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1. INTRODUCTION

Centrosymmetric matrices have a rich eigen structure that has been studied ex-
tensively in the literature (see [26, 22, 5, 15, 6, 10, 7, 25, 23, 1, 2]). Many results for
centrosymmetric matrices have been generalized to wider classes of matrices that
arise in a number of applications (see [12, 13, 19, 17, 18]). Most facts/algorithms
about centrosymmetric matrices were derived using orthogonal similarity transfor-
mations. In this paper, we use an alternative simple approach to derive the most
known important facts/algorithms about centrosymmetric matrices. We also use
this approach to solve efficiently linear systems of equations involving centrosym-
metric matrices and to reveal new properties of centrosymmetric matrices. We note
that our approach is applicable in many cases to skew-centrosymmetric matrices.
Chu [8] studied the class M of real orthogonal matrices such that if T is a real
symmetric Toeplitz matrix (which implies it is real symmetric centrosymmetric)
and K € M, then KTKT is real symmetric Toeplitz. In this paper, we present
a class N of orthogonal matrices such that if Q € N and H is a centrosymmetric
matrix, then QT HQ is block-diagonal. This is important, because if H is a cen-
D, 0

0 D,
H via a member of A/, then H and D; and D, share many properties. We identify
the class £ of orthogonal matrices of even order such that if Q@ € £ and H is a
centrosymmetric (resp. skew-centrosymmetric) matrix of even order, then QH is
skew-centrosymmetric (resp. centrosymmetric). Thus, members of £ are orthog-
onal transformations between centrosymmetric matrices of even order and skew-
centrosymmetric matrices of even order. Hence, we can apply results/algorithms
about centrosymmetric matrices to skew-centrosymmetric matrices and vice versa.
We prove several theorems about centrosymmetric and skew-centrosymmetric ma-
trices. But, we will focus on centrosymmetric matrices. In several cases, we will
consider matrices of even order only (the case of odd order is either similar or it
can not be put in a nice useful form).

trosymmetric matrix and D = ] is a block diagonal matrix similar to
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2. PRELIMINARIES

We employ the following notation. We denote the transpose of a matrix A by
AT the Hermitian transpose by A*, and the determinant of A by det(A). We use
the notation |z| for the largest integer less than or equal to z. As usual, I denotes
the identity matrix and k denotes the complex conjugate of k. Throughout this
paper, we let § = | 2|, where n is a positive integer.

We mean by the time complexity the number of flops. When counting flops, we
treat addition/subtraction the same as multiplication/division. By the main coun-
terdiagonal (or simply counterdiagonal) of a square matrix we mean the positions
which proceed diagonally from the last entry in the first row to the first entry in
the last row.

Definition 2.1. The counteridentity matrix, denoted J, is the square matrix whose
elements are all equal to zero except those on the counterdiagonal, which are all
equal to 1.

We note that multiplying a matrix A by J from the left results in reversing the
rows of A and multiplying A by J from the right results in reversing the columns
of A. Throughout this paper, we will denote the counteridentity matrix by J.

A vector z is called symmetric if Jr = x and skew-symmetric if Jr = —x.
If z is an n x 1 vector, then we let z represent the symmetric part of z; i.e.
ot = L(z + Jz), where J is the n X n counteridentity matrix, and we let 2~
represent the skew-symmetric part of x; i.e. 7 = %(:c —Jz).

Definition 2.2. A matrix A is centrosymmetric if JAJ = A, skew-centrosymmetric
if JAJ = —A, and persymmetric if JAJ = AT .

Centrosymmetric and skew-centrosymmetric matrices have applications in many
fields including communication theory, statistics, physics, harmonic differential
quadrature, differential equations, numerical analysis, engineering, sinc methods,
magic squares, and pattern recognition. For applications of these matrices, see
[24, 14, 11, 20, 15, 7, 16, 4]. Note that symmetric Toeplitz matrices are symmetric
centrosymmetric and skew-symmetric Toeplitz matrices are skew-symmetric skew-
centrosymmetric.

The following lemma can be found in many of the references listed at the end.

Lemma 2.3. Let H be an n X n centrosymmetric matriz. If n is even, then H can
be written as

A JCJ
H= [ C JAJ ] :
where A, J and C are § X & matrices. If n is odd, then H can be written as
A =z JCJ
' oa y'I |,
c Jx JAJ

where A, J and C are § X § matrices, x and y are § X 1 vectors, and q is a number.

The following known result, which can be found in several publications (see
[6, 10], for example), is probably the most important known fact about centrosym-
metric matrices.

Theorem 2.4. Let H be an n X n centrosymmetric matriz and let H be decomposed
as in the previous lemma. If n is even, then the eigenvalues of H are the eigenvalues
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of Fi = A—JC and the eigenvalues of G; = A+JC. Moreover, the eigenvectors cor-
responding to the eigenvalues of F1 can be chosen to be skew-symmetric of the form
(w?', —uT )T, where u is an eigenvector of F1, while the eigenvectors corresponding
to the eigenvalues of G1 can be chosen to be symmetric of the form (u®,u®J)T,
where u is an eigenvector of G1. Also, det(H) = det(Fy)-det(G1), and H is Hermit-
ian (resp. skew-Hermitian, normal, positive-definite, positive-semidefinite) if and
only if F1 and Gy are Hermitian (resp. skew-Hermitian, normal, positive-definite,
positive-semidefinite).

If n is odd, then the eigenvalues of H are the eigenvalues of Fy and the eigen-

values of
_[ e VT
2= Var A+JC |

Moreover, the eigenvectors corresponding to the eigenvalues of Fy can be chosen to
be skew-symmetric of the form (u?,0,—uTJ)T, where u is an eigenvector of Fi,
while the eigenvectors corresponding to the eigenvalues of Go can be chosen to be
symmetric of the form (uT,v2a,u” )T, where (a,u™)T is an eigenvector of Gs.
Also, det(H) = det(Fy) - det(Gs2), and H is Hermitian (resp. skew-Hermitian, nor-
mal, positive-definite, positive-semidefinite) if and only if Fy and G are Hermitian
(resp. skew-Hermitian, normal, positive-definite, positive-semidefinite).

If, in addition, H is real symmetric, then (this is valid for both even and odd
orders) we may choose § orthonormal eigenvectors of H to be skew-symmetric and
n — & orthonormal eigenvectors of H to be symmetric.

Fassbender and Tkramov [9] proposed an algorithm to compute Gz, where G is
a centrosymmetric matrix and z is a vector. Most known results (including Theo-
rem 2.4 and Fassbender and Tkramov’s algorithm) about centrosymmetric matrices
were derived using the fact that a centrosymmetric matrix is orthogonally similar
to a block diagonal matrix via the following orthogonal matrices (the first is for
even order and the second is for odd order):

I o0 I
1 [ 1 1 1
-1 Q2=— | 0 V2 0|,
o ‘/5[_'] J]Q2 V2 —J\(/)_J

where I and J are § xd. (Note that the columns of Q;, i = 1,2, form an orthonormal
basis for the eigen space of J. We will show that @; and (> are not unique.) In
this paper, we derive Theorem 2.4 and Fassbender and Ikramov’s algorithm using
a different approach.

The following theorem can be found in some of the references listed at the end.
Theorem 2.5. Let H be an n X n nonsingular centrosymmetric matriz, where n
is even, and let H be decomposed as in Lemma 2.3. Then

-1 1 V-l+w-t (w-t-v-1HJg
2| JWt-vh JWl4iwl ’
where V. =A—JC and W = A+ JC.

The following lemma and theorem can be proved easily.

Lemma 2.6. Let S be an n X n skew-centrosymmetric matriz. If n is even, then
S can be written as
g— [ A —JCJ ]
c —-JAJ |’
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where A, J and C are § x 6. If n is odd, then S can be written as
A z =JCJ
S=|4T 0 —yTJ |,
cC —-Jz —-JAJ
where A, J, and C are 6 x 6, and z and y are 6 x 1.

Theorem 2.7. Let S be an n X n nonsingular skew-centrosymmetric matriz, where
n is even, and let S be decomposed as in Lemma 2.6. Then

1] vi-w?t (v ilew b
2| —Jvl+w Ty Jwl-v-1J |

where V. = A+ JC and W = —-A+ JC.

st =

3. AN ALTERNATIVE APPROACH

First, we derive Theorem 2.4 using the alternative approach (this is perhaps the
most important application of the alternative approach because it shortens and
simplifies the proof of Theorem 2.4). Then, we derive Fassbender and Tkramov’s
algorithm using the same approach. Finally, we use the approach to derive an
efficient algorithm to solve Hz = b, where H is centrosymmetric. The alternative
approach is simply to replace a vector z by zt + z~.

Let H be an n xn centrosymmetric matrix, where n is even, let H be decomposed
as in Lemma 2.3, and let  be an n X 1 vector. Then, (), z) is an eigenpair of H
if and only if Hzt + Hz~™ = Azt + Az~ and Hzt — Hz~ = Azt — Az~ if and
only if Hzt = Az™ and Hz~ = Az~. (Hence, if H has m linearly independent
eigenvectors, then we can choose m linearly independent eigenvectors of H to be
symmetric or skew-symmetric. Thus, there is no need to use the decomposition of
H in Lemma 2.3 to reach this conclusion.) Now, since z1 is symmetric, then it

can be written as zt = [ jyy ], where y is d x 1 and J is § X 4, and since z~ is
skew-symmetric, then it can be written as 7 = [ —Zz ], where zis § x 1 and J

is § x §. Thus, HzT = Az™ if and only if

IR A

if and only if (A + JC)y = A\y. Similarly, Hx~ = Az~ if and only if

A JCJ z |
C JAJ —Jz |~ —Jz
if and only if (A — JC)z = Az. This proves Theorem 2.4.
Now, we derive Fassbender and Ikramov’s algorithm. Once again let H be

an n X n centrosymmetric matrix, where n is even, let H be decomposed as in
Y

Lemma 2.3, and let  be an n x 1 vector. And as before, let z+ = Ty and
A —?]z ], where y and z are x 1 and J is §xd. Then, Hzt = [ }}v ] , where

v = (A + JC)y. Thus, if we find v by the traditional matrix-vector multiplication
algorithm, then the time complexity of finding HzT will be 2n? + O(n) (we need

72—2 additions to find A+ JC, and 72—2 multiplications and ”TZ — % additions to find v).
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w
—Jw
matrix-vector multiplication algorithm, then the time complexity of finding Hz~
will be 3n? 4+ O(n). Thus, to find Hz, find v and w, then v + w and v — w (note

that Hz = [ Jz)vtuq}u) ]) The time complexity of multiplying H by z using our

method is £n? + O(n). (If, in addition, H is symmetric, then the time complexity
will be 2n? + O(n).) If A+ JC and A — JC are stored and if r is an n x 1 vector,
then finding Hr or H”r by this method will cost n? + O(n).

Remark: To multiply a symmetric centrosymmetric matrix H by a vector z,
Melman [21] replaced by 2t + 2~. But, his algorithm is different than the one
we presented.

Now we describe an efficient method to solve the system Hxz = b (for z), where
H is an n X n centrosymmetric matrix, x and b are n x 1 vectors, and n is even.

Now, let H be decomposed as in Lemma 2.3, and let

y - z + | d - e

Jy]’x _[—Jz]’b _[Jd]’b _[—Je]’

where y,z,d, and e, are § x 1. First, note that Hz = b if and only if Hzt = bt
and Hz~ = b~ if and only if (A + JC)y = d and (A — JC)z = e. Therefore, to
solve Hx = b for z, solve instead (A + JC)y = d for y and (A — JC)z = e for 2.
Thus, instead of solving an n X n system, we end up solving two systems half the
size. This results in a significant reduction in the time complexity. For example,
if the original system is solved by Gaussian elimination, then the time complexity
will be 2n® + O(n?), while if Gaussian elimination is used to solve the two systems
(A+ JC)y = d and (A — JC)z = e, then the time complexity of our method will
be #n® + O(n?).

Similarly, Hz~ = [ ] , where w = (A— JC)z. If we find w by the traditional

rt =

4. BLOCK-DIAGONALIZATION OF CENTROSYMMETRIC MATRICES

In this section, we present a class N; of n x n orthogonal matrices such that if
Q € Ni and H is an n x n centrosymmetric matrix, then Q7 H( is block-diagonal,
where n is even. We present a similar class N3 for odd n. It will be easy to see
that N7 (resp. MN2) contains more than one element and it contains the matrix
Q1 (resp. @-2) defined in Section 2. Thus, although @, and Q2 (see Section 2),
or transformations of them, are the only orthogonal matrices used by researchers
to block-diagonalize centrosymmetric matrices, they are not unique and they can
be replaced by others. Now, we find M;. So, let n be even, let H be an n x n
centrosymmetric matrix, let H be decomposed as in Lemma 2.3, let ) be ann xn
orthogonal matrix such that QT HQ = D, where D is block-diagonal, and let

o)
9= [ g g ] ’
where «, 3, 7, and (, are § x § matrices. Thus, ) must satisfy
aTAB+~4TCB+ T JCIC+~TTATC =0,
and
BT Aa+ TCa+pTICTy + T TATy =0.

It is clear that if we choose a = —Jv and § = J(, then the above two equations
will be satisfied. Thus, we have the following lemma.
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Lemma 4.1. Let n be even, let H be an n X n centrosymmetric matriz, let H be
decomposed as in Lemma 2.3, and let

[ =Ir J¢ ]
o= | 1%
where v, (, and J, are § X § matrices. Then,
T
T _ YH(JAT — CJ)y 0
T HQ= 2[ 0 CT(JAT+CI)C |

Now, we need @ to be orthogonal. It is easy to see that if v and ( are invertible,

then so is @, and
o1zl [ N oyt ]
2| ¢tJ ¢t
Thus, we have the following lemma.
Lemma 4.2. Let n be even and let

_[=Ir J¢ ]
Q [ ,Y <' 7
where 7y, (, and J, are § x § matrices. If v and { are invertible, and v~' = 2¢T

and (=1 = 2(T, then Q is orthogonal.
Now, we are ready to present the class ;.
Theorem 4.3. Let n be even, let v and ¢ be invertible 6 x & matrices such that

vyt =297 and (7' = 2¢7T, let H be an n x n centrosymmetric matriz, and let H

be decomposed as in Lemma 2.3. Then

_ | Iy J¢
Q_[ v C]

is orthogonal and
T
T _ ~yH(JAT — CJ)y 0
@ HQ_Q[ 0 (T(JAT+CI)C |
Note that the columns of () form § linearly independent skew-symmetric vectors

and ¢ linearly independent symmetric vectors. Le., they form n linearly independent
eigenvectors of J. Note also that Q1 € N7 (y = —%J and ¢ = \/LEJ)

Lemma 4.4. Let n be even, let R be an n X n matriz, and let

_ [ =T J¢C ]
Q - |: v C )

where v and ¢ are invertible § x & matrices and J is § x 6. Then, if QTRQ =
[ 1())1 DO , where D1 and Do are § X & matrices, then R is centrosymmetric.

2

. R R . T
Proof. Write R = R R |’ where R;, i =1,---,4, are § X §. Then, Q* RQ =

3 Iy

[Dl 0

0 Dy ] if and only if
RsJ—JR1J+ Ry — JRy =0,

—R3J — JR1J+ Ry + JRy = 0.
Thus, R4=JR1J and RQZJR3J O
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Theorem 4.5. Let n be even, let R be an n x n matriz, and let Q € N1. Then,

R is centrosymmetric if and only if QTRQ = [ %1 g ], where D1 and D2 are
2
4 x9.

We have similar results for skew-centrosymmetric matrices.

Theorem 4.6. Let n be even, let v and ¢ be invertible 6 X & matrices such that
vt =29T and (=1 = 2¢7, let S be an n x n skew-centrosymmetric matriz, and let
S be decomposed as in Lemma 2.6. Then

_| I J¢ ]
@ [ SANS
is orthogonal and
Tan _ 0 yI(CT — JAJ)C
Q5@ =2 [ —(T(JAT + CJ)y 0 :
Lemma 4.7. Let n be even, let R be an n X n matriz, and let
_[ =T J¢C ]
Q - |: v C )
where v and ¢ are invertible § x & matrices and J is § x 6. Then, if QTRQ =
[ DO %1 ], where D1 and D4 are § X § matrices, then R is skew-centrosymmetric.
2

Theorem 4.8. Let n be even, let R be an n x n matriz, and let Q € N;. Then, R

is skew-centrosymmetric if and only if QTRQ = 0 D ], where Dy and Do

Dy, 0
are § X 6.

Similarly, we can present the class N.
Theorem 4.9. Let n be odd, let v and ( be invertible 6 x & matrices such that

vt =297 and (71 = 2¢7T, let k = £1, let H be an n x n centrosymmetric matriz,
and let H be decomposed as in Lemma 2.3. Then

—Jy 0 J¢
Q= 0 k£ 0
vy 0 ¢
is orthogonal and
yI(JA = C)Jy 0 0
QTHQ =2 0 sk%q kyTJ¢
0 kCTJz (T(JA+C)JC

Note that the columns of @) form ¢ linearly independent skew-symmetric vec-
tors and n — § linearly independent symmetric vectors. ILe., they form n linearly

independent eigenvectors of J. Note also that Q2 € Ny (y = —%J , k=1, and
(= %J).
Lemma 4.10. Let n be odd, let w =n — 4§, let R be an n X n matriz, and let
—Jy 0 J¢
Q= 0 k£ O

v 0 ¢
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where v and ( are invertible § X § matrices, k is a nonzero number, and J is § x J.

Then, if QTRQ = [ 1())1 1()] ], where Dy is § X 0 and Dsy is w X w, then R is
2

centrosymmetric.
R1 I1 R2
Proof. Write R = | ' ¢ I |, where R;, i = 1,---,4, are § x 6, and =,
R3 T4 R4
i=1,---,4,are 6 x 1. Then, QTRQ = [ %1 D ] if and only if
2

=T IR JC + 7" RsJ¢ — v TRy + 7" Re( = 0,
—kyT Tz +yT24 = 0,
—kz3 Jy+kzly =0,
—(T IRy Jy = ("RsJy + (" JRyy + ("Ryy = 0.
Thus, 4 = Jx1, 3 = Jao, Ry = JR1J and Ry = JR3J. O

Theorem 4.11. Let n be odd, let w = n — 6, let R be an n X n matriz, and let

Q € N>. Then, R is centrosymmetric if and only if QT RQ = [ %1 g ], where
2

Dy isd X6 and Dy is w X w.

5. PROPERTIES OF CENTROSYMMETRIC AND SKEW-CENTROSYMMETRIC
MATRICES

In this section, we reveal new properties of centrosymmetric and skew-centrosymmetric
matrices. Here, ()1 and )2 refer to the orthogonal matrices defined in Section 2.

First, it is easy to prove that if H is an n X n centrosymmetric matrix, ¢ is an
n x 1 symmetric vector, and s is an n x 1 skew-symmetric vector, then ¢c*Hs = 0
and s*He = 0. (If S is an n X n skew-centrosymmetric matrix, then s*Ss = 0
and ¢*Sc = 0. Hence, if (A, ) is an eigenpair of S and A # 0, then z can not be
symmetric or skew-symmetric.) Thus, if z is an n x 1 vector and H is an n X n
centrosymmetric matrix, then z*Hz = 27 "Hat + 2z~ "Hz .

Now, let M be an n x n matrix and let M. = 1(M + JMJ) be the centrosym-
metric part of M and M, = %(M — JMJ) be the skew-centrosymmetric part of
M. Then, Mz = Az if and only if

Mot + Moa™ + Mgt + Myx™ = Azt + Az~

and
Mot — Mo~ — Mgxt + Myx™ = Aat — Az,
Thus, we have the following theorem:

Theorem 5.1. Let M be an n X n matriz, let M. and M. be as above, and let
(A, z) be an eigenpair of M. Then
(1) (AT —z7) is an eigenpair of M, — M..
(2) If = is symmetric, then (X\,zt) is an eigenpair of M, and (0,z%) is an
eigenpair of M.
(3) If x is skew-symmetric, then (A, z7) is an eigenpair of M, and (0,27) is
an eigenpair of M.
(4) If M is skew-centrosymmetric and  is not symmetric, then (\2,27) is an
eigenpair of M2,
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Note that the case when M is centrosymmetric was handled in Section 3. Now,
one of the most known properties of centrosymmetric matrices is that their eigen-
vectors can be chosen to be symmetric or skew-symmetric. Such a property does
not hold for skew-centrosymmetric matrices. In fact, if S is an n x n skew-
centrosymmetric matrix and (A # 0,2) is an eigenpair of S, then z can not be
symmetric or skew-symmetric. But if, in addition, S is skew-symmetric, then we
have the following proposition.

Proposition 5.2. Let S be an n x n real skew-symmetric skew-centrosymmetric
matriz and let (A # 0,z + iy), where x and y are real, be an eigenpair of S. Then,
x 1is symmetric (resp. skew-symmetric) if and only if y is skew-symmetric (resp.
symmetric).

Theorem 5.3. Let S be an n X n skew-centrosymmetric matriz, where n is even,

let S be decomposed as in Lemma 2.6, and let L= A—JC and M = A+ JC. Then

(1) S is unitary (resp. orthogonal) if and only if L and M are unitary (resp.
orthogonal).

(2) S is idempotent if and only if S = 0.

(3) S is symmetric if and only if M* = L.

(4) S is skew-symmetric if and only if MT = —L.

(5) S is normal if and only if LL* = M*M and L*L = M M*.

(6) S is involutory if and only if M~ = L.

(7)

A
7) 1Sll2 = max{[|Lll2, [IM]l2}, [ISllee = [ [ A JCT ]lloo, and S|l = || [ c ] l1-

Proof. Tt suffices to prove the first three parts.

(1)
0 L
Thus,
_ 0 M-!
S t= Ql [ -1 0 ] QT
and

* 0 M* T
s=au| o N e
(2) Note that S is skew-centrosymmetric while S? is centrosymmetric and note
also that if a matrix P is centrosymmetric and skew-centrosymmetric, then
P=0.
. . 0 MT 0 L
(3) ST:.S'lfandonlylle[LT 0 ] ITZQI[M 0]Q1T
O

With the same notation as the previous theorem, note that if n is even, then
MT = L if and only if A is symmetric and JCJ = —C7T, and MT = —L if and
only if A is skew-symmetric and C is persymmetric.

Theorem 5.4. Let S be an n X n skew-centrosymmetric matriz, where n is odd, let
S be decomposed as in Lemma 2.6, and let L= A — JC and M = A+ JC. Then
(1) S is idempotent if and only if S = 0.
(2) S is symmetric if and only if MT = L and z = y.
(3) S is skew-symmetric if and only if MT = —L and z = —y.
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(4) S is normal if and only if 222* + LL* = M*M + 2yy”, yTy = 2*z, My =
L*z, and L*L = M M*.
A
() lISllo = max{||[ A 2 JCJ ]llsc,2llyll1}, and [|S]ls = max{|| | 4" | [l1,2[l2]l:}
C

With the same notation as the previous theorem, note that if n is odd, then
MT = L if and only if A is symmetric and JCJ = —C7T, and MT = —L if and
only if A is skew-symmetric and C is persymmetric.

Theorem 5.5. Let H be an n X n centrosymmetric matriz, let H be decomposed
as in Lemma 2.3, let L = A — JC, and let M = A+ JC if n is even and M =

T
\/%x A\/E%IC if n is odd. Then
(1) H is unitary (resp. orthogonal) if and only if L and M are unitary (resp.
orthogonal).

(2) H is idempotent (resp. nilpotent, involutory) if and only if L and M are
idempotent (resp. nilpotent, involutory).
(3) [1H[]2 = max{|| L]z, [| M]]2}. y

(4) Ifn is even, then |H||o = || [ A JCJ ]|, and ||H||1 = || [ c ] I|1-
(5) If n is odd, then ||H|lo = max{||[ A = JCJ ]llo,2lylls + |al}, and
A

[ H]lx = max{[| | y* | |1, 2llz[l + [q]}-
c

Proof. It suffices to prove the first part. Let P = @, if n iseven and P = Q2 if n
is odd. Then

T | L 0
PHP_[0 VAR
Thus,
L1 0
-1 T
H _P[ 0 Ml]P
and
* L* 0 T
H _P[ 0 M*]P'

O

With the same notation as the previous theorem, note that if n is even, then H
is symmetric if and only if L and M are symmetric if and only if A is symmetric
and C is persymmetric, and H is skew-symmetric if and only if L and M are skew-
symmetric if and only if A is skew-symmetric and JCJ = —C7. If n is odd, then
H is symmetric if and only if L and M are symmetric if and only if A is symmetric,
y = z, and C is persymmetric, and H is skew-symmetric if and only if L and
M are skew-symmetric if and only if A is skew-symmetric, ¢ = 0, y = —=z, and
JCJ=-CT.

Remarks:

(1) The previous theorems can be proved using any member of class N (see
the previous section) instead of 1 and any member of class N> instead of

Q2.
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(2) Using the previous theorems to check if a centrosymmetric or a skew-
centrosymmetric matrix is unitary, orthogonal, idempotent, etc, results in
a significant reduction in the time complexity.

Proposition 5.6. Let Hy and Hy be two n X n matrices. If n is even, let

4 JCI ]
Hi_[Ci JA,-J]’l_l’Z

where A;, C;, i =1,2, and J, are § X §, and if n is odd, let

A oz JCJ
Hi = y;T qi szJ ) i = 1727
Ci J:L'i JAZ'J

where A;, C;, 1 =1,2, and J, are § X 0, z; and y;, i = 1,2, are § x 1, ¢;, i = 1,2,
are numbers. Let L; = A; — JC;, i = 1,2, and M; = A; + JC;, i = 1,2, if n is
gi Vayt L .
M; = 4 . T H H
even, and M; Vozi A+ JC | if n is odd. Then, Hy and Hy commute if
and only if L1L2 = Lle and Mle = Mle.

More properties (such as singular values) of centrosymmetric and skew-centrosymmetric
matrices and regular magic squares are mentioned in [3].

6. ORTHOGONAL TRANSFORMATIONS BETWEEN CENTROSYMMETRIC AND
SKEW-CENTROSYMMETRIC MATRICES

In this section, we present the class £ of even order orthogonal matrices such
that if Q € £ and H is centrosymmetric (resp. skew-centrosymmetric) of even
order, then QH is skew-centrosymmetric (resp. centrosymmetric).

Theorem 6.1. Let n be even and let L be the class of n x n orthogonal matrices
such that if @ € £ and H is an nxn centrosymmetric (resp. skew-centrosymmetric)
matriz, then QH is skew-centrosymmetric (resp. centrosymmetric). Then, Q € L
if and only if Q is an n X n orthogonal skew-centrosymmetric matriz.

Proof. Let n be even. It is clear that if ) is an n xn orthogonal skew-centrosymmetric
matrix and H is an n X n centrosymmetric (resp. skew-centrosymmetric) matrix,
then QH is skew-centrosymmetric (resp. centrosymmetric). Conversely, if H is an
n X n centrosymmetric (resp. skew-centrosymmetric) matrix and ) is an n X n or-
thogonal matrix such that QH is skew-centrosymmetric (resp. centrosymmetric),
then (JQJ + Q)H = 0. This must hold for every n X n centrosymmetric (resp.
skew-centrosymmetric) H. Now, choose H to be nonsingular to get JQJ + @ = 0.
Thus, @ must be skew-centrosymmetric. O

Corollary 6.2. With the same notation as the previous theorem, Q € L if and

only if
a —JvyJ
Q= [ v —JZzJ ] ’
where a and v are § X § matrices such that a — Jvy and a + Jv are orthogonal.
-I
0
is a member of £ (note that E~! = ET = E). Similarly, it is easy to see that the

Now let n be a positive integer. It is clear that £ = [ ? ] , where I is § x4,
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following matrices are in £
0 -I 0 —J -J 0
R R
where I and J are § x 6.

The above transformations (e.g. E) are very useful. For example, we can use
FE with Theorem 2.5 to prove Theorem 2.7 and vice versa. Also, we can transform
every skew-centrosymmetric singular value/determinant problem of even order to a
centrosymmetric singular value/determinant problem of even order and vice versa.
Moreover, we can transform every linear system in which the matrix of coefficients is
centrosymmetric of even order to a linear system in which the matrix of coefficients
is skew-centrosymmetric of even order, and vice versa.

Now, note that skew-centrosymmetric matrices of odd order are singular, while
centrosymmetric matrices of odd order can be nonsingular. Thus, if H isann x n

nonsingular centrosymmetric matrix, where n is odd, and @ is an n x n orthogonal
matrix such that QH is skew-centrosymmetric, then

0=det(QH) = det(Q) - det(H) # 0,

which is a contradiction. Thus, no such @) exists. Moreover, if () and H are n X n
matrices, where H is centrosymmetric, such that QQ H is skew-centrosymmetric, then
(JQJ+Q)H = 0. Thus, if H is nonsingular, then @ must be skew-centrosymmetric,
and so if n is odd, then @ is singular, and hence, it can not be orthogonal. Therefore,
there is no similar class (to £) for centrosymmetric matrices of odd order.
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