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Abstract
The aim of this paper is the solvability of generalized proportional fractional(GPF)
integral equation at Banach space E. Herein, we have established a new fixed point
theorem which is then applied to the GPF integral equation in order to establish the
existence of solution on the Banach space. At last, we have illustrated a genuine
example that verified our theorem and gave a strong support to prove it.
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1 Introduction
In 1930 Kuratowski [1] introduced the notion of a measure of noncompactness. In func-
tional analysis, this idea is particularly important in metric fixed point theory and opera-
tor equation theory in Banach spaces. The theory of infinite systems of fractional integral
equations (FIEs) plays a pivotal role in different fields, which includes various implica-
tions in the scaling system theory, the theory of algorithms, etc. There are many real life
problems which can be formulated by infinite systems of integral equations with fractional
order in a very effective manner.

In recent times, the fixed point theory (FPT) has applications in various scientific fields.
Also, FPT can be applied seeking solutions for FIE.

Different real life situations which are formulated via FIEs can be studied using FPT and
measure of noncompactness (MNC) (see [2–24]).

Let a real Banach space (E,‖.‖) and B(x, r) = {y ∈ E : ‖y – x‖ ≤ r}. If �(�= φ) ⊆ E. Also, �̄
and Conv� represent the closure and convex closure of �. Moreover, let

a. ME = collection of all nonempty and bounded subsets of E,
b. NE = collection of all relatively compact sets,
c. R = collection of all real numbers,

and
d. R+ = collection of all nonnegative real numbers.

The following definition of an MNC is given in [25].
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Definition 1.1 A function � : ME → [0,∞) is called an MNC in E if it satisfies the fol-
lowing conditions:

(i) The family ker � = {� ∈ME : �(�) = 0} is nonempty and ker � ⊂NE.
(ii) � ⊆ �1 
⇒ �(�) ≤ �(�1).

(iii) �(�̄) = �(�).
(iv) �(Conv�) = �(�).
(v) �(ρ� + (1 – ρ)P) ≤ ρ�(�) + (1 – ρ)�(P) for ρ ∈ [0, 1].

(vi) If �n ∈ ME,�n = �̄n,�n+1 ⊂ �n for n = 1, 2, 3, . . . and limn→∞ �(�n) = 0 then
�∞ =

⋂∞
n=1 �n �= φ.

The ker� family is kernel of measure �. Note that the intersection set �∞ from (vi) is
a member of the family ker�. In fact, since �(�∞) ≤ �(�n) for any n, we conclude that
�(�∞) = 0. This gives �∞ ∈ ker�.

The fixed point principle and theorem play a key role in the theory of fixed point.

Theorem 1.2 (Shauder [26]) Let V be a nonempty, closed, and convex subset of a Banach
space E. Then every compact, continuous map Υ : V →V has at least one fixed point(FP)
in V.

Theorem 1.3 (Darbo [27]) Let V be a nonempty, bounded, closed, and convex(NBCC)
subset of a Banach space E. Let Υ : V → V be a continuous mapping. Assume that there is
a constant p ∈ [0, 1) such that

η(Υ �) ≤ pη(�), � ⊆ V ,

where η is an arbitrary MNC. Then Υ has an FP in V .

We introduced the following generalization of the Banach contraction principle, in
which we get a variety of contractive inequalities by substituting different functions g .

Theorem 1.4 Let (γ , d) be a complete metric space. Also, let J : γ �→ γ be a continuous
self-mapping. Suppose that there exists a function g : R+ → R+ such that limt→o+ g(t) = 0,
g(0) = 0, and

d(Jx, Jy) ≤ g
(
d(x, y)

)
– g

(
d(Jx, Jy)

)
; ∀x, y ∈ γ .

Then J has a unique FP.

Definition 1.5 ([28]) Let F be the class of all functions F : R+ ×R+ →R+ satisfying:
(1) max{m1, m2} ≤ F(m1, m2) for m1, m2 ≥ 0;
(2) F is continuous;
(3) F(m1 + m2, n1 + n2) ≤ F(m1, n1) + F(m2, n2);

e.g. F(m1, m2) = m1 + m2.

2 Main result
Theorem 2.1 Let V be an NBCC subset of a Banach space E, and let Υ : V → V be a
continuous operator such that

F
[
�(Υ X),φ

(
�(Υ X)

)] ≤ 	
[
F
{
�(X),φ

(
�(X)

)}]
– 	

[
F
{
�(Υ X),φ

(
�(Υ X)

)}]
(2.1)
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for all X ⊆ V, where 	,φ : R+ → R+ are nondecreasing continuous functions and � is an
arbitrary MNC. Then Υ has at least one FP in V.

Proof Let V0 = V and construct a sequence {Vn} such that Vn+1 = Conv(ΥVn) for all n ∈N.
If there exists a positive integer N0 ∈N such that �(VN0 ) = 0, so VN0 is relatively compact.
And by Theorem 2.1, we give that Υ has an FP.

If possible, assume that �(Vn) > 0 for all n. Also, we have

V1 ⊇V2 ⊇ · · · ⊇Vn ⊇Vn+1 ⊇ . . .

Since the sequence {�(Vn)} is decreasing. So, φ(�(Vn)) is decreasing.
Hence, the sequence F[�(Vn),φ(�(Vn))] is decreasing.
Since limn→∞ F[�(Vn),φ(�(Vn))] = L.
By using equation (2.1), we have

0 ≤ F
[
�(Vn+1),φ

(
�(Vn+1)

)]

= F
[
�(ΥVn),φ

(
�(ΥVn)

)]

≤ 	
[
F
{
�(Vn),φ

(
�(Vn)

)}]
– 	

[
F
{
�(ΥVn),φ

(
�(ΥVn)

)}]

= 	
[
F
{
�(Vn),φ

(
�(Vn)

)}]
– 	

[
F
{
�(Vn+1),φ

(
�(Vn+1)

)}]
.

As n → ∞, we get

0 ≤ L ≤ 	(L) – 	(L) = 0,

that is, L = 0.
Therefore, limn→∞ �(Vn) = 0. According to axiom (vi) of Definition 1.1, we conclude

that V∞ =
⋂∞

n=1 Vn is an NBCC set, invariant under the mapping Υ and belongs to ker�.
By Theorem 1.2, we have Υ has an FP. �

Theorem 2.2 Let V be an NBCC subset of a Banach space E, and let Υ : V → V be a
continuous operator such that

2F
[
�(Υ X),φ

(
�(Υ X)

)] ≤ F
{
�(X),φ

(
�(X)

)}
(2.2)

for all X ⊆ V, where φ : R+ → R+ is a nondecreasing continuous function and � is an
arbitrary MNC. Then Υ has at least one FP in V.

Proof Taking 	(t) = t;t ≥ 0 in Theorem 2.1. �

The statement in the next corollary is a result of Theorem 2.1.

Corollary 2.3 Let V be an NBCC subset of a Banach space E, and let Υ : V → V be a
continuous operator such that

2�(Υ X) + 2φ
(
�(Υ X)

) ≤ �(X) + φ
(
�(X)

)
(2.3)
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for all X ⊆ V, where φ : R+ → R+ is a nondecreasing continuous function and � is an
arbitrary MNC. Then Υ has at least one FP in V.

Proof Taking F(m1, m2) = m1 + m2 in Theorem 2.2. So, we get the required result. �

Corollary 2.4 Let V be an NBCC subset of a Banach space E, and let Υ : V → V be a
continuous operator such that

�(Υ X) ≤ p�(X) (2.4)

for all X ⊆ V, where p = 1
2 ∈ (0, 1] and � is an arbitrary MNC. Then Υ has at least one FP

in V.

Proof Taking φ(t) = 0 in Corollary 2.3, we get the required result. �

Theorem 2.5 Let V be an NBCC subset of a Banach space E, and let Υ : V → V be a
continuous operator such that

F
[
�(Υ X),φ

(
�(Υ X)

)] ≤ λF
{
�(X),φ

(
�(X)

)}
(2.5)

for all X ⊆ V, where φ : R+ → R+ is a nondecreasing continuous function and � is an
arbitrary MNC, where λ = k

k+1 ∈ [0, 1). Then Υ has at least one FP in V.

Proof Taking 	(t) = kt where t ≥ 0, k ≥ 0 in Theorem 2.1. �

Corollary 2.6 Let V be an NBCC subset of a Banach space E, and let Υ : V → V be a
continuous operator such that

�(Υ X) ≤ λ�(X) (2.6)

for all X ⊆ V, where λ ∈ (0, 1] and � is an arbitrary MNC. Then Υ has at least one FP

in V.

Proof Taking F(m1, m2) = m1 +m2 and φ(t) ≡ 0 in Theorem 2.5. So, we get the result which
is Darbo’s fixed point theorem. �

Definition 2.7 ([29]) An element (A,B) ∈X ×X is called a coupled fixed point of a map-
ping T : X ×X →X if T (A,B) = A and T (B,A) = B.

Theorem 2.8 ([25]) Suppose that �1,�2, . . . ,�n is the MNC in E1,E2, . . . ,En respectively.
Moreover, suppose that the function X : Rn

+ → R+ is convex and F (y1, y2, . . . , yn) = 0 ⇔
yt = 0 for t = 1, 2, . . . , n, then �(X ) = F (�1(X1),�2(X2), . . . ,�n(Xn)) defines an MNC in
E1,E2, . . . ,En, where Xt denotes the natural projection of X into Et for t = 1, 2, . . . , n.

Example 2.9 ([25]) Let � be an MNC on E. Define F (A,B) = A + B;A,B ∈ R+. Then F
has all the properties mentioned in Theorem 2.8. Hence, �cf (X ) = �1(X1) + �2(X2) is an
MNC in the space E×E, where Xt , t = 1, 2, denotes the natural projections of X .
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Definition 2.10 ([30]) Suppose that G is the set of all functions μ : R+ →R satisfying the
following conditions:

(1) μ is a continuous strictly increasing function.
(2) limn→∞ μ(sn) = –∞ ⇔ limn→∞ sn = 0 for all sn ⊆R+.

For example,
i. μ1(s) = ln(s),

ii. μ2(s) = 1 – 1
st , t > 0.

Theorem 2.11 Let V be an NBCC subset of a Banach space E, and let Υ : V×V → V be
a continuous operator such that

μ
[
F
{
�

(
Υ (s1 × s2)

)
,φ

(
�

(
Υ (s1 × s2)

))}] ≤ 	

2
[
μ

{
�(s1 × s2) + φ

(
�(s1 × s2)

)}]
(2.7)

for all s1, s2 ⊆ V, where 	, F , and φ are as in Theorem 2.1 and � is an arbitrary MNC.
In addition, we assume μ(A + B) ≤ μ(A) + μ(B); A,B ≥ 0 and φ(A + B) ≤ φ(A) + φ(B);
A,B ≥ 0. Then Υ has at least a couple of FP in V.

Proof Consider a mapping Υ cf : V×V→V×V by Υ cf (A,B) = (Υ (A,B),Υ (B,A));A,B ∈
V. It is trivial that Υ cf is continuous.

Let s ⊆V×V be nonempty. We have �cf (s) = �(s1) + �(s2) is an MNC, where s1, s2 are
the natural projections of s into E.

We get

μ
[
F
{
�cf (Υ cf (s)

)
,φ

(
�cf (Υ cf (s)

))}]

≤ μ
[
F
{
�cf (Υ (s1 × s2) × Υ (s2 × s1)

)
,φ

(
�cf (Υ (s1 × s2) × Υ (s2 × s1)

))}]

= μ
[
F
{
�

(
Υ (s1 × s2)

)
+ �

(
Υ (s2 × s1)

)
,φ

(
�

(
Υ (s1 × s2)

)
+ �

(
Υ (s2 × s1)

))}]

≤ μ
[
F
{
�

(
Υ (s1 × s2)

)
+ �

(
Υ (s2 × s1)

)
,φ

(
�

(
Υ (s1 × s2)

))
+ φ

(
�

(
Υ (s2 × s1)

))}]

≤ μ
[
F
{
�

(
Υ (s1 × s2)

)
,φ

(
�

(
Υ (s1 × s2)

))}]

+ μ
[
F
{
�

(
Υ (s2 × s1)

)
,φ

(
�

(
Υ (s2 × s1)

))}]

≤ 	
[
μ

{
�(s1) + �(s2) + φ

(
�(s1) + �(s2)

)}]

= 	
[
μ

{
�cf (s) + φ

(
�cf (s)

)}]

= 	
[
μ

{
F
(
�cf (s),φ

(
�cf (s)

))}]
.

By Theorem 2.1, we conclude that Υ cf has minimum of one fixed point in V×V. That is,
Υ has minimum of one coupled fixed point. �

3 Measure of noncompactness on C([0, T])
Consider the space E = C(I) which is the set of real continuous functions on I , where
I = [0, T]. Then E is a Banach space with the norm

‖�‖ = sup
{∣
∣�(ς )

∣
∣ : ς ∈ I

}
, � ∈ E.
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Let Υ (�= φ) ⊆ E be bounded. For � ∈ Υ and ε > 0, denote by ω(�, ε) the modulus of the
continuity of �, i.e.,

ω(�, ε) = sup
{∣
∣�(ς1) – �(ς2)

∣
∣ : ς1,ς2 ∈ I, |ς1 – ς1| ≤ ε

}
.

Further, we define

ω(Υ , ε) = sup
{
ω(�, ε) : � ∈ Υ

}
; ω0(Υ ) = lim

ε→0
ω(Υ , ε).

It is well known that the function ω0 is an MNC in E such that the Hausdorff measure of
noncompactness χ is given by χ (Υ ) = 1

2ω0(Υ ) (see [25]).

4 Solvability of fractional integral equation
For ρ ∈ (0, 1] and α ∈ C, Re(α) > 0, we define the left GPF integral of f defined by [31]

(
aIα,ρ f

)
(t) =

1
ρα�(α)

∫ t

a
e

(ρ–1)(t–τ )
ρ (t – τ )α–1f (τ ) dτ .

In this part, we study the following fractional integral equation:

Z(ς ) = 	
(
ς ,L

(
ς ,Z(ς )

)
,
(

0Iα,ρZ
)
(ς )

)
, (4.1)

where α > 1,ρ ∈ (0, 1],ς ∈ I = [0, T].
Let

Bd0 =
{
Z ∈ E : ‖Z‖ ≤ d0

}
.

Assume that
(A) 	 : I ×R

2 →R,L : I ×R →R is continuous, and there exist constants δ1, δ2, δ3 ≥ 0
satisfying

∣
∣	(ς ,L, I1) – 	(ς , L̄, Ī1)

∣
∣ ≤ δ1|L – L̄| + δ2|I1 – Ī1|, ς ∈ I;L, I1, L̄, Ī1 ∈R

and

∣
∣L(ς , J1) – L(ς , J2)

∣
∣ ≤ δ3|J1 – J2|, J1, J2 ∈ R.

(B) There exists d0 > 0 satisfying

	̄ = sup
{∣
∣	(ς ,L, I1)

∣
∣ : ς ∈ I,L ∈ [–L̂, L̂], I1 ∈ [–Î , Î]

} ≤ d0

and

δ1δ3 < 1,

where

L̂ = sup
{∣
∣L

(
ς ,Z(ς )

)∣
∣ : ς ∈ I,Z(ς ) ∈ [–d0, d0]

}
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and

Î = sup
{∣
∣
(

0Iα,ρZ
)
(ς )

∣
∣ : ς ∈ I,Z(ς ) ∈ [–d0, d0]

}
.

(C) |	(ς , 0, 0)| = 0,L(ς , 0) = 0.
(D) There exists a positive solution d0 of the inequality

δ1δ3r +
δ2rTα

ρα�(α + 1)
.e

(ρ–1)T
ρ ≤ r.

Theorem 4.1 If conditions (A)–(D) hold, then Eq. (4.1) has a solution in E = C(I).

Proof Define the operator T : E → E as follows:

(T Z)(ς ) = 	
(
ς ,L

(
ς ,Z(ς )

)
,
(

0Iα,ρZ
)
(ς )

)
.

Step 1: We prove that the function Q maps Bd0 into Bd0 . Let Υ ∈ Bd0 . We have

∣
∣(T Z)(ς )

∣
∣

≤ ∣
∣	

(
ς ,L

(
ς ,Z(ς )

)
,
(

0Iα,ρZ
)
(ς )

)
– 	(ς , 0, 0)

∣
∣ +

∣
∣	(ς , 0, 0)

∣
∣

≤ δ1
∣
∣L

(
ς ,Z(ς )

)
– 0

∣
∣ + δ2

∣
∣
(

0Iα,ρZ
)
(ς ) – 0

∣
∣

≤ δ1δ3
∣
∣Z(ς )

∣
∣ + δ2

∣
∣
(

0Iα,ρZ
)
(ς )

∣
∣.

Also,

∣
∣
(

0Iα,ρZ
)
(ς )

∣
∣

=
∣
∣
∣
∣

1
ρα�(α)

∫ ς

0
e

(ρ–1)(ς–τ )
ρ (ς – τ )α–1Z(τ ) dτ

∣
∣
∣
∣

≤ 1
ρα�(α)

∫ ς

0
e

(ρ–1)(ς–τ )
ρ (ς – τ )α–1∣∣Z(τ )

∣
∣dτ

≤ d0e
(ρ–1)T

ρ

ρα�(α)

∫ ς

0
(ς – τ )α–1 dτ

≤ d0Tαe
(ρ–1)T

ρ

ρα�(α + 1)
.

Hence, ‖T ‖ < d0 gives

‖T ‖ ≤ δ1δ3d0 +
δ2d0Tα

ρα�(α + 1)
.e

(ρ–1)T
ρ ≤ d0.

Due to assumption (D), T maps Bd0 into Bd0 .
Step 2: We prove that T is continuous on Bd0 . Let ε > 0 and Z , Z̄ ∈ Br0 such that ‖Z –

Z̄‖ < ε. We have

∣
∣(T Z)(ς ) – (T Z̄)(ς )

∣
∣
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≤ ∣
∣	

(
ς ,L

(
ς ,Z(ς )

)
,
(

0Iα,ρZ
)
(ς )

)
– 	

(
ς ,L

(
ς , Z̄(ς )

)
,
(

0Iα,ρZ̄
)
(ς )

)∣
∣

≤ δ1
∣
∣L

(
ς ,Z(ς )

)
– L

(
ς , Z̄(ς )

)∣
∣ + δ2

∣
∣
(

0Iα,ρZ
)
(ς ) –

(
0Iα,ρZ̄

)
(ς )

∣
∣.

Also,

∣
∣
(

0Iα,ρZ
)
(ς ) –

(
0Iα,ρZ̄

)
(ς )

∣
∣

=
∣
∣
∣
∣

1
ρα�(α)

∫ ς

0
e

(ρ–1)(ς–τ )
ρ (ς – τ )α–1{Z(τ ) – Z̄(τ )

}
dτ

∣
∣
∣
∣

≤ 1
ρα�(α)

∫ ς

0
e

(ρ–1)(ς–τ )
ρ (ς – τ )α–1∣∣Z(τ ) – Z̄(τ )

∣
∣dτ

<
εTαe

(ρ–1)T
ρ

ρα�(α + 1)
.

Hence, ‖Z – Z̄‖ < ε gives

∣
∣(T Z)(ς ) – (T Z̄)(ς )

∣
∣ < δ1δ3ε +

εTαe
(ρ–1)T

ρ

ρα�(α + 1)
.

As ε → 0 we get |(T Z)(ς ) – (T Z̄)(ς )| → 0. This shows that T is continuous on Bd0 .
Step 3: An estimate of T with respect to ω0: Assume that Ω(�= φ) ⊆ Bd0 . Let ε > 0 be

arbitrary and choose Z ∈ Ω and ς1,ς2 ∈ I such that |ς2 – ς1| ≤ ε and ς2 ≥ ς1.
Now,

∣
∣(T Z)(ς2) – (T Z)(ς1)

∣
∣

=
∣
∣	

(
ς2,L

(
ς2,Z(ς2)

)
,
(

0Iα,ρZ
)
(ς2)

)
– 	

(
ς1,L

(
ς1,Z(ς1)

)
,
(

0Iα,ρZ
)
(ς1)

)∣
∣

≤ ∣
∣	

(
ς2,L

(
ς2,Z(ς2)

)
,
(

0Iα,ρZ
)
(ς2)

)
– 	

(
ς2,L

(
ς2,Z(ς2)

)
,
(

0Iα,ρZ
)
(ς1)

)∣
∣

+
∣
∣	

(
ς2,L

(
ς2,Z(ς2)

)
,
(

0Iα,ρZ
)
(ς1)

)
– 	

(
ς2,L

(
ς1,Z(ς1)

)
,
(

0Iα,ρZ
)
(ς1)

)∣
∣

+
∣
∣	

(
ς2,L

(
ς1,Z(ς1)

)
,
(

0Iα,ρZ
)
(ς1)

)
– 	

(
ς1,L

(
ς1,Z(ς1)

)
,
(

0Iα,ρZ
)
(ς1)

)∣
∣

≤ δ2
∣
∣
(

0Iα,ρZ
)
(ς2) –

(
0Iα,ρZ

)
(ς1)

∣
∣ + δ1

∣
∣L

(
ς2,Z(ς2)

)
– L

(
ς1,Z(ς1)

)∣
∣ + ω	(I, ε)

≤ δ2
∣
∣
(

0Iα,ρZ
)
(ς2) –

(
0Iα,ρZ

)
(ς1)

∣
∣ + δ1δ3

∣
∣Z(ς2) – Z(ς1)

∣
∣ + ω	(I, ε),

where

ω	(I, ε) = sup

{
|	(ς2,L,I1) – 	(ς1,L,I1)| : |ς2 – ς1| ≤ ε;ς1,ς2 ∈ I;

L ∈ [–L̂, L̂];I1 ∈ [–Î , Î]

}

.

Also,

∣
∣
(

0Iα,ρZ
)
(ς2) –

(
0Iα,ρZ

)
(ς1)

∣
∣

=
∣
∣
∣
∣

1
ρα�(α)

∫ ς2

0
e

(ρ–1)(ς2–τ )
ρ (ς2 – τ )α–1Z(τ ) dτ

–
1

ρα�(α)

∫ ς1

0
e

(ρ–1)(ς1–τ )
ρ (ς1 – τ )α–1Z(τ ) dτ

∣
∣
∣
∣
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≤ 1
ρα�(α)

∣
∣
∣
∣

∫ ς2

0
e

(ρ–1)(ς2–τ )
ρ (ς2 – τ )α–1Z(τ ) dτ –

∫ ς1

0
e

(ρ–1)(ς1–τ )
ρ (ς1 – τ )α–1Z(τ ) dτ

∣
∣
∣
∣

≤ 1
ρα�(α)

∣
∣
∣
∣

∫ ς2

0
e

(ρ–1)(ς2–τ )
ρ (ς2 – τ )α–1Z(τ ) dτ –

∫ ς1

0
e

(ρ–1)(ς2–τ )
ρ (ς2 – τ )α–1Z(τ ) dτ

∣
∣
∣
∣

+
1

ρα�(α)

∣
∣
∣
∣

∫ ς1

0
e

(ρ–1)(ς2–τ )
ρ (ς2 – τ )α–1Z(τ ) dτ –

∫ ς1

0
e

(ρ–1)(ς1–τ )
ρ (ς1 – τ )α–1Z(τ ) dτ

∣
∣
∣
∣

≤ 1
ρα�(α)

∫ ς2

ς1

e
(ρ–1)(ς2–τ )

ρ (ς2 – τ )α–1∣∣Z(τ )
∣
∣dτ

+
1

ρα�(α)

∫ ς1

0

∣
∣
(
e

(ρ–1)(ς2–τ )
ρ (ς2 – τ )α–1 – e

(ρ–1)(ς1–τ )
ρ (ς1 – τ )α–1)Z(τ )

∣
∣dτ

≤ –e
(ρ–1)T

ρ

ρα�(α + 1)
‖Z‖(ς2 – ς1)α

+
‖Z‖

ρα�(α)

∫ ς1

0

∣
∣e

(ρ–1)(ς2–τ )
ρ (ς2 – τ )α–1 – e

(ρ–1)(ς1–τ )
ρ (ς1 – τ )α–1∣∣dτ .

As ε → 0, then ς2 → ς1, and so |(0Iα,ρZ)(ς2) – (0Iα,ρZ)(ς1)| → 0.
Hence,

∣
∣(T Z)(ς2) – (T Z)(ς1)

∣
∣

≤ δ2
∣
∣
(

0Iα,ρZ
)
(ς2) –

(
0Iα,ρZ

)
(ς1)

∣
∣ + δ1δ3ω(Z , ε) + ω	(I, ε)

gives

ω(T Z , ε) ≤ δ2
∣
∣
(

0Iα,ρZ
)
(ς2) –

(
0Iα,ρZ

)
(ς1)

∣
∣ + δ1δ3ω(Z , ε) + ω	(I, ε).

By the uniform continuity of 	 on I × [–L̂, L̂] × [–Î , Î], we have ω	(I, ε) → 0 as ε → 0.
Taking supZ∈Ω and ε → 0, we get

ω0(T Ω) ≤ δ1δ3ω0(Ω).

Thus, by Corollary 2.6, Q has a fixed point in Ω ⊆ Bd0 , i.e., equation (4.1) has a solution
in E. �

Example 4.2 Consider the following equation:

Z(ς ) =
Z(ς )
7 + ς2 +

(0I2, 1
2 Z)(ς )
10

(4.2)

for ς ∈ [0, 2] = I .

We have

(
0I2, 1

2 Z
)
(ς ) =

4
�(2)

∫ ς

0
e–(ς–τ )(ς – τ )Z(τ ) dτ .
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Also, 	(ς ,L,I1) = L + I1
10 and L(ς ,Z) = Z

7+ς2 . It is trivial that both 	,L are continuous
satisfying

∣
∣L(ς , J1) – L(ς , J2)

∣
∣ ≤ |J1 – J2|

8

and

∣
∣	(ς ,L,I1) – 	(ς , L̄, Ī1)

∣
∣ ≤ |U – Ū | +

1
10

|I1 – Ī1|.

Therefore, δ1 = 1, δ2 = 1
10 , δ3 = 1

8 , and δ1δ3 = 1
8 < 1.

If ‖Z‖ ≤ d0, then

L̂ =
d0

8

and

Î =
8d0

e2 .

Further,

∣
∣	(ς ,L,I1)

∣
∣ ≤ d0

8
+

8d0

10e2 ≤ d0.

If we choose d0 = 2, then

L̂ =
1
4

, Î =
16
e2 ,

which gives

	̄ ≤ 2.

On the other hand, assumption (D) is also satisfied for d0 = 2.
We observe that all the assumption from (A)–(D) of Theorem 4.1 are satisfied. By The-

orem 4.1, it can be said that equation (4.2) has a solution in E = C(I).
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25. Banaś, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics,

vol. 60. Dekker, New York (1980)
26. Agarwal, R.P., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge (2004)
27. Darbo, G.: Punti uniti in trasformazioni a codominio non compatto (Italian). Rend. Semin. Mat. Univ. Padova 24, 84–92

(1955)
28. Das, A., Hazarika, B., Kumam, P.: Some new generalization of Darbo’s fixed point theorem and its application on

integral equations. Mathematics 7, 214 (2019). https://doi.org/10.3390/math7030214
29. Chang, S.S., Huang, Y.J.: Coupled fixed point theorems with applications. J. Korean Math. Soc. 33(3), 575–585 (1996)

https://doi.org/10.22436/jnsa.009.06.108
https://doi.org/10.1186/s13662-018-1807-4
https://doi.org/10.1007/s40314-021-01537-z
https://doi.org/10.1515/math-2021-0040
https://doi.org/10.3390/math7030214


Das et al. Advances in Difference Equations        (2021) 2021:427 Page 12 of 12

30. Mohammadi, B., Haghighi, A.S., Khorshidi, M., De la Sen, M., Parvaneh, V.: Existence of solutions for a system of integral
equations using a generalization of Darbo’s fixed point theorem. Mathematics 8, 492 (2020).
https://doi.org/10.3390/math8040492

31. Jarad, F., Abdeljawad, T., Alzabut, J.: Generalized fractional derivatives generated by a class of local proportional
derivatives. Eur. Phys. J. Spec. Top. 226, 3457–3471 (2017)

https://doi.org/10.3390/math8040492

	On solution of generalized proportional fractional integral via a new ﬁxed point theorem
	Abstract
	MSC
	Keywords

	Introduction
	Main result
	Measure of noncompactness on C([0,T])
	Solvability of fractional integral equation
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


