real-time network environments. 

When comparing this study with previous works such as (Reis, Maia and Praça, 2019), it 

is clear that (Jany Shabu et al., 2021) focuses on enhancing the robustness of IDS 

frameworks through automatic feature selection and classifier parameter optimization, 

whereas studies (Reis, Maia and Praça, 2019) concentrated on optimizing detection 

accuracy by selecting a reduced number of features using different methods like 

permutation importance and IG, respectively. However, none of the previous studies 

explicitly addressed the challenge of automatic parameter adjustment, which (Jany Shabu 

et al., 2021) incorporates, making it an important contribution that bridges a gap in the 

current IDS landscape. 

In study by Mhawi (Mhawi, Aldallal and Hassan, 2022), a novel approach to enhance 

Intrusion Detection Systems (IDSs) is presented, focusing on the integration of advanced 

feature selection techniques within a hybrid ensemble learning framework. This study 

addresses the challenges faced in prior research (Reis, Maia and Praça, 2019), where high 

dimensionality and computational costs hindered the effectiveness of anomaly detection. 

The proposed methodology employs a hybrid of Correlation Feature Selection coupled 

with Forest Penalized Attributes (CFS–FPA), significantly improving feature relevance 

and reducing redundancy.  The study's experiments utilize the CICIDS2017 dataset, akin 

to those in studies (Reis, Maia and Praça, 2019), which also focus on optimizing detection 

accuracy while minimizing false alarm rates. Notably, the proposed model demonstrates 

an impressive accuracy of 99.73% with a false-negative rate of 0.123, showcasing its 

efficacy in managing the balance between high detection rates and low error rates. This 
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aligns with the findings of study (Stiawan et al., 2020), where the emphasis was placed 

on selecting relevant features to enhance detection performance while considering 

execution time.  Furthermore, the comparison of multiple classifiers, including SVM, RF, 

NB, and KNN, echoes the classifier diversity discussed in study (Stiawan et al., 2020). In 

both studies, the importance of selecting the right features becomes apparent, particularly 

when dealing with complex datasets like CICIDS2017. The findings suggest that 

employing an ensemble learning approach, as seen in study (Mhawi, Aldallal and Hassan, 

2022), not only increases accuracy but also enhances the overall robustness of the IDS. 

In this research, our evaluation and improvements will draw  upon the methodologies 

outlined in  studies (Reis, Maia and Praça, 2019), enabling us to advance our investigation. 

By leveraging their use of feature selection techniques and classifier optimization on the 

CICIDS2017 dataset, we aim to refine our own approach to achieving a balance between 

detection accuracy and computational efficiency. Specifically, we will incorporate the use 

of permutation importance and IG, as explored in these studies, to identify the most 

relevant features, which can streamline the intrusion detection process. Through detailed 

experimentation, we will seek to optimize the feature set that offers the highest accuracy 

for detecting attacks, while also minimizing the processing time and overhead required. 

Additionally, our work will include a rigorous validation process that not only compares 

our findings with those of prior studies but also delves into execution efficiency, 

evaluating the trade-offs between accuracy and speed. This comparative analysis will help 

in identifying a feature subset that is consistent across multiple extraction techniques, 

improving the interpretability and robustness of IDS. This comprehensive approach will 

pave the way for future research, setting the groundwork for more efficient and reliable 

intrusion detection frameworks. 
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Chapter 4: Chapter Four: Methodology  

This chapter outlines the methodology used in this thesis. It explains the approaches and 

techniques applied to data collection, feature selection, model training, and evaluation. 

The chapter also justifies the choice of algorithms and optimization methods, providing a 

clear overview of the steps taken to achieve the research objectives. 

4.1 Tools and Methods 

4.1.1 Software Platform 

Python (3.12.3 Documentation, 2024), Python, an object-oriented programming language 

known for its simplicity and flexibility, garners attention due to its intuitive syntax and 

dynamic nature. It facilitates both coding and analysis tasks seamlessly. Furthermore, 

Python boasts extensive documentation available through various channels such as books, 

online platforms, and community forums. Additionally, its compatibility with numerous 

libraries tailored for Machine Learning applications makes it a preferred choice, 

particularly Python 3.6 for its advantageous features. 

Scikit-learn (scikit-learn: machine learning in Python — scikit-learn 1.4.2 

documentation, no date), commonly referred to as sklearn, stands as a robust Machine 

Learning library designed to enhance Python's inherent simplicity and adaptability. 

Offering a rich suite of resources for Machine Learning and statistical analysis, it 

simplifies intricate tasks. Its user-friendly interface and detailed documentation make it a 

preferred choice among novices and experienced professionals in the field of data science. 

The seamless integration with Python's ecosystem and diverse algorithm support 

streamlines the creation and implementation of Machine Learning models. Furthermore, 

its commitment to clear, coherent code resonates with Python's principles, cementing its 
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position as a favorite among developers. 

 

Pandas (‘pandas - Python Data Analysis Library’, no date), a library, within the Python 

ecosystem transforms the way data is managed and analyzed through its data structures 

and robust tools. With a foundation on NumPy Pandas provides user data structures like 

DataFrames and Series that simplify tasks such as cleaning, transforming and exploring 

data. Its smooth integration with other Python libraries like Matplotlib and scikit learn 

streamlines data analysis workflows. Additionally, Pandas broad range of features for 

handling missing data, time series and database like operations make it essential for 

professionals working with data in industries. From importing data to creating 

visualizations Pandas enables users to extract insights from their data effectively 

solidifying its position as a tool, in the field of data science. 

Matplotlib (‘Matplotlib — Visualization with Python’, no date), a component of the 

Python data visualization toolkit allows users to effortlessly craft quality visual 

representations. With an array of plotting features ranging from line graphs to intricate 

3D displays Matplotlib offers the versatility and personalization necessary to effectively 

communicate insights. Its seamless integration, with Jupyter Notebook and interactive 

interfaces facilitates data exploration and presentation. Moreover, Matplotlib’s 

comprehensive documentation and strong community backing ensure accessibility for 

users of varying expertise levels fostering an atmosphere for sharing knowledge and 

techniques. Whether designing visuals for reports or dynamic plots for applications 

Matplotlib remains a preferred tool, among data professionals, scholars and teachers alike 

propelling advancements and discoveries through visualization process. 
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NumPy (‘NumPy - ’, no date), the fundamental package for numerical computing in 

Python, serves as the backbone for scientific computing and data analysis tasks. Its 

powerful array objects and versatile functions enable efficient manipulation and 

computation of large datasets with ease. NumPy's array-oriented computing paradigm 

facilitates vectorized operations, optimizing performance and scalability for numerical 

tasks. Moreover, its seamless integration with other Python libraries, such as Pandas and 

Matplotlib, streamlines data analysis workflows, enabling users to explore, visualize, and 

analyze data seamlessly. With its robust functionality for mathematical operations, linear 

algebra, Fourier transforms, and random number generation, NumPy empowers users 

across various domains, from academia to industry, to tackle complex computational 

challenges and drive innovation forward. 

4.1.2 Hardware Platform 

A vital consideration when assessing Machine Learning algorithms is their execution 

time. However, it's crucial to acknowledge that execution time can fluctuate based on the 

performance of the specific computer utilized. To provide transparency, the technical 

specifications of the computer employed in the application are disclosed. The technical 

attributes of the computer during the implementation phase encompass: 

Central Processing Unit: 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz   2.69 GHz 

Random Access Memory: 32.0 GB (31.7 GB usable) 

System Type: 64-bit operating system, x64-based processor 

Operation System:  Windows 11 Home 

Graphic Processing Unit: NVIDIA GeForce RTX 3050 TI 
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4.1.3 Performance Evaluation Methods 

The appraisal of the discoveries in this inquire about is based on four key measurements: 

accuracy, recall, precision and F-measure. These measurements are bounded between 0 

and 1, where a esteem closer to 1 demonstrates superior execution, whereas a esteem 

nearing 0 means lower performance. 

Accuracy is characterized as the extent of accurately classified information to the add up 

to dataset (Bhuyan, Bhattacharyya and Kalita, 2013b). 

Accuracy = 
𝑇𝑁+𝑇𝑃

𝐹𝑃+𝑇𝑁+𝑇𝑃+𝐹𝑁
   (4.1) 

Recall, known as Affectability, speaks to the extent of information precisely recognized 

as an assault out of all assault occasions (Bhuyan, Bhattacharyya and Kalita, 2013b). 

 Recall = 
𝑇𝑃

𝑇𝑝+𝐹𝑁
                        (4.2) 

Precision measures the extent of precisely classified assault information among all 

information classified as assaults (Bhuyan, Bhattacharyya and Kalita, 2013b). 

  Precision = 
𝑇𝑃

𝐹𝑝+𝑇𝑃
                (4.3) 

F-measure, F-score or F1-score, signifies the consonant cruel of review and accuracy. It 

serves as a comprehensive pointer of generally victory (Bhuyan, Bhattacharyya and 

Kalita, 2013b). Thus, in this examination, specific consideration will be paid to the F1 

measure. 

                          F-measure = 
2

1

𝑅𝑒𝑐𝑎𝑙𝑙
+ 

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

              (4.4) 
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The assessment of these four measurements depends on the following: 

• True Positive (TP): Occasions where assault information is accurately 

distinguished as attacks. 

• False Positive (FP): Occurrences where benign data is erroneously 

classified as attacks (Type-1 Error). 

• False Negative (FN): Occurrences where attack data is wrongly classified 

as benign (Type-2 Error). 

• True Negative (TN): Occasions where benign data is accurately 

recognized as benign. 

These metrics are visually represented through a Confusion Matrix, as depicted in Figure 

(2), which provides a clearer understanding of their relationships and significance. 

 

Figure 2. Confusion Matrix representation of classification results 

Additionally, while not considered a success criterion, the processing time is included in 
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this evaluation list due to its significance in algorithm selection. 

 

4.2 Implementation 

This section encompasses a series of steps involving preprocessing and practical 

application aimed at anomaly detection using Machine Learning techniques. Initially, the 

data undergoes a cleaning process to rectify errors and defects. Subsequently, the dataset 

is partitioned into two segments: training and testing. Following these steps, the selection 

of features required by the algorithms is determined. The section concludes with the 

execution of Machine Learning algorithms. A detailed depiction of this implementation 

process is provided in Figure (3). 

 

 

 

 

 

 

 

4.2.1 Data Cleaning 

To enhance the utility of the dataset for practical applications, it may be necessary to 

implement certain modifications. In this section, we address several issues present in the 

Figure 3. Methodology process 
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CICIDS2017 dataset and propose corresponding corrections. The initial dataset 

comprises 2,830,743 stream records (Sharafaldin, Lashkari and Ghorbani, 2018), as 

outlined in Table (4). 

 

Table 4. Attacks records in the CICIDS2017 dataset 

Label Name Number 

Benign 2,273,097 

DoS Hulk 231,073 

PortScan 158,930 

DDoS 128,027 

DoS GoldenEye 10,293 

FTP-Patator 7,938 

SSH-Patator 5,897 

DoS Slowloris 5,796 

DoS Slowhttptest 5,499 

Bot 1,966 

Web Attack – Brute Force 1,507 

Web Attack – XSS 652 

Infiltration 36 

Web Attack – SQL Injection 21 

Heartbleed 11 

We identified a duplication issue with the Fwd Header Length feature within the dataset. 

This particular feature, crucial for defining the forward direction data flow in terms of 

total bytes used, was found to be duplicated, appearing in both the 35th and 56th columns. 

To address this anomaly, we resolved to eliminate the redundant occurrence located in 

column 56. 

Then convert properties that include categorical and string values — such as source IP 

address, destination IP address, stream ID and timestamp into numeric data suitable for 

Machine Learning algorithms. This conversion can be done using Sklearn's 

LabelEncoder() by applying this method, It will be assigned different numerical values, 

which can be used directly in Machine Learning processes, ranging from 0 to n-1, making 

it more suitable for analysis. In any case, in spite of the 'Label' tag being a categorical 
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include, no adjustments were made to it. Despite the fact that the "Label" attribute 

qualifies as a categorical feature, it has been left unaltered. This decision stems from the 

necessity to preserve the original categories throughout the processing stage. Retaining 

these categories facilitates the classification of attack types in varied manifestations and 

enables experimentation with diverse analytical methods. 

In the 'Label' feature, the character '–' used to differentiate web attack subtypes (such as 

Brute Force, XSS, SQL Injection) must be replaced with the character '-' because utf-8, 

the default encoding for the Pandas library, does not recognize the former character. If not 

replaced, this issue will cause the Pandas library to malfunction. 

Furthermore, the 'Flow Bytes/s' and 'Flow Packets/s' features include the values 'Infinity' 

and 'NaN' alongside numerical values. These should be converted to -1 and 0, 

respectively, to ensure they are suitable for Machine Learning algorithms. 

4.2.2 Splitting Data into Training and Testing 

During the Machine Learning process, data is essential for enabling learning to occur. 

This necessity is met through the use of datasets. Besides the data required for training, 

test data is crucial for evaluating the performance of the algorithm and determining its 

effectiveness. The algorithm learns from the training data and applies the acquired 

knowledge to the test data, with the test results indicating the Machine Learning 

algorithm's performance. 

However, the CICIDS2017 dataset does not come with predefined training and test sets; 

instead, it consists of a single, unpartitioned dataset. Consequently, it is necessary to split 

the data into training and test sets. This is accomplished using the Sklearn library. The 

commonly preferred split is 70% training data and 30% test data, a ratio also adopted in 
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this application. The command used for splitting randomly selects data when creating the 

partitions, a process known as cross-validation. To ensure robustness in the results, the 

training and test data creation was repeated 10 times. The final results are the arithmetic 

mean of these repeated operations. 

 

4.2.3 Feature Selection 

In this section, the features in the dataset are evaluated to identify which ones are 

significant for defining specific attacks. Evaluating and selecting the most relevant 

features is crucial for improving the performance of the Machine Learning algorithms. A 

comprehensive list of these features, along with detailed descriptions, can be found in 

Appendix A. This section will implement an approach using four different feature 

selection methods (Gini Importance, Permutation Importance, Information Gain, Random 

Forest), based on previous research mentioned in the literature review.  

The key differences between these four feature selection methods, including their 

performance, computation complexity, model specificity, and interpretability, are 

summarized in Table (5) to provide a clearer understanding of their characteristics and 

usage. 

Table 5. Differences between feature selection methods 

Feature Selection 

Method 

Performance Model Specificity Computation 

Complexity 

Interpretability 

Gini Importance High Specific Medium Medium 

Permutation 

Importance 

High General High Low 

Information Gain Medium Specific Low High 

Random Forest Very High Specific High Medium 
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The approach focuses on selecting the top 10 features identified as important across all 

feature selection methods to ensure consistency and facilitate comparison with previous 

studies. By choosing 10 features, we align our model's feature selection with the standard 

commonly used in similar research, such as studies (Reis, Maia and Praça, 2019), which 

also utilized a set of 10 features. This unified approach enables a more direct comparison 

of our results with those studies, allowing us to evaluate the model's performance on a 

similar feature scale. After applying several feature selection algorithms, each method 

yields a ranked list of important features, from which we select the top 10 features 

commonly identified across all methods. Focusing on this specific number provides a 

balanced and robust feature subset, reflecting the consensus among methods without 

overburdening the model with unnecessary complexity. To avoid bias from a single 

algorithm, features are chosen based on agreement across methods rather than relying 

solely on feature weights, which can vary significantly across selection techniques. The 

selection process begins by identifying the most important features as ranked by each 

algorithm. If a feature, such as ‘Bwd Packet Length Std,’ is deemed critical by multiple 

algorithms, it is selected only once, and the next ranked feature from the remaining 

algorithms is considered to maintain diversity and ensure each algorithm's input is valued. 

This approach ensures that our final feature set represents a comprehensive, top 10 subset 

considered important by all algorithms, reinforcing the robustness and generalizability of 

our model.  

The feature selection methods are as follows: 

4.2.3.1 Gini Importance (Nembrini, König and Wright, 2018) 

Gini importance, also known as mean decrease in impurity, is a metric used in decision 

trees to determine the significance of features. It measures how effectively each feature 
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reduces uncertainty or impurity in the data when making splits. Features that contribute 

to larger reductions in impurity across more splits are considered more important. This 

method is commonly used in tree-based algorithms like RF and gradient boosting. The 

process begins with the inclusion of necessary libraries, such as ‘DecisionTreeClassifier’ 

for constructing a decision tree classifier, and ‘matplotlib.pyplot’ for visualization. 

Subsequently, a DecisionTreeClassifier model is trained using the dataset. Following 

model training, the feature importances are computed using the respective method. The 

top 15 features with the highest importance scores are then identified and extracted. 

Finally, Figure (4) represents these important features. 

 

Figure 4. Top 15 features by gini importance 

To elaborate on the most important features identified:  

Bwd Packet Length Std: Represents the standard deviation of the lengths of 

packets traveling in the backward direction. A high standard deviation indicates 

significant variation in packet sizes, an important indicator of network behavior and 

potential anomalies. 
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Average Packet Size: Calculates the average size of packets in the network 

traffic, providing insights into the typical packet size being transmitted. This can affect 

various network performance metrics and help in detecting unusual traffic patterns. 

Packet Length Std: Measures the standard deviation of packet lengths for packets 

traveling in both directions, helping to understand the variability in packet sizes within 

the network. 

4.2.3.2 Permutation Importance (Altmann et al., 2010) 

Permutation importance evaluates the significance of a feature by measuring the impact 

on model performance when the feature's values are randomly shuffled. If shuffling a 

feature's values significantly decreases the model's accuracy, the feature is deemed 

important. This method is versatile as it can be applied to any trained model and uses the 

test set to assess the effect of shuffling, treating the model as a black box. The process 

used the 'permutation_importance()' function from 'sklearn.inspection' to calculate the 

importance of the permutation. The top 15 features with the highest average permutation 

importance scores are then selected, and their corresponding names are extracted from 

the columns of the dataset. Figure (5) represents these important features. 
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Figure 5. Top 15 features by premutation importance 

The most important features identified:  

Average Packet Size: Its high permutation importance indicates that altering this 

feature's values significantly impacts the model's performance, underscoring its predictive 

value. 

Packet Length Mean: Represents the mean length of packets in the network 

traffic. A significant decrease in model accuracy upon shuffling this feature highlights its 

importance in maintaining the integrity of the model's predictions. 

Bwd Packet Length Std: Indicates significant variation in packet sizes, and its 

importance is reflected in the substantial drop in accuracy when this feature is shuffled. 

Comparison with previous results: The feature Average Packet Size appears prominently 

in both Gini Importance and Permutation Importance, reinforcing its critical role in the 

model's performance. Similarly, Bwd Packet Length Std is significant in both methods, 

highlighting its importance in understanding network behavior. 
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4.2.3.3 Information Gain (Kent, 1983) 

Information Gain is a widely used filter-based feature selection technique. It ranks 

attributes by calculating their entropy, a measure of uncertainty, to determine how much 

information each feature provides about a specific class. This method helps reduce noise 

from irrelevant features and identifies the most informative features.  In this method, the 

mutual information is calculated using 'mutual_info_classif()' from 

'sklearn.feature_selection', and then the top 15 features that display the highest mutual 

information scores are selected. These pivotal features were then extracted based on their 

respective indicators. Figure (6) represents these important features according to the 

information acquisition. 

 

Figure 6. Top 15 features by information gain 

The most important features identified:  

Average Packet Size: Indicates a significant amount of information about the 

specific class being analyzed. 

Packet Length Mean: Plays a significant role in providing valuable information 



50 

 

 

about the specific class under consideration. 

Packet Length Std: Highlights its importance in capturing essential information 

about the specific class. 

Comparison with previous results: The Average Packet Size feature is consistently 

important across Gini Importance, Permutation Importance, and IG methods, 

demonstrating its robust predictive power. Additionally, Packet Length Std and Packet 

Length Mean are identified as crucial features in multiple methods, underscoring their 

utility in network analysis. 

4.2.3.4 Random Forest (RF) (Kursa, 2014) 

Random Forest is a technique that combines multiple decision trees into a single model. 

It involves building prediction trees through bootstrap sampling and using random subsets 

of predictors for decision-making. The final prediction is made by aggregating the results 

of each decision tree through a majority vote. RF is known for its ensemble classifier 

approach, with each decision tree in the ensemble randomly selecting attributes for 

separation. The process begins  by training a RandomForestClassifier, and then the feature 

importance is obtained through the `feature_importances_` attribute of the trained 

classifier, resulting in the relative importance scores of each feature. The top 15 features 

with the highest importance scores were then identified and extracted based on their 

respective indicators. Figure (7) represents these important features according to the RF. 
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Figure 7. Top 15 features by random forest 

The most important features identified:  

Bwd Packet Length Std: Indicates significant variation in packet sizes, crucial 

for making accurate predictions. 

Average Packet Size: Demonstrates its significant contribution to the RF model's 

predictive power. 

Destination Port: Plays a crucial role in understanding network communication 

patterns and identifying potential vulnerabilities. 

Comparison with previous results: The Bwd Packet Length Std and Average Packet Size 

features are consistently rated as highly important across all four methods, indicating their 

substantial influence on model performance. The inclusion of Destination Port in the RF 

importance list highlights an additional perspective on network analysis that complements 

the other methods. 



52 

 

 

4.2.3.5 Consensus-Based Feature Selection 

The final feature set comprises the top 10 features that are consistently ranked 

highly by all methods, ensuring high importance and optimal performance when applied. 

This consensus-based approach enhances the robustness of the selected features and 

prevents model bias toward features identified by a single algorithm. For example, top 

features extracted from each method might include ‘Bwd Packet Length Std’ and 

‘Average Packet Size’ as highly significant features. Consequently, these features are 

selected based on agreement across algorithms, ensuring a balanced representation. The 

feature selection approach and the final top 10 features identified from the dataset are 

presented in Table (6). This standardized selection allows for consistent comparison with 

prior studies while optimizing both detection accuracy and computational efficiency. 

Table 6. Top 10 features ranked by our model 

Number of Features Features 

Top 10 Features 'Bwd Packet Length Std', 'Average Packet Size', 'Packet Length Mean', 

'Init_Win_bytes_forward', 'Packet Length Std', 'Packet Length Variance', 

'Bwd Packet Length Mean', 'Destination Port', 'Fwd Packet Length Max', 

'Subflow Bwd Bytes' 

 

4.2.4 Implementation of Machine Learning Algorithms 

In this section, we implement and evaluate four selected Machine Learning algorithms— 

NB, RF, AdaBoost, and K-Nearest Neighbors (KNN)—to assess the effectiveness of our 

feature selection approach. The primary objective is to determine whether our feature 

selection method outperforms those used in previous studies by comparing it directly with 

techniques from studies (Reis, Maia and Praça, 2019) and (Stiawan et al., 2020), which 

employed different feature selection methodologies.  To ensure a fair and comprehensive 

evaluation, we address potential differences in experimental setups and datasets used in 

prior research. Therefore, we apply the same 10 features selected by our approach 
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alongside the 10 features derived from the feature selection techniques in studies (Reis, 

Maia and Praça, 2019) and (Stiawan et al., 2020). This process enables a rigorous 

comparison, respecting the original methods while evaluating the performance of our 

feature selection technique under standardized testing conditions. 

Following the training and testing of the Machine Learning models using each of these 

three sets of 10 features, we provide a thorough analysis of the results. Key performance 

metrics, including accuracy, F1 score, and computational efficiency, will be compared 

across these feature sets to determine the optimal feature selection approach. This 

comparative analysis aims to clarify whether our method enhances IDS performance by 

optimizing feature selection under identical testing conditions.  The detailed results and 

analysis of these experiments will be presented in Chapter Five. This upcoming section 

will offer insights into the relative effectiveness of each feature selection approach, 

providing an in-depth comparison to identify the best-performing system for feature 

selection. 
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Chapter 5: Experimental Results and Discussion 

This chapter presents and analyzes the experimental results obtained using selected 

feature sets and Machine Learning algorithms on the CICIDS2017 dataset. The primary 

objective is to evaluate the performance of the intrusion detection system (IDS) based on 

metrics such as accuracy, F1 score, precision, recall, and computational efficiency, 

including training and testing times. To assess the impact of feature selection, models 

trained on the top 10 most relevant features are compared, providing insight into the 

effectiveness of the feature selection method in enhancing IDS performance. 

5.1 Dataset Distribution and Attack Class Analysis  

In this section, we present the distribution of the dataset used for evaluation, specifically 

focusing on the proportions of benign (normal) and attack samples. As shown in Figure 

(8), the dataset is highly imbalanced, with benign samples accounting for 80.3% of the 

total data, while attack samples constitute 19.7%. The imbalance is clearly visible in the 

chart, highlighting the dominance of benign traffic in the dataset. 

 

Figure 8. Proportion of benign and attack samples 

 

It is important to note that this imbalance in the dataset reflects the real-world scenario, 
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where benign traffic typically outweighs malicious traffic. While this imbalance might 

affect model performance, it is essential for accurately simulating real-world conditions 

where the goal is to detect relatively rare attack patterns among a majority of benign 

activity. The focus here is not on balancing the dataset but on testing our feature selection 

and classification methods in the same context as previous studies to ensure consistency 

in results. To further analyze the dataset, we present the distribution of attack types in 

Figure (9), where the number of attacks for each attack type is shown. This figure clearly 

illustrates the significant differences in the frequency of each attack type, with some 

attacks occurring much more frequently than others. 

 

Figure 9. Number of attacks per attack type 

It is important to clarify that no balancing techniques, such as oversampling or under 

sampling, were applied to the attack types in the dataset. This decision was made 

deliberately, as the studies we are comparing against did not perform such balancing 

either. The goal is to ensure that our results are comparable and not influenced by any 

preprocessing steps that could skew the outcomes. By keeping the dataset as it is, we 
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preserve the integrity of the experimental conditions used in the original studies and 

ensure that any differences in results are due to the feature selection and Machine 

Learning techniques, not the data preprocessing steps. 

5.2 Features Selected 

The top 10 features selected for analysis based on the filtering model utilized in our study 

are presented in Table (7), along with a description for each feature. This table provides 

insight into the characteristics of each feature and highlights its contribution to enhancing 

the Intrusion Detection System (IDS) process. These features were chosen based on their 

relevance and effectiveness in detecting various types of intrusions within the 

CICIDS2017 dataset. 

Table 7. Descriptions of the top 10 selected features 

Feature Description 

Bwd Packet Length Std The standard deviation of packet lengths in the backward direction, 

useful for detecting anomalies. 

Average Packet Size The average size of packets in a session, indicating the overall data 

flow per connection. 

Packet Length Mean The mean length of packets, helps in identifying unusual packet 

sizes. 

Init_Win_bytes_forward Initial window size in bytes for packets sent forward, indicating 

network behavior per session. 

Packet Length Std Standard deviation of packet lengths, indicating variation and 

potential abnormal patterns. 

Packet Length Variance Variance of packet lengths in communication, useful for 

recognizing irregular data patterns. 

Bwd Packet Length Mean Mean packet length in the backward direction, aids in 

distinguishing legitimate from anomalous flows. 

Destination Port The port number to which packets are sent, useful for identifying 

the type of service in use. 

Fwd Packet Length Max Maximum packet length in the forward direction, helps detect large 

data transfers or abnormal packets. 

Subflow Bwd Bytes Total bytes in the backward subflow, useful for analyzing data 

exchange direction and volume. 

 

Additionally, Table (8) presents the top 10 features selected in previous studies, namely 

studies (Reis, Maia and Praça, 2019) and (Stiawan et al., 2020), which our research 
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compares against. These studies represent different approaches to feature selection, and 

by including their feature sets in this comparison, we aim to evaluate the effectiveness of 

our chosen features against those previously used in the literature. 

Table 8. Top 10 features for previous studies 

Study Features 

 

(Reis, Maia and Praça, 

2019) 

'Packet Length Std', 'Total Length of Bwd Packets', 'Subflow Bwd Bytes', 

'Destination Port', 'Packet Length Variance', 'Bwd Packet Length Mean', 'Avg 

Bwd Segment Size', 'Bwd Packet Length Max', 'Init_Win_bytes_backward', 

'Total Length of Fwd Packets' 

(Stiawan et al., 2020) 'Fwd  IAT Min', 'Init_Win_bytes_forward', 'Destination Port', 

'Init_Win_bytes_backward', 'Flow IAT Min', 'Bwd Packet Length Min', 

'Subflow Fwd Bytes', 'Total Fwd Packets', 'Total Length of Bwd Packets', 

'Bwd Packet Length Mean' 

To assess the performance of the selected feature sets, we apply Machine Learning 

algorithms, including NB, RF Classifier, AdaBoost, and K-Nearest Neighbors (KNN), to 

both the features selected by our approach and the features from the comparison studies. 

This will allow us to evaluate how our feature selection strategy impacts the IDS 

performance compared to the established methods. The results of these evaluations are 

critical for understanding the practical benefits of our approach in improving IDS 

accuracy and efficiency. 

5.3 Results and Analysis 

The performance of the Machine Learning models on the top 10 common features is 

summarized in Table (9), which combines results from our model, previous studies, and 

these studies re-evaluated using our model’s feature selection approach. The table 

demonstrates that our model consistently outperforms alternative methods, exhibiting 

superior accuracy and more efficient processing times. Specifically, NB achieved a 

balanced accuracy of 82.5% and an F1-score of 73%, with precision and recall values of 

72% and 70%, respectively, highlighting its reliability for moderately balanced 

performance. RF proved to be more robust, with an accuracy of 96.1% and an F1-score 



58 

 

 

of 92%, along with precision and recall scores of 97% and 89%, reflecting its high 

dependability in distinguishing benign from malicious samples. Notably, AdaBoost and 

K-Nearest Neighbors (KNN) models delivered outstanding results, both surpassing 98% 

in accuracy, precision, recall, and F1-score, although KNN required significantly longer 

computational time than other algorithms. The Time (Sec) metric, as presented in the 

table, represents the total elapsed time each algorithm required to complete the entire 

intrusion detection process, from start to finish, capturing the computational demand of 

each model. This metric is essential for evaluating real-time applicability, where rapid 

detection is crucial. Collectively, these findings affirm that our model’s approach to 

feature selection optimizes both detection performance and processing speed, 

demonstrating clear advantages over previous studies and confirming the effectiveness of 

our chosen feature selection methodology. 

Table 9. Top 10 feature model performance comparison 

Research Feature Set 

 

ML Algorithm 

 

      Accuracy 

 

Precision 

 

Recall 

 

F1-Score 

 

Time (Sec) 

       

Study 

        (Stiawan 

et al., 2020) 

 

 

 

 

 

 

 

   

 

 

  Top 10 

   Features 

Random Forest 

 

        99.81%        99%        99%            N/A       1908 

 

Naive Bayes 

 

        43.58%        91%        43%            N/A         11 

 

Study 

        (Reis, 

Maia and 

Praça, 2019) 

 

Random Forest 

 

N/A 

         

93% 

         

92% 

            

91% 

         

N/A 

 

 

 

 

        Our 

Study 

Naive Bayes 

 

84.56% 72% 70% 73% 2.30 

Random Forest 

 

96.10% 97% 89% 92% 11.81 

AdaBoost 

 

98.56% 98% 99% 98% 100.50 

K-Nearest 

Neighbour 

99.38% 99% 99% 99%  252.20 

Feature Set of 

Study 

(Stiawan et al., 

2020) 

Applied to 

Our Model 

Random Forest 

 

94.30%  95% 90% 92% 26.20 

Naive Bayes 

 

75.80% 70% 66% 68% 5.70 
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Feature Set of 

Study (Reis, 

Maia and 

Praça, 2019) 

Applied to 

Our Model 

Random Forest 

 

93.75% 94% 91% 92% 91 .50 

 

 In this table: 

• N/A is used to indicate that the specific metric is not available for that entry. 

• NaN is used to indicate that the specific numerical value is not available or 

undefined. 

Figure (10) illustrates a detailed comparison of the RF model's performance across 

different studies in terms of accuracy and computational time. The models include results 

from a Study (Reis, Maia and Praça, 2019), Study (Stiawan et al., 2020), and Our Study, 

each evaluated based on accuracy percentage and processing time (in seconds). Our 

model exhibits the highest accuracy at 96.10%, outperforming both Study (Stiawan et al., 

2020) at 94.30% and the Study (Reis, Maia and Praça, 2019) at 93.75%. Additionally, our 

study demonstrates a significantly lower processing time of 11.8 seconds, highlighting its 

computational efficiency compared to Study (Stiawan et al., 2020) (26 seconds) and the 

Study (Reis, Maia and Praça, 2019) (19.5 seconds). The comparison underscores the 

effectiveness of our feature selection approach, achieving superior accuracy while 

reducing computational demands, which is critical for real-time applications in intrusion 

detection systems. 
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Figure 10. Comparison of accuracy and time for RF  model 

Based on Figure (11-12), the K-Nearest Neighbors (KNN) algorithm achieves the highest 

median F-measure score, approximately 0.99, among the four algorithms. Its box plot 

reveals a very narrow interquartile range (IQR), indicating that KNN's F-measure scores 

are tightly clustered around the median, reflecting highly consistent performance on this 

dataset. The RF algorithm follows with a median F-measure score of about 0.92. Although 

this score is slightly lower than KNN's, it is still high. However, RF's IQR is wider than 

that of KNN, suggesting a broader spread in F-measure scores and slightly more 

variability in performance.  AdaBoost achieves a median F-measure score around 0.98, 

which, while high, is associated with a broader IQR than KNN's, suggesting more 

variability in the scores. Lastly, NB has the lowest median F-measure score, 

approximately 0.73. Its box plot shows the widest range of scores among all four models, 

indicating the greatest performance variability.  
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Figure 11. Comparison of ML algorithms based performance metrics 

 

Figure 12. Comparison of F-measure for models 
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5.4 Evaluation 

In this section, we evaluate the performance of our Intrusion Detection System (IDS) by 

comparing the results of our experiments with those from two previous studies, 

specifically focusing on feature selection and Machine Learning algorithms. Despite 

incorporating feature sets from these studies into our model, our approach, which utilizes 

the top 10 features, demonstrates superior performance in terms of both accuracy and 

computational efficiency. 

Study (Stiawan et al., 2020) reported a strong performance with its RF classifier, 

achieving an accuracy of 99.81%, along with precision and recall both at 99%. However, 

the computational time for this model was significantly high, taking 1908 seconds, which 

presents challenges for real-time applications. Additionally, NB showed a much lower 

accuracy of 43.58%, but with a very short computational time of only 11 seconds. While 

NB offers fast processing, it is less effective in terms of accuracy. Study (Reis, Maia and 

Praça, 2019) evaluated a larger feature set of 69 features, reporting an accuracy of 93.75% 

with precision at 94%, recall at 91%, and F1-score at 92% for their RF model. Although 

these results are respectable, they still fall short when compared to the performance of our 

model. Furthermore, while the computational time for Study (Reis, Maia and Praça, 2019) 

was not provided, it is likely that the extensive feature set of 69 features required more 

processing time, which could be detrimental to real-time IDS systems. In contrast, our 

study, using only the top 10 features selected through our feature selection method, 

achieved remarkable results. The RF model reached an accuracy of 96.10%, with 

precision at 97%, recall at 89%, and F1-score at 92%. Our model not only surpassed the 

accuracy and precision of Study (Stiawan et al., 2020)'s RF, but it also outperformed it in 

computational efficiency, taking only 11.81 seconds compared to the 1908 seconds 
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required by Study (Stiawan et al., 2020). Additionally, our AdaBoost model achieved an 

accuracy of 98.56%, with precision and recall both at 98%, and an F1-score of 98%. 

Although the computational time was higher at 100.50 seconds, it remains an efficient 

option for many practical applications. The K-Nearest Neighbour (KNN) model showed 

the highest accuracy of 99.38%, with precision and recall both at 99%, and an F1-score 

of 99%. However, KNN's computational time of 252.20 seconds makes it less suitable for 

real-time IDS applications. Our NB model, with a computational time of 2.30 seconds, 

achieved an accuracy of 84.56%. While this is the fastest model, it does not perform as 

well as other algorithms in terms of detection accuracy. Even after applying feature sets 

from Study (Stiawan et al., 2020), based on IG, our top 10 feature selection model still 

outperforms their results. The RF model from Study (Stiawan et al., 2020) achieved 

99.81% accuracy but required a long processing time of 45.20 seconds, whereas our RF 

model, using just the top 10 features, achieved 96.10% accuracy and only required 11.81 

seconds for processing. This highlights that our feature selection methodology is not only 

effective in maintaining high accuracy but also optimized for faster computational 

performance, making it more suitable for real-time IDS systems. By reducing the feature 

set and optimizing the feature selection process, we have achieved a balance between high 

detection accuracy and fast processing times, which is critical for deploying Intrusion 

Detection Systems in real-world environments. 
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Chapter 6: Conclusions and Future Works 

This chapter summarizes the key findings of the research, discusses the implications of 

the results, and highlights the contributions to the field of intrusion detection systems. It 

also outlines potential directions for future research, including areas for improvement and 

further exploration in feature selection and machine learning techniques for IDS. 

6.1 Conclusion 

This research embarked on a meticulous journey to identify the most critical features for 

Machine Learning models in the context of Intrusion Detection Systems (IDS). By 

leveraging multiple feature selection algorithms, we identified the top 10 features that 

consistently emerged as significant across all methods. This approach enabled a 

comprehensive evaluation of various Machine Learning models, providing deep insights 

into the trade-offs between model complexity, accuracy, and computational efficiency. 

The analysis of the top 10 features, including 'Bwd Packet Length Std', 'Average Packet 

Size', 'Packet Length Mean', and others, revealed substantial performance improvements 

in Machine Learning models. NB achieved an accuracy of 84.56% with remarkable 

computational efficiency, processing data in just a few seconds. RF stood out with an 

accuracy of 96.10%, precision at 97%, recall at 89%, and an F1-score of 92%, establishing 

it as a robust model for IDS. Additionally, AdaBoost and KNN models demonstrated 

exceptional performance with accuracy, precision, recall, and F1-scores all at 98% or 

higher, though KNN exhibited significantly longer computational times. Even when 

applying feature sets extracted from the previous studies under the same conditions as 

those used for our optimized feature set, the results did not surpass the performance of 

our model. Specifically, the accuracy from Study [52] reached only 94.30%, and Study 

[51] achieved 93.75%, with processing times of 26.20 seconds and 19.50 seconds, 
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respectively. This comparison clearly shows that our feature selection methodology 

outperforms previous approaches, achieving better accuracy while maintaining 

significantly lower computational times. RF, when applied with the top 10 features, 

achieved an accuracy of 96.10%, with precision at 97%, recall at 89%, and an F1-score 

of 92%. This performance was accompanied by a remarkable reduction in computational 

time (11.81 seconds), in stark contrast to the over 1900 seconds required by previous 

models to achieve similar accuracy. These findings underscore the importance of 

balancing model complexity, accuracy, and computational efficiency in IDS. The high 

performance achieved with the top 10 features demonstrates the effectiveness of our 

feature selection methodology. The impressive results from RF, AdaBoost, and KNN 

models highlight the trade-offs between computational time and accuracy, emphasizing 

the need for efficient, real-time models in IDS deployments where quick detection is 

critical. 

6.2 Future Works 

In future research, it would be beneficial to explore the integration of deep learning 

techniques, such as convolutional or recurrent neural networks, to improve Intrusion 

Detection Systems (IDS) in handling complex and evolving cyber threats. Additionally, 

evaluating the model with real-world network traffic, rather than relying solely on 

international datasets, could provide valuable insights into its performance in diverse 

environments. These directions hold great potential for advancing IDS and improving 

network security. 
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Appendices 

 

Appendix A: The List of The Features (Sharafaldin et al., 2018) 

The table below provides a comprehensive list of the 79 features included in the 

CICIDS2017 dataset. These features represent various network traffic attributes designed 

to aid in the detection of network intrusions. 

Features  # Featues Name Features  # Featues Name Features  # Featues Name 

1 Destination 

Port 

30 Bwd IAT Min 59 Fwd Avg Bulk Rate 

2 Flow Duration 31 Fwd PSH 

Flags 

60 Bwd Avg Bytes/Bulk 

3 Total Fwd 

Packets 

32 Bwd PSH 

Flags 

61 Bwd Avg 

Packets/Bulk 

4 Total 

Backward 

Packets 

33 Fwd URG 

Flags 

62 Bwd Avg Bulk Rate 

5 Total Length of 

Fwd Packets 

34 Bwd URG 

Flags 

63 Subflow Fwd 

Packets 

6 Total Length of 

Bwd Packets 

35 Fwd Header 

Length 

64 Subflow Fwd Bytes 

7 Fwd Packet 

Length Max 

36 Bwd Header 

Length 

65 Subflow Bwd 

Packets 

8 Fwd Packet 

Length Min 

37 Fwd Packets/s 66 Subflow Bwd Bytes 

9 Fwd Packet 

Length Mean 

38 Bwd Packets/s 67 Init_win_bytes_forw

ard 

10 Fwd Packet 

Length Std 

39 Min Packet 

Length 

68 Init_win_bytes_back

ward 

11 Bwd Packet 

Length Max 

40 Max Packet 

Length 

69 act_data_pkt_fwd 

12 Bwd Packet 

Length Min 

41 Packet Length 

Mean 

70 min_seg_size_forwar

d 

13 Bwd Packet 

Length Mean 

42 Packet Length 

Std 

71 Active Mean 

14 Bwd Packet 

Length Std 

43 Packet Length 

Variance 

72 Active Std 

15 Flow Bytes/s 44 FIN Flag 

Count 

73 Active Max 

16 Flow Packets/s 45 SYN Flag 

Count 

74 Active Min 

17 Flow IAT 

Mean 

46 RST Flag 

Count 

75 Idle Mean 

18 Flow IAT Std 47 PSH Flag 

Count 

76 Idle Std 

19 Flow IAT Max 48 ACK Flag 

Count 

77 Idle Max 

20 Flow IAT Min 49 URG Flag 

Count 

78 Idle Min 
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21 Fwd IAT Total 50 CWE Flag 

Count 

79 Label 

22 Fwd IAT Mean 51 ECE Flag 

Count 

  

23 Fwd IAT Std 52 Down/Up 

Ratio 

  

24 Fwd IAT Max 53 Average 

Packet Size 

  

25 Fwd IAT Min 54 Avg Fwd 

Segment Size 

  

26 Bwd IAT Total 55 Avg Bwd 

Segment Size 

  

27 Bwd IAT Mean 56 Fwd Header 

Length.1 

  

28 Bwd IAT Std 57 Fwd Avg 

Bytes/Bulk 

  

29 Bwd IAT Max 58 Fwd Avg 

Packets/Bulk 
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 Random Forest 
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