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under Photo-excitation

Suha Jazzar
Supervisor: Dr. Abdelhalim Zigan
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Abstract
For the purpose of improving the performance of random access memory (RAM) in
computers, the electrical current conduction mechanism which is governed by the
variable range hopping (VRH) of electrons from one energy state to another distant site
of states is reconsidered. Some recent developments that include less energy
consumption, shorter time of response and less heating during run process are attained
by getting use from the cheap light energy. Photoexcitation of these devices and device
related materials have shown that while the variable range hopping parameters like the
degree of disorder, average hopping energy, average hopping energy sharply decreases
with increasing light intensity, the density of localized energy states (DOS) near Fermi
level and average hopping range significantly increases. The increase of DOS with
increasing light intensity is very abnormal and makes the use of Mott's variable range
hopping theory questionable. The Mott's theory which was derived assuming invariant
DOS was simulated to state the reasons for abnormality. In addition the validity of this
theory under variable DOS was analytically proved assuming linear variation of DOS
with light energy and was also tested against exponential DOS variation. Mathematical
analysis of the theory and its testing parameters have shown that the Mott's model for
variable range hopping is still applicable even if the DOS is variable function of
energy. This study, which is carried for the first time, is supposed to provide an
excellent method for increasing the ability of storage in RAM by increasing the density

of states that occupy electrons and shorten the response time of the device by increasing

the hopping distance and decreasing the hopping energy through the device.
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Introduction:

In the history of hopping conduction, Conwell is the first one who suggested the idea of
hopping in 1956 [1]. The model of the hopping conduction was fruitful since it is the
inspiration source of the Variable Range Hopping (VRH) theory of Mott [2]. Mott was
one of the first to give a theoretical description of the low temperature hopping
conductivity in strongly disordered systems with localized states [3]. In 1969 he
introduced the concept of Variable Range Hopping. He shows: How the long jumps
govern the conductivity at sufficiently low temperatures. Mott’s theory makes the
assumption of a constant density of states near the Fermi level; Mott explained the
qualitative concept of Variable Range Hopping by phonon assisted tunneling, on which
the Miller-Abrahams resistor network model is based.

Similar ideas were independently proposed by Pines and Anderson [4]. Miller and
Abrahams developed the hopping rate where the jumps are governed by the phonon
assisted tunneling and suggested the random resistor network model to describe the
macroscopic hopping transport. Mott performed a further development of the Miller
and Abrahams hopping rate and showed that by making a couple of assumptions a
universal law for the hopping conductivity can be obtained.

Mott’s Variable Range Hopping theory was brought further and adjusted by including
Coulomb interactions between the charged particles within the system. When the strong
interactions are taken into account, a different situation than what predicted by Mott’s
law arises. The Coulomb Gap (CG) in the density of states occurs due to the strong
Coulomb Interaction (Cl) [5] between the electron energy states close to the Fermi
level. Hamilton and Pollak [6] were one of the first to consider the non-constant density

of states. Their results were later improved by Efros and Shklovskii [7] and give a new



conductivity relation; Efros and Shklovskii introduced Coulomb interactions into
Mott’s theory, which modify his original results.

Variable range hopping (VRH) is a model describing low-temperature conduction in
strongly disordered systems with localized charge-carrier states [2]. In general for d-

dimensions, (VRH) model has a characterize temperature dependence of:

_[Tojll(d+l)
T

With optimal energy:

o =0, €

T d/(d+1)
Eopt = T >>T

And optimal distance:
fooe ~ L/ T >

And for three-dimensions:
T 1/4
()

Here, o is the conductivity, oy is a constant independent of temperature, T is the

o =0, €

temperature in Kelvin and Ty is the degree of disorder of the system(characteristic
temperature).

It is interesting to study hopping conductivity at low temperatures because of savings
the semiconductor industry could achieve if they were able to replace single crystal
devices with glass layers [8]. The hopping conduction was used to develop information
about the density of state (DOS) In silicon nanowires Si-(NWSs). The (DOS) give on
indication about the crystal quality and the electronic conduction type prior to

electronic device fabrication [9]. Before developing polycrystalline silicon NWs based



devices, in particular for high-performance electronics applications, a good
understanding of electronic materials properties is required. Based on the hopping
process between localized states related to the nanowire size dependent defect density
within the polycrystalline silicon nanowire, the Carrier transport in materials is a
function of temperature and doping level [9]. All of the non-volatile random access
memory devices applications including random access memory (RRAM), Ferro-electric
random access memory (FeERAM), magnetic random access memory (MRAM), and
phase change memory(PCM) run on the principle of hopping conduction. Kai-Huang
Chen[10], reported that the hopping conduction between the activation energies of the
(RRAM) play the vital role in resistance switching. Bipolar resistance switching
characteristics with different compliance currents of Zn: SiO2 RRAM were thoroughly
analyzed. Owing to the increase of current, it became easier for metal ions to form
precipitates with larger diameter, which led to the decrease of hopping distance.
Conducting polyaniline nanowires have advantages over other metal or semiconducting
nanowires for their low cost, ease of synthesis, and for the ability to locally or site-
specifically fabricate the nanowires [11]. Conducting polymer nanowires (CPNWSs)
have recently emerged as an attractive alternative to metal and semiconducting
nanowires for their large conductivity change, flexibility, and ease of synthesis [12,13].
Furthermore, the CPNWSs can be synthesized site-specifically at the desired location
[13]. The polyaniline nanowire-based sensors have been reported to have improved
sensitivity and response time due to their nano- scale morphology. Some of the
immediate challenges regarding polyaniline nanowires include improving their
conductivity in the physiological pH range, preventing or minimizing the conductivity

degradation, and minimizing the hysteresis effect. Much work is currently underway to



address these issues with some areas already showing signs of success, and the number
of applications for polyaniline nanowires is expected to increase in the future [11].
Among all the conducting polymers polyaniline (PANI) demonstrates outstanding
properties due to its environmental stability, redox reversibility, high electrical
conductivity and ease of synthesis that drives it towards potential electrical device
applications. It is agreed that in most of in its applications the behavior of the
conductivity is a long-standing problem. The improvement on electrical properties of
doped PANI reflecting the conditions of preparation/dopant incorporation is of

fundamental importance [14, 15].

Spinel compounds are being extensively studied for their applications in dew sensors,
pigments for protective coatings etc. [16]. These materials find wide industrial
applications in dew sensors, pigments for protective coatings and principally for their
dielectric properties in chip capacitors, high frequency capacitors and temperature
compensating capacitors and in the composition of binders by increasing the flexural
strength [17]. The properties of these materials are highly dependent on the structural
disorder arising from synthesis procedure and sintering temperature [18]. The electrical
property varies from an insulating to a conducting regime [19]. Hence, it results in a
wide range of conductivity values. Various charge transport mechanisms have been
proposed depending on the conductivity behavior of ceramics with various parameters

such as temperature, pressure and doping.

In the light of the above reported remarkable considerations about the hopping transport
applications, here in this thesis we will review the derivation and we will simulate the
variable range hopping transport theory in the dark and under photoexcitation effect.

Particularly, the values of Mott's parameters will be recalculated for each of the applied



illumination intensities. In addition, the Mott's theory will be tested against variable

density of localized states.



Chapter One

Basic concepts

This chapter contains five sections. In section one, we give some basic top
mathematical definitions that play a pivotal role in the derivation and existing hopping
theory and in simulation data for hopping variable parameters like Poisson’s Equation,
Boltzmann statistics and Gamma Function. And in section two, we explain some
physics definitions that are used in our study. In section three, we show the Mott’s
formalism which developed by Mott the hopping process. In section four, we talk about
percolation theory and the analytical and numerical solution percolation problem that
are used in the derivation of Mott’s hopping theory that based on the thermal energy of
electron under constant electric field. Finally, in section five, we discuss hopping
conduction, which help us to understand the hopping theory and the Variable Range

Hopping conduction (VRH).

1.1 Mathematics definitions:
1.1.1 Poisson’s Equation
Poisson’s equation is derived from Coulomb’s law and Gauss’s theorem. In math-
ematics, Poisson’s equation is a partial differential equation with broad utility in electr-
ostatics, mechanical engineering, and theoretical physics [20]. The Poisson equation is:
~Viu=f (1.1)
It is the simplest and the most famous elliptic partial differential equation. The

function f is given on two or three dimensi- onal domain and called “source term”,



and is often zero, either everywhere or at some specific region (maybe only specific

points). In this case, the previous equation called Laplace’s equation, results:

~Vu=0 (1.2)

1.1.2 Boltzmann distribution [21,22]

Boltzmann distribution is a probability measure for the distribution of the states of a
system it is also known as the Gibbs measure. The Boltzmann distribution has many
applications in many sites where magnitudes of normal variables are important,
spatially, in physics. A special case of the Boltzmann distribution is Maxwell-
Boltzmann distribution, mathematically, is the distribution of the magnitude of a three-
dimensional random vector whose coordinates are independent (identically distribution)
that means there is no normal variables. In physics, Maxwell-Boltzmann distribution
gives the distribution of speeds of molecules in thermal equilibrium, for example

describing the velocities of particles of gas. The Boltzmann distribution for the

fractional number of particles N; /N occupying a set of states i is:

(N;) = (g:ngg.exp[k?j (1.3)

where: E; the i-th energy level, K is the Boltzmann constant, J; is the degeneracy
of energy level i, & is the chemical potential, T is absolute temperature (assumed to

be a well-defined quantity), N is the total number of particles with property

N =>"N,, Z isthe partition function.


http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Degenerate_energy_level
http://en.wikipedia.org/wiki/Chemical_potential
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)

Where:
I.  The partition function is a special case of a normalizing constant in probability
theory, in physics, describes the statistical properties of a system in

thermodynamic equilibrium.
Il.  The degeneracy meaning: the number of states having energy E;.

The Boltzmann distribution applies only to particles with temperature is high enough

and low enough density

1.2 Physical Definitions :

Crystallites : are small, often microscopic crystals that, held together through highly

defective boundaries, constitute a polycrystalline solid. Metallurgists often refer to

crystallites as grains.

The Fermi level (or Fermi energy) [27]: is the level where the occupancy of electron is
1/2 and it is the total chemical potential for electrons (or electrochemical potential for
electrons) and its energy usually denoted by p or Er. The Fermi level is denoted by
f(E)

1 1 1
1+exp(E—E, W(k,T) 1+exp((E, —E, )ilksT)) 1+exp(0)

f(E)= %

Here: k; is Boltzmann constant, T is the temperature in Kelvin and E_ is the energy at

Fermi level.

The Fermi level of a body is a thermodynamic quantity, and its significance is the
thermodynamic work required to add one electron to the body (not counting the work
required to remove the electron from wherever it came from). A precise understanding

of the Fermi level—how it relates to electronic band structure in determining electronic


http://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)
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http://en.wikipedia.org/wiki/Chemical_potential
http://en.wikipedia.org/wiki/Electrochemical_potential
http://en.wikipedia.org/wiki/Thermodynamic
http://en.wikipedia.org/wiki/Thermodynamic_work
http://en.wikipedia.org/wiki/Electronic_band_structure

properties, how it relates to the voltage and flow of charge in an electronic circuit—is

essential to an understanding of solid-state physics.

Thermionic emission: is the emission or heating a conducting body to a sufficiently
high temperature, electrically charged particles are emitted from it and may be drawn
off by a suitable electric field [28]. The particles may be either electrons or ions,
according to the nature of the emitter and the prevailing conditions. This occurs
because the thermal energy given to the carrier overcomes the binding potential, also

known as work function of the metal.

1.3 Mott’s Formalism

In the formalism developed by Mott [2], the hopping process is even more simple (or
can be simplified) by assuming that the dominant contribution to the hopping current is

through states within kT of the chemical potential ., thereby eliminating the exact

occupation probabilities of the states in the description. In this case the hopping

probabilities are derived directly from the equation:

W, =Y exp (— 2alR; ‘) (o[- (E -E,)/Kk,T]-1)", (1.7)
With the distance hop R ,and the energy hop wij. So the probability of a carrier

ij !

tunneling P, from a localized state i with energy E, to an empty state j with energy

E; giving as:


http://en.wikipedia.org/wiki/Electrical_current
http://en.wikipedia.org/wiki/Work_function

10

E.—E
exp(—2oR; — I‘(T') if \E; >E

ij ~ (1.8)
exp(—2aR;) if \E; <E,

ne
4
w

Where equation (1.8) follow the condition ‘Ei — Ej‘ >k,T . Since hopping probability

depends on both the spatial and energetic separation of the hopping sites it is natural to
describe the hopping processes in a four-dimensional hopping space , with three spatial
coordinates and one energy coordinate. Hopping probability and hops to sites that are
further away in space but closer in energy might be preferable. This is the Variable
Range Hopping (VRH) process, which concept was introduced by Mott in 1968 [2].
1.4 Percolation Theory

Percolation theory is a branch of probability theory dealing with properties of random
media. Originally conceived as dealing with crystals, mazes and random media in
general, it now appears in such fields as petroleum engineering, hydrology, fractal
mathematics, and the physics of magnetic induction and phase transitions. As explained

by the originators of percolation theory [29].

1.4.1 Formalism Based on Percolation Theory
In modeling the (VRH) conduction mechanism, a set of sites is supposed to form a
random resistors network, with impedances connecting all individual sites given by the

inverse of the corresponding hopping probabilities equation (1.8):

Zij OCeXp(Rij) ) (1.9)

The basic difficulty in quantitatively describing the overall impedance of this network
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in an analytical expression arises from the wide exponential spread in magnitude of the
site-to-site resistors between randomly chosen hopping sites. Whereas this wide spread
is preventing the use of analytical averaging, it has proven to be helpful when
transaction with the problem using a numerical approach based on percolation theory.

Following this theory the network is characterized by a sub-set of interconnected sites,

spanning the entire volume, with two-site connections Z; <~ Z,, whereZ,is the

starting resistance and ~Z, is the minimum resistance needed to include an infinitely

large cluster of interconnected sites within an infinitely large network. Essentially, the
percolation starting describes the highest impedance of the most conducting percolation
path through the system. The actual sub-set of sites participating in the conduction is
expected to be, a little bit, bigger than the most conducting percolation path, including
more parallel paths with little higher resistance. The overall resistance of the system is
described through the optimality of the most conductive percolation path with starting

resistance Z,and a little larger sub-set of sites with — sometimes- a little larger site-to-

site resistance.

1.4.2 The Mathematics of Percolation

Percolation theory and its variants can be considered as part of a general frame-
work of statistical theories that deal with structural and transport properties in porous
media [30]. Percolation properties is the properties of a macroscopic system that are
emerge at the onset of macroscopic connectivity within it, and to understand the
concept of connectivity, consider the square lattice, for example, in terms of bond
percolation. The (connected) network of bonds is fully saturated and conducts a fluid,

and bonds are randomly removed from the network, the intensity of flow between
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opposing sides of the network decreases. At one side of the domain, the number of
removed bonds by monitoring the fluid flows. In particular, it is of interest to know the
number of bonds that must be removed (randomly) in order for no fluid to arrive at the
side of the domain. The answer to the question is given by what is known as the

percolation threshold. If the number of bonds is denoted by NN, and their number at the

threshold is N (the “critical” number), one can show [31,32] that the volumetric fluid
flow Q, will be determined by a power law of the form:

Qoc (N =N, (1.10)

Where K is some critical exponent that can be found by many ways: theoretical way,

computer simulation and/or experiment. Such a simple law holds for N relatively

closeto N, .

1.4.3 Analytical Solutions of the Percolation Problem

Percolation in a system is defined as a closed path between two opposite sides of the
system. And it concerns the movement and filtering of fluids through porous materials.
Recent applications include for example percolation of water through ice, which is
important for the melting of the ice caps.

In general percolation theory the criterion of percolation is often expressed in terms
of an expected number of connections to a single site needed to ensure a percolating
cluster through the system. As in the analytical descriptions, these studies primarily
focused on the qualitative relations between the parameters in the system. Although this
more analytical approach has proven to be successful in describing the (VRH) process

in the Ohmic low-field regime, the convolution of the hopping process into a standard
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percolation problem appears less straightforward in the medium-field and the high-field
regime, and the charge carriers in the low-field regime are thermally activated [33]. The
differences between ‘standard’ percolation solutions and the hopping process appear to
concentrate on two issues, often referred to as the concepts of ‘directional constraints’

and ‘correlation between consecutive hops’.

1.4.4 Numerical Solutions of the Percolation Problem

Let us explain the mathematical setting. Percolation is a simple probabilistic model

exhibits a phase transition. The simplest version of percolation which takes its place on
Z?, which is with edges between neighboring vertices. All edges of Z?are, independ-
ently of each other, chosen to be open with probability P and closed with probability
1-p. A basic question in this model is *“ what is the probability that there exists an

open path from the origin to the square S, =[-n,n]? ? < a limit as n——>coof the

question raised above is “ what is the probability that there exists an open path from
zero to infinity? “ this probability is called the percolation probability is denoted by

O(P). Clearly #(0)=0and &(1) =1, since there are no open edges at all when
P =0and all edges are open when P =1. For some models there is a probability P,
such that 0 < P, <1which is the global behavior of the system is quite different for
P <P, and for P > P, . Such a sharp transition in global behavior of a system at some

parameter value is called a phase transition or a critical phenomenon, and the parameter

value at which the transition takes place is called a critical value [34,35].

The basic mathematical methods and techniques of random processes and the

overview of the most important applications will make the student using the analytical
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techniques easily and models to study questions in modern applications in biology,

physics, communication networks, financial market and decision processes.

1.5 Hopping Conduction:

1.5.1 General definition

Hopping Conduction is defined as electric conduction in which the carrier transport is
via electrons hopping from one localized state to another. Electron transport through
localized state (deep-level state) within the bandgap of a semiconductor includes:

1- Electron hops from a state to another state that has a higher energy. A thermal
energy is required for this move. This process is thermally assisted tunneling. It
depends on temperature.

2- Electron hops from a state to another state that has equal energy. This transport
is tunneling process. It does not depend on temperature.

3- Electron hops from a state to another state that has a lower energy. This
transport is tunneling process with the emission of a phonon(s). It does not
depend on temperature.

The necessary conditions for the occurrence of hopping are:

1- Wave functions of the two localized states must overlap.

2- Occupied and empty states must be present for the hopping to occur. This
condition make hopping should happen between states that are close to the
Fermi level.

3- Electron hopping from one localized state to another with a higher energy level

needs energy.
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1.5.2 Variable Range Hopping Conduction [2,7,36]

When the temperature is very low, the probability of the electron thermal activation
between states that are close in space but far in energy becomes smaller than that of
electron hopping between some more remote states where they have new energy levels
are very close to each other, in this case the characteristic hopping length increases and
the temperature decreasing. This kind of hopping called variable range hopping (VRH),
in 1968 Mott introduced this concept of a type of hopping conduction (VRH) [2], and

Mott’s law describes the temperature dependence of the conductivity as following:

1

(To)a
o=0,¢€ [T) (1.11)

Where: O is a constant independent of temperature, T is temperature and T, is

the characteristic temperature, such that:

Ty = [#] (1.12)
S kN(ER)

With K being the Boltzmann constant, N(E.) being the density of localized states
near the Fermi level E. calculating by adjusting the parameter electronic wave decay
length & =¢a" for localized states (0.3nm <& <3nm) and A =g*being a constant
and gin the range of 2.06-4.2 depending on the N(E;) feature [9,37]. The average

hopping length R is a function of temperature and follows:

1
T. 2
R =~ do[?"j (1.13)
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1
Where: d, is a constant and observed R ~ T,4 dependence. The average hopping

length is on the order of the average distance between localized states, and does not
vary with temperature.

1.5.3 Hopping Probabilities [47]

If we assume there are no correlations between the occupation probability of different

localized states, then the net electron flow between these states is given by:

1, = - f)w, — f,@- f)w, | (114)

Where: T, is the occupation probability of state i and W;; is the electron transition
rate of the hopping process between the occupied state i to the empty state j.

The occupation probability f; is given by the Fermi-Dirac distribution function, with
chemical potential £¢; at the position of state i, as following:
fi= [eXp [(Ei — K )/ kBT]"'l]il ) (1.15)
The transition rate W;; is related to a hopping probability F’ij by
w. =YP, (1.16)

Where: Pij the probability of success in a hopping attempt between states i and j and

Y an unknown parameter related to a certain ‘attempt-frequency’.
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Chapter Two

The Derivation of Hopping theory

In this chapter we have three sections, section one is about the derivation of
thermionic by using Poisson equation in one dimension and The relation between the
number of carrier trapped and the total number of occupied trapping steady, and in

section two we work on resistance since Miller and Abbraham proposed a random

resistance in which R, ; connect a pair of vertices, and in last section three we Derive

the hopping conductivity.

Derivation of Thermionic Function [48]
Materials are supposed to be created from crystallites of irregular shapes. If material

is polycrystalline then crystallites are identical with size L . They are assumed the

exhibit the same type of conductivity. The charge carrier distribution is uniform with

concentration equal N . The crystallite boundary has no thickness compared to L and
contains Q, of traps per unit area are located at site t that have the energy E, with

respect to intrinsic Fermi level E . Traps are initially neutral and become charged by

trapping carriers.

The original Mott paper introduced simplifying assumptions that the hopping energy
depends inversely on the cube of the hopping distance (in the three dimensions case).
Later it was shown that this assumption was unnecessary, and this is proved [38]. And

also in the original Mott paper the hopping probability at a given temperature was
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depended on two parameters, R the spatial separation of the sites, and E;, their

energy separation.

Transport properties in one dimension
dv _aN
dx? ¢

We start with Poisson equation: (2.1)
Where & : dielectric permittivity and IE< IX|<T.

If we integrate equation (2.1) twice and assume that S_X =0 at X =I and the

charge carries in the region (IE,I) are trapped, then

o[\
dVv = (_ X +V0jdx And by using the boundary condition (BC) we get

&
v —_aN
0 &
So: dV =(qN x — N dex
& &
Then. V (X) = j(qN X — qN hax= N x2 N v
’ 2 & 0

Where: VV0 is the potential of valance band at the center of the Crystallite.

Here EFi =0 and E = positive value toward valence band.

Now we study the relation between the number of carrier trapped and the total
number of occupied trapping state.

There are two possible conditions: First, LN < Q, ,second, LN > Q,,
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where LN is the number of carrier trapped and Q, is the total number of occupied

trapping state (see Graphs 1-a&b).
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V(X)= %x%vvo "X‘glﬁ

The potential barrier height is:

Vo= VO-VE)

N |2
Ve - M—q—— ,

2¢ 4

8¢

_ﬂp

By Boltzmann statistics, the charge carries are given by the following equation:
—qV (x) - E;
P(x) =N, exp T ) e=qV(x) and 1 =E;
Where N, is the density of states DOS at value bound, K is Boltzmann’s constant,
8,62x10°[eV /K].

|
2

P, = _[P(x) dx |/L
il

2

! L
P, = TP(X) dx |/L= vaexp
L

dx |/L
| KT
2 2
We let: qVVO = EB
1 |
—-Ep-E; -°N 2 —9°N,
— I\IV KT i 2(1kT _ N 20T
Pa_Te .[le dx = IJ‘e dx 2.2)

Integrate equation (2.2) by using gamma function at 1/2, we get:
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h_ N [zka)i
Lqg N

_EB_Ef

Where N; = Nve " isthe intrinsic carrier density, and intrinsic means :

number of electrons above E ¢ = number of electrons below E¢ | to find E; must

be the number of carrier trapped = the total number of occupied trapping steady:

2e KT 41
E.—Eq
2e = R
LN
E —E
—_t —f _ In l[ﬂ_lj
kT 2 LN
E, = E —kTIn[l[g—ljj (2.3)
2\ LN

Case.2 LN >@Q,: |>0 partof the crystallite is depleted.
V(X)= ﬂ(X—I)Z+V\,
2¢ °

I gN |,
V(=)= 22124V
(2) v v

q .2
V., =— Ot
B&sNQ

- EvO - Ef
In the undeleted region B, = N, exp T
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P(x) =N, exp(_qv(k?_ Es )

1

2
PR (1_gj+i 2kTe 7
LN) qL{ N

q°P.E

J=qPV, =

e

Where V, : drift velocity, velocity of particles in electric field, and V4 = tE |, here

AL is the electron mobility and E is the magnitude of the electric field.

kT % _qVB an
i = qp{mj e'T e -1 , Where qV, <<kT

1
1 2 —qVe
J. =0° e KTV
m =4 a(ZI’ﬂkTﬂj 2
V J. L
J:GE and E—I S0,0-: t\h/
1y
o= quPa(;jze kT
2mkTz
—Ep

E—E¢
oca e\ SO, O o Te kT
T

Conductivity is evaluated using model of random resistors network proposed by

Miller and Abrahams. Considering an elementary hopping process from (a) to (5)
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when the state energies E, # Eﬂ . The hopping of electrons (€ ) is accompanied by
phonon absorption or emission for the electrons conservation, the number of electrons

making transition per unit time (hopping rate) Fa/; [39]. To move from site & to site

J the required energy is €, and assumes that the particle successfully reached .

A

L= Vphe ° N IDh(AE) fle,)f (1—5/3) (2.4.1)
In the case the phonon absorption AE=¢,-¢, =0. Here [, is the distance

between the localized centers « and g, f (&) is the probability that the energy level
£ will be filled by an electron and f (1— &) is the probability that the energy level

& will be empty. N, (AE) and f (&) are distribution functions.

-2 I

T,=V,e  [N.(AE)+1]f(s,)f(1-¢,) (2.4.2)

With phonon emission AE < 0.

1
N ph(AE) =~ (Boson distribution function) (2.5)

e —1
Nphis the phonon occupation number, phonon is mechanical vibration of atom at

equilibrium position.

1
f(e) = = (Fermion distribution function) (2.6)
ekt +1
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The localized length is independent from state energy so the transfer integral between

-2 [

the two states give the factor € ¢ , and by inserting equation (2.5) and equation (2.6)

into equation (2.4) , the hopping rate become :

-2 I’aﬂ _5aﬁ

FaﬂZ Vph e < ek (2.7)

Vph related to the product of the square of electrons - phonon, matrix element and

-2 Cop

the density of states (DOS) of phonons Vph depends on I, zin weaker than e ¢
’no spin effect”.

KT <<|e, —&,| , KT <<|g,| and KT <<|e,| .

‘ga —gﬁ‘+\ga\+‘gﬂ‘
Where : Eap = >

And €,,=1€, —Eﬁ‘ when ¢, and €5 lie on opposite site of &,

The Resistance of Hopping

The resistance is the ratio of the potential difference across conductor to the current in

%
the conductor: R = I_ (the unit is ohm () which is one volt per ampere).
2r &,
T kT [
Raﬂ B e’T B e’V © (28)
apf ph

Miller and Abraham proposed a random resistance network in which Raﬁ connect a

pair of vertices. The conductivity of the whole system is determined by a set of {Raﬂ}.
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The network is extremely wide spectrum of resistance Raﬂ due to the exponential
depends on I,zand &€,;when T is not too low ( I,z dominate) [7]. The electrons hop

from localized state to nearest neighborhood state with smallest I,5, so the

temperature dependence in equation (2.8) result in activation type of conductivity :

—&3

oc=0, ek

The nearest neighborhood hopping €5 is can be evaluated by using the percolation

method.

There are two competing factors in the hopping rate; a larger hopping distance

I, enables us to find a state with smaller &€,4but large I, 5 result in a smaller transfer

integral at the same time. The average hopping distance I turn out to be

1
- - (To)a
r oc T # which leads the hopping conductivity o = &, e ( ) (variable range

hopping).

Take intuitive derivation of equation (2.8) so the problem is to find the optimized
hopping distance r that minimizes I, 5 .

Let the DOS at the Fermi level be D(0) and the region be the sphere with radius r

then the average hopping rate takes the form:

1

gaﬂ - ’
A':erD(O)
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Substituting equation (2.8) into equation (2.7) we get the following:

-2r 1 3
=V, eXp( j (2.9)

£ KT 4a°D(0)

Then we take the derivative of I" with respect to r. But first let:

3

b=——— then equation (2.9) becomes:
47KTD(0) quation (2.9)

or D 30 {3
So, 5 :Vph(—ae e +r—4e e j:—vph(a—r—Je

N or
To minimize T we suppose that — = 0 so:

or
30 {ar3) 3b o9&
_V a——; 1|6 r - O r4 = — =
ph( r4j then we get a 87 kTD(0)
1
9 2
R2 — r2 —
S0, [871' kTN(Ef)j (2.10)
1 3
And W=¢= = 2.11
" 47 spy ARON(E) (2.11)
3
Replace the value of R in equation (2.11) as value of equation (2.10) to get:
1
3 3* x8 2 k°T*N°(E;) |
W=¢= = Z 323 4n4
4" x9°E° "N (E,)

47{ 9 TN(Ef)
87 KTN(E,)
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1

2k3-|-3 4
W _g_[gg% N(Ef)J (2.12)

_ 2r
By equation (2.9) we know that I" = Vphe ¥ where Y = [?+%j Then

from equations (2.10) and (2.12) and simple calculations we have:

2( 0& J“ 1 ( 2K3T? j“

Y =|— +

&\ 87 KTN(E,) |  kT|92%°z N(E,)

Y:[ 32><92+2 ]4 z[ij‘l[%jél(l&@i
9&%7 KTN(E,) T ) | 23%kN(E,)

A _
But TO = (fST(Ef)J , Where A= (182)

1 _[Loji
So, Y z(T—°j4 and [ = Vphe T
T

Then we derive the hopping conductivity:

o =e”AD(0) where A is the diffusion constantand A =T7r?.

1

(To )2
So, o =e’r’V N(E;)e [Tj (2.13)

If we assumed that T, = ezl’z\/th (E; ) then the conductivity will take the form:

(2.14)
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Chapter Three

Simulation of Hopping Theory

In this chapter we evaluate the electrical conductivity in region of temperature,

100 k <T <300 k using different light intensities ( F ). This chapter consists of four
sections, in the first section, we divide an experimental data into three regions and find
the slope and intercept for every region. In section 3.2, we find the value of density of
state DOS at Fermi level by two methods depending on the values obtained in section
3.1. In section 3.3, we fit the values of DOS which are calculated in section 3.2 using

Excel M.O., to ensure that the value of DOS is constant as it is stated by the variable

range hopping theory of Mott [2] . In the last section we testify a new approach for the
hopping conductivity, we combine thermionic emission at all temperatures together
with the hopping to show (by using simulation) if the non-constant of DOS is still valid

or not.

3.1 Analysis of temperature regions:

To understand the idea that stands behind dividing the region of temperature into
three sub-regions, we sketch the experimental data for T1,SSe, crystal under various

conductivities, see Figure 1.
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Figure 1: the conductivity with different temperature in dark and with various light
intensity F=50,55,60,65,70,75 and 80 (mW.cm™),these values got from original
experimental data we obtained.

From Figure 1, the conductivity variation is non-linear and exhibits exponential decay
with temperature. The electrical conductivity in the dark is altered by a photon energy
disturbance to check the effects of the extra photonic energy on the hopping

parameters.

1
The plot of In(c)-T # in accordance to equation (2.14) reveals straight line with

slopes and intercepts that allow determining the VRH in accordance to the equations.

T

T

1/4
For the original equation the electrical conductivity a:aze_( j obtained from

Miller-Abrahams Hopping Rate with o, =e”*a?V ,N(E; ) .
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b
and R%*= J 2,
8 7y ky TN(E,)

Where a and R is the average hopping range and

3 3
_ A7 N(EF)=/17/ ,and W 3

ks N(E;) ke T, ~ 47RN(E,)

0

Here:

&=y =5A is typical value.

a=10.78 OA is the hopping distance.

V,, =10"s™ is the phonon frequency.

e=16x10" and k, =86.25 meV .

The In(c)—T ™ variation can be divided into two regions :

a) The range of high temperature, which is between 270 k and 320 k. In this region

Ea

KT

we consider the equation azooe[ J this equation is selected because it

represent the pure thermionic emission of charged carriers over the energy barriers
that exist in the material. Thermionic emission in dominate at very high

temperature. The natural logarithm of both sides yields the equation

|na:_(E‘5‘)+|n o,. Then we plot In(c)versus 100% of the experimental data
KT

Ea
1000K

with different values of light intensity. So, graphically the values of and

Ino, are the slope and y-intercept respectively, see Table 1 and Figure 2.
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Table 1: values of Ea and o, get from the plot of experimental data of Conductions

with different tempreture along the range T(320-270)K indicative for a variable light
intensity F (mw.cm?).

320-270 K
F(mW.cm?) slope Intercept E. (eV) o (Qem™)
Dark 5.0488 7.3219 0.435 1.51E+03
50 5.0092 7.2256 0.432 1.37E+03
55 4.9821 7.1664 0.430 1.30E+03
60 4.9389 7.0569 0.426 1.16E+03
65 4.8912 6.9287 0.422 1.02E+03
70 4.7842 6.6011 0.413 7.36E+02
75 4.7289 6.459 0.408 6.38E+02
80 4.6626 6.2757 0.402 5.31E+02

-8

-8.5

-9

—e— Cond dark

05 —m— Con50

—_—-9.5
- —a— Con55

/":‘_:\

= —m— Conb0
G -10 —s— Con65
O —e— Con70
-10.5 —s=—Con75
Con80

-11

-11.5

3.1 3.2 33 3.4 3.5 3.6 3.7
1000/T(K™)

Figure 2: the Conduction with different tempreture along the range T(320-270)K,

showing a Inc ~ 1/(1000/T) dependence, indicative for a variable light intensity F = 50,

55, 60, 65, 70, 75 and 80 (mMW.cm ™).
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As it is easily observed from the figure, no linear region is observed.

b) The middle range of temperature which is between 140 k and 260 K. In this region

1

_[TTOJZ

is for the conductivity at low temperature. We use the experimental data at the

we consider the equation o = o ,€ (Mott’s variable range hopping), which

- . T, |4 .
specified range to draw the relation In(c) = —(?OT +Ino,. Figure 3-a shows

the best linear curve that fit the experimental data in dark and Figure 3-b shows the

linear curves at F = 50,55,60,65,70,75 and 80 (mW.cm ™). From the graphs we find

1

the values of Incsand (%)4 which are the slope and y-intercept see table 2.

Table 2: values of T, and &, get from the plot of experimental data of Conductions
with different tempreture along the range T(260-140)K indicative for a variable light
intensity F (mW.cm™).

260-140
F(mW.cm™) | siope Intercept T,(K | o, (£Xm )_l
Dark 120.63 18.552 2.12E+08 1.14E+08
50 24.35 -5.2255 3.52E+05  5.38E-03
55 23.015 -5.4986 2.81E+05 4.09E-03
60 21.582 -5.8023 2.17E+05 3.02E-03
65 20.861 -5.9204 1.89E+05  2.68E-03
70 20.172 -6.0471 1.66E+05  2.36E-03
75 19.291 -6.2262 1.38E+05  1.98E-03
80 18.461 -6.3944 1.16E+05 1.67E-03
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The table shows a sharp drop in the value of the disorder degree from 10° K in the
dark to 10° under light excitation. This strange drop is of importance because it means
reduction of electronic disordering by three orders of magnitude. It in turn lead to
improvement of the performance of RAM device through very cheap led lightening by
three orders.

In according to VRH theory T, must remain constant as it depends on DOS of
material that is established during the device design. However, the photon excitations

reduced these values sufficiently. The value of T, clarifies the problem; we compute

the other physical parameters to observe the side effects.

'10 1 1 I I I

-11 F

| ¢ Conddark |

-12 F

-13 F

14 F

-15 Fk

-16 F

Ino((Qcm)1)

-17 F

-18
24E-01 2.5E-01 2.6E-01 2.7E-01 2.8E-01 2.9e-01 3.0E-01

(1/mM)M/4) (k)

Figure 3- a: Conduction with different temperature along the range T(260-140)K,
1
showing Inc ~ (T )Z dependence, with no light intensity (dark).
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Figure 3- b: Conduction with different temperature along the range T(260-140)K,

1
showing a Inc ~ (T )Z dependence, indicative for a variable light intensity F = 50,
55,60,65,70,75 and 80 (MW.cm?).
3.2 Computation of the density of state at Fermi level
In this section we use the computed values of the conductivity parameters in section

3.1 to compute the value of N(E;). In fact, there are two methods for that, in the first

method assuming the percolation constant 4 =18.1 and the density of state at Fermi

3

1
level is given by the equation: N(EF)=i7 . So, we use the values (T,)s ,
B TO
andy =& =(5"A) ' =2x10°. Then,
943
N(EF)=18'1X(2X10 ) 167884058107 x (1) (3.1-a)
86.25 xT, T,
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and the values of R and W are as follows:

9 % 1V
R= . =3.4303278x10* x| —— | (3.1-b)
8x3.14x2x10° x86.25x150x N(E, ) N(E;)

3 3 1
W = = =0.238853503x ———— (3.1-
(4x3.14><R3><N(EF)J 4x3.14xR*xN(E;) XRSN(EF)( )

In the second method we get use from the pre-exponential factor presented by the
equation:

o, = ezazvth(EF )

Here the percolation constant A may be a reason for the variation of DOS under light

and thus it is assumed to be a rather than constant function.

3

9 % A
a’=R%= . On the other hand, since T, =—"7 — we have
8 7y ks TN(E) ks N(Eg)
% el
}/: LI\I(EF) S.Theno- :eZM V .
A 2 8rmykyT Pn
Thus;
el
1\

o . IN(E,) | 9 [ /IAJ N(E, V5

eV, ; (To kN (E, )J%k . 8 7 T |\Tykg
B

8x3.14x150x (86.25) r (G )3(TO j%

N(E, JatT =150) =
(B X ) ( 9x (1.6x107)* x102°
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%
N(E. )=3.798401673 x10%(c, )3[%0} (3.2)

_ T, KgN(E;) %_ (86.25)T,N(E;) %
po| PRED]T(ERITREDT

Now we try to evaluate the value of A using Fitting Curve method in Excel, for more
details see Appendix A. From the excel work sheet we can find the value of A, see the

Table 3 below.

Table3: actual and predicted values of N(E;) using the two methods.

Method#1: from Toand y Method#2 from To and o,
N(Es) R W N(Es)predict R w N(Ef)pred-N(Es) diff~2
793E+18  1.92E+01 4.23E-24 | 2.41E+56 452E+10 1.07E-89 2.41E+56 5.82E+112
4.78E+21  953E+01 5.77E-29 | 1.03E+24 365.4659  4.75E-33 1.03E+24 1.05E+48
598E+21  1.01E+02 3.89E-29 | 4.06E+23 289.4999  2.43E-32 4.00E+23 1.60E+47
7.74E+21  1.08E+02 2.48E-29 | 1.43E+23 223.2376  1.5E-31 1.36E+23 1.84E+46
8.86E+21  1.11E+02 1.95E-29 | 9.41E+22 200.873  3.13E-31 8.52E+22 7.26E+45
1.01E+22  1.15E+02 154E-29 | 6.01E+22 179.622  6.85E-31 5.00E+22 2.50E+45
121E+22  120E+02 1.13E-29 | 3.21E+22 153.5769  2.05E-30 2.00E+22 4.01E+44
1.45E+22  126E+02 8.31E-30 | 1.78E+22 132.4311  5.79E-30 3.32E+21 1.10E+43
A 5.91E+106 sum of diff"2 5.82E+112

The solution reveals an infinite value of A. This type of solution finds no correct
result. A well apparent conflict between the experimentally observed and the computed

is better shown in Figure 4. N(E. ) Increases with F, but the theoretical one decreases

with F.
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1.0E+25

1.0E+24 |
3 (b) —e—Il(Ef)
] 1.0E+23
E —— N{Ef)predict
] (a)
zZ 1.0E+22

1.0E+21 ' . :

45 55 65 75 85
F{mWcm™)

Figure 4: N(Ef) with different intensity light, showing (a) actual points and (b) the
predicted values at some value of A=5.91E+106= infinity.

Thus when we have 1 as a variable with F and since the DOS is a variable of 4, the
DOS is not constant but variable of F . Now we will find A for all points (for all F )

by: fitting the values of actual N(EF) get from equation (3.1.a) with the values of

predicted N(EF) get from equation (3.2), and we do that as following:

N (EF ): N (EF )predicted

9313 %
18.1x(2x10°)" _ ) 57804058 107" x (1) = 3.798401673 xlOsl(oz){T—(’j (3.3)
86.25 xT, T ’

In equation (3.3) there is only one unknown parameter, which is A, see Table 4.
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Table 4: values of A for different light intensity get from fitting.

11/2 ﬂv

3.29E-38 1.08E-75
4.63E-03 2.15E-05
1.47E-02 2.17E-04
5.39E-02 2.91E-03
9.42E-02 8.88E-03
1.69E-01 2.84E-02
3.77E-01 1.42E-01

8.13E-01 6.62E-01

In the scope of this analysis, it turn out that y cannot be constant but a variable that
depends on F. Table 5; show the computed y-values in the scope of these
assumptions. The yvalue is much less than one atomic orbit radius. The minimum

allowed value of electron in H-atom is 5.11x107**

m. So the calculated length being
107%,107" is impossible.
Now, we can find » by use the values of A(in Table 4), T, and actual values

of N(E; ) and then find £=1/y, )R = y xR, (see Table 5). We find all of that to prove

the validity of DOS when it is not constant.
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Table5: values of », (1/y) and R get from the values of A.

;/((cm’l) & (cm) R

5.12E+34 1.95E-35 9.85E+35
1.89E+11 5.29E-12 1.80E+13
8.73E+10 1.15E-11 8.81E+12
3.68E+10 2.72E-11 3.96E+12
2.54E+10 3.94E-11 2.82E+12
1.72E+10 5.81E-11 1.98E+12
1.01E+10 9.94E-11 1.21E+12
6.03E+09 1.66E-10 7.58E+11

3.3 Approach of Mixed conduction

In this section we try another approach and we assume the existence of mixed
conduction and the mixture is composed of thermionic emission at all temperatures and
hopping.

This approach is considered because the high region of temp did not show linear

variation with reciprocal temperature.

We look at the relation Inc =Ingo, —% as a function of (kT)™ then the differential

~d(In(o))

activation energy is given by the relationdE, =
ay g y a d(kT) ™

. The values of dE, at

various values of light intensity are to be calculated. We draw the graph of dE, versus

the temperature (T ) on the same diagram to see the efficiency of the use of thermionic



40

emission conductivity on the range of temperature (140-320) K, the results are

displayed in Figure 5.

1.2E+06
9.5E+05 —&— Cond
dark
—e—Con50
7.5E+05
——Conb5
——Cont0
© 5.5E+05
L —a—Conb5s
ge]
3 5E405 —e—Con70
—#—Con75
1.5E+05 —e—Con80
-5.0E+04
1.3E+02 1.8E+02 2.3E+02 2.8E+02
T(k)

Figure 5: dE_ with different temperature along the range T (320-140) K, showing non-
linear relation between dE, (derivative of E_) and the temperature, indicative for a
variable light intensity at values F = 50-80 (mW.cm ™).

As Figure 5, show the relationship between dE, and the temperature (T) is

nonlinear. This lead us to assume that the mechanism is the mixed conduction.

According to this assumption we try to find values for T,and E, which are valid for

any temperature as well as any light intensity F . For that object we draw the graph of
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the conduction, which is obtained experimentally together with the mixed conduction.

The details of this approach are considered by using o, and o, from experiment as:

E

o(T)=0c,e [KT) + O'Ze[TTOj

See appendix B (Figures B1-B7).

Using this approach the evaluated E, and T,are displayed in Table 1 (see Table 6).

Table 6: values of Ea and T, we get from the fitting plots in Figures B(1-8) (in
appendix B) at different light intensity.

F (mw.cm™) Ea(eV) To(k)
Dark 4.41E-01 2.08E+08
50 4.06E-01 3.45E+05
55 4.61E-01 2.74E+05
60 4.38E-01 2.12E+05
65 4.10E-01 1.83E+05
70 4.39E-01 1.61E+05
75 4.43E-01 1.33E+05
80 4.10E-01 1.12E+05

Although the E, variation did not show systematic charge with light intensity, the

values of the degree of disorder systematical fall down. This determent is best shown in

Figure 6.



42

3.60E+05
2.70E+05 |
—
~
S
o
—_
1.80E+05
9.00E+04
45 55 65 75 85
F(mWecm™2)

Figure 6 : T, (get from fitting ) with different light intensity F (mW.cm™).

From the values of T,, the peremeters N(EF ) R, W, y and jR can be founded.

N(E. ) By Equation (3.1-a): N(E, )=1.67884058 x10°" x (Ti) .

0

. Y
And R by Equation (3.1-b): R — 3.4303278x10~% x ( N(|15 )J .

We find W by Equation (3.1-c): W =0.238853503 x 3;
R

N(E:)

From Tables 6 which gives the values of T, and equations 3.1(a-c) together with

the equation jR =2x10° x R we can calculate the peremeters N(E.),R, W,  and

JR as follows, see Figures 7(a-d).
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1.60E+22
1.40E+22 |
1.20E+22 |
— 1.00E+22 |
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)
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W 6.00E+21 |
2
4.00E+21
45 55 65
FimWcm-—2)

Figures7 a: N(Ef) with different light intensity F (mW.cm™) .

1.35E+01 |
1.20E+01 |
oﬂn
L
o
1.05E+01 |
9.00E+00 : :
45 55 65

F(mWcmA-2)

Figures7 b: R with different light intensity F (mW.cm™).
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21 |

20 |

W(meV)

19 |

18 |

17 |

16 L L

45 55 65

F(mWcm?)

Figures7 c: W with different light intensity F (mW.cm™).

2.75E+00
2.50E+00 |
€ 2258400 |
2.00E+00 |
1.75E+00
a5 55 65
F(mWecm™2)

Figures7 d: R with different light intensity F (mW.cm™).
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The data displayed in Figure 6 are consistant with our obtained experimantal data.
This approach may be regarded as correct solution. However, the correcting of the

Mott's variable range hopping theory is quastionable.
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Chapter four

Result and Discussion (non-constant DOS):

In this chapter we compute the hopping conductivity for non-constant density of state
(DOS) which we proved it is validity in previous chapter. This chapter consists of two
sections, in section one, we give a full mathematical analysis to the model of
S.Boutiche [44] for the non-constant DOS (polynomial) and Mott principles for the
constant DOS, and in section two, we discuss numerically the model of the
exponential density of state (DOS) and the model of Mott principles for the constant

DOS.

4.1 The polynomial DOS:

According to the variable range hopping theory of Mott [2], N(EF) is assumed as an

energy-independent distribution, and a large number of previous studies on carrier
transport [40-43], in particular in amorphous, micro (or nano) crystalline silicon layers,
reported the average value of the material. Also by the variable range hopping theory of
Mott [2], the temperature T dependence of the conductivity, when conduction between

localized states near Fermi level E, is by hopping, is given by equation (1.1). And we

talked about the derivation of equation (1.1), in chapter two. Mott has minimized the

argument of the following equation:

E,
o, = ep{-20R,; —k—_l‘_ (4.1)

With respect to the distance hop R, he assumed that the density of states is constant

ij?

over the energy range of hopping:
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E.R’

1
N(E) = N(EF)z( ] (4.2)
ij"ij
Is constant as the hopping energy ranges between0.1-0.2 eV . It is hard to believe
that N(E) remains constant over such energy range. But what equations (1.1) and (4.2)

becomes if the density of states is non-constant near E.?

S. Boutiche [44], discussed numerically the hopping conductivity for polynomial
density of states (DOS) using percolation theory. Boutiche add some assumptions about

the shape of N(E), first he consider that N(E)is the density of states at Fermi level,

and he suppose that the asymmetric part of N(E) follows an odd power law form. So,
N(E) = N(E;)+s,E®
N(E) = N(Eg J1+V,E"] (4.3)
Where q =1, 3,5 ..., and sq is a positive constant (s, is the slope for the linear case

of N(E)), the energy E is measured from the Fermi level E. =0.
There are two critical conditions must be satisfied: the first concerns the nature of

each conductance o;given equation (4.1). In fact, each conductive must be at least

equal to the critical conductivity o :

oft 20, (4.4)

And the second condition concerns the average number < m(E,)>of conductance

linked to each site located at energy E;. Such a number must be equal at least to a
critical concentration “c” of links per site:

c=<m(E;)> (4.5)
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When the conditions (4.4) and (4.5) are satisfied it appears in the random network a
critical path of conductances joining one side of the system to the other. The problem of

the random network is said solved only when o is correctly identified and this happens

when equation (4.5) is solved [44].

Resolution of the random network problem of conductances by Boutiche:

Boutiche used equation (4.1) to rewrite equation (4.4) under the form:
op{_2aR. — 131> exp{_ Emy (4.6)
P T '

Where E_ is the energy at critical conductivity (highest energy) in the center of the

sphere with radios R=0, and it must be identified to solve our random network

problem. Boutiche used equation (4.3) to evaluate the number m(Ei), it is necessary to
count all sites located at energies E;accessible by the electron located at the site of
energy E;. Such E;sites are randomly distributed within a sphere of radius R;and

from equation (4.6), R; satisfy the relation:

1
R. <——(E, — E; 4.7
ij 20kT ( m u) ( )

On the other hand, m(E, )is given by the formula:

m(Ei) = %”j R,°N(E;) dE, (4.8)

From relation (4.7) and equation (4.8) we obtain:

_Ar 1

m(EN="3 (20kT)?

[(E, —E;)°N(E,) dE, (4.9)
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Without loss of generality we may assume that E; >0. So, if we integrate overall

E; then E; has the following possible situations besides the possible values for E;.

E & E & E &

| E. L Em L Em

L E; — Fi L E;

—Ej — E;

— Er =0 — Ep=0 — Ef =0

—E
Ey=F Ey =E Ey=Ei-E
Limits: 0——E, E,—E, -(E,-E)—0

On the other hand, the limits of the integral are the boundaries of the smallest interval
which contains E;. Hence the corresponding intervals are [0, Ej], [Ei, Em] and [-(Em-Ei),

0]. Therefore from equations (4.3) and (4.9), we have

4z N(E,)

mE) =3 (20kT)?

Ei Em
{I(Em —E)*(1+V,E,") dE + j(Em —E,)*(1+Vv,E,") dE,
0 Ei

0
+ [(E,-E+ EJ)3(1+VqEJq)dEJ}

—(Em-Ei)
Ei Em

We let: |, = j(Em ~E)*(L+V,E;)dE, , I, = j(Em ~E;)*(1+v,E;*) dE, and
0 Ei

0 0
li= [(E,—E +E)’(A+V,E)dE, = [(E;-(E -E,)’(1+V,E")dE ,

(Ei—En) (Ei—Em)
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A7 NE) 4y (4.10)

Then m(Ei) = 3 (20kT)?

The first integral,

3 Vq q+4 g+l
l,=E(E,-E) [1+ E} E. X(1-x)® +—— E, "x*(1-x)° (4.11)
g+1 q+ 1

Where X = % . We note here that E; >0.

m

The second integral can be simplified as follows:

Em Em

|, = [(E,'-3E,°E; +3E,E " ~E")E, +V, [ (E,'E," -3, E," +3E,E,"* ~ ") dE,
Ei Ei
Hence

3 e T e 3 3 e ]
l,=|E,’E,~~E,’E+E,E’-—| +v| "L -—"_E’E"+——EE"™-
2 4 q+1 q+2 q+3 q+4

Ei

4 4
|2:(Em4_gEm4+Em4_E_m)_(Em3Ei_gEsziz-I-EmEiS_E_i)
2 4 2 4
E q+4 N . E g+4 E 3E-q+1 . . Eq+4
o 3 gy S g v (- 3 pegee, 3 ppe B
g+l q+2 q+3 q+4 g+l g+2 q+3 " q+4
E4 . 4 " g+l 4+2 q+3 q+4
I2 :i_l_qumq 4 i_ 3 + 3 3 1 —EmA(X—3L X X ) Vquq X 3X 3X X
4 g+l q+2 q+3 q+4 2 4 q+1 q+2 q+3 q+4
So,
! 2 4 q+1 q+2 q+3 q+4
|2 _ Em +Vq mq+4{ 6Q' :|_ EmA(X _3L n X3 _X7) Vq mq+4 X 3X 3X X ) (412)
4 (q+4)! 2 4 q+1 q+2 q+3 q+4

The third integral also can be simplified in the following way

T(Eﬁ -3E,°(E, - E,) +3E, (E, - E,)* - (E, - E,)°) dE,

(Ei-Ep)

0
J‘(Ej‘H3 _3qu+2(Ei _ Em) +3qu+1(Ei _ Em)z _ qu(Ei _ Em)3) dEJ

(Ei’Em)
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0

|3:{E’ —E, *(E,—E,)+ E ’(E, —E,)? Ej(Ei—Em)3:|

(Ei—Em)

q+4 q+1 0

. E.

Vq . - 3 qu+3(Ei - Em)+ 3 qu+2(Ei - Em)2 —— (EI - Em)3
g+4 q+3 g+2 q+1

(Ei—En)

1, =—[ﬂ—(a B+ (B —E) (B - Em)‘i

4
_Vq[(Ei — Em)q+4 _ 3 (Ei _ Em)q+4 + 3 (Ei _ Em)q+4 _ (Ei — Em)q+4}
q+4 q+3 q+2 q+1
E_“(1-x)* g+4 64!
l,=—""" v E Q- ———
So, 3 4 q-—m ( ) (q+4)| (413)

From equations (4.11- 4.13) we have:

1 3x° (1-x)*
L +1,+1 XA—x)P+=—(x——"—+x°
Ll = {( R }
g+l 3 g+l g+2 q+3 q+4
+Vquq+4 XA-x)° X 3X +3x X )|+ [1 1- q+4]
g+1 q+1 g+2 q+3 q+4 (q+4)'

4 | q+2 q+3 q+4
|1 N |2 N |3 _ Em )3 quq+4 &(1_(1_)()%4)_ 3 X _ 2X N X
2 (g+4)! q+1\g+2 q+3 q+4

Therefore,

e - 4 NE) <E24 (1+X)(1_X)3+Vquq+4{6q!(1_(1_)()%4) SEXW P Xq+4]}>(4 1

(q+4)! q+llgq+2 gq+3 q+4

Boutiche [44] assumed that:
m(Ei) = mq(Ei) + u(E;, ) (4.15)

Where m,(Ei) represent the number of conductances resulting from the symmetrical
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part N(E.) of the density of states N(E) (first dimension-i) and w«(E;,q) is the number
of conductances resulting from the asymmetrical part of N(E) (second dimension-j).

By comparing equations (4.14) and (4.15), we obtain for E, > O:

_ 27 N(Ep) -« Y
Mo (X) = 3 (2akT) E, 1+x)1-X) (4.16)

And,

4z N(E.) E, ™| 6q L) 3 (xR xe
== m 1-(1-x)™)- - _
Hx) 3 (20kT)* E,° (q+4)!( =) ) q+1\ q+2 q+3+q+4 (4.17)

0

Where v, =1/ E,"and E, is the energy solution of the equation N(E) =0.
In equations (4.16) and (4.17) replace x by —x to get the following two expressions for

M, (X) and u(x,q) when E; <0:

O3 (20kT)?

4r NE,.) E,"[ 6q Ly 3 [x¥Togxws g
Xq)=— n ~1+ 1+ x)")- .
Hx.9) 3 (2kT)° E,' (q+4)!( ) ) q+1 q+2+q+3+q+4 (4.19)

E ‘(1-x)(1+x)° (4.18)

Since m(x) is a physical product of the density of states and g is an odd number we
have m,(-X) =m,(X) and z(-x 0) =—x(x a).

The last step of the resolution of Boutiche [44] percolation problem concerns the
evaluation of the average number (c) of conductances linked to the site located at

energy E,. To obtain this number we follow the method of Pollak [45], he assumed that

c is proportional to m(E;) by a proportionality factor N(E;) . So,
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JmEVNE)IE  [m()?N(x)a
c=¢ = (4.20)
[ m(EN(E;)dE [mOON (xdx

Then expand their integrands under the form:

1

J(my )+ (x, ) v, () e

c= . Where v, (x)=Ejv,x*

[ mo )+ u(x M+v, ()i

[{ms 007 + 100”4 2ms () (%, 6D 1+ v, () Jox

So, c=-

[ (my(x)-+ pa(x, ) ML+ v, () e

-1

[ lmo (07 + 2, )7 + 2m, (x)a(x, v (X) e
Then, C=- : (4.21)
[ Ima )+ aa(x, v (x) e

-1

In equation (4.21) we have to write the asymmetrical functions since their
integrations cancel over positive and negative energies. In equation (4.21) we can

neglect all terms containing «(x,q)since the surface which is determined by these
terms is negligible in comparison with the one corresponding to m,(x)*> when q >1.

In such a situation, equation (4.21) becomes quasi similar to the one found in [45] for
a constant DOS.

Jl‘mo(x)zdx

c= (4.22)

_ 'lfmo(x)dx
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Integrating the equation (4.22) and taking as Polak [45] c=1.7 .

1

_2r N(E) ¢ 4_fl((l—x)(l+ x)*  dx

T3 (20kT? "

j(l—x)(1+ x)*dx

1

(1—4x+4x2 +4x3 10X +4x° +4x° —4x" + X8 )dx
sz_” N(EF) E 44

20kT)* " h
3 (20T) J(1—2x+2x3—x4)dx
-1
8 9
X=2x2+ T30 xt o+ 20 A XX
C_2_7[ N(EF) E 4 3 2 9 -1
3 (26kT)® " X_Xz+>ﬁ_fl
2 5],
7 N(E KT E 189
1.7:_ F m i
12 o [kTJ m (4.23)
5
3
By using the value of T,, where T, = [#éf)) and inserting that in equation

1

E T, |4
(4.23), we obtain: ﬁzl.S(?‘)j , Where 1 ~18.2 ( chapter two).

We can then deduce that the hopping energy layer of equation (4.7): E, :kT(TO /T)”4
and equation (4.4) are valid for any odd g (and s,) when N(E) is given by equation

(4.4) [44], as if N(E) = N(E,).
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4.2 The exponential DOS:

-E
In this section we consider that the DOS at Fermi level is given by Noexp[E—‘J,

and the DOS in exponential case [46]:

_E-E
N(E) = N, exp[E—fJ (4.24)

0

Where E, =KT ,and N, is the pre-exponential constant, and write N(E;) as

- E -E
N(E;) =N, eXp(E—Elj , where N =N, EXp[ E f J (4.25)
0

0

To calculate m(E,) the two critical conditions which are mentioned in the previous
section must be satisfied, see relation (4.5) and equation (4.6). Indeed, we will follow
the same technique as in the prior section to evaluate m(Ei). Now from equation (4.10)

and equation (4.25) we can write m(E;) as follows:

N, E,
nKE)— 2 QakT){I(E ~-E)® @@( ()JdE +j(E ~E,)° a@[ 3 jdEj
+ T (E-—E+E)%n{_Equ}

—(Em—Ei) " I : EO :

Let us denote the integrals in the last expression as H,,H, and H,, then

N,

5 (H; +H, +H,).
3 (20kT)?

m(Ei) = 2%

By elementary calculations we can evaluate H,, H, and H,as follows:

H, =—E.(E, - Ei)3|:eXp(_EEi J_1:|
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Let x=5 and s = Ew , then
Em 0
H, = E,*s®(x —1)*[exp (— sx)—1] (4.26)

—E.
] E,
0

E;

3 j jE exp( 3 jdEj

Em —E- Em
H, = j(Em —Ej)3exp[ Jj dE; = I(Ems—BEszj +3E,E/” —Eﬁ)exp[
] E, ]

H,=E, jexp( f]dE -3E, jE exp( OJdE +3E, jE exp(

Using integration by parts we get:

3 _Ej 2 _Ej 2 2 _Ej "
-E,’E,exp = +3E,,"E,(E; +E;)exp = —3E,Ey(E;" +2E,E, +2E,")exp =
H2= 0 0 0
3 2 2 3 - E;
+E,(E;” +3E,°E, +6E,E," +6E;")exp EJ
0 E
2 3 2 En
“Eic 4] aeEi E, E, E, E, E,
H,=|exp Ey -8 +38°(—+1)-35(—5+2—+2)+ (=5 +3—5 +6—+6)
EO EO EO EO EO EO EO E

2 3 2
Hz=exp(_E”‘)Eo4{—s3+352(%+1)—35(E’“2 E (Em3 Em2 E_H;)}

0 0 0 0 0 0

“E el g, a2E, E’ _E E’ _E’ _E
-e LB, —ST+38° (= 3s—+2—+2 —=+3—5+6—"+6

0 0 0 0 0 0

H, = exp(—s)E04{—s3 +35%(5+1) —35(5% + 25+ 2) + (5° + 352 +6$+6)}
—exp(—sx)E," {— s° +35%(5X+1) — 35(5*X? + 25X+ 2) + (5°X® +35°X? + 6SX + 6)}

= E04(6exp(— s)-exp(- sx){—s3 +38% (sX+1) — 35(s”X? + 25X+ 2) + (°x* +35°X? + Bsx + 6)}) (4.27)

And the last integral
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0

Hy= [ (E,-(E-E,)’ exp[ jdE

(EifEm)

: 3 2 2 3 —E
(EifEm) 0

_[ E, exp(
(Ei-Ep)

+3(E, - E,_)? j Eexp(

-(En-E)

0 —E-
JdE ~3(E, -E,) j Ejzexp( = JJdEj
0

_(Em_Ei)

e ey S el
dE, - (E -E,)* [ ep —E,

E ~En-E)

Using integration by parts we get:

3 2 2 E
-E,(E;" +3E,"E, +6EE," +6E, %) xp[ E

0

2 2 _Ej
+3E,(E - E, )(E;” +2E,E, + 2B, ) exp T
0

2 E E
-3E,(E,-E,) (EJ.+E)xp(E ]+E( E,)’ Xp[ ]

H, = (- B, (BE,?) + 3E, (E, — E,,)(2E,%) — 3E, (E; — E,,)*(Ey) + Eo(E, — E,.)°)
—E,((E, -E,)* +3(E, - E, )°E, + 6(E, - E, )E,” +6E,)
—exp(ﬂ +3E,(E, —E, )((E, - E,)* + 2(E, — E, )E, + 2E,%)
= —3E,(E, - E, )2((E, —E, )+ E,) + E,(E, - E, )}

H,= EO4{—6+6(sx—s) —3(sx—5)% + (sx—s)3}+ 6E," exp(—(sx—5)) (4.28)

Therefore, from equations (4.26- 4.28) we get:

H,+H,+H, =E, exp(-sx)s’(x 1) - E, 's*(x - 1)°
E04(6 exp(—s)—exp (- sx){— % +352(sx+1) — 35(52X? + 25X + 2) + (5°X® + 35°X? + 65X + 6)})
+E,’ {— 6+6(5Xx—5) —3(sXx—5)? + (SX — 3)3}+ 6E," exp(—(sx—s))

H, +H,+H, =-3E,* {exp(— ) (s(x~1)+ 1) +1-2°)+((s(x~1)-1) +1- 2e—5>} (4.29)
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So,

47N,

me) = (20kT)?

E,’ L exp (- sx)<(s(x ~1)+1) +1- 2es> - <(s(x ~1)-1)f +1-2¢”° >}(4.30)

Now we want to obtain the average number of conductances linked to the site located
at energy E, by weighting m(E,) with a probability factor that is proportional to

m(E;).N(E,), so that equation (4.6) becomes:
1
j m(x)% N (x)dx
C= -1
. (4.31)
j m(X)N (x)dx
-1

Replace m(x) in equation (4.31) by its value in equation (4.30) and taking in account

E.
that the exponential DOS N(E;) =N, exp(E—'] so, N(X) =N, exp(— sx), we can write

0

c as follows:

1

J'{rexp (- sx)<(s(x ~1)+1)° +1- 2es> - <(s(x ~1)-1f +1-2¢°* >}2 exp (- sx)dx

o= M g (4.32)
CAD T exp o (s(x -1+ +1-26%) ((x-1)-1 +1-2¢ ™ foxp (- s
To simplify equation (4.32) we let
z=}eo s (s(x—1)+1) +1-2¢°) —((s(x—=1)-1) +1-2e >} (4.33)

Then
1

Z%exp(— sx)dx
_—4ﬂNfE4[ Xp (-~ sx)

= (20kT)® ° ¢
I Z exp(—sx)dx

-1

Cc ‘HC

Elementary calculations give



59

U, = Lores—LTem _oes astes —e2 4 Sser _ 252 1 (4.34)
s 4 2
And U,,

1 4+83 +852 +45° + 5% —8e* —Bse ™ —4s%e ™ + 4e )
= IZZe’Sxdx 4 x(—85—165% —125° — 4s* +8se™* + 8% ) dx
- 85 +125° +65* — 457 )+ x*(— 45 — 45 )+ x*s*
(8+ s — 4™+ 4se™ —25% — 4’ — 4se’ — 25%€°)
+ 2‘|'e*2'5X +X 4s —4se™ + 4s%e™ + 4se’ +4s%° ) dx
—25%° — 25%° )+ x3(— 45" )+ xs*

(4.35)

. (4 —85+85 —4s° +5* —8e® +8se’ — 4s%€” + 4e” )
+ .[e‘?’sX + x(85 — 165 +125° — 45* —8se® + 8s%€") dx
X?(852 —125° + 65" — 4s%€° )+ x°(4s° — 4s* )+ x*s*

Thus,
—e~(12-8e™ +4e > )+e*(12-165 + 325 +165* —8e ™ — 1657 + 4e )
—e‘23[12:)’+3s+4s3 +8s* —7e° —3e5j

U,== +e25(123—33 +12s% —125° +8s* —7e® +12se™° +8s%e° —3e° —4se’ —Sszesj (4.36)

_35(280 104 . 4 25)
-7 ———e +—-¢e

81 27 3
25(280 80 160 , 80 5 16, 104 , 64 . 16, 4, j
% — - —s+—8 " ——s’+—s" - ——e° +—se s’e’ +—g?
81 9 9 9 3 27 9 3

Therefore,
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e"(12-8e " +4e )
—e*(12-165+ 3252 + 165" —8e* —165% " + 4 %)

+ e‘%? +35+4s%+8s* —7e° — 3esj

13

2| 5

35+12s% —12s% +8s* —7e®

+12se° +8s% " —3e® —4se® —8s%e®
33(280 104 . 4 Zsj
e ety e

81 27 3

280 80 160 , 80 , 16 ,

s+ s -8 +—5
% 8 9 9 9

104 ( 64 16 , 4
e +—se’-—s%e"+—¢

e
27 9 3 3

2+e° —%ezs —2e° —4s%¢°

3
—e® 4 > se” —2s%e® +¢°

S

From the last expression it is very difficult to find ¢ analytically, so we move to the

numerical way to see the validity of the hopping energy E, =kT(T,/T)"*when N(E)

IS given by equation (4.22). To that we compare between the curves of the polynomial

DOS and the exponential DOS, equations (4.15) and (4.30) respectively, as q goesto 0

and then find the value of E_, at the best correlation, (see Figure 8, Table 9).
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=
2
e
S 100E+02 - ool fun
2
— —+—exp-fun
&,
£ 1.00E+00
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Figure8: Plot of the best correlation of m(x) number of conductances between
polynomial DOS (limg—0) and exponential DOS (with E_=0.08ev and

E, =0.008eV attached to the temperature T(10 K-300 K).

Table 9: : the value of E_, with many correlation of fitting between m(x) function in
polynomial DOS (lim g — 0) and exponential DOS with E; =0.008¢eV .

Em(Ei=0.008eV) | Correlation | Range of T (K)
0.03 0.62 60-300
0.035 0.67 70-300
0.04 0.72 90-300
0.045 0.75 110-300
0.05 0.78 130-300
0.055 0.82 150-300
0.06 0.85 180-300
0.065 0.88 200-300
0.07 0.91 230-300
0.075 0.95 260-300
0.08 0.98 280-300
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Conclusions

The derivation and simulation of variable range hopping transport theory was carried
out to check the validity of the theory for variable density of localized states near the
Fermi level. The conclusions are: The hopping transport is easily controllable via
photoexcitation as shown in Figure 2, the photoexcitation can reduce the hopping
energy and the hoping range, that means wider distances for electrons to move via
photoexcitation, also the higher the light intensity, the less the degree of disorder, the
low heat and energy consumption as shown in Figure 6, 7(a, b). Even though Mott
derive his theory assuming constant density of localized states, it is still correct for
variable polynomial and exponential types of DOS when extra light energy is supplied
to the moving electrons.

These analyses are promising as they may support faster random access memories and

lower energy consumptions
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Appendix A
Curve Fitting by Microsoft Excel to approximate the value of 2

Stepl: input the experimental data to calculate the values of T,and s, as in

table 2.

Step2: Evaluate N(E.) using equation 3.1; we call this value the actual
value.

Step3: Create names for A. Input the initial values for A (e.g., 1).Then click
on Insert, Name, and Create. Then a new window will pop up and just
click ok.

Step4: Predict N(E;) using the assumed value of A in step3 via equation
3.2.

Step5: Compute the square of the difference between the actual value and
the predicted value.

Step6: Compute the sum the square of the differences by using the
AutoSum button.

Step7: Click on Tools, Solver, Set the sum of diff*2 cell as our Target Cell
(the sum of the square of the differences = variance). Now make the target
cell Equal to Min. By Changing Cells, select the cells where the numeric
value of TO are located. Now you can click on Solve and Excel will

minimize the difference between the predicted N(E.) and actual N(E.) by



64

Changing the value of A. A new window will popup after you click solve,
just click OK.

Step8: Plot both the actual and predicted values in Excel. You can do this
by highlighting the light Intensity F, N(E.) and predicted N(E.) columns.
Then click on the Chart Wizard button. Select XY scatter as the chart
type and click finish. (See table3)

Step9: Now the actual points are shown in (a) and the predicted values are
shown in (b) (in figure 3). Notice the predicted values do not fall exactly

on top of the actual strength. This means the predicted values are not good.
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Appendix B

Fitting the conduction
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Figure B(1) :fitting conductivity at dark.
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Figure B(2) :fitting conductivity at F=50 (mW.cm ™).
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Figure B(3): fitting conductivity at F=55 (mW.cm™)

1.00E-03 ; \ ; ;
120 170 220 270 320

1.00E-04 /

f—condexp

1+=*—condther

1.00E-05

cond({{Qcm)"-1)

1.00E-06

T(K)

Figure B(4): fitting conductivity at F=60 (mW.cm ).
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Figure B(5) :fitting conductivity at F=65 (mW.cm™).
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Figure B(6): fitting conductivity at F=70 (mW.cm™).
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Figure B(7): fitting conductivity at F=75 (mW.cm™).
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Figure B(8): fitting conductivity at F=80 (mW.cm™).
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