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ABSTRACT In this paper, the power transmission and energy efficiency (EE) in downlink multi-cell
massive multiple-input–multiple-output (MIMO) systems are investigated and optimized. Most of the
existing works do not take into account different user’s quality of service (QoS) requirements. These
models also depend on a fixed transmit power consumption, which cannot reflect the actual EE levels
concerning QoS. Therefore, in this paper, a new base station (BS) transmit power adaptation is firstly
introduced, termed the BSTPA method. The transmitted power is adapted to channel condition and user-
level QoS including data rate requirement and maximum allowable outage probability to minimize the total
BS radiated power. An analytical closed-form expression of the average BS transmit power adaptation is
derived. Then, a corresponding iterative optimization algorithm is proposed to maximize the average EE
per BS and obtain the optimal design parameters. The proposed optimization algorithm aims to globally
achieve the optimal EE value with the optimal amount of data rate, the number of BS antennas, and users.
Simulation results are demonstrated to verify our analytical findings. For a wide range of different design
parameters, the results indicate that the proposed method obtains remarkably higher EE levels compared to
the conventional scenario, particularly if per-antenna circuit power is very small. The optimization results
show that the case with lower per-antenna circuit power can achieve about 4.5 times better EE gain than the
case with higher per-antenna circuit power with 13.3% optimum data rate improvement.

INDEX TERMS Energy efficiency (EE), massiveMIMO, quality of service (QoS), base station (BS) transmit
power.

I. INTRODUCTION
Global mobile communication data traffic is forecasted to
increase seven-fold by 2022 [1] exponentially, which would
place a burden on the next generation’s mobile networks. This
Overgrowth traffic has led to social and economic concerns
due to the power expenditure of the information technology
industry and the pollution caused by the need for enormous
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energy consumption relatively [2]. In fact, this concern has
urged the academicians and industry to take serious action in
the green cellular network, which is a new area of research
[3]. As a result, there is a need to design new network
architecture and related technologies to let mobile data grow
significantly without the need for an increase in power con-
sumption.

Currently, to make the situation smoother, some innovative
technologies have been suggested for the fifth-generation
(5G) wireless communication networks and beyond. The
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massive multiple-input-multiple-output (MIMO) technology
[4]–[6], where the number of antennas at the base station
(BS) is considerably more than the number of users that
the BS simultaneously served [5]–[7], potentially provides
a wide range and a significant spatial multiplexing gain [8],
[9]. The massive MIMO transmission is an effective strategy
to boost the capacity of wireless communication systems
with no demand for extra bandwidth or power transmission.
As a matter of fact, the massive MIMO technology is capa-
ble of offering higher spectral efficiency (SE) and energy
efficiency (EE) levels compared to the current long-term
evolution (LTE) technologies, and therefore open the doors
to a promising Green 5G candidate.
EE improvement has become the primary 5G criterion and

determined as the proportion between sum data rate and total
energy consumption [8]. It is influenced bymany factors such
as SE, radiated and circuit power consumption, user equip-
ment (UE) quality of services (QoS) demands, and network
architecture [2], [3], [9]. Massive MIMO systems are mainly
interested in their capability to concurrently minimize the
transmitted power at the part of both BSs and UEs [5], [10].
A large portion of power is drained in power amplifiers (PAs)
of BSs, since BSs are themain power-consuming components
of cellular networks [11], [12]. Thus, reducing the radiated
power of BS radio-frequency (RF) is a practical approach for
minimizing BS energy consumption, leading to the overall
system EE enhancement.

In the concept ofGreenwireless communication networks,
the total BSs power consumption reduction is the initial step
of EE improvement, where they account for a large portion
of the overall network energy consumption. Since the traffic
load changes during the day, the power consumption of BSs
grows exponentially with their traffic load in term of the
number of active UEs and their QoS [13]. Therefore, BSs
must adapt their power consumption to traffic load to save
more energy while meeting users restrictions.

The authors in [14] and [10] proposed new scaling lows
which the uplink transmission power can meet a specified
data rate as long as the power level fulfils the desired QoS.
The problem of uplink power allocation for a multi-user
MIMO system has been studied in [15]. The author focuses on
the impact of total antenna numbers at BS on overall EE of the
system. The results show that the entire EE of the system can
be enhanced if some specific user antennas are switched off.
The authors in [16] have concentrated on optimizing the num-
ber of scheduled users and BS antennas in order to maximize
the uplink sum-rate capacity for multi-user MIMO networks
without QoS consideration. The authors in [17] have demon-
strated that the uplink power transmission control is the basic
mechanism in any multi-user MIMO networks. As a result,
a statistical uplink power control policy was found out where
channel state information (CSI) is provided for UEs without
the need for rapid feedback. Then, the authors analytically
solved a tractable uplink EE maximization problem. The
optimization problem was formulated based on the density of
BSs, BSs transmitted power level, and the number of antennas

and UEs per each BS. The optimal amounts of antennas
and users have been investigated in [18] for a given fixed
uplink sum-rate in a single-cell setup. However, the study
ignores the cost of CSI acquisition that can lead to misleading
results. The authors in [19] have derived both uplink and
downlink power transmission and a more realistic circuit
power consumption model. But, an equal guaranteed data
rate is assumed as the only QoS constraint. The joint uplink
and downlink EE was maximized concerning user’s data rate
requirement, the number of antennas and UEs per BS, and
transmission power. For a downlink point-to-point MIMO
setup, the system EE maximization has been examined in
[20]. The authors optimized the number of BS antennas under
an equally optimal power allocation algorithm that considers
the minimum achievable data rate limitation into account.

Yet, the evolution of BS power transmission to boost the EE
becomes more challenging in the case of multi-cell massive
MIMO systems where UEs sufferers from inter-cell interfer-
ence (ICI) and the intertwined factors that impact the power
transmission and EE of BS. Reference [21] has investigated
joint downlink beamforming and power allocation optimiza-
tion for amulti-cell multiple-input-single-output (MISO) sys-
tem. The EE maximization was studied subjected to users’
signal-to-interference-plus-noise-ratio (SINR) target and BS
transmit power constraint. In [22], the uplink resource allo-
cation optimization has also been investigated for a multi-
cell massive MIMO network with zero-forcing (ZF) detector.
The authors optimized the number of BS antennas to max-
imize EE, where a uniform data rate was guaranteed for all
UEs. Reference [23] has investigated the EE improvement in
the downlink of a multi-cell massive MIMO system under
different user location distribution. The authors proposed a
new resource allocation scheme to optimize the number of
active BS antennas based on the variation of UEs’ location
without QoS requirements. The study assumes each BS trans-
mits a constant power that uniformly shared among UEs.
The authors in [37] have proposed a new pilot design and
derive closed-form expressions of SE with Rayleigh fading
channels and maximum-ratio transmission (MRT) detection
in the uplink of multi-cell massive MIMO systems. Then a
max-min fairness problem was formulated by treating the
pilot powers and data powers as optimization variables to
maximize the uplink EE of the system. Reference [38] has
proposed an uplink average transmit power-control-based to
optimize the sum-rate in multi-cell massive MIMO systems.
Although the proposed model can remarkably enhance total
transmit power consumption with a small portion of sum-
rate sacrifice, the UE’s QoS constraint did not take into
consideration.

The authors in [39] have studied joint beamforming and
power control in the downlink of a multi-cell massive MIMO
system. The asymptotic SINR was derived based on a large
number of BS antennas and UEs. Then, a power control
problem was formulated to maximize sum SE of the system.
However, the study overlooks the cost of system power con-
sumption and UEs’ QoS that can lead to inefficient optimal
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system design. The EE maximization problem has been stud-
ied in [24] for the downlink of an interference-limited multi-
cell MIMO network. The power allocations were optimized
subjected to BS power consumption restriction. In [25],
the SE has been analyzed to maximize EE for the downlink of
a multi-cell massive MIMO system. The authors investigated
the effect of an optimal number of BS antennas and UEs on
EE improvement. The study assumes that each BS uses a
constant transmission power equitably divides among users
without QoS consideration. The total transmit power min-
imization problem through a centralized solution algorithm
has been studied in [40] for the downlink of multi-cell mas-
sive MIMO systems. An equivalent achievable SE has also
been admitted as the QoS constraint for all UEs. The central-
ized power allocation algorithm can significantly decrease the
amount of exchanged information in terms of both backhaul
signalling and complexity. Still, the influence of circuit power
consumption on EE and system design parameters has not
been examined. In [41], the power allocation problem with
perfect CSI has been reviewed to maximize the downlink
sum-rate for multi-cell massive MIMO networks. The effect
of the user’s QoS was not considered. Besides, the study
did not investigate the impact of total power consumption
on EE. Reference [42] has studied the trade-off between EE
and SE for the downlink of multi-cell massive MIMO net-
works. A power allocation problem was formulated to maxi-
mize EE-SE trade-off. The optimal transmit power allocation,
and the number of BS antennas were derived where UEs’
QoS requirement and circuit power consumption were not
taken into consideration. These prior studies do not present
a comprehensive overview of the impact of different opti-
mized system design parameters and user-level QoS on BS
power transmission and overall system EE. Further, to the
authors’ best knowledge, no study yet investigated the EE
improvement through BS power transmission adaptation to
channel condition and QoS requirements (including data rate
requirement and maximum allowable outage probability).

In this paper, we concentrate on the downlink of a multi-
cell massiveMIMO systemwhere (i) all UEs are ensuredwith
user-level QoS including a uniform data rate requirement
and maximum allowable outage probability; (ii) the effect of
multi-cell power control and ICI on both average BS transmit
power and EE is complicated; (iii) circuit power consumption
can be represented as an affine function of BS antenna andUE
numbers which it is imperative to obtain reliable guidelines
for EE improvement. Then, the contributions of this paper can
be summarized as follows:
• We propose a new method to adjust the average BS
transmit power to channel conditions and user-level QoS
constraints, termed the BSTPA method. For this pur-
pose, a unique analytical closed-form expression of the
average BS transmitted power adaptation is derived. The
aim is to minimize the total BS transmitted power to
enhance the average EE per BS.

• We investigate and analyze how different system design
parameters (the number of UEs served by BS, num-

ber of antennas at BS, and data rate requirement) and
QoS constraints impact the average BS transmit power
and average EE per BS. This analysis provides new
insights into the interaction between the propagation
environment, system design parameters, and different
components of the total BS power consumption model
under QoS requirements.

• We propose a corresponding iterative optimization algo-
rithm to maximize the average EE per BS and obtain
the optimal design parameters. The proposed algorithm
aims to achieve the optimal EE value globally along
with the optimal amount of data rate, the number of BS
antennas, and number of users. Furthermore, the compu-
tational complexity of the proposed algorithm is exam-
ined.

In the remainder of this paper, the system model is
described in Section II. Section III presents the proposed BS
transmit power adaptation (BSTPA) method in a multi-cell
massiveMIMO system under the assumption of ZF precoding
and perfect CSI. The average EE per BS and the total BS
power consumption model are shown in Section IV. The EE
optimization problem is formulated in Section V to obtain the
optimal number of BS antennas, the number of UEs, and data
rate requirement. Simulation is used to validate the analytical
method in Section VI. Finally, the findings of the study are
concluded in VII.
Notation: Matrices and vectors are denoted by boldface

upper-case and lower-case letters, respectively. IN defines the
N×N identitymatrix. Hermitian transpose andmatrix inverse
are expressed by superscripts (.)H and A−1, respectively. R
and Z are the sets of real and integers numbers, respectively.
The operator ‖.‖ and |.| are used for Euclidean norm and
absolute number, respectively. Cn×m describes the set of
complex-valued n × m matrices. The (i, j) − th element of
matrix A is denoted by aij and similarly the m−th element
of a vector is described by [a]m. Ex{.} is the expectation
with respect to variable x. Finally, CN (., .) denotes a multi-
variate circularly symmetric complex Gaussian distribution.
For convenience, the key notations in this paper are summa-
rized in Table 1.

II. SYSTEM MODEL
This paper considers a multi-cell downlink massive MIMO
network with a hexagonal layout, as pictured in Figure 1. All
cells are operating over bandwidth B (Hz) with full frequency
reuse and maximum power transmission of Pmax . An area A
with BS density λBS is consideredwhere the total L number of
cells (L = λBSA) are indexed by m as the center-cell and j=
{1, 2, . . . ,L − 1} as the interfering cells. Each BS is equipped
with a co-located array of total M number of antennas that
communicates with N single-antenna UEs simultaneously.
The BS antennas can be configured with varying structures,
such as; cylindrical, linear, rectangular, and so on [6]. The
case of M � N is considered which results in the massive
MIMO transmission scenario in which ZF is nearly optimal
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TABLE 1. Notation summary.

under low and high SINR conditions [26]. UEs are uniformly
distributed in each cell’s coverage area between a radius D
and minimum distance dmin where user i is located from the
BS m with distance di,m.

Both UEs and BSs are considered completely coordinated
and run according to the time-division duplex (TDD) proto-
col. Uplink channel estimations without pilot contamination
are assumed to be ideal, which employed for downlink pre-
coding computation based on channel reciprocity. We con-
sider a block Rayleigh-fading channel where the channels are
static within time-frequency coherence blocks of length T .
These T channels are divided into three phases. The uplink
training phase takes place first involvingNTul channels where
N users send orthogonal uplink signals of length Tul chan-
nel. The subsequent downlink training phase consists of Tdl
channels. In this phase, the BSs broadcast the training signal
assisting UEs in estimating the pre-coded equivalent down-
link channels. Finally, T − NTul − Tdl channels are used for
downlink data transmission phase.

The channel matrix of the BS m is defined as Gm =[
g1,m, g2,m, . . . , gN ,m

]
∈ CN×M where gi,m = hi,m

√
βi,m

is the propagation channel vector between BS m and UE i.
hi,m is the vector representing small-scale Rayleigh channel
fading with CN (0, 1) independent and identically distributed
(i.i.d) components. βi,m = K̄d−αi,m defines the large-scale
fading channel where fixed value K̄ > 0 specifies the con-
stant propagation loss to adjust the channel attenuation at
minimal distance dmin and α > 2 defines path-loss expo-

FIGURE 1. Hexagonal network layout.

nent [27]. For analytical tractability, the BSs are assumed to
obtain perfect CSI acquisition from the uplink training signals
and adopt ZF processing for downlink data pre-coding. ZF
beamforming is typically suboptimal, but compared to other
beamforming techniques, it is significantly less complex.
Also, it achieves the same asymptotic sum data rate as others
benefit from the increment in the UE number. Moreover, BSs
are able to design their beams to eliminate intra-user inter-
ference [28], [36]. The downlink precoding matrix Wm =[
w1,m,w2,m, . . . ,wN ,m

]
∈CN×M is defined as

Wm=Gm(GH
mGm)

−1
(1)

wherewi,m specifies the ZF beam allocated to UE i, and [.]N:1
is the N rows corresponding with N scheduled UEs of BS m.

A. SIGNAL AND SINR MODELS IN MULTI-CELL MASSIVE
MIMO SYSTEM
All users are assumed to be served in the same time-frequency
resources. We ignore the interference power from outside of
the area A. Then, the signal received by the i-th user that
is connected to BS m described as the sum of the intended
transmitted signal of BS m, the signals from interfering BSs
j 6=m, and the receiver noise, which is represented as

yi,m =
√
Pi,mgHi,mwi,mxi,m︸ ︷︷ ︸
Intended Signal

+

∑
j∈8A/{m}

N∑
k=1

√
Pk,j f Hi,jwk,jxk,j︸ ︷︷ ︸

Inter-Cell Interference

+ ni︸︷︷︸
Noise

, (2)

where Pi,m presents the transmitted power of BS m to UE i,
xi,m is a complex scaler that describes the dispatched informa-
tion signal of BSm to UE i and E

[
|xi,m|2

]
=1. Also, ni defines

the circularly symmetric complex additive white Gaussian
noise with variance σ 2. Moreover, Pk,j and f i,j = hi,j

√
βi,j

show the power that transmitted at neighboring BS j to an own
single UE k and the interference channel between BS j and
UE i. hi,j and βi,j are the small-scale and large-scale fading
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channels between UE i connected to BSm and the interfering
BS j. wk,j is ZF precoding vector of BS j to its associated
UE k . Hence, the SINR of the i-th user connected to BS m is
defined as

γi,m =

Pi,mβi,m

∣∣∣∣hHi,mwi,m‖wi,m‖

∣∣∣∣2∑
j∈8A/{m}

N∑
k=1

Pk,jβi,j

∣∣∣∣hHi,jwk,j‖wk,j‖

∣∣∣∣2 + σ 2

. (3)

The following notations are used for simplicity.

Si,m = Pi,mβi,m

∣∣∣∣∣hHi,mwi,m‖ wi,m ‖

∣∣∣∣∣
2

, (4)

Ii,m =
∑

j∈8A/{m}

N∑
k=1

Pk,jβi,j

∣∣∣∣∣ h
H
i,jwk,j
‖ wk,j ‖

∣∣∣∣∣
2

. (5)

where Si,m and Ii,m define the desired and ICI signal powers
received at user i connected to BS m.

III. THE PROPOSED AVERAGE BS TRANSMIT POWER
ADAPTATION (BSTPA) METHOD
The downlink transmitted signal from BS m to the i-th user
with allocated power Pi,m and a normalized precoding vector
wi,m
‖wi,m‖

achieves the data rate Ri,m (bits/sec) for user i that can
be shown as

Ri,m = B log2
(
1+ γi,m

)
. (6)

Let’s consider outage performance as the first QoS level to
describe the required minimum transmitted power Pi,m to the
i-th UE. An outage happens when the connection between BS
m and UE i cannot carry the desired target rate of b (bits/sec).
For simplicity, the same data rate requirement b is assumed
for all UEs. Then the outage probability of user i can be
determined as

Pouti,m = Pr
{
B log2

(
1+ γi,m

)
< b

}
= Pr

{
Si,m <

(
Ii,m + σ 2

)(
2

(
b
B

)
− 1

)}
. (7)

Given distance di,m, Si,m is an exponential random variable.
Therefore, the outage probability Pouti,m of UE i at distance di,m
from serving BS m can be simplified to

Pouti,m ≈ 1− exp

−
(
Ii,m + σ 2

) (
2

(
b
B

)
− 1

)
Si,m

 . (8)

Let ηout denotes the maximum allowable outage probabil-
ity of all users. The next inequality must maintain for all UEs
as

Pouti,m ≤ ηout . (9)

Substituting equation (8) into (9), theminimum transmitted
power of BS m to UE i is computed as

Pi,m =
(Ii,m + σ 2)(2

(
b
B

)
− 1)

−ln (1− ηout) × C1
, (10)

where C1 = βi,m

∣∣∣∣hHi,mwi,m‖wi,m‖

∣∣∣∣2 represents the desired channel

gain of UE i. The proof follows the same method used in our
relevant work [29].

Note that deriving a closed-form definition for Pi,m is
challenging because of disparities in user distribution and
different channel states. As a result, we attempt to achieve
a tractable analytical approximation of minimum transmitted
powerPi,m. Accordingly, a new asymptotic tight lower-bound
of the average transmitted power is proposed as

P̄

=Ed,h
{
Pi,m

}
=E

 2

(
b
B

)
− 1

− ln (1− ηout)

E
{
Ii,m + σ 2

}
E
{

1
C1

}

=A0

E
 ∑
j∈8A/{m}

N∑
k=1

Pk,jβi,j

∣∣∣∣∣ h
H
i,jwk,j
‖ wk,j ‖

∣∣∣∣∣
2
+σ 2

E
{

1
C1

}
,A0

(
p̄ Ī+ σ 2

)
Sd (11)

where A0 = [2(
b
B ) − 1]/[−ln(1 − ηout )] is the parameter

that includes QoS constraints, p̄ denotes the average radiated
power of an interfering BS to a single user, Ī defines the
average ICI that is normalized by power transmission, and
Sd , E

{
1
C1

}
is the expectation of reciprocal of the signal

power.
The power consumption of all BSs in area A are statis-

tically identical since the BSs are considered to deploy the
same antenna configuration and same circuit power, the same
uniformUE distribution in the cells of radiusD. Additionally,
all channels are distributed identically and independently. For
these reasons, the average transmitted power to all UEs are
approximately the same as E

{
pi,m

}
= E

{
pk,j

}
. Therefore,

the average transmitted power P̄ of BS m is the same with
the average radiated power p̄ of any other BS j in equation
(11).

The ICI changes with the position of UEs which leads
to unsolvable derivation of BS transmitted power. Thus,
to approximate the uncertain value, the average ICI of all
users’ positions is estimated. On the other hand, as shown
in [10], channel hi,j is independent from beamforming vec-
tor wk,j such that the equivalent interfering channel gain∣∣∣∣hHi,jwk,j‖wk,j‖

∣∣∣∣2∼ exp (1) for interfering BS j 6= m, where exp (1)

describes the exponential distribution with unit mean.
Let’s assume any user i is located at distance di,m from

its serving BS m. Each elementary surface xdxdθ located
at a distance x from i includes λBSxdxdθ base stations that
contribute to ICI. Then, the average ICI, denoted as Iintf ,
is approximated using the integration surface by a ring with
center i and bounds (2 Dc−di,m, Dnw−di,m) as follow [30],

VOLUME 8, 2020 203241



V. Khodamoradi et al.: Optimal EE Based Power Adaptation for Downlink Multi-Cell Massive MIMO Systems

[31]

Iintf =E

 ∑
j∈8A/{m}

N∑
k=1

Pk,jβi,j

∣∣∣∣∣ h
H
i,jwk,j
‖ wk,j ‖

∣∣∣∣∣
2


=E

p̄K̄ ∑
j∈8A/{m}

N∑
k=1

d−αi,j

∣∣∣∣∣ h
H
i,jwk,j
‖ wk,j ‖

∣∣∣∣∣
2


= p̄K̄
∫ 2π

0

∫ Dnw−di,m

2 Dc−di,m
λBS x−α dx dθ

= p̄
2πλBS K̄
α − 2

[(
2Dc−di,m

)2−α
−
(
Dnw−di,m

)2−α]
, (12)

where Dc= (3D)/(2
√
3) is the in-radius of the hexagonal cell

and Rnw is the radius of area A.
Since UEs are distributed uniformly within the coverage

area of each cell with in-radius Dc, the average Iintf condi-
tioned on the location of all users can be approximated as
[31]

Iintf = p̄
2πλBS K̄
α − 2

∫ Dc

dmin

[
(2Dc−z)2−α−(Dnw−z)2−α

]
×

(
2z

D2
c − d

2
min

)
dz = p̄ Ī, (13)

where (2z)/(D2
c − d

2
min) is probability distribution function

(PDF) of distance z that spread uniformly in the area of a cell
containing in-radius Dc and minimum distance dmin from the
center.

Since BS m serves a total number of N users, the channel

gain

∣∣∣∣hHi,mwi,m‖wi,m‖

∣∣∣∣2 follows a gamma distribution with expected

value (M − N ) that defines the degree of freedom (DoF)
of users served by BS m [10], [19]. Afterward, Sd defines
jointly the desired channel gain and average attenuation that
characterized as

Sd , E
{

1
C1

}
=

Dα+2 − dα+2min

K̄
(
1+ α

2

) (
D2 − d2min

)
(M − N )

. (14)

Eventually, based on equation (11) and total power con-
sumption defined in equation (17), the average BS transmit
power PTX for BS m equipped with a total number of M
antennas and serving N active users can be derived as

PTX =
(T − NTul − Tdl)

T
N P̄

=
(T − NTul − Tdl)

T
Nσ 2(

A0Sd
)−1
− Ī

, (15)

where PTX is respectively parameterized and formulated with
respect to uniform data rate b (bits/sec), maximum allowable
outage probability ηout , total M number of BS antennas, N
number of UEs, cell-radius D, and minimal distance dmin.

IV. ENERGY EFFICIENCY AND TOTAL POWER
CONSUMPTION MODEL
In the field of communication systems, the average EE per BS
is generally determined in (bits/Joule) and is the proportion of
the average downlink throughput to the total power consump-
tion of a BS (Watt), where the throughput is the sum data rate
of all UEs of the BS (bits/sec) [3]. Accordingly, the average
EE per BS (EE) assuming a uniform data rate requirement b
(bits/sec) is represented as

EE =

(
T − NTul − Tdl

T

)
N b

Ptotal
. (16)

Besides the average BS transmit power to meet all user-
level QoS constraints, the circuit power consumption of dif-
ferent BS components must also be taken into account. Con-
sequently, the BS circuit power consumption model adopted
from [14], [19] is expressed as

Ptotal = ρPAPTX + Pe&p + P0, (17)

where, ρPA denotes the PA efficiency of BSs. P0 is a fixed
component that describes the idle power consumption of
the BS for cooling, analog/digital conversion, and backhaul.
Pe&p defines circuit power consumption per BS for channel
estimation, ZF detection, and signal processing at each BS
transceiver chain, respectively. Hence, Pe&p can be computed
as

Pe&p = MPactive +
BN 3

3TρC

+
3BMN 2

+ 2MNTulB+ BMN
TρC

, (18)

where, ρC is the computational efficiency at BSs measured in
(flops/W) and Pactive is the circuit power that BSs use to keep
active one antenna.

V. ENERGY EFFICIENCY ANALYSIS AND OPTIMIZATION
In this section. the average EE per BS is first analyzed and
then optimized based on different combination of system
design parameters. From equations (16) and (17), the average
EE and total power consumption are simultaneously affected
by the number of BS antennas (M ), the number of active UEs
(N ), and the guaranteed user data rate (b). In the following,
the average EE per BS is maximized through optimizing M ,
N , and b. Therefore, the optimization problem of this study
is formulated as

P1 : max
M ,N ,b

EE =

(
T − NTul − Tdl

T

)
N b

Ptotal
s.t. C1 : PTX ≤ Pmax

C2 : M ≥ N + 1

C3 : M ≤ Mmax (19)

where C1 denotes the constraint that guarantees the average
BS transmit power will not exceed the maximum BS trans-
mission capability Pmax . C2 and C3 represent the constraints
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TABLE 2. System model parameters.

resulting in the massive MIMO transmission scenario and
the requirement of ZF precoding scheme, where Mmax is the
maximum available number of antennas at BS.

In the following, this study aims at finding the EE-optimal
value of either M , N , and b separately that solves P1, when
the other two parameters are fixed. This method provides the
means to solve problem (19) by an alternating optimization
approach. Although an exhaustive search can be used to find
the optimal solution, it requires exponential computational
complexity, which is unpractical with large parameter values.
An exhaustive search may potentially check every single
element in three nested loops to find what it is looking for,
which means that the expected worst-case complexity scales
directly with the size of the parameters. To solveP1 with low
computation complexity, an iterative optimization algorithm
is proposed in the following.

A. OPTIMAL NUMBER OF BS ANTENNAS M
The optimal value of M to maximizes EE can be calculated
in a closed-form expression stated in the following lemma.
Lemma 1: For fixed and given values of N and b, the opti-

mal number of BS antennas to maximize EE can be expressed
as

M∗ =
⌊√

a2
a4
+ a3

⌉
(20)

with

a2 = ρPA

(
T − NTul − Tdl

T

)
Nσ 2 A0 S,

a3 = N + Ī A0 S,

a4 = Pactive +
2NTulB+ 3BN 2

+ BN
TρC

,

A0 =
2(

b
B ) − 1

− ln(1 − ηout )
,

S =
Dα+2 − dα+2min

K̄
(
1+ α

2

) (
D2 − d2min

) ,
where b.e defines either the closest larger or closest smaller
integer to M∗, and can be easily determined through the
corresponding EE comparison.

Proof: The proof is given in Appendix.

B. JOINT OPTIMAL NUMBER OF USERS AND OPTIMAL
DATA RATE
The objective function in problem P1 is non-linear and non-
convex concerning N and b. Thus, it is hard to acquire
optimal closed-form solutions directly. Additionally, the EE
defined in equation (19) is a classic two-dimensional real
optimization problem for N and b with high optimization
complexity. Consequently, a simple optimization algorithm
is needed to solve P1 for the optimal amount of N and b that
maximize EE.
The average EE per BS is a concave function for N and

b as will be shown in section VI. Accordingly, the three-
dimensional optimization problem P1 can be transformed
into three sub-problems to reduce the complexity. The basic
idea is finding the optimum values alternatively in an iterative
algorithm until the convergence is reached. The aim is to find
the joint global optimum amounts of all parameters M , N ,
and b that maximize average EE per BS. At each iteration,
two parameters are considered fixed to optimize the other one
that maximizes EE. To do so, the search only needs several
iterations to reach the global optimum. The detailed proce-
dures of the proposed algorithm are presented in Algorithm 1
that is partly adopted and improved from [35].

In the proposed Algorithm 1, δN and δb represent the
length of the searching step for the number of active UEs
and the required data rate, respectively.M0,N0 and b0 are the
initial values and Nmin is the minimum number of available
UEs. We also denote bmax and bmin as the maximum and
minimum achievable data rate. Mch is the value to check
the optimal number of BS antennas and convergence point.
Lastly, Mopt , N opt , bopt , and EE

opt
denote the final opti-

mization result. The second and third steps of the algo-
rithm obtain the optimum value of N and b through a semi-
exhaustive search. Semi-exhaustive search is applied because
it employs both lower and upper boundary constraints as
well as limiting the search domain for each parameter to find
the best optimum value more quickly. Therefore, the search
domain limitation produces a smoother convergence to the
optimal solution and requires a significantly reduced compu-
tational complexity compared to the conventional exhaustive
search. Since N and b are positive numbers, the global opti-
mum can be achieved by a semi-exhaustive search over all
possible set of pair (N , b) and then computing the optimal
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Algorithm 1 Iterative Energy Efficiency Optimization Algo-
rithm

Step 1: InitializeM = M0, N = N0, b = b0, δN = δN0,
δb = δb0.

Step 2: Iteration over N with givenM and b
if
(
EE(M ,N , b) < EE(M ,N + δN , b)

)
while

(
EE(M ,N , b)<EE(M ,N+δN , b)

)
&& (N <

M )
N = N + δN

end while
else if

(
EE(M ,N , b) < EE(M ,N − δN , b)

)
while

(
EE(M ,N , b)<EE(M ,N−δN , b)

)
&& (N >

Nmin)
N = N − δN

end while
end if

Step 3: Iteration over b with givenM and N
if
(
EE(M ,N , b) < EE(M ,N , b+ δb)

)
while

(
EE(M ,N , b)<EE(M ,N , b+ δb)

)
&& (b ≤

bmax)
b = b+ δb

end while
else if

(
EE(M ,N , b) < EE(M ,N , b− δb)

)
while

(
EE(M ,N , b) < EE(M ,N , b− δb)

)
&& (b >

bmin)
b = b− δb

end while
end if

Step 4: CalculateMch using Lemma 1
if (Mch ≤ Mmax) &&

(
EE(Mch,N , b) > EE(M ,N , b)

)
M = Mch

Go to Step 2
else

ReturnMopt
= M , N opt

= N , bopt = b,
EE

opt
= EE(M ,N , b)

Break.
end if

number of BS antennas M using Lemma 1. Then, N and b
can be increased or decreased step-by-step until the EE start
to drop and consequently no need to search for all integers.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
Now we address the computational complexity of the pro-
posed optimization algorithm. It consists of two nested loops.
It is easy to see that the major computational complexity
involves the iteration complexity of steps 2 and 3 in each iter-
ation of Algorithm 1. In each iteration of the algorithm, step
2 will be terminated whenever EE(M ,N , b) ≥ EE(M ,N +

δN , b) orM−N = 1 is satisfied. Otherwise, step 2 will be ter-
minated whenever EE(M ,N , b) < EE(M ,N−δN , b) or N−
Nmin = 0 is met. In the worst case, the maximum number of
iterations will be K2 = max

{
M−N
δN , N−Nmin

δN

}
. Similar to step

2, in the worst case of step 3, the maximum number of iter-
ations is defined as K3 = max

{
bmax−b
δb , b−bmin

δb

}
. On the one

hand, in step 4 of the proposed algorithm, the optimalM has a
closed-form expression of the complexity order one, making
the proposed algorithm easy to implement. Additionally, this
also remarkably accelerates the convergence speed. As a
result, the estimated complexity of the proposed algorithm
is KiterO(K2 + K3) where Kiter is the required number of
iteration for convergence.

VI. RESULTS AND DISCUSSION
This section presents the simulation and analytical results
to validate the performance of the proposed BSTPA method
obtained in section III along with average EE per BS under
ZF processing and perfect CSI in a multi-cell massive MIMO
setup. Then, we discuss how the average BS transmit power
and the average EE per BS are affected by different design
parameters, followed by comparison and optimization find-
ings for two different per-antennas circuit power cases.

We simulated the area A at a radius of 1000 meters,
where the performance of the central-cell is only examined.
The corresponding system model parameters are defined
in Table 2 adopted from a variety of prior studies as well
as the 3GPP propagation environment presented in [27] and
[19]. For both simulation and analytical, the maximum BS
transmission power constraint Pmax is considered. Moreover,
the circuit power consumptionmodel independent of data rate
is selected from [19], [33].

Observe that some data rates b (bits/sec) cannot be sup-
ported for any transmit powers. In such a case, PTX would
lead to either negative value or the values larger than themaxi-
mum BS power transmission capacity Pmax . Additionally, ZF
processing yields a coherent beamforming gain of M − N .
Therefore, we only evaluate the case of M ≥ N + 1 where
the BS antennas are much larger than the number of UEs to
result in a massive MIMO transmission scenario.

Throughout the results, three different BS antennas and
user numbers are presented for a better understanding of this
effect on system performance. We consider 100 BS antennas
for the minimum number to ensure that the massive MIMO
system complies with M � N condition. The maximum
number is set to 220 adopted from [19] and 160 as the average
number. Also, 60 UEs are regarded to be the maximum
number to fulfill the massive MIMO conditionM � N .

A. SYSTEM MODEL EVALUATION OF THE PROPOSED
METHOD AND EE
Figures 2-4 present the impact of different design parameters
including M , N , and b on the average BS transmit power
(PTX). Figures 5-7 analyze the average EE per BS (EE) with
respect to the above stated design parameters.
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FIGURE 2. Average BS transmit power PTX for different data rate b
(bits/sec) with three cases of BS antenna numbers M and the total
number of users N = 10.

FIGURE 3. Average BS transmit power PTX for different BS antennas
number M with three cases of user numbers N and data rate b = 10
(Mbits/sec).

Figure 2 represents the average BS transmit power PTX for
different data rate b (bits/sec) in the case of three different
numbers of BS antennasM and total number of UEs N=10.
While the same pattern can be seen from the figures for
different cases of BS antennas M , the increase in PTX grows
more severe as data rate requirement b grows gradually. The
figure also shows less PTX increment with more significant
numbers of M compared to the fewer BS antennas M . That
is explained by the fact that a fewer number of BS antennas
contribute to DoF deductions, which potentially may increase
the inter-user interference. It is worth noting that a differ-
ent number of BS antennas can only support a certain data
rate requirements because for both analytical and simulation,
the maximum BS power transmission constraint is taken into
account. When the data rate continually grows, the average
BS transmit power needs to be increased, leading to more
inter-user interference appears. Consequently, extra BS trans-

FIGURE 4. Average BS transmit power PTX for different number of user N
with three cases of BS antenna numbers M and data rate b = 10
(Mbits/sec).

mit power is required to overcome the additional interference.
The findings correspond to previous studies in [7], [32], [34].

Figure 3 illustrates the average BS transmit power PTX
changes as a function of different BS antennas M , for three
cases of usersN and data rate requirement b=10 (Mbits/sec).
As anticipated, the average BS transmit power PTX decreases
while BS antennas M steadily increases, leading to the val-
idation of the preliminary analysis. It should be noted that
the gain (saving BS transmit power PTX) for gradual M
increment is very significant at fewer numbers of M and a
larger number of users N . But the saving diminishes as M
grows to infinity. Besides, PTX increases at N faster than
linear while decreasing linearly toM . It should be taken into
account that increasingM will improve the DoF degree. The
higher DoF will suppress more inter-user interference and,
therefore, the more PTX reduction. Obviously, both simu-
lation and analytical results are close-fitting, particularly at
significant large numbers of M , since inter-user interference
will be reduces respectively at lower numbers of N . These
findings are consistent with prior studies investigating the
effect of BS antennas number on BS power transmission [10].
Nevertheless, increasingM becomes more challenging when
the cost of per-antenna circuit power is involved in the total
BS power consumption, which is investigated in the next three
parts of average EE per BS.

Figure 4 presents the average BS transmit power PTX for
different UEs N with three cases of BS antennas M and data
rate requirement b = 10 (Mbits/sec). The same patterns for
different BS antennas M can be observed from the figure,
but increasing N will mainly increase PTX significantly at
a fewer number of M because the system has to suppress
extra caused inter-user interference. The analysis results cor-
respond closely to the simulation, effectively at the more
significant numbers of M . As expected, the BS antennas
number has a significant impact on PTX, where the average
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FIGURE 5. Average EE per BS for different data rate b (bits/sec) with three
cases of BS antenna numbers M and the total number of users N = 10.

BS transmit power improved withM , and BS radiated power
will be saved due to significant antenna array gain.

Figure 5 shows the relation between the average EE per
BS (EE) and different data rate requirements for three cases
of BS antennas M and N = 10. As shown in the figure,
EE is a uni-modal data rate function for every M number.
It means that the average EE per BS will raise as data rate
requirement continuously grows to an average EE maximum
level. The average EE, however, starts to decline from this
point on with the further increase in data rate. That is because
there is a need for more BS power transmission and more
significant antenna numbers to support a higher data rate,
which increases the BS circuit power and consequently, total
BS power consumption. It is apparent from the figure that
the EE versus data rate curves will be flattened since M
is growing due to BS circuit power consumption increment
shown in equation (17). As a result, there needs to be a cost-
performance trade-off, especially in massive MIMO setups
where the BS is provided with M antennas requiring M RF
chains. Every RF chain has several components such as PAs,
analog and digital converters, etc., [32].

Figure 6 illustrates the average EE per BS for different BS
antennas M with three cases of users N and data rate b = 10
(Mbits/sec). The figure indicates that a large number ofM to
reduce the PTX cannot always maximize EE. From figure 3
and 6, we can conclude the great impact of BS antennas M
on optimal PTX reduction. This means that in massive MIMO
setups, the BS antenna numberM and average transmit power
PTX are major design parameters for the average EE maxi-
mization.

Figure 7 presents the average EE per BS for different users
N with three cases of BS antennas M and data rate require-
ment b = 10 (Mbits/sec). With the continuous increment of
N for every M value, the average EE will be improved. As a
consequence of the interference limitation, maximumEE-rate
exists at any M value. Therefore, the EE starts to drop with
further increment onN since the inter-user interference grows

FIGURE 6. Average EE per BS for different BS antennas number M with
three cases of users number N and data rate b = 10 (Mbits/sec).

FIGURE 7. Average EE per BS for different number of users N with three
cases of BS antenna numbers M and data rate b = 10 (Mbits/sec).

faster from this point. Looking at figure 4, it is observed that
a higher amount of M results in smaller PTX. On the other
hand, Figure 7 indicates BS circuit power consumption is
predominant to PTX particularly at large M and N values.
These observations point out that transmit-circuit power con-
sumption trade-off is necessary for optimal EE achievement.

B. EE COMPARISON OF THE BSTPA METHOD AND
CONVENTIONAL SCHEMES
Figures 8–10 show EE improvement by BS transmit power
reduction. In contrast, the achieved average EE per BS
through BSTPA method is compared with the energy-
efficient equal power loading (EE-EPL) algorithm proposed
in [20] in which the BS always employs equal power that
shared between all active users. The figures plot EE obtained
by the two scenarios, which also tested for two different
per-antenna circuit powers to express the importance of BS
circuit power consumption. However, the figures confirm that
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FIGURE 8. Average EE comparison of proposed method and conventional
scheme versus different data rate b (bits/sec) for per-antenna circuit
power Pact = 32 (mWatt) and Pact = 1 (Watt), three different numbers of
M, and N = 10.

the EE gain of the BSTPA method outperforms the EE-EPL
algorithm proposed in [20].

Figure 8 compares the average EE per BS versus different
data rate requirements with three different numbers of BS
antennas M and 10 active UEs N . The numerical results of
EE-EPL algorithm are obtained based on the iterative power
control proposed in Algorithm 1 in [20], which computes the
total transmit power to satisfy the minimum achievable data
rate requirements of all active UEs. One can see that only a
specific minimum data rate can be supported for any number
of antenna configurations since maximum BS transmit power
constraint is considered in the simulations.We can see that the
minimum achievable rate for BSTPA is higher than EE-EPL
scheme. Moreover, lower per-antenna circuit power provides
favourably better EE gain since it leads to lower circuit power
and total power consumption. For example, in the case of
100 BS antennas (figure 8-(b)), the proposed BSTPA method
achieves more than 11% better EE gain compared to EE-
EPL algorithm and 6 (Mbits/sec) higher minimum achievable

FIGURE 9. Average EE comparison of proposed method and conventional
scheme versus different BS antennas M for per-antenna circuit power
Pact = 32 (mWatt) and Pact = 1 (Watt), three different numbers N , and
data rate b = 10 (Mbits/sec).

rate. However, for both per-antenna circuit powers, the EE
increases to a certain maximum point. But beyond this point,
the EE curves show a substantial decrease with further incre-
ment in data rate, since the increase in sum data rate is
dominated by the average BS transmitted and circuit power
consumption. In figure 8-(b), even though more significant
antenna numbers provide better BS transmit power reduction,
the increment in BS circuit power consumption is dominant
to BS transmit power reduction and achieve less EE level for
both BSTPA and EE-EPL schemes.

Figures 9 and 10 illustrate EE under different number of
antennas and users. For both figures, the average EE grows
by the increment in the number of UEs since (i) more parallel
stream for data rate can be multiplexed; (ii) the increase
in sum-rate predominates the additional overall power con-
sumption. For instance, in figure 9-(b), the proposed BSTPA
method can reach more than 17% better EE gain compared
to EE-EPL algorithm and five fewer antennas in the case
of 20 UEs with the same achievable data rate requirement.
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FIGURE 10. Average EE comparison of proposed method and
conventional scheme versus different numbers N for per-antenna circuit
power Pact = 32 (mWatt) and Pact = 1 (Watt), three different numbers M,
and data rate b = 10 (Mbits/sec).

Also, BSTPA obtains around 32% better EE gain and addi-
tional nine UEs to serve compared with EE-EPL scheme in
the case of 100 BS antennas in figure 10-(a). However, EE
reduces at some points in the figures because BS circuit power
consumption grows faster than sum data rate for a further
users increment. From this point, circuit power addition is
predominant to PTX reduction for a further increment of M .
These figures are similar to figure 8 for large Pactive value
where smaller BS transmit power is achieved due to largerM
value. Still, lower EE is realized as circuit power consumption
dominates to BS transmit power in both BSTPA and EE-
EPL schemes. Finally, the proposed BSTPA method always
exceeds the EE-EPL algorithm, and the EE gap for a wide
range of M and N values is significant, notably with smaller
Pactive.

In general, there are optimal values of system design
parameters that can be optimized for maximizing the average
EE per BS globally. Also, figures 8-(b), 9-(b), and 10-(b)
show that transmit and circuit power need to be traded off,

FIGURE 11. Average EE per BS with different combination of M and N for
per-antenna circuit power Pact = 32 (mWatt) and Pact = 1 (Watt). The
global optimum is marked with star.

and the EE should be optimized for the stated data rate
requirement, BS antenna numbers, and the total number of
UEs.

C. EE OPTIMIZATION RESULT
Figure 11 presents the three-dimension EE surfaces for dif-
ferent values of M and N (note that M ≥ N + 1 for ZF
processing scheme). The figure indicates that there is an
optimum EE point globally at both Pactive cases marked in
the sub-figures with a star. An exhaustive search is applied
(defined as the third step of Algorithm 1) to compute optimal
data rate b∗ that maximizes EE at each pair of (M ,N ). It can
be observed that the surface is concave, and the results seem
to change in the circuit power consumption considerably.
The achieved peak EE in the case Pactive = 32 (mWatt) is
approximately 4.5 times higher compared to the peak EE
gain with a Pactive = 1 (Watt) and 13.3% optimal data rate
improvement but more BS antenna numbers. This is due to
the lower circuit power consumption, which indicates the
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significance of the transmit-circuit power trade-off in the EE
maximization concept.

Overall, the findings indicate while a more significant
number of BS antennas provide better BS transmit power
reduction, the EE improvement is somehow small and deter-
mined with the value of design parameters that the proposed
BSTPA method considered. The EE gap between various
antennas deployments is substantially reduced, as shown in
Section VI-A, because the BS power consumption is based
more on the total user and antenna numbers when the other
parameters such as data rate are constant. Therefore, to better
model EE improvement, a more comprehensive set of design
parameters are also needed. This paper has proposed the BS
antennas number, the total number of UEs, and data rate
requirement in modeling system-level power consumption
minimization and EE maximization.

VII. CONCLUSION
Massive MIMO systems present the possibility to improve
EE by energy consumption reduction. Therefore, this paper
investigated and optimized the BS power transmission and
EE for the downlink of multi-cell massive MIMO systems.
Contrast to most previous power transmission models, a sim-
ple analytical closed-form approximation of the average BS
transmit power was derived (termed as BSTPA method) with
ZF beamforming and perfect CSI. The proposed method
adaptively adjusts the BS transmit power according to chan-
nel condition and user QoS, including data rate requirement
and maximum allowable outage probability. Then, the impact
of different system design parameters and QoS constraints on
the BS power consumption and EEwere analyzed, potentially
yielding different information. Lastly, a corresponding iter-
ative optimization algorithm was proposed to maximize the
average EE per BS and obtain the optimal design parameters.
The proposed algorithm aims to obtain the global optimal EE
value alongwith the optimum amount of data rate, the number
of BS antennas, and the number of UEs.

The findings show that despite the BS transmit power can
be saved due to large antenna array gain, but the problem of
increasing the number of BS antennas becomes more chal-
lenging especially with different per-antennas circuit power
consumption. For a wide range of design parameters, sim-
ulation results indicate that the proposed BSTPA method
resulted in a significantly higher EE gain than the energy-
efficient equal power loading (EE-EPL) algorithm, especially
if per-antenna circuit power consumption is significantly
small. Finally, the optimization results show that the case with
smaller per-antenna circuit power can achieve about 4.5 times
better EE gain than the case with larger per-antenna circuit
power. Also, the results indicate a 13.3% optimum data rate
improvement but with a larger antennas number and slightly
fewer UEs. This points out that massive MIMO systems can
be developed using low-power consumption BS equipment as
an alternative to conventional high-power to attain relatively
higher EE levels. Therefore, the results indicate that achieving

higher EE levels needs a transmit-circuit power consumption
trade-off.

The proposed BSTPA method can be extended to take
into account changes in system design parameters (e.g.,
non-uniformly BS and UE distribution, different large scale
path-loss models, and imperfect CSI) for future work. Also,
the impact of various parameters on the overall system per-
formance can be investigated. It is also of interest to adopt the
proposed method to varying traffic loads by idling active BS
antennas that are not required to deliver the requested UEs’
data rate with minimal power consumption.

APPENDIX
PROOF OF LEMMA 1
For given values of N and b, the EE can be reformulated as a
function ofM which is expressed as

EE(M ) =
a1

a2
M − a3

+ a4M + a5
(21)

where

a1 =
(
T − NTul − Tdl

T

)
N b,

a2 = ρPA

(
T − NTul − Tdl

T

)
Nσ 2 A0 S,

a3 = N + Ī A0 S,

a4 = Pactive +
2NTulB+ 3BN 2

+ BN
TρC

,

a5 =
BN 3

3TρC
,

A0 =
2(

b
B ) − 1

− ln(1 − ηout )
,

S =
Dα+2 − dα+2min

K̄
(
1+ α

2

) (
D2 − d2min

) .
All coefficients a1-a5, A0, and S are positive and constant.

Without loss of generality, the derivative of EE(M ) is first
calculated as ∂EE(M )

∂M to maximize the average EE per BS. The
details of this derivative is omitted for simplicity since it is too
complex. Thus, the focus is on solving ∂EE(M )

∂M = 0 where,
the optimalM is a root to quadratic polynomial function

(a1a2)M2
− (2a1a3a4)M + (a1a4a23 − a1a2) = 0. (22)

Since a1a2 6= 0, equation (22) has two solution as

M∗[1] = −
√
a2a4 − a3a4

a4
, (23)

M∗[2] =
√
a2a4 + a3a4

a4
. (24)

Nevertheless, note that the value of M must be always
positive integer. Since σ 2 and Ī are relatively small, and a4 �
1, it is obvious thatM∗[1] is always negative. Therefore, bM

∗

[2]e

is the optimal solution to ∂EE(M )
∂M = 0.
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