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Introduction

The Dchotomous decision model is a recent game theoretical model introduced by Mousa et al.
in 2014 (Mousa et al., 2014a). In this model, there are just two possible decisions that individuals
can make. For instance, they have to choose between yes or b} i2.= {Yes, No}. The
individuals will have to make decisions according to their preferences. The preferences have the
interesting feature of taking into account not only how much the individuals like or dislike a certain
decision butalsotheothern di vi dual s6 deci sions. This deci si
life and can be used to understand better the social interaction (Mousa et al., 2011a; Mousa et al.,
2015a), tourism industry (Brida et al., 2010; Brida et al., 2011) and econaanidgbolitical
revolutions (Almeida et al.,, 2011a; Almeida et al., 2011b; Mousa et dllb2Mousa et al.,
2014b).

The Dchotomous decision model is a modified version of the game theoretical model introduced
by Pinto et al. (Almeida et al., 2011ahavdeveloped a psychological game model for reasoned
action theories inspired by the works of J. Cownley and M. Wooders (Conley and Wooders, 2001).
They studied the way saturation, boredom and frustration can lead to desperate strategies (if the
individuals of same group will make different decisions), and no saturation situations can lead to
cohesive strategies (if all the individuals belonging to a same group will make the same decision).
Ajzen (Ajzen, 2002) and Baker et al. (Baker et al., 2008) prdtiatay individuals turn intentions
into behaviors and this prediction is the main goal in Planned Behavior or Reasoned Action
theories.

Mousa et al. (Mousa et al., 2015a) show that groups are fdsgnedtlividuals with the same
utility, and a group i€ohesive if every individual has a gain in his utility when other individuals
of the same group make the same decision as his. Furthermore, they show that individuals in a
same group can make different decisions at certain Nash equilibria. In a dynarseath vf the
decision model (Mousa et al., 2014a), the authors exhibit solutions that are periodic attracting
cycles and so the individuals can keep changing the probabilities that they use to make a decision
or another around some thresholds. These libids show the appearance of hysterktie
behavior in the decision models. As in dynamics (Mousa, 2013), small changes in the parameters

might imply the appearance and disappearance of the pure Nash equilibria.
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The Dchotomous decision model has hesxtended to a general model (Mousa, 2013), and
other future extension formulation for the decision model would be to include some kind of
stochastic pattern in the model paramet&scent research articlethat handlea stochastic
decision problenfior individuals isintroduced by Mousa et al. (Mousa et al., 2015b; Mousa et al.,
2016).

In this paper, we study two geometric approaches to construct all possible Nash eqilibria for the
decisiongiling. We characterize th@ace of all parameters forelbichotomous decisiomodel,
wherethe pure and mixed strategies are Nash equililana we find the corresponding Nash
domains. We will see how the coordinates of the influence matrix together with the total number
of individuals encode all the relevant information for the existence of Nash equilibria strategies.
The existence of thesegailibria is alsorelated to size effect of the relative decision preferences
for the individuals. The two approaches rise in making 289 different combinatorial classes of
decisiontiling by capturing the information that rises from the crowding type dividuals,

reflecting the complexity of the yas decision model (Mousa et al., 2011a).

This paper is organized as follewn Section 2 we review tHaichotomous decision model and
some main results introduced in (Moesal., 2014a)n Section 3we study two different strategic
approaches to construct geometrically all possible tilings and determine the Nash domains for the

pure and mixed stragjies and & conclude in Section 5
The Dichotomousdecisionmodel

In this sectionwereview the chotomous decision modiatroduced in (Mousa et al., 2014a)
with some main results. In section 2.1 we introduce the decision model. In section 2.2 we study the
pure Nash equilibria and in section 2.3 we study the mixed Nash equilibria.

2.1 Model set up The model has two typgs 0 Fd  of individuals. LefO  pFE & be
the set of all individuals wittyped , and letO  pFE ¢ be the set of all individuals with
typed . Let £ "Ov "Obe the disjoint union. The individu#» kthas to make one decisign
S

! Similarly, wecanconsider that there is a singiedividual with typed that has to make& dedsions, or we can
also considea mixed model using these two possibilities
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Let, be the preference decision matrix whose coordinatemdicate how much an individual

with typeo likes or dislikesmakingdecisionQN

The coordinates of the peence decision matrix indicdia each type of individuals the decision

that the individuals prefer, i.e. the taste type of the individuals (Mousa et al., 2011a; Mousa et al.,
2014a; Mousa et al., 2015a). Laet be the preference neighbors matrix whose coordinates

| indicate how much an individual with typewho decides d likes or dislikes that an individual

with type 0 also makes decisidn

The coordinates of the preference neighbors matrix indicate, for each type of individuals whose
decision is d, whom they prefer, or do not prefer, to be with in each decision, i.e. the criyyeing
of the individuals (Brida et al., 2010; Conley and Wooders, 2001; Mousa et al., 2014a).

Definition 2.1 (Mousa et al., 2014a).he (pure) decision of the individuals is a (purepttgy

map™kC | that associates to each individi@ kits decison"Y'QN .

Let{| be the space of all strategid&For a given a strategy™ 4|, let be the strategic decision
matrix whose coordinatds 0 3 indicate the number of individuals witipe 6 , who make

decisionQ

Definition 2.2 (Mousa et al., 2014a).et "W -|| The strategic decision vector associated to a

strategy'Vis the vector

wherea 1 QBe&y a is the number of individuals with tyge who make the decision

®i Q8n, anda 1 'QB& a is the number of individuals with tyge who make the
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decision® i ‘Q 8ir). Furthermore, the sek= of all possible strategic decision vectors is defined

by
The utility functionTYq,IT |=O a of an individual with type is defined by
Yape 1 1 a p oA
YO 7 | & a p | & &
and the utility function’Y d |=O s of an individual with type is defined by
Yo 1| a p | aj
Y o & a4 p | & a
Given a strategiv {, the utility Y "Y of an individual Qwith type 0 is given
by 'Y 3 ENa "Yhx Y.

Definition 2.3 (Mousa et al., 2014a). The horizontal relative decision preference of the individuals

with typeo is definal by

g 5 b
and the vertical relative decision preference of the individuals withayjsedefined by
u b b

If @ m the individuals with typ@ prefer to decide» , without taking into account the
influence of the otherdf @ T, the individuals with typ@ are indifferent to decide>or 0,
without taking into account the influence of the othra 11, the individuals with typé prefer

to decidel , without taking into account the influence of the others.

Definition 2.4 (Mousa et al., 2014alror ‘@O  pl; , we define theoordinates of the influence

matrix 0 by
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If O T, the individuals with typed have a positive influence over the utility of the
individuals with typeod . If 0 T, the individuals with typ@ are indifferent for the utility of
the individuals with typ® . If 0 1, the individuals with typ& have a negative influence over

the utility of the individuals with typé.

Definition 2.5 (Mousa et al., 2014ap strategy'Yd,=© r is a Nash equilibrium if, for every
individual "Qv Eand for every strategyY with the property thatY 'Q  "Y'Qfor every
individual’ ‘O "Q we haveéY Y Y "Y.Furthermore, the Nash equilibrium dom&n'yY
of a strategyis the set of all pairsatto for which"Yis a Nash Equilibrium

2.2. Pure Nash equilibria The pure strategies are either cohesive strategies or disparate strategies.

Definition 2.6 (Mousa et al., 2014aA cohesive strategy is a pure strategwhich all individuals

with the same type prefer to make the same decision. A disparate strategy is a pure strategy that is
not cohesive, i.e. a pure strategy in which there are some individuals with the same type who prefer
to make different decisions.

Lemma 2.7 (Mousa et al., 2014afhe Nash domaidl &ty of the cohesive strategyhd is
given by
AN ado Owhd Ot Q oo |,
where the horizotal 'O &> and verticalw QI strategic thresholds of th@dry strategy are
given by
ooy | & p | & and o | & p | &

Herce, the cohesive strategyftd is a Nash guilibrium if, and only if, afto v 4 ¥y .
Moreover, the Nash domath ¢fd is theright-upper quadrant in the xylane (see Figure 1).
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[N(YY)

L J
V(YY)

H(Y,Y) x

Figure 1. Cohesive Nash eqlibria domain 4 LhL  (Mousa et al., 2014a)

Lemma 2.8(Mousa et a| 2014a) The Nash domaifi ) of the cohesive strateggdt) is

given by

4 o) ahodnd O GED o
where the horizontdD ) and verticalo ¢  strategic thresholds of théd)
given by

ooy | & p | ¢ and o | & p |

{ ]
V(Y,N) N(Y,N)

&
H(Y,N) X

strategy are

Figure 2: Cohesive Nash equilibria domair! LR! | (Mousa et al., 2014a).

Hence, the cohesive strategy) is a Nash equilibrium if, and only ifafto N O ) .

Moreover, the Nash domain ¢h) is a rightlower quadrant in the xplane (see Figure 2).
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Lemma 2.9(Mousa et al., 2014a¥he Nash domaifl 0 hd of the cohesive strategy fto is
given by
46 aodgo OO0y W@ w Ohd

where the horizontdD 0 hid and verticalow O R strategic thresholds of thé) hid strategy are

o0y | & p | & and  ® 0hd | & p | &
ot
viNY)| —
HINY) X

A

Figure 3. Cohesive Nash equilibria domair!! 4/ AL | (Mousa et al.,2014a).

Hence, the cohesive strategyftd is a Nash equilibrium if, and only ifafo v 4 §FY .
Moreover, the Nash domath 0 Ftd is a leftupper quadrant in thé eplane (see Figure 3).

Y

V(N,N)

N(N,N)

H(N,N) X

Figure 4. Cohesive Nash equilibria domain! 4 R | (Mousa et al., 2014a).
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Lemma 2.10(Mousa et al., 2014aJhe Nash domaifi 0 h) of the cohesive strategy i) is
given by

4 6 gy OO0 OE® wih |
where the horizontdD 0 i) and vertical®d O R  strategic thresholds of thé i) strategy are

oo | & p | & and @O | & p | &

Hence, the cohesive strategyf) is a Nash equilibrium if, and only ifofto v 4 GR) .

Moreover, the Nash domath () i) is a leftlower quadrant in the xglane (see Figure 4).

2.3. Mixed Nash equilibria Recall the disjoint union sét ) S) . We describe the (mixed)
decision of the individals by a (mixed) strategy mapc© mfp that associates to each
individual EN € the probability)  "Y'Q to decide® N  and to each individuaE € the
probability 1 "Y’'Q to decide® ¥ . Hence, each individugfy € decidesd N [ with
probability p 7 p "Y'Q and each individualBr € decidesd N  with probability

P p YQ We assume that the decisions of the individuals are independent.

Define0 B n,1 B A,0 0 n andd0 0 1 .Foreveryindividuafy §
the (>-fitness function Gy, 4, rip 3 e O a isgiven by
"Gy | NoRL S ¢ b o1y
and the) -fitness functiof); D 1ip 3 e O a isgiven by
Qp Aol 5 1 ¢ p O . & 1
For evenyindividual'® k| thedfitness functionQy; d, rip e me O a isgiven
by
Q4 NORL ) L1 1 4 0;
and thel) -fitness functiofQ;, D Tip 13 e  © A isgiven by
@ P,Q=5 +1 (E T L)Wy (T P).

Lemma 2.11(Mousa et al., 2014a)et"YD EO nifp be a mixed strategy. For every individual
"0 k, the utilityfunction™y D mip e e ©O a isgiven by

Y anom QG Anom p N Qs N NOM
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For every individual® k, the utility function™y D mip e mE O a s given

by
Y i Nnho n "% n NORD p N Oy ANORD

Definition 2.12 (Mousa et al., 2014aj strategy’ Y, E© mip is a (mixed) Nash equilibrium, if
Y Y Y Y for every individualQv  kand for every strategiy™ - with the property that
Y Q YQ for every individualy 'O Q

Lemma 2.13(Mousa et al., 2014a)et "JE©O tdp be a mixed Nash equilibrium.
@ Ifmt nf p thenw 6 0 n 6 0 OOH)

i If T n p, then 6 0 n o6 0 wim

Hence, if! T, then there is not a mixed Nash equilibrium with the propertythatr)

n p. Furthermore, ib 11, then there is not a mixed Nash equilibrium with the property

thatm n n p.

Definition 2.14 (Mousa et al., 2014aThe & iQMN& QM mixed strategic set is the set of all
strategiesYD O mfp with the following properties:

() a N 0oD7 p WEX Ny 0ODnp n;

(i) & NQ ODR p ®GEX NOQvODR  n;

i)t & Q nooD moE® a Q nooby m.

For M N Tip , we observe that thex RQMNa QR mixed strategic set is equal to the
a N  AQ pure strategic set.

Remark 2.15(Mousa et al., 2014a). By Lemma 2.13, supposingdhat 1 ando T, a

mixed strategyYis a Nash equilibrium, ifYis contained in somed HQMN& QMK mixed

strategic set.
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Since individuals wh the same type are identical, if a mixed strategy contained in the
ahQmnahQh mixed strategic set is a Nash equilibrium, then all the strategies in
the aFQ MNa QM mixed strategic set are Nash equilibria.

Definition 2.16(Mousa et al., 2014ajn & hQMN& QR mixed Nash equilibrium (set) is an
& hQmMNa iQh strategic set whose strategies are Nash equilibria. The (mixed) Nash domain
4 & AQMNa AQR is the set of all pairsafto for which the & RQMNG RQM strategic set is

a mixed Nash equilibrium set.

An & hiQmNahQhy strict mixed Nash equilibrium set is a mixed Nash equilibrium set that
does not contain pure strategies, i.§fj N mip . TP . A strict mixed Nash domain
4 & hQmNa FQM is the mixel Nash domain of a $tt mixed Nash equilibrium set.

Geometric approaches in constructing Tilings

In this section, we study two strategic approaches twstoact Nash domains. The two
approaches are the global approach and the local approach. In the global approach, we will
construct all possible tilings using the coordinates ofitfileence matrixIn the local approach,
we will characterize all possible orders for the domains of the pure and mixed Nash equilibria in
tilings using the coordinates of thefluence matrixtoo. We should remark that all Figures
displayed in Section 3 arg&kectiord areall original and created by the authors themselves. In order

to proceed, we need to introduce some auxiliary and generalized results.

Theorem 3.1 The afx strategy is a Nash Equilibrium if and only & ~ O &b , where
0 ahx ohvdo alr @ O ahx G @ ahx o w ahl

the left horizontal threshol® &h and the right horizontal threshol® ahx of the & h
strategy are given by

ool | & | & | | oa |«

'O ahx | £ | £ | | |« | | a,
the down vertical thresholdy &t and the the upper vertical threshold &ah of the
ah  strategy are given by

wa | & | & | | a | | a
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Proof. The ahx strategy is a Nash equilibrium if, and only if, the following four inequalities
hold
5 9Na h 5 .Nd ph , 5 . Nahx 5 9nNa  ph
and
5 9nNahx 5 .nahh p, 5 .Nah 5 9nahy  p .
Hence, the proof of Theorem 3.1 follows by rearranging the terms in the previous inequalities.

y

Hence,0 ahi is the Nash Equilibrium domain of théxhx strategy (see Figure 5). Each
geometric graphin Figure 5 is called a tilingesults by joining the four quadrants described in
Figures 1, 2, 3 and 4 in one geometric graph. The horizpredrencesofor individuals of type

0 is being thewaxis and the vertical preferenag$or individuals of typed is being the yaxis.
Each tiling indicates the waye horizontal threshold® ¢ty , O ¢h ,"O 0 Ry, QG R are
ordered along the horizalti>axis and te way the vertical thresholds & , w G, O R ,

w U R are ordered along the vertigabxis. The order of these horizontal thresholds and vertical
thresholds giverise to the Nash equilibria locaticemd thusleerminesthe Nash domaifor each
strategy. More detailabout the construction of these tilings will be discussed in the coming

section.

The following thresholds determine the domains of thigr disparate Nash equilibria.

'O ah O a ph, 'O & h 'O al p o ,
w0 ahx w aht p, 'O ah 'O al p o ,
w ahx w ahx o , w o h ® a ph o ,
"0 ahx "0 ahy o , ® ahx  ® a ph 0
We observe that (see Figure 5pif  110r 0 T, then there are n@hx Nash Equilibria,

foreverya N pfE p anda N phedE  p &However, ifd mtandd T, then
there areahx Nash Equilibria, forevery N phHE & p anda N pfE R p.
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) 4 ' A A h
U Y) N R u ) w3 ) e3 1B vl
1 1 (4.3) 1 i (43)
03) : i NIYY) 03] | | N(YY)
N(NY) - 42) ; (4.2)
22 (3,2) | NINY) (3,2)
......... PR sl SRR
(1.2 (22)
(0.2) (41) 02) (2 (@1
3.1) B
. [T bt '
[2,1) 2,1 (YN}
(0.1) M N(Y,N) (0,1) (1) A
1 I
— | y (—E J :
NN,N) - ! N(NN) ! i
) ) o 1 (0 (40) o ! RO B (49)
1 ! N 1
(0] ! | (0,) ! :
I : ] :
U[N,N) i \:, u(Y,N) U(N,N) i \:' U[Y,N)
Figure 5. Disparate Nash equilibria when = and = . Left: = , = , = and

= . The yellow rectangles include two pure Nash equilibria and a mixed Nash equilibrium.
Right: = = = and= . The yellow rectangles have no pure Nash equilibrium

but include a mixed Nash equilibrium.

Lemma 3.2 The Nash domains satisfy the following propertiéis:é R 0 @,

O &¢ht 0 o ,0 me O Ohd,0 im0 OhY

Proof. We prove) & R 0 hd and the proof for the other Nash domains follows similarly.
Substitutingd by ¢ andda by € in the horizontal and vertical thresholds stated in Theorem 3.1,

we have that

O ¢ R [ T I S > | ¢
| € P | €
0 G
and
w &R [ - B - € &
| € p | €
w G 8
Hencel) ¢ R 0 @ and we conclude the proof Y
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3.1. Global approach We will see that the coordinates of the influence matrix together with the
total number of individuals play a significant role to determine the Nash domains for a given
strategy. We will also denote to the Nash doméingftx by 0 ahx as beingeferred to the
quadrants.  We  notify that a  pair of  thresholds O Gty hi G
OAOPAAROBRD AL I hOOhyhoGhd h'OOR hooh)  form a corner for
the quadrantd oo OA OP A RIOEOR D OO OR) 8We summarize the global
approach by the following remark which provides a strategy fiestoacting all possible tilings:
Remark 3.3 (Golden Tiling). Let Y O M andY & M 8Every tiling is
determined by a cornef quadrant and a vector of staif¥iY together with the total number of

individuals.

We nowemphasize Remar& 3 by referring to the Figures 6, 7, 8 and 9 apdiuering the
following steps:
f Connect the losangles betweée torner of the quadrarischd ,0 &) ,0 O hd and
0 OR) ;
§ Use the coordinates of the influence matx f  to construct the left and right green
ladders boundaries of the losangles (see Figures 7 and 8);
f Use the coordinates of the influence mattix fd  to construct the upper and down blue
ladders boundaries of the losangles (see Figures 6 and 9);
We repeat the second and third items in a similar fashignyith different locations;

1 The laddersritersect the losangles in the points upg@vn

/'O miphesdE, ;

1 The ladders intersect the losangles in the pointgitgit

Al O mnphssde .
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Q(N)Y)

Down blue

Shifts

_AZZI—C

QINN)

Figure 5. Left: Left green boundaries shift 1: The rule: Go in the boundaries in the horizontal
dimension of the right corner and come in from outside of the horizontal boundaries in the horizontal
dimension of the left corner. Right: Left green boundaries shift 2 The rule: Go out from the

boundaries in the horizontal dimension of the left corner and come in from inside the horizontal

Left corner
A
Shifts
losangle
Upper blue
\
" Right corner

‘AWZ
Q(NIY) 'AZZ

"\ Right corner
\ Down blue
X Shifts

Shifts
Left corner

£ losangle

Q(N,N) \Upperblue

boundaries in the horizontal dimension of the right corner.

We remark that shifts in the left green ladders boundaries of theglesaare different from right
green ladders boundaries of the losangles; shifts in the upper blue ladders boundaries of the
losangles are different from down blue ladders boundaries of the losangles; and down blue stars

start in blue stars and they endtlre green circles, but upper blue stars start in the green circles

and end in the blue stars.
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AZZL A'\Z
A Qfy) Ay Right corner Q(yy)
-An ™~
N
Left corner — x—¢ | |  BVUES
- osangle f
Down blue Shifts . \\
_ losangle Shifts Down blue
Shifts el Left corner Shifts
o //Upperblue |
& 2 ;‘n .
"//' /,/"
./"/
Right corner ~ Q(YN) Upper blue Q(Y,N)

Figure 6. Left: Right green boundaries shift 1: The rule: Go in the boundaries in the horizontal
dimension of the left cornerand come in from outside of the horizontal boundaries in the horizontal
dimension of the right corner. Right: Right green boundaries shift 2: The rule: Go out from the
boundaries in the horizontal dimension of the right corner and come in from inside thedrizontal

boundaries in the horizontal dimension of the left corner.

We see that there are eight different boundaries kind of shifts: left green boundaries shift 1, left
green boundaries shift 2, right green boundaries shift 1, right green boursthéti@s down blue
boundaries shift 1, down blue boundaries shift 2, upper blue boundaries shift 1 and upper blue

boundaries shift 2.

Upper corner
Q(N,Y
i Shifts Shifts ar,v)
9B a(y,v) a8
/ Q(NY) O
N Left green
/ 3 AN
Right green " Uppercorner
Shifts /=7y ‘ LN
: Right green shifts  losangle

losangle  Leftgreen  Lower corner A

11
_ANI Lower corner A t_'

'AH

Figure 7. Left: Down blue boundaries shift 1. The rule: Go out of the boundaries in the vertical

dimension of the upper corner and come in from inside the vertical boundaries in the vertical
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dimension of the lower corner. Right: Down blue boundaries shift 2: Theule: Go in the boundaries
in the vertical dimension of the lower corner and come in from outside the vertical boundaries in the

vertical dimension of the upper corner.

Upper corner

_A”I . ['An 2 Upper corner
. A1
Right gre‘ekn Shifts -An Shifts Left green
) Left green Lower corner j
y
;  / Lower corner Right green |, l
Shifts ‘ Shifts
Q(N,N) Q(Y, N)
losangle 1) Q(N,N) losangle Q(Y, N)

Figure 8. Left: Upper blue boundaries shift 1: The rule: Go in of the boundaries in the vertical
dimension of the upper corner and come in from outside the vertical boundaries in the vertical
dimension of the lower corner. Right: Upper blue boundaries shift 2: Theule: Go out the boundaries
in the vertical dimension of the lower corner and come in from inside the vertical boundaries in the

vertical dimension of the upper corner.

Recall that|= is the set of all possible strategic occupation vectors. Let theohtalzand vertical
set of strategies be given, respectively, by

E o & and 0 afm © ak
foreveryad N TipfE & anda N TiphE R

The following theorem determines tbenditions that guarantélee existencef a strictly mixed

Nash equilibriunfor a given tiling.

Theorem 3.4.Given an influence matri& and a point of staird%Y ~ "YRY . The corresponding

tiling "YORY has the following properties:
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(1) if 0 O 11, then there is a strictly mixed strategies only in the Nash equilibria
domain( ahx for every pure strategyaln v k F © F

(i) ifo O 11, then there is a strictly mixed strategies only outside the Nash equilibria
domain( &ahx for every pure strategyaly v E F © F ;

(i) ifo o 1, then there are no strictly mixed strategies for every pure strategy
af v k.

Proof. By Contradiction. We proof cagp and the proof of casdsi i ) follows similarly.

Assume that there is a strictly mixed Nash equilibrium strategy

“YD"OO Td‘;p
in the Nash equilibria domaith &hx for some occupation vectodhiix N |= ‘ |=
Note thatb © 1t implies that eithed T ando Tt (individuals of a certain type

affect positively the other type of individuals to chair a particular decisiond) or T and

0 1t (individuals of a certain type affect negatively the other type of individuals to chair
a particular decision). B & O mht,thenn 1 mforall’Q mipfE R and

Q0 nfpfE & which contradicts the fact tha¥D'OC mip is a strictly mixed Nash
equilibrium strategy. Similarly, 0 & hx O & ke ,thenn 1 p for all 'Q

pfE FE and™Q mipfE R which contradicts the fact thaYD O  nifp is a strictly
mixed Nash equilibrium strategy. i & O o (resp.0 & O ahr), then

AR 1 for all ' Q TmipfE R (resp.p T for all Q@ mfpfE R ) which gives a

contradictiontoo. y

In Figure 10, we show an example of two rotated tilings in which the horizontal thresholds
O Gy FO ¢ RO G iy KO G R are ordered along the horizontahxis and the vertical
thresholdsc ¢ o ¢ b O hd fo GRS are ordered along the verticatayis. The
influence matrix for the left tiling and the influence nrator the right tiling are, respectively,

given by
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(02) |(12) FQ(Y, Y) (22) (02 any | 12 | (2,2)
(2,1) (0,1)
Q(Y.N) ’ ‘Q(N,N)
1,1) (1,1)
Q(N,Y) Q(y,y)
©,1) (21)
(0,0) QNN) | (1,0) | (2,0) (0,0) | (1,0 | QiN) (2,0

Figure 9. Pure and mixed Nash equilibria.

Hence, small changes in the coordinates ofrtfieence matrixcan create a different tiling. In
(Mousa et al., 2011a), it was shown that there are 289 combinatorial classes of decision tilings,

described by the decisid@ussola, which demornsttethe high complexity of making decision.

3.2. Local Approach The local approach uses the signs of the coordinates of the influence
matrix to determine the domains of the pure and mixed strategies in all tilings (see Figure 11).
We observe that changing the signs of the pairshd and 6 M  imply different orders

for the pure strategies ftx . For all "GOy  phg het

Let us define the horizontal axis Iy and the vertical axis b . The sign of the pair
O RO determines a certain order of pure strategig® 8Note that there are four possible
orders for the pure strategies that are not located along any axis which are given by small white

rectangles in Figure 11.
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Figure 10. Rotating pure Nash danains using the local approach.

We study the rotation in the pure Nash domains. Given the location of the pureesrategi
the small whig¢ rectangles,We observe the following: If the signs of the coordinates
oMo EOh

small red rectangles that appear in Figure 12.

, then the pure strategies are rotated to makeardering given by the
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Figure 11. Rotating the pure strategies when the signs ofr hg i "I h

The new order of the pure strategies moves to the small redctangles.
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If the signs of the coordinate® FO E O h , then the pure strategies are rotated to make

new ordering given by the small orange rectangles appear in Figure 13.

e
|
| (rLhL+1)
Ez T A
- \
——— - -t
et == === L= T R L
L | =" _/;,.lg)_ \ |
= \
(rLlrd) ,:f - :' \ \ :
% \ L
_—— | \ Y
\\ " \\ _\‘_ F--
\ I \ 1 (hlz*1) |
L o LT
v \ 1.---~ R
— v\i’,,lg-l; .(lﬁ;fzj (h141) f—-
1 = [
\ g =" 3 3 E12
(- 4-=7 A (-
I gl 4 \ | \
L (0)\) \ | \
L= _IA == \ | \
\ \ | =\ ——-
: \ \ : | (%Lb) :
! \\ \\ | 4% 1) |
5 AT i
SR T DR ety VLB e =] et
_LaZ0 0
-\r--- I __'_/_,
[ -
| (EY) j=="
| /-\“;) |
===t

Figure 12: Rotating the pure strategies when the signs off F‘IF i "h

The new order of the pure strategies moves to the small orange rectangles.

If the signs of the coordinate® O E O h , then the pure strategies are rotatechédxe
new ordering given by the small green rectangles appear in Figure 14.
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Figure 13. Rotating the pure strategies when the signs offr ﬁf

The new order of the pure strategies moves to the small greegctangles.
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If the signs of the coordinate® HO E O h , then the rotated to make new ordering given

by pure strategies are the small blue rectangles appear in Figure 15.
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Figure 14. Rotating the pure strategies when the signs offr F1|f i "I'h

The new order of the pure strategies moves to the small blue rectangles.

Mixed strategiesin local approach

We study geometrically two cases where mixed strategiesisa We present the first case
in section 4.1where no intersection beégn the pure strategies occurs; taeond case will
be introduced in section 4. &here an intersection between the pure strategies occurs.

No intersections between pure the strategies

Without loss of generality, we will consider the case where the signsdf E Oh and

focus on the mixed strategies that occurs in the corresponding Figure 12. The other three cases
follow in a similar way. Recall thay ¥ 1ip is theprobability of an individual of typ®

makes decisiodand N Tip is the probability of an individual of typ® makes decision

o,
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32|

Theorem 4.1.Consider the case wher@, fio. , EOh . Then there is a mixed strategy
a N N owith

$s D s

and

_n

ds D s

foreveryp @ € pandp « € p, whereny andr] are nonnegative real

values.

Proof. Note that if the mixed strategie& nft i} are located along the horizontal and
vertical axes (see the black rectangles in Figure 16), then they become pure and given by

a :Fﬁ il
Considering the case whereo, f‘oc o EOh . Thus, p and q may have now real values
instated of being natural and their values are derived by applying the Pythagorean Theorem
among the three sides of right triangles given in Figure 16, which ends the proof.

y
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E_(l1+1)lz) E(l1+1,lz+1)
E(h+1,0+1) /

AN

E(l1, lz+1)

Figure 15 m km A isthe mixed strategywhen hy i "I h

Bifurc ations between pure strategies

In this sectionwe study geometrically the bifurcations between the pure strategies and see the
signs effect of the coordinates of the influence matrix. In Figures 17, 19, 20 and $Bow

all possible bifurcations between the pure strategies that may occur in thepooting

Figures 12, 13, 14 and 15, respectively.

In Figure 17, we show the bifurcations between the pure strategies whbg h

The blue, green and yellow rectangles represent the black rectangles (pure strategies) on the
horizontal, veiital and diagonal axis in Figure 12, respectively. The red rectangles represent
the red rectangles in Figure 12 and they describe the shifts in the black ones. We observe that

there are three red overlaps between, where the mixed strategies may occur.
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E21

Figure 16. The bifurcations between the pure strategies wher F‘IF h

In Figure 18, we show the bifurcations between the pure strategies whgn h

The blue, green and yellow rectangles represenbldek rectangles (pure strategies) on the
horizontal, vertical and diagonal axis in Figure 15, respectively. The red rectangles represent
the blue rectangles in Figure 15 and they describe the shifts in the black ones. We observe that

there are three redrerlaps between, where the mixed strategies may occur.

3¢

Figure 17. The bifurcations between the pure strategies wherg  h
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In Figure 19, we show the bifurcations between the pure strategies whér

h ). The blue, green and yellow rectangles represent the black rectangles (pure strategies)
on the horizontal, vertical and diagonal axis in Figure 15, respectively. The red rectangles
represent the orange rectangles in Figure 13 and they descrafefthen the black ones. We

observe that there are no overlaps between.

Ex1
1

Figure 18. The bifurcations between the pure strategies wher F‘IF h

In Figure 20, we show the bifurcations between the pure strategies whbg h

The blue, green and yellow rectangles represent the black rectangles (pure strategies) on the
horizontal, vertical and diagonal axis in Figure 14, respectively. The red rectangles represent
the green rectangles in Figure 14 and thegrilas the shifts in the black ones. We observe that

there are no overlaps between.
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E21
—

Figure 19. The bifurcations between the pure strategies wherng F]|f h

Conclusions

Resorting to the @hotomous decision modetesented in (Mousa et al., 2014a), two geometric
approaches have been studied to construct all possible decisions tilings in which pure and mixed
Nash equilibria ceexist and change with the relative decision preferences of the individuals.
We have charderized all possible Nash domains for pure and mixed strategies and discussed
the dependence of Nash equilibria on the parameters of the model. We have seen how the
coordinates of the influence matrix and the total number of individuals can alter theforder

the horizontal and vertical thresholds which allow the occurrence of bifurcations with and
without overlaps between the pure strategies
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