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Analysis and Simulation of Variable Range Hopping Parameters  

under Photo-excitation 
Suha Jazzar 

Supervisor: Dr. Abdelhalim Ziqan  

August 2014,   80 pages 

Abstract 

For the purpose of improving the performance of random access memory (RAM) in 

computers, the electrical current conduction mechanism which is governed by the 

variable range hopping (VRH) of electrons from one energy state to another distant site 

of states is reconsidered. Some recent developments that include less energy 

consumption, shorter time of response and less heating during run process are attained 

by getting use from the cheap light energy.  Photoexcitation of these devices and device 

related materials have shown that while the variable range hopping parameters like the 

degree of disorder, average hopping energy, average hopping energy sharply decreases  

with increasing light intensity, the density of localized energy  states (DOS) near Fermi 

level and average hopping range significantly increases. The increase of DOS with 

increasing light intensity is very abnormal and makes the use of Mott's variable range 

hopping theory questionable. The Mott's theory which was derived assuming invariant 

DOS was simulated to state the reasons for abnormality. In addition the validity of this 

theory under variable DOS was analytically proved assuming linear variation of DOS 

with light energy and was also tested against exponential DOS variation. Mathematical 

analysis of the theory and its testing parameters have shown that the Mott's model for 

variable range hopping is still applicable even if the DOS is variable function of 

energy. This study, which is carried for the first time, is supposed to provide an 

excellent method for increasing the ability of storage in RAM by increasing the density 

of states that occupy electrons and shorten the response time of the device by increasing 

the hopping distance and decreasing the hopping energy through the device.  
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 ملخص

( تكون آلية توصيل التيار الكهربائي RAMبهدف تحسين أداء ذاكرة الوصول العشوائي )   

يعتمد ، وهذا ةللإلكترونات من مستوى طاقة معين إلى موقع آخر ذو مستوى اخر للطاقة محدد

ك طاقة را هناك بعض التطورات التي تستهل(. مؤخVRH) تلكتروناللإعلى نطاق النقل المتغير 

وقت استجابة أقصر وحرارة أقل خلال عملية التشغيل عن طريق استخدام الطاقة بأقل  وأقل، 

( لهذه الأجهزة و المواد ذات الصلة Photoexcitationالتكاليف. وقد أظهر تحفيز الفوتونات )

( مثل درجة الفوضى، متوسط نقل VRHبها ان قيمة العوامل المتغيرة لنطاق النقل المتغير )

الطاقة الحاد تقل عند زيادة شدة الضوء ، بينما كثافة مستوى الطاقة المحدد سط نقل الطاقة ومتو

(DOS القريب من مستوى فيرمي و المدى المتوسط ) للنقل تزيد بشكل كبير. هذه الزيادة لكثافة

نظرية  ( مع زيادة شدة الضوء غير طبيعية وتجعل من استخدام DOSمستوى الطاقة )

(Mott's)  النقل في نطاق (المتغيرVRH مشكوك فيها. ان نظرية )(Mott's)  والتي تم اشتقاقها

( ثابت طبق على نموذج عملي مصغر)محاكاة( DOSسابقا فرضت ان كثافة مستوى الطاقة )

على بيانات لتجربة عملية لفحص ما اذا كان هناك قيم لكثافة مستوى الطاقة غير ثابتة في حالات 

تحليليا بوجود قيمة متغيرة  ة الى انه تم اثبات صحة هذه النظرية شاذة عن النظرية. بالإضاف

( DOSعلى افتراض ان الانحراف لكثافة مستوى الطاقة ) ( DOSلكثافة مستوى الطاقة )

(. DOSخطي مع طاقة الضوء وتم اختباره أيضا ضد الانحراف الأسي لكثافة مستوى الطاقة )

لنطاق النقل  (Mott's)ار متغيراتها أن نموذج وقد أظهر التحليل الرياضي للنظرية واختب

( اقتران DOSلا يزال قابل للتطبيق حتى و ان كانت كثافة مستوى الطاقة ) ( VRHالمتغير) 

متغير للطاقة. هذه الدراسة، التي تتم للمرة الأولى، من المفترض أن توفر وسيلة ممتازة لزيادة 

عن طريق زيادة كثافة مستويات الطاقة ( RAM)قدرة التخزين في ذاكرة الوصول العشوائي 
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ل نقلسافة امة للجهاز قصيرا عن طريق زيادة تشغل الإلكترونات ونجعل زمن الاستجاب التي
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Introduction: 

In the history of hopping conduction, Conwell is the first one who suggested the idea of 

hopping in 1956 [1]. The model of the hopping conduction was fruitful since it is the 

inspiration source of the Variable Range Hopping (VRH) theory of Mott [2]. Mott was 

one of the first to give a theoretical description of the low temperature hopping 

conductivity in strongly disordered systems with localized states [3]. In 1969 he 

introduced the concept of Variable Range Hopping. He shows:  How the long jumps 

govern the conductivity at sufficiently low temperatures. Mott’s theory makes the 

assumption of a constant density of states near the Fermi level; Mott explained the 

qualitative concept of Variable Range Hopping by phonon assisted tunneling, on which 

the Miller-Abrahams resistor network model is based. 

   Similar ideas were independently proposed by Pines and Anderson [4]. Miller and 

Abrahams developed the hopping rate where the jumps are governed by the phonon 

assisted tunneling and suggested the random resistor network model to describe the 

macroscopic hopping transport. Mott performed a further development of the Miller 

and Abrahams hopping rate and showed that by making a couple of assumptions a 

universal law for the hopping conductivity can be obtained. 

   Mott’s Variable Range Hopping theory was brought further and adjusted by including 

Coulomb interactions between the charged particles within the system. When the strong 

interactions are taken into account, a different situation than what predicted by Mott’s 

law arises. The Coulomb Gap (CG) in the density of states occurs due to the strong 

Coulomb Interaction (CI) [5] between the electron energy states close to the Fermi 

level. Hamilton and Pollak [6] were one of the first to consider the non-constant density 

of states. Their results were later improved by Efros and Shklovskii [7] and give a new 
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conductivity relation; Efros and Shklovskii introduced Coulomb interactions into 

Mott’s theory, which modify his original results. 

   Variable range hopping (VRH) is a model describing low-temperature conduction in 

strongly disordered systems with localized charge-carrier states [2]. In general for d-

dimensions, (VRH) model has a characterize temperature dependence of: 

 1/1

0

0




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
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 T
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Here, σ is the conductivity, σ0 is a constant independent of temperature, T is the 

temperature in Kelvin and T0 is the degree of disorder of the system(characteristic 

temperature). 

   
 It is interesting to study hopping conductivity at low temperatures because of savings 

the semiconductor industry could achieve if they were able to replace single crystal 

devices with glass layers [8]. The hopping conduction was used to develop information 

about the density of state (DOS) In silicon nanowires Si-(NWs). The (DOS) give on 

indication about the crystal quality and the electronic conduction type prior to 

electronic device fabrication [9]. Before developing polycrystalline silicon NWs based 
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devices, in particular for high-performance electronics applications, a good 

understanding of electronic materials properties is required. Based on the hopping 

process between localized states related to the nanowire size dependent defect density 

within the polycrystalline silicon nanowire, the Carrier transport in materials is a 

function of temperature and doping level [9]. All of the non-volatile random access 

memory devices applications including random access memory (RRAM), Ferro-electric 

random access memory (FeRAM), magnetic random access memory (MRAM), and 

phase change memory(PCM) run on the principle of hopping conduction. Kai-Huang 

Chen[10], reported that the hopping conduction between the activation energies of the 

(RRAM) play the vital role in resistance switching. Bipolar resistance switching 

characteristics with different compliance currents of Zn: SiO2 RRAM were thoroughly 

analyzed. Owing to the increase of current, it became easier for metal ions to form 

precipitates with larger diameter, which led to the decrease of hopping distance. 

Conducting polyaniline nanowires have advantages over other metal or semiconducting 

nanowires for their low cost, ease of synthesis, and for the ability to locally or site-

specifically fabricate the nanowires [11]. Conducting polymer nanowires (CPNWs) 

have recently emerged as an attractive alternative to metal and semiconducting 

nanowires for their large conductivity change, flexibility, and ease of synthesis [12,13]. 

Furthermore, the CPNWs can be synthesized site-specifically at the desired location 

[13]. The polyaniline nanowire-based sensors have been reported to have improved 

sensitivity and response time due to their nano- scale morphology. Some of the 

immediate challenges regarding polyaniline nanowires include improving their 

conductivity in the physiological pH range, preventing or minimizing the conductivity 

degradation, and minimizing the hysteresis effect. Much work is currently underway to 
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address these issues with some areas already showing signs of success, and the number 

of applications for polyaniline nanowires is expected to increase in the future [11]. 

Among all the conducting polymers polyaniline (PANI) demonstrates outstanding 

properties due to its environmental stability, redox reversibility, high electrical 

conductivity and ease of synthesis that drives it towards potential electrical device 

applications. It is agreed that in most of in its applications the behavior of the 

conductivity is a long-standing problem. The improvement on electrical properties of 

doped PANI reflecting the conditions of preparation/dopant incorporation is of 

fundamental importance [14, 15]. 

   Spinel compounds are being extensively studied for their applications in dew sensors, 

pigments for protective coatings etc. [16]. These materials find wide industrial 

applications in dew sensors, pigments for protective coatings and principally for their 

dielectric properties in chip capacitors, high frequency capacitors and temperature 

compensating capacitors and in the composition of binders by increasing the flexural 

strength [17]. The properties of these materials are highly dependent on the structural 

disorder arising from synthesis procedure and sintering temperature [18]. The electrical 

property varies from an insulating to a conducting regime [19]. Hence, it results in a 

wide range of conductivity values. Various charge transport mechanisms have been 

proposed depending on the conductivity behavior of ceramics with various parameters 

such as temperature, pressure and doping.  

In the light of the above reported remarkable considerations about the hopping transport 

applications, here in this thesis we will review the derivation and we will simulate the 

variable range hopping transport theory in the dark and under photoexcitation effect. 

Particularly, the values of Mott's parameters will be recalculated for each of the applied 
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illumination intensities. In addition, the Mott's theory will be tested against variable 

density of localized states.          
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Chapter One 

Basic concepts 

 

   This chapter contains five sections. In section one, we give some basic top 

mathematical definitions that play a pivotal role in the derivation and existing hopping 

theory and in simulation data for hopping variable parameters like Poisson’s Equation, 

Boltzmann statistics and Gamma Function. And in section two, we explain some 

physics definitions that are used in our study. In section three, we show the Mott’s 

formalism which developed by Mott the hopping process. In section four, we talk about 

percolation theory and the analytical and numerical solution percolation problem that 

are used in the derivation of Mott’s hopping theory that based on the thermal energy of 

electron under constant electric field. Finally, in section five, we discuss hopping 

conduction, which help us to understand the hopping theory and the Variable Range 

Hopping conduction (VRH).  

1.1   Mathematics definitions: 

 
1.1.1 Poisson’s Equation 

 

   Poisson’s equation is derived from Coulomb’s law and Gauss’s theorem. In math- 

ematics, Poisson’s equation is a partial differential equation with broad utility in electr- 

ostatics, mechanical engineering, and theoretical physics [20]. The Poisson equation is: 

                                                fu  2
                                                              (1.1) 

   It is the simplest and the most famous elliptic partial differential equation. The 

function f  is given on two or three dimensi- onal domain and called “source term”, 
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and is often zero, either everywhere or at some specific region (maybe only specific 

points). In this case, the previous equation called Laplace’s equation, results: 

                                                     02  u                                                           (1.2) 

 

1.1.2 Boltzmann distribution [21,22] 

   Boltzmann distribution is a probability measure for the distribution of the states of a 

system it is also known as the Gibbs measure. The Boltzmann distribution has many 

applications in many sites where magnitudes of normal variables are important, 

spatially, in physics. A special case of the Boltzmann distribution is Maxwell–

Boltzmann distribution, mathematically, is the distribution of the magnitude of a three-

dimensional random vector whose coordinates are independent (identically distribution) 

that means there is no normal variables. In physics, Maxwell–Boltzmann distribution 

gives the distribution of speeds of molecules in thermal equilibrium, for example 

describing the velocities of particles of gas. The Boltzmann distribution for the 

fractional number of particles NN i /  occupying a set of states i is: 

             




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
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







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E
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                                        (1.3) 

    where: iE the i-th energy level, k is the Boltzmann constant, ig  is the degeneracy 

of energy level i,   is the chemical potential, T  is absolute temperature (assumed to 

be a well-defined quantity), N  is the total number of particles with property 


i

iNN , Z  is the partition function. 

http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Degenerate_energy_level
http://en.wikipedia.org/wiki/Chemical_potential
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)
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Where: 

I. The partition function is a special case of a normalizing constant in probability 

theory, in physics, describes the statistical properties of a system in 

thermodynamic equilibrium. 

II. The degeneracy meaning: the number of states having energy iE .                                                           

   The Boltzmann distribution applies only to particles with temperature is high enough 

and low enough density 

1.2   Physical Definitions : 

Crystallites : are small, often microscopic crystals that, held together through highly 

defective boundaries, constitute a polycrystalline solid. Metallurgists often refer to  

crystallites as grains. 

The Fermi level (or Fermi energy) [27]: is the level where the occupancy of electron is 

2/1  and it is the total chemical potential for electrons (or electrochemical potential for 

electrons) and its energy usually denoted by µ or EF. The Fermi level is denoted by 

)(Ef  

            2

1

0exp1

1

/exp1

1

/exp1

1
)( 










TkEETkEE
Ef

BffBf

  

Here: 
Bk  is Boltzmann constant, T is the temperature in Kelvin and 

FE  is the energy at 

Fermi level. 

   The Fermi level of a body is a thermodynamic quantity, and its significance is the 

thermodynamic work required to add one electron to the body (not counting the work 

required to remove the electron from wherever it came from). A precise understanding 

of the Fermi level—how it relates to electronic band structure in determining electronic 

http://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)
http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Grain_boundary
http://en.wikipedia.org/wiki/Metallurgy
http://en.wikipedia.org/wiki/Chemical_potential
http://en.wikipedia.org/wiki/Electrochemical_potential
http://en.wikipedia.org/wiki/Thermodynamic
http://en.wikipedia.org/wiki/Thermodynamic_work
http://en.wikipedia.org/wiki/Electronic_band_structure
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properties, how it relates to the voltage and flow of charge in an electronic circuit—is 

essential to an understanding of solid-state physics. 

 

Thermionic emission: is the emission or heating  a conducting body to a sufficiently 

high temperature, electrically charged particles are emitted from it and may be drawn 

off by a suitable electric field [28]. The particles may be either electrons or ions, 

according to the nature of the emitter and the prevailing conditions.  This occurs 

because the thermal energy given to the carrier overcomes the binding potential, also 

known as work function of the metal. 

 

1.3 Mott’s Formalism 
 

   In the formalism developed by Mott [2], the hopping process is even more simple (or 

can be simplified)  by assuming that the dominant contribution to the hopping current is 

through states within TkB
  of the chemical potential   , thereby eliminating the exact 

occupation probabilities of the states in the description. In this case the hopping 

probabilities are derived directly from the equation: 

          1
1/exp2exp


 TkEERw Bjiijij  ,                        (1.7) 

 

   With the distance hop 
ijR ,and the energy hop wij. So the probability of a carrier 

tunneling 
ijP  from a localized state i with energy iE  to an empty state j with energy 

jE  giving as: 

 

http://en.wikipedia.org/wiki/Electrical_current
http://en.wikipedia.org/wiki/Work_function
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




















ijij

ij

B

ij

ij

ij

EEifR

EEif
Tk

EE
R

P

,)2exp(

,)2exp(





                                                     (1.8) 

 

   Where equation (1.8) follow the condition TkEE Bji  . Since hopping probability 

depends on both the spatial and energetic separation of the hopping sites it is natural to 

describe the hopping processes in a four-dimensional hopping space , with three spatial 

coordinates and one energy coordinate. Hopping probability and hops to sites that are 

further away in space but closer in energy might be preferable. This is the Variable 

Range Hopping (VRH) process, which concept was introduced by Mott in 1968 [2]. 

1.4  Percolation Theory 

 
   Percolation theory is a branch of probability theory dealing with properties of random 

media. Originally conceived as dealing with crystals, mazes and random media in 

general, it now appears in such fields as petroleum engineering, hydrology, fractal 

mathematics, and the physics of magnetic induction and phase transitions. As explained 

by the originators of percolation theory [29]. 

 

   1.4.1   Formalism Based on Percolation Theory 

 

   In modeling the (VRH) conduction mechanism, a set of sites is supposed to form a 

random resistors network, with impedances connecting all individual sites given by the 

inverse of the corresponding hopping probabilities equation (1.8): 

                              )exp( ijij RZ   ,                                                                          (1.9) 

   The basic difficulty in quantitatively describing the overall impedance of this network 
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in an analytical expression arises from the wide exponential spread in magnitude of the 

site-to-site resistors between randomly chosen hopping sites. Whereas this wide spread 

is preventing the use of analytical averaging, it has proven to be helpful when 

transaction with the problem using a numerical approach based on percolation theory. 

Following this theory  the network is characterized by a sub-set of interconnected sites, 

spanning the entire volume, with two-site  connections tij ZZ ~ , where tZ is the 

starting resistance and ˜ tZ  is the minimum resistance needed to include an infinitely 

large cluster of interconnected sites within an infinitely large network. Essentially, the 

percolation starting describes the highest impedance of the most conducting percolation 

path through the system. The actual sub-set of sites participating in the conduction is 

expected to be, a little bit, bigger than the most conducting percolation path, including 

more parallel paths with little higher resistance. The overall resistance of the system is 

described through the optimality of the most conductive percolation path with starting 

resistance tZ and a little larger sub-set of sites with – sometimes- a little larger site-to-

site resistance. 

 

   1.4.2 The Mathematics of Percolation 

 

   Percolation theory and its variants can be considered as part of a general frame- 

work of statistical theories that deal with  structural  and  transport properties in porous  

media [30]. Percolation properties is the properties of a macroscopic system that are 

emerge at the onset of macroscopic connectivity within it, and to understand the 

concept of connectivity, consider the square lattice, for example, in terms of bond 

percolation. The (connected) network of bonds is fully saturated and conducts a fluid, 

and bonds are randomly removed from the network, the intensity of flow between 
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opposing sides of the network decreases. At one side of the domain, the number of 

removed bonds by monitoring the fluid flows. In particular, it is of interest to know the 

number of bonds that must be removed (randomly) in order for no fluid to arrive at the 

side of the domain. The answer to the question is given by what is known as the 

percolation threshold. If the number of bonds is denoted by NN, and their number at the 

threshold is cN (the “critical” number), one can show [31,32] that the volumetric fluid 

flow Q , will be determined by a power law of the form: 

                                            kcNNQ                                                          (1.10) 

   Where k  is some critical exponent that can be found by many ways: theoretical way, 

computer simulation and/or experiment. Such a simple law holds for N  relatively 

close to cN . 

 
1.4.3 Analytical Solutions of the Percolation Problem 

 
    Percolation in a system is defined as a closed path between two opposite sides of the 

system. And it concerns the movement and filtering of fluids through porous materials. 

Recent applications include for example percolation of water through ice, which is 

important for the melting of the ice caps. 

    In general percolation theory the criterion of percolation is often expressed in terms 

of an expected number of connections to a single site needed to ensure a percolating 

cluster through the system. As in the analytical descriptions, these studies primarily 

focused on the qualitative relations between the parameters in the system. Although this 

more analytical approach has proven to be successful in describing the (VRH) process 

in the Ohmic low-field regime, the convolution of the hopping process into a standard 
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percolation problem appears less straightforward in the medium-field and the high-field 

regime, and the charge carriers in the low-field regime are thermally activated [33]. The 

differences between ‘standard’ percolation solutions and the hopping process appear to 

concentrate on two issues, often referred to as the concepts of ‘directional constraints’ 

and ‘correlation between consecutive hops’. 

 

1.4.4 Numerical Solutions of the Percolation Problem 

 
   Let us explain the mathematical setting. Percolation is a simple probabilistic model 

exhibits a phase transition. The simplest version of percolation which takes its place on  

2 , which is with edges between neighboring vertices. All edges of 2 are, independ-

ently of each other, chosen to be open with probability P  and closed with probability 

p1 . A basic question in this model is “ what is the probability that there exists an 

open path from the origin to the square   2
,nnSn   ? “ a limit as n of the 

question raised above is “ what is the probability that there exists an open path from 

zero to infinity? “ this probability is called the percolation probability is denoted by 

)(P . Clearly 0)0(  and 1)1(  , since there are no open edges at all when 

0P and all edges are open when 1P . For some models there is a probability 
cP  

such that 10  cP which is the global behavior of the system is quite different for 

cPP   and for 
cPP   . Such a sharp transition in global behavior of a system at some 

parameter value is called a phase transition or a critical phenomenon, and the parameter 

value at which the transition takes place is called a critical value [34,35]. 

   The basic mathematical methods and techniques of random processes and the 

overview of the most important applications will make the student using the analytical 
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techniques easily and models to study questions in modern applications in biology, 

physics, communication networks, financial market and decision processes.    

1.5 Hopping Conduction: 

   1.5.1 General definition  

   Hopping Conduction is defined as electric conduction in which the carrier transport is 

via electrons hopping from one localized state to another. Electron transport through 

localized state (deep-level state) within the bandgap of a semiconductor includes: 

1- Electron hops from a state to another state that has a higher energy. A thermal 

energy is required for this move. This process is thermally assisted tunneling. It 

depends on temperature. 

2- Electron hops from a state to another state that has equal energy. This transport 

is tunneling process. It does not depend on temperature. 

3- Electron hops from a state to another state that has a lower energy. This 

transport is tunneling process with the emission of a phonon(s). It does not 

depend on temperature. 

The necessary conditions for the occurrence of hopping are:  

1- Wave functions of the two localized states must overlap. 

2- Occupied and empty states must be present for the hopping to occur. This 

condition make hopping should happen between states that are close to the 

Fermi level. 

3- Electron hopping from one localized state to another with a higher energy level 

needs energy.  
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1.5.2 Variable Range Hopping Conduction [2,7,36] 

    When the temperature is very low, the probability of the electron thermal activation 

between states that are close in space but far in energy becomes smaller than that of 

electron hopping between some more remote states where they have new energy levels 

are very close to each other, in this case the characteristic hopping length increases and 

the temperature decreasing. This kind of hopping called variable range hopping (VRH), 

in 1968 Mott introduced this concept of a type of hopping conduction (VRH) [2], and 

Mott’s law describes the temperature dependence of the conductivity as following:                                  

                                 

4

1

0

0











 T

T

e                                                               (1.11) 

   Where: 0 is a constant independent of temperature, T is temperature and 0T is 

the characteristic temperature, such that: 

                             









)(30

FEkN
T




                                                               (1.12) 

   With k being the Boltzmann constant, )( FEN  being the density of localized states 

near the Fermi level FE calculating by adjusting the parameter electronic wave decay 

length 1  for localized states ( nmnm 33.0   ) and 4g being a constant 

and g in the range of 2.06-4.2 depending on the )( FEN feature [9,37]. The average 

hopping length R is a function of temperature and follows: 

                                
4

1

0
0 










T

T
dR                                                               (1.13) 
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   Where: 0d is a constant and observed R  ~ 4

1

0T dependence. The average hopping 

length is on the order of the average distance between localized states, and does not 

vary with temperature. 

   1.5.3 Hopping Probabilities [47] 

 

   If we assume there are no correlations between the occupation probability of different 

localized states, then the net electron flow between these states is given by: 

              jiijijjiij wffwffI )1()1(   ,                                                         (1.14) 

   Where: if is the occupation probability of state i and ijw  is the electron transition 

rate of the hopping process between the occupied state i to the empty state j. 

The occupation probability if is given by the Fermi-Dirac distribution function, with 

chemical potential i at the position of state i, as following: 

                        1
1/exp


 TkEf Biii   ,                                                       (1.15) 

   The transition rate ijw is related to a hopping probability ijP by 

                            ijij Pw  ,                                                                                    (1.16) 

   Where: ijP  the probability of success in a hopping attempt between states i and j and 

 an unknown parameter related to a certain ‘attempt-frequency’. 
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Chapter Two 

The Derivation of Hopping theory 

   In this chapter we have three sections, section one is about the derivation of 

thermionic by using Poisson equation in one dimension and The relation between the 

number of carrier trapped and the total number of occupied trapping steady, and in 

section two we work on resistance since Miller and Abbraham proposed a random 

resistance in which R  connect a pair of vertices, and in last section three we Derive 

the hopping conductivity. 

 

 Derivation of Thermionic Function [48] 

 
   Materials are supposed to be created from crystallites of irregular shapes. If material 

is polycrystalline then crystallites are identical with size L . They are assumed the 

exhibit the same type of conductivity. The charge carrier distribution is uniform with 

concentration equal N . The crystallite boundary has no thickness compared to L and 

contains tQ of traps per unit area are located at site t that have the energy tE with 

respect to intrinsic Fermi level FE . Traps are initially neutral and become charged by 

trapping carriers.  

   The original Mott paper introduced simplifying assumptions that the hopping energy 

depends inversely on the cube of the hopping distance (in the three dimensions case). 

Later it was shown that this assumption was unnecessary, and this is proved [38]. And 

also in the original Mott paper the hopping probability at a given temperature was 



 16 

depended on two parameters, R the spatial separation of the sites, and fE , their 

energy separation. 

 
   Transport properties in one dimension 

   We start with Poisson equation: 


qN

dX

Vd


2

2

                                                    (2.1) 

   Where  : dielectric permittivity and lX
l


2

.        

   If we integrate equation (2.1) twice and assume that 0
dX

dV  at  lX   and the 

charge carries in the region ),
2

( l
l  are trapped, then 

dxVX
qN

dV 







 0


       And by using the boundary condition (BC) we get 

l
qN

V


0
 

   So; dxl
qN

X
qN

dV 










 

   Then, 
0

2

2
)()( VVlX

qN
X

qN
dxl

qN
X

qN
xV   

 

   Where: 
0VV is the potential of valance band at the center of the Crystallite. 

   Here  0
iFE  and E  = positive value toward valence band. 

 

   Now we study the relation between the number of carrier trapped and the total 

number of occupied trapping state. 

    There are two possible conditions: First, tQLN   , second , tQLN  , 
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where LN is the number of carrier trapped and tQ is the total number of occupied 

trapping state (see Graphs 1-a&b).  

 

 

Graph 1-a 

 

 

 

Graph 1-b 

 

Case.1  tQLN  : traps are partially filled where  0l  
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   By Boltzmann statistics, the charge carries are given by the following equation: 
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   Where VN is the density of states DOS at value bound, k is Boltzmann’s constant, 

 KeV /1062,8 5 . 
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                                   (2.2)   

   Integrate equation (2.2) by using gamma function at 1/2, we get: 
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 is the intrinsic carrier density, and intrinsic means :  

number of electrons above fE = number of electrons below fE , to find fE must 

be the number of carrier trapped = the total number of occupied trapping steady: 
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Case.2  tQLN  :   0l  , part of the crystallite is depleted. 
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   Where dV : drift velocity, velocity of particles in electric field, and EVd  , here 

 is the electron mobility and E is the magnitude of the electric field. 
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   Conductivity is evaluated using model of random resistors network proposed by 

Miller and Abrahams. Considering an elementary hopping process from   to   
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when the state energies  EE  . The hopping of electrons (
e ) is accompanied by 

phonon absorption or emission for the electrons conservation, the number of electrons 

making transition per unit time (hopping rate)  [39]. To move from site   to site 

 the required energy is   and assumes that the particle successfully reached  . 

             )1()()(

2


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 
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ffENeV ph
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ph                                  (2.4.1) 

    In the case the phonon absorption 0  E . Here r  is the distance 

between the localized centers   and  , )(f  is the probability that the energy level 

  will be filled by an electron and )1( f  is the probability that the energy level 

  will be empty. )( EN ph   and )(f are distribution functions.   
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   With phonon emission 0E . 

          

1

1
)(






kT

Eph

e

EN       (Boson distribution function)                            (2.5) 

   phN is the phonon occupation number, phonon is mechanical vibration of atom at 

equilibrium position. 
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   The localized length is independent from state energy so the transfer integral between 

the two states give the factor 


r

e

2

, and by inserting equation (2.5) and equation (2.6) 

into equation (2.4) , the hopping rate become : 
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                                                             (2.7) 

   phV related to the product of the square of electrons - phonon, matrix element and 

the density of states (DOS) of phonons phV depends on r in weaker than 


r

e

2

 

”no spin effect”. 

             kT ,  kT  and  kT . 

     Where  :      
2









     

   And       when   and  lie on opposite site of f  

 The Resistance of Hopping 

   The resistance is the ratio of the potential difference across conductor to the current in 

the conductor: 
I

V
R   (the unit is ohm ( ) which is one volt per ampere). 

 

                      




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








kT

r

ph

e
Ve

kT

e

kT
R

 







2

22                                           (2.8) 

   Miller and Abraham proposed a random resistance network in which R  connect a 

pair of vertices. The conductivity of the whole system is determined by a set of  R . 
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The network is extremely wide spectrum of resistance R  due to the exponential 

depends on r and  when T is not too low ( r dominate) [7]. The electrons hop 

from localized state to nearest neighborhood state with smallest r , so the 

temperature dependence in equation (2.8) result in activation type of conductivity :  

                                          
kTe

3

3






    

   The nearest neighborhood hopping 3  is can be evaluated by using the percolation 

method. 

   There are two competing factors in the hopping rate; a larger hopping distance 

r enables us to find a state with smaller  but large r  result in a smaller transfer 

integral at the same time. The average hopping distance r  turn out to be 

4

1

 Tr which leads the hopping conductivity 
4

1

0

0










 T

T

e (variable range 

hopping). 

   Take intuitive derivation of equation (2.8) so the problem is to find the optimized 

hopping distance r that minimizes   . 

   Let the DOS at the Fermi level be D(0) and the region be the sphere with radius r 

then the average hopping rate takes the form: 

                                       
,

)0(
3

4

1

3Dr


   
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   Substituting equation (2.8) into equation (2.7) we get the following: 

             












)0(4

312
exp

3DrkT

r
Vph


                                                   (2.9) 

    Then we take the derivative of with respect to r . But first let: 

     


2
a  and     

)0(4

3

kTD
b


  then equation (2.9) becomes:  

                             
3r

b

ar

ph eeV
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   So, 
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   To minimize   we suppose that 0




r
 so: 

0
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   And                   
)(4

3
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3 fENR
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                            (2.11)     

   Replace the value of R in equation (2.11) as value of equation (2.10) to get: 
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   By equation (2.9) we know that 
Y

pheV  where 





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
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. Then 

from equations (2.10) and (2.12) and simple calculations we have: 
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    So,   
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T
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
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pheV  

   Then we derive the hopping conductivity: 

)0(2 De    where   is the diffusion constant and  
2r . 

   So,            
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   If we assumed that )(22

0 fph ENVre then the conductivity will take the form: 
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Chapter Three 

Simulation of Hopping Theory  

 

 

   In this chapter we evaluate the electrical conductivity in region of temperature, 

kTk 300100   using different light intensities ( F ). This chapter consists of four 

sections, in the first section, we divide an experimental data into three regions and find 

the slope and intercept for every region. In section 3.2, we find the value of density of 

state DOS at Fermi level by two methods depending on the values obtained in section 

3.1.  In section 3.3, we fit the values of DOS which are calculated in section 3.2 using 

Excel M.O., to ensure that the value of DOS is constant as it is stated by the variable 

range hopping theory of Mott [2] . In the last section we testify a new approach for the 

hopping conductivity, we combine thermionic emission at all temperatures together 

with the hopping to show (by using simulation) if the non-constant of DOS is still valid 

or not. 

 

 

3.1   Analysis of temperature regions: 

   To understand the idea that stands behind dividing the region of temperature into 

three sub-regions, we sketch the experimental data for Tl2SSe2 crystal under various 

conductivities, see Figure 1. 
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Figure 1: the conductivity with different temperature in dark and with various light 

intensity F=50,55,60,65,70,75 and 80 ).( 2cmmW ,these values got from original 

experimental data  we obtained. 

 

   From Figure 1, the conductivity variation is non-linear and exhibits exponential decay 

with temperature. The electrical conductivity in the dark is altered by a photon energy 

disturbance to check the effects of the extra photonic energy on the hopping 

parameters. 

   The plot of   4

1

ln


T  in accordance to equation (2.14) reveals straight line with 

slopes and intercepts that allow determining the VRH in accordance to the equations. 

   For the original equation the electrical conductivity 

4/1

0

2











 T

T

e obtained from 

Miller-Abrahams Hopping Rate with  Fph ENVae 22

2   . 
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    and   

2
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2

)(8

9









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




FB ENTk
R
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,  

   Where a  and R  is the average hopping range and  

      FB ENk
T

3

0


    ,  

0

3

Tk
EN

B

F


 , and    

)(4

3
3

fENR
W


      

    Here:    

       51  is typical value. 

     


78.10a  is the hopping distance. 

     11310  sVph   is the phonon frequency.  

     

.25.86106.1 19 meVkande B  
 

The   1ln T  variation can be divided into two regions : 

a) The range of high temperature, which is between 270 k and 320 k. In this region 

we consider the equation 










 KT

Ea

e0 , this equation is selected because it 

represent the pure thermionic emission of charged carriers over the energy barriers 

that exist in the material. Thermionic emission in dominate at very high 

temperature. The natural logarithm of both sides yields the equation 

0lnln  









KT

Ea .  Then

 

we plot )ln( versus 
T

1000  of the experimental data 

with different values of light intensity. So, graphically the values of 
K

Ea

1000
 and 

0ln  are the slope and y-intercept respectively, see Table 1 and Figure 2. 
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Table 1: values of Ea  and 
0  get from the plot of experimental data of Conductions 

with different tempreture along the range T(320-270)K indicative for a variable light 

intensity F ).( 2cmmW . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: the Conduction with different tempreture along the range T(320-270)K, 

showing a lnσ ~ 1/(1000/T) dependence, indicative for a variable light intensity F = 50, 

55, 60, 65, 70, 75 and 80 ).( 2cmmW . 

            320-270 K   

F ).( 2cmmW         slope        Intercept Ea (eV) 
σ0 ).( 1 cm  

Dark 5.0488 7.3219  0.435 1.51E+03 

50 5.0092 7.2256 0.432 1.37E+03 

55 4.9821 7.1664 0.430 1.30E+03 

60 4.9389 7.0569 0.426 1.16E+03 

65 4.8912 6.9287 0.422 1.02E+03 

70 4.7842 6.6011 0.413 7.36E+02 

75 4.7289 6.459 0.408 6.38E+02 

80 4.6626 6.2757 0.402 5.31E+02 
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  As it is easily observed from the figure, no linear region is observed. 

b) The middle range of temperature which is between 140 k  and 260 k. In this region 

we consider the equation 

4

1

2

0










 T

T

e (Mott’s variable range hopping), which 

is for the conductivity at low temperature. We use the experimental data at the 

specified range to draw the relation   2

4

1

0 lnln  









T

T
.  Figure 3-a shows 

the best linear curve that fit the experimental data in dark and Figure 3-b shows the 

linear curves at F = 50,55,60,65,70,75 and 80 ).( 2cmmW . From the graphs we find 

the values of ln and
4

1

1









T
which are the slope and y-intercept see table 2. 

  Table 2: values of 
0T  and 

2  get from the plot of experimental data of Conductions 

with different tempreture along the range T(260-140)K indicative for a variable light 

intensity F ).( 2cmmW . 

                 260-140   

F ).( 2cmmW     Slope      Intercept        
0T (K) 

2  
1)cm(  

       Dark 120.63 18.552 2.12E+08 1.14E+08 

50 24.35 -5.2255 3.52E+05 5.38E-03 

55 23.015 -5.4986 2.81E+05 4.09E-03 

60 21.582 -5.8023 2.17E+05 3.02E-03 

65 20.861 -5.9204 1.89E+05 2.68E-03 

70 20.172 -6.0471 1.66E+05 2.36E-03 

75 19.291 -6.2262 1.38E+05 1.98E-03 

80 18.461 -6.3944 1.16E+05 1.67E-03 
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   The table shows a sharp drop in the value of the disorder degree from 810  K in the 

dark to 510 under light excitation. This strange drop is of importance because it means 

reduction of electronic disordering by three orders of magnitude. It in turn lead to 

improvement of the performance of RAM device through very cheap led lightening by 

three orders. 

   In according to VRH theory 0T  must remain constant as it depends on DOS of 

material that is established during the device design. However, the photon excitations 

reduced these values sufficiently. The value of 0T  clarifies the problem; we compute 

the other physical parameters to observe the side effects. 

 

 

Figure 3- a : Conduction with different  temperature along the range T(260-140)K,  

  showing lnσ ~  4

1

T  dependence, with no light intensity (dark). 
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Figure 3- b: Conduction with different temperature along the range T(260-140)K, 

showing a lnσ ~  4

1

T dependence, indicative for a variable light intensity F = 50, 

55,60,65,70,75 and 80 ).( 2cmmW . 

 

3.2   Computation of the density of state at Fermi level 

    In this section we use the computed values of the conductivity parameters in section 

3.1 to compute the value of )( fEN . In fact, there are two methods for that, in the first 

method assuming the percolation constant 1.18  and the density of state at Fermi 

level is given by the equation:  
0

3

Tk
EN

B

F


 . So, we use the values  4

1

0T  , 

and 911 102)5(   A . Then, 
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25.86
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and the values of   R and W are as follows: 
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   In the second method we get use from the pre-exponential factor presented by the 

equation:  

    Fph ENae  22

2    

   Here the percolation constant λ may be a reason for the variation of DOS under light 

and thus it is assumed to be a rather than constant function.  
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   Now we try to evaluate the value of   using Fitting Curve method in Excel, for more 

details see Appendix A. From the excel work sheet we can find the value of  , see the 

Table 3 below. 

 

Table3: actual and predicted values of )( fEN  using the two methods. 

 Method#1: from T0 and  у  Method#2   from T0 and σ2     

N(Ef)      R         W N(Ef)predict      R        W N(Ef)pred-N(Ef)     diff^2 

7.93E+18 1.92E+01 4.23E-24 2.41E+56 4.52E+10 1.07E-89 2.41E+56 5.82E+112 

4.78E+21 9.53E+01 5.77E-29 1.03E+24 365.4659 4.75E-33 1.03E+24 1.05E+48 

5.98E+21 1.01E+02 3.89E-29 4.06E+23 289.4999 2.43E-32 4.00E+23 1.60E+47 

7.74E+21 1.08E+02 2.48E-29 1.43E+23 223.2376 1.5E-31 1.36E+23 1.84E+46 

8.86E+21 1.11E+02 1.95E-29 9.41E+22 200.873 3.13E-31 8.52E+22 7.26E+45 

1.01E+22 1.15E+02 1.54E-29 6.01E+22 179.622 6.85E-31 5.00E+22 2.50E+45 

1.21E+22 1.20E+02 1.13E-29 3.21E+22 153.5769 2.05E-30 2.00E+22 4.01E+44 

1.45E+22 1.26E+02 8.31E-30 1.78E+22 132.4311 5.79E-30 3.32E+21 1.10E+43 

        λ 5.91E+106    sum of diff^2 5.82E+112 

 

   The solution reveals an infinite value of λ. This type of solution finds no correct 

result. A well apparent conflict between the experimentally observed and the computed 

is better shown in Figure 4.  FEN  Increases with F, but the theoretical one decreases 

with F. 
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Figure 4: N(Ef) with different intensity light, showing (a) actual points and (b) the 

predicted values at some value of λ=5.91E+106= infinity. 
 

   

   Thus when we have as a variable with F and since the DOS is a variable of , the 

DOS is not constant but variable of F .  Now we will find   for all points (for all F ) 

by: fitting the values of actual  FEN  get from equation (3.1.a) with the values of 

predicted  FEN  get from equation (3.2), and we do that as following:    

       
predictedFF ENEN   

    
2

1

03

2

81

0

27

0

39

10798401673.3)
1

(1067884058.1
25.86

)102(1.18

















T

TT
   (3.3) 

In equation (3.3) there is only one unknown parameter, which is  , see Table 4. 
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Table 4: values of  for different light intensity get from fitting. 

      
2/1        

    3.29E-38 1.08E-75 

   4.63E-03 2.15E-05 

   1.47E-02 2.17E-04 

   5.39E-02 2.91E-03 

   9.42E-02 8.88E-03 

   1.69E-01 2.84E-02 

   3.77E-01 1.42E-01 

   8.13E-01 6.62E-01 

    

 

   In the scope of this analysis, it turn out that  cannot be constant but a variable that 

depends on F . Table 5; show the computed  -values in the scope of these 

assumptions. The  value is much less than one atomic orbit radius. The minimum 

allowed value of electron in H-atom is m111011.5  . So the calculated length being 

1235 10,10   is impossible. 

   Now, we can find   by use the values of  (in Table 4), 0T  and actual values 

of  FEN  and then find  /1 , RR   , (see Table 5). We find all of that to prove 

the validity of DOS when it is not constant.  
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Table5: values of  ,  /1  and R  get from the values of  . 

 (  1cm    cm  R  

5.12E+34 1.95E-35 9.85E+35 

1.89E+11 5.29E-12 1.80E+13 

8.73E+10 1.15E-11 8.81E+12 

3.68E+10 2.72E-11 3.96E+12 

2.54E+10 3.94E-11 2.82E+12 

1.72E+10 5.81E-11 1.98E+12 

1.01E+10 9.94E-11 1.21E+12 

6.03E+09 1.66E-10 7.58E+11 

   

3.3 Approach of Mixed conduction                                      

   In this section we try another approach and we assume the existence of mixed 

conduction and the mixture is composed of thermionic emission at all temperatures and 

hopping. 

   This approach is considered because the high region of temp did not show linear 

variation with reciprocal temperature. 

   We look at the relation 
kT

E
 0lnln   as a function of 1)( kT  then the differential 

activation energy is given by the relation
 

1)(

)ln(





kTd

d
dEa


. The values of adE  at 

various values of light intensity are to be calculated. We draw the graph of adE  versus 

the temperature (T ) on the same diagram to see the efficiency of the use of thermionic 
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emission conductivity on the range of temperature (140-320) K, the results are 

displayed in Figure 5. 

 

 

Figure 5: adE with different temperature along the range T (320-140) K, showing non-

linear relation between adE  (derivative of aE )  and the temperature, indicative for a 

variable light intensity at values F = 50-80 ).( 2cmmW . 

 

   As Figure 5, show the relationship between adE  and the temperature (T ) is 

nonlinear. This lead us to assume that the mechanism is the mixed conduction. 

According to this assumption we try to find values for 0T and aE  which are valid for 

any temperature as well as any light intensity F . For that object we draw the graph of 
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the conduction, which is obtained experimentally together with the mixed conduction.           

The details of this approach are considered by using 0  and 2  from experiment as: 

   

4/1

0

20)(



















 T

T

KT

E

eeT

a

  

  

   See appendix B (Figures B1-B7). 

   Using this approach the evaluated aE and 0T are displayed in Table 1 (see Table 6). 

 

Table 6: values of Ea  and T0 we get from the fitting plots in Figures B(1-8) (in 

appendix B) at different light intensity. 
 

F ).( 2cmmW  Ea (eV) T0 (k) 

Dark 4.41E-01 2.08E+08 

50 4.06E-01 3.45E+05 

55 4.61E-01 2.74E+05 

60 4.38E-01 2.12E+05 

65 4.10E-01 1.83E+05 

70 4.39E-01 1.61E+05 

75 4.43E-01 1.33E+05 

80 4.10E-01 1.12E+05 

 

   Although the aE variation did not show systematic charge with light intensity, the 

values of the degree of disorder systematical fall down. This determent is best shown in 

Figure 6. 
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Figure 6 : 0T  (get from fitting ) with different light intensity F ).( 2cmmW . 

     

   From the values of 0T , the peremeters  FEN , R , W ,   and  R can be founded. 

 FEN  By Equation (3.1-a):                 )
1

(1067884058.1
0

27

T
EN F   . 

And R  by Equation (3.1-b):               
 

4
1

4 1
104303278.3 








 

FEN
R . 

We find W  by Equation (3.1-c):         
 FENR

W
3

1
238853503.0     . 

    From Tables 6 which gives the values of  0T  and equations 3.1(a-c)  together with 

the equation RR  9102  we can calculate the peremeters  FEN , R , W ,   and 

R   as follows, see Figures 7(a-d). 
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Figures7 a: N(Ef) with different light intensity F ).( 2cmmW . 

 

 

Figures7 b: R with different light intensity F ).( 2cmmW . 
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Figures7 c:  W with different light intensity F ).( 2cmmW . 

 

 

 

Figures7 d: R  with different light intensity F ).( 2cmmW . 
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   The data displayed in Figure 6 are consistant with our obtained experimantal data. 

This approach may be regarded as correct solution. However, the correcting of the 

Mott's variable range hopping theory is quastionable. 
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Chapter four 

Result and Discussion (non-constant DOS): 

   In this chapter we compute the hopping conductivity for non-constant density of state 

(DOS) which we proved it is validity in previous chapter. This chapter consists of two 

sections, in section one, we give a full mathematical analysis to the model of 

S.Boutiche [44] for the non-constant DOS (polynomial) and Mott principles for the 

constant DOS, and in section two, we discuss numerically the model of the 

exponential density of state (DOS) and the model of Mott principles for the constant 

DOS.  

4.1   The polynomial DOS: 

    According to the variable range hopping theory of Mott [2],  FEN  is assumed as an 

energy-independent distribution, and a large number of previous studies on carrier 

transport [40-43], in particular in amorphous, micro (or nano) crystalline silicon layers, 

reported the average value of the material. Also by the variable range hopping theory of 

Mott [2], the temperatureT dependence of the conductivity, when conduction between 

localized states near Fermi level fE  is by hopping, is given by equation (1.1).  And we 

talked about the derivation of equation (1.1), in chapter two. Mott has minimized the 

argument of the following equation: 

                               }2exp{
kT

E
R

ij

ijij                                                                  (4.1) 

   With respect to the distance hop ijR , he assumed that the density of states is constant 

over the energy range of hopping: 
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                                 















3

1
)(

ijij

F
RE

ENEN                                                          (4.2)  

   Is constant as the hopping energy ranges between eV2.01.0  . It is hard to believe 

that )(EN remains constant over such energy range. But what equations (1.1) and (4.2) 

becomes if the density of states is non-constant near FE ? 

   S. Boutiche [44], discussed numerically the hopping conductivity for polynomial 

density of states (DOS) using percolation theory. Boutiche add some assumptions about 

the shape of )(EN , first he consider that )( FEN is the density of states at Fermi level, 

and he suppose that the asymmetric part of )(EN follows an odd power law form. So,  

                                                q

qF EsENEN )(                                                       

                                               ]1[)( q

qF EvENEN                                                 (4.3) 

   Where q = 1, 3, 5 …, and sq is a positive constant ( qs  is the slope for the linear case 

of )(EN ), the energy E is measured from the Fermi level 0FE .             

   There are two critical conditions must be satisfied: the first concerns the nature of 

each conductance ij given equation (4.1). In fact, each conductive must be at least 

equal to the critical conductivity c : 

                                                              cij                                                           (4.4) 

   And the second condition concerns the average number   iEm of conductance 

linked to each site located at energy iE . Such a number must be equal at least to a 

critical concentration “c” of links per site: 

                                                           iEmc                                                       (4.5) 
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   When the conditions (4.4) and (4.5) are satisfied it appears in the random network a 

critical path of conductances joining one side of the system to the other. The problem of 

the random network is said solved only when c is correctly identified and this happens 

when equation (4.5) is solved [44]. 

 

Resolution of the random network problem of conductances by Boutiche: 

   Boutiche used equation (4.1) to rewrite equation (4.4) under the form: 

                                    }exp{}2exp{
kT

E

kT

E
R mij

ij                                                (4.6) 

   Where mE  is the energy at critical conductivity (highest energy) in the center of the 

sphere with radios 0R , and it must be identified to solve our random network 

problem. Boutiche used equation (4.3) to evaluate the number  iEm , it is necessary to 

count all sites located at energies jE accessible by the electron located at the site of 

energy iE . Such jE sites are randomly distributed within a sphere of radius ijR and 

from equation (4.6), ijR  satisfy the relation: 

                                            )(
2

1
ijmij EE

kT
R 


                                                     (4.7) 

   On the other hand,  iEm is given by the formula:                                                                                                                  

.                                          jdE )N(ER
3

4
 m(Ei) j

3

ij


                                             (4.8) 

   From relation (4.7) and equation (4.8) we obtain: 

                                   jijm EE
kT

dE )N(E)(
)2(

1

3

4
 m(Ei) j

3

3


                            (4.9)          
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   Without loss of generality we may assume that 0iE . So, if we integrate overall 

ijE then jE  has the following possible situations besides the possible values for ijE .  

  

Limits:   iE0                          mi EE                       0)(  im EE  

 

   On the other hand, the limits of the integral are the boundaries of the smallest interval 

which contains Ej. Hence the corresponding intervals are [0, Ei], [Ei, Em] and [-(Em-Ei), 

0]. Therefore from equations (4.3) and (4.9), we have 
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   Then        )III(
)2(

)N(E

3

4
 m(Ei) 3213
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   ,                                                      (4.10) 

    The first integral, 
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   Where 
m

i

E

E
x  . We note here that 0iE . 

   The second integral can be simplified as follows: 
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The third integral also can be simplified in the following way    
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Thus,  
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   From equations (4.11- 4.13) we have: 
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   Boutiche [44] assumed that:              

                                   ),((Ei)m m(Ei) 0 qEi                                                 (4.15) 

Where (Ei)m0 represent the number of conductances resulting from the symmetrical 
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part )N(EF  of the density of states N(E) (first dimension-i) and ),( qEi  is the number 

of conductances resulting from the asymmetrical part of N(E) (second dimension-j).   

By comparing equations (4.14) and (4.15), we obtain for 0E i  : 
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   Where 
q

E0q /1 v  and 0E is the energy solution of the equation 0N(E)  . 

In equations (4.16) and (4.17) replace x by –x to get the following two expressions for 

)(m0 x  and  q)(x, when 0E i  : 
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    Since m(x) is a physical product of the density of states and q  is an odd number we 

have (x)m(-x)m 00   and q)(x,q)(-x,   .  

   The last step of the resolution of Boutiche [44] percolation problem concerns the 

evaluation of the average number (c) of conductances linked to the site located at 

energy iE . To obtain this number we follow the method of Pollak [45], he assumed that 

c is proportional to )m(E i by a proportionality factor )N(Ei . So,   
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     Then expand their integrands under the form: 
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   In equation (4.21) we have to write the asymmetrical functions since their 

integrations cancel over positive and negative energies. In equation (4.21) we can 

neglect all terms containing ),( qx since the surface which is determined by these 

terms is negligible in comparison with the one corresponding to 2

0 )(xm  when 1q . 

   In such a situation, equation (4.21) becomes quasi similar to the one found in [45] for 

a constant DOS. 
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   Integrating the equation (4.22) and taking as Polak [45] c=1.7 . 
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   By using the value of 0T , where 
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(4.23), we obtain:   
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Em , where 2.18  ( chapter two). 

   We can then deduce that the hopping energy layer of equation (4.7):   4/1

0m / TTkTE   

and equation (4.4) are valid for any odd q (and qs ) when N(E)  is given by equation 

(4.4) [44], as if  )N(EN(E) F . 
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4.2  The exponential DOS: 

   In this section we consider that the DOS at Fermi level is given by 
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   Where kTE 0  , and 0N  is the pre-exponential constant, and write )N(Ei as  

                  






 


0

i exp)N(E
E

E
N i

f    , where 









 


0

0 exp
E

E
NN

f

f .                         (4.25) 

   To calculate )m(E i the two critical conditions which are mentioned in the previous 

section must be satisfied, see relation (4.5) and equation (4.6). Indeed, we will follow 

the same technique as in the prior section to evaluate m(Ei).  Now from equation (4.10) 

and equation (4.25) we can write )m(E i as follows: 
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   Let us denote the integrals in the last expression as 21 H,H and 3H , then  
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   By elementary calculations we can evaluate 1H , 2H  and 3H as follows: 
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   Let   
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   Using integration by parts we get: 
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   And the last integral  
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    Using integration by parts we get: 
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   Therefore, from equations (4.26- 4.28) we get: 
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   So,         
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   Now we want to obtain the average number of conductances linked to the site located 

at energy iE  by weighting )m(E i with a probability factor that is proportional to 

)).N(Em(E ii , so that equation (4.6) becomes: 
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   Replace m(x) in equation (4.31) by its value in equation (4.30) and taking in account 
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   To simplify equation (4.32) we let          

             ss exsexssxZ  21112111exp
22

                    (4.33) 

   Then  

     
 

  2

1

1

1

1

1

2

4

03

f

exp

exp

)2(

N4
 

U

U

dxsxZ

dxsxZ

E
kT

c 


















  

 

   Elementary calculations give        
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Thus,
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Therefore, 



 51 

 
 


































































































































































ssss

ssss

ssss

s

sss

sssss

s

s

sss

ssss

sss

eessee

eseee

eessee

ssss

e

eee

esseeesse

essss
e

eessse

eesessse

eee

E
kT

c
32222

22

22

432

2

23

22

432

2

432

2242

2

4

03

f

2
2

3

42
4

1
2

3

4

3

16

9

64

27

104

3

16

9

80

9

160

9

80

81

280

3

4

27

104

81

280

843812

7812123
2

13

37843
2

13

416816321612

4812

)2(

N4
 





 

   From the last expression it is very difficult to find c analytically, so we move to the 

numerical way to see the validity of the hopping energy   4/1

0 /TTkTEm  when )(EN  

is given by equation (4.22). To that we compare between the curves of the polynomial 

DOS and the exponential DOS, equations (4.15) and (4.30)  respectively,  as q goes to 0 

and then find the value of mE at the best correlation, (see Figure 8, Table 9). 

 



 51 

Figure8: Plot of the best correlation of m(x) number of conductances between 

polynomial DOS ( 0lim q ) and exponential DOS (with eVEm 08.0  and 

eVEi 008.0 attached to the temperature T(10 K-300 K). 

 

 

Table  9:  :  the value of mE with many correlation of fitting between m(x) function in 

polynomial DOS ( 0lim q ) and exponential DOS with eVEi 008.0 . 

 

Em(Ei=0.008eV) Correlation Range of T (K) 

0.03 0.62 60-300 

0.035 0.67 70-300 

0.04 0.72 90-300 

0.045 0.75 110-300 

0.05 0.78 130-300 

0.055 0.82 150-300 

0.06 0.85 180-300 

0.065 0.88 200-300 

0.07 0.91 230-300 

0.075 0.95 260-300 

0.08 0.98 280-300 
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Conclusions  

The derivation and simulation of variable range hopping transport theory was carried 

out to check the validity of the theory for variable density of localized states near the 

Fermi level. The conclusions are: The hopping transport is easily controllable via 

photoexcitation as shown in Figure 2, the photoexcitation can reduce the hopping 

energy and the hoping range, that means wider distances for electrons to move via 

photoexcitation, also the higher the light intensity, the less the degree of disorder, the 

low heat and energy consumption as shown in Figure 6, 7(a, b). Even though Mott 

derive his theory assuming constant density of localized states, it is still correct for 

variable polynomial and exponential types of DOS when extra light energy is supplied 

to the moving electrons. 

These analyses are promising as they may support faster random access memories and 

lower energy consumptions  
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Appendix A 

Curve Fitting by Microsoft Excel to approximate the value of   

Step1: input the experimental data to calculate the values of 0T and 2 as in 

table 2.       

Step2: Evaluate  FEN  using equation 3.1; we call this value the actual 

value. 

Step3: Create names for λ. Input the initial values for λ (e.g., 1).Then click 

on Insert, Name, and Create. Then a new window will pop up and just 

click ok. 

Step4: Predict  FEN  using the assumed value of λ in step3 via equation 

3.2. 

Step5: Compute the square of the difference between the actual value and 

the predicted value. 

Step6: Compute the  sum the square of the differences by using the 

AutoSum button. 

Step7: Click on Tools, Solver, Set the sum of diff^2 cell as our Target Cell 

(the sum of the square of the differences = variance). Now make the target 

cell Equal to Min. By Changing Cells, select the cells where the numeric 

value of T0 are located. Now you can click on Solve and Excel will 

minimize the difference between the predicted  FEN  and actual  FEN  by 
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Changing the value of λ. A new window will popup after you click solve, 

just click OK. 

Step8: Plot both the actual and predicted values in Excel. You can do this 

by highlighting the light Intensity F,  FEN  and predicted  FEN  columns. 

Then click on the Chart Wizard button. Select XY scatter as the chart 

type and click finish. (See table3) 

Step9: Now the actual points are shown in (a) and the predicted values are 

shown in (b) (in figure 3). Notice the predicted values do not fall exactly 

on top of the actual strength. This means the predicted values are not good. 
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Appendix B 

Fitting the conduction  

 

 

Figure B(1) :fitting conductivity at dark. 

 

 

 

Figure B(2) :fitting conductivity at F=50 ).( 2cmmW . 
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Figure B(3): fitting conductivity at F=55 ).( 2cmmW  

 

 

 

 

Figure B(4): fitting conductivity at F=60 ).( 2cmmW . 
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Figure B(5) :fitting conductivity at F=65 ).( 2cmmW . 

 

 

 

 

 

Figure B(6): fitting conductivity at F=70 ).( 2cmmW . 
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Figure B(7): fitting conductivity at F=75 ).( 2cmmW . 

 

 

 

 

Figure B(8): fitting conductivity at F=80 ).( 2cmmW . 
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