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Abstract: Identifying the factors that control the dynamics of pedestrians is a crucial step towards
modeling and building various pedestrian-oriented simulation systems. In this article, we empirically
explore the influential factors that control the single-file movement of pedestrians and their impact.
Our goal in this context is to apply feed-forward neural networks to predict and understand the
individual speeds for different densities of pedestrians. With artificial neural networks, we can
approximate the fitting function that describes pedestrians’ movement without having modeling bias.
Our analysis is focused on the distances and range of interactions across neighboring pedestrians.
As indicated by previous research, we find that the speed of pedestrians depends on the distance
to the predecessor. Yet, in contrast to classical purely anisotropic approaches—which are based on
vision fields and assume that the interaction mainly depends on the distance in front—our results
demonstrate that the distance to the follower also significantly influences movement. Using the
distance to the follower combined with the subject pedestrian’s headway distance to predict the
speed improves the estimation by 18% compared to the prediction using the space in front alone.

Keywords: artificial neural networks; pedestrian dynamics; distance headway; single-file movement;
interaction range; modeling

1. Introduction

For the sake of safe mass events, comfortable and efficient transport infrastructures,
for example, airports, much work is dedicated to understanding the laws governing crowd
dynamics. In recent years, the number of empirical studies increased significantly, which
led to more insights into the movement of people. Additionally, these insights often offer
useful criteria that validate models and evaluate the simulacrum of reality they create.

Trustworthy models are valuable tools that shed light on unknown aspects of crowds
and allow for assessing and investigating new design and planning measures. However,
most known modeling approaches make implicit assumptions on the way people move
and interact with their environment. Cellular automata, for instance, assume that a pedes-
trians’ motile behavior is determined by chemotaxis [1]. Another popular modeling ansatz
describes the crowd by differential equations, assuming constructed functions such as
algebraic [2] or exponential [3] Newtonian forces compactly describe a system’s evolution.
It is worth noting that in [4], the interaction energy between pedestrians was measured
from field observations and not assumed.

Based solely on experimental evidence, in this work, we isolate the factors that in-
fluence the interactions between pedestrians in single-file movement. Contrary to the
usual synergy between experimental and numerical investigations of pedestrian dynamics,
where the former validates the latter, we try, through neural networks, to “extract” from
empirical data the most relevant dependencies that determine the movement of pedestrians.
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Furthermore, classical pedestrian interaction models are anisotropic, assuming that people
in front influence the dynamics more than people behind. For instance, most force-based
models include vision field mechanisms affecting a weight depending on the bearing
angle in the motion direction [2,3,5,6]. This hypothesis, despite the reasonable limits of
human perception and notions of fields of vision, is in most cases assumed a priori without
statistical evidence. In this article, we analyze the interaction range in single-file movement,
including isotropic symmetric interaction models based on the distance to pedestrians
behind as well. Recently, artificial neural networks have been used successfully to estimate
the speed of pedestrians in different complex geometries [7]. They allow identifying (with
no modeling bias) which variables are relevant to the pedestrian by analyzing prediction
errors. In this context, we investigate several factors influencing the dynamics, namely
the interaction range with pedestrians in front and behind, and the isotropic nature of the
pedestrian dynamics. Hereby, we focus our analysis on the influence of the distance to the
follower, predecessor, and second predecessor pedestrian on the prediction of the subject
pedestrian speed.

The rest of this article is organized as follows. In Section 2, we review and discuss
several approaches proposed by researchers to predict pedestrians’ movement charac-
teristics using different methods and techniques. In Section 3, the single-file movement
experimental dataset is introduced, and the data pre-processing methodology is described.
Section 4 presents the structure of the artificial neural networks applied to investigate
pedestrians’ movement influential factors to predict future speeds. In Section 5, the speed
prediction results using different input features are discussed. Finally, we summarize the
article, make conclusions, and propose future work in Section 6.

2. Related Work

Recently, more attention has been given to studying the influential factors that control
the dynamics of pedestrians in closed and open environments [8–13]. Understanding such
factors can help in modeling complex pedestrian movement. When dealing with complex
systems, such as pedestrian dynamics, scientists generate numerous models based on
different approaches, variables, and parameters [14]. For instance, force-based models
(see [15] for a review) assume that pedestrians’ deviation from their intended trajectories can
be explained by external forces. Another ansatz by Karamouzas et al. [4] follows a statistical–
mechanical approach to measure the interaction energy between pedestrians based on the
time to a potential future collision (time-to-collision). Tordeux et al. [16] introduce the
walking time-gap as a parameter to model pedestrian movement. Van den Berg et al. [17]
propose a model based on optimal collision-avoidance techniques to describe the movement
of pedestrians in two-dimensional space. Another model, the Linear Trajectory Avoidance
(LTA) model, introduced by Pellegrini et al. [18], takes into account both simple scene
information in the form of destinations or desired directions and interactions between
different pedestrians. Cellular automaton model proposed by Schadschneider et al. [1]
is inspired by the chemotaxis process, which ants use for communication. This discrete
on-space model assumes that pedestrian transition to neighbor cell probability varies
dynamically and is not constant. Thus, this model modifies the transition probabilities
by considering the nearest-neighbor interactions to determine pedestrian’s transition to
the next state. The aforementioned classical models are anisotropic, i.e., they assume that
pedestrians interact with people in their vision field, and this interaction is reduced with
the people behind. For instance, most force-based models include a vision field affecting
a weight depending on the bearing angle θij [2,3,5,6]. In the centrifugal and generalized
centrifugal force model [2,6], the weight is

ω1(θij) =

{
cos(θij) if |θij| < π/2

0 otherwise
(1)
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In the original social force model [3], the weight is

ω2(θij) =

{
1 if |θij| < ϕ

c otherwise
(2)

where ϕ is the angle of sight, and 0 < c < 1 is a reduced perception factor. Extended social
force models use the weight [5]

ω3(θij) = λi + (1− λi)
1 + cos(θij)

2
, λi ≈ 0.75 (3)

Such mechanisms make the motion behavior highly anisotropic. For single-file motion,
it may even induce the interaction model to be strictly anisotropic (i.e., depending solely
on the distances in front). In this article, we analyze the interaction range in single-file
movement, including isotropic symmetric interaction models based on the distance to
pedestrians behind as well. Furthermore, all previously discussed models introduce
equations that provide a template for a large but tightly linked family of models. However,
sometimes the choice of certain qualitative functions is not justified, nor is it backed by
empirical knowledge of pedestrian dynamics. Moreover, classical models have a bias
that emerges from their form, which has restricted degrees of freedom. That means each
model can be controlled by a few specific parameters inherent to the form of the model.
The prediction quality usually depends on the pertinence of the model’s form defined to
describe pedestrians’ movements.

Recently, many researchers have proposed human trajectory prediction algorithms [19],
arguing that neural networks have high flexibility and are devoid of any modeling bias. For
example, Alahi et al. [13] develop the Social LSTM (S-LSTM) algorithm to predict the future
trajectories of pedestrians depending on their past positions and the interactions with
their neighbors. To model the social interaction, Alahi uses a social-pooling layer to allow
sharing each neighboring pedestrian’s LSTM hidden state to predict the subject pedestrian’s
future positions. The Alahi et al. algorithm improved the prediction of the next position by
a factor of approximately 21% compared to the force-based model (SF) [3]. Xue et al. [20]
develop a trajectory-prediction algorithm, called the Bi-prediction algorithm, based on the
S-LSTM and considering the importance of pedestrians’ intended destinations in predicting
their future trajectories. This two-stage prediction model employs bidirectional LSTM
architecture to forecast multiple possible trajectories with different probabilities in the
scene. In other research [21], the authors propose the MX-LSTM model, which adds to the
previous models a new variable (direction of the pedestrian head) to improve the trajectory
predictions (the model improves the prediction by approximately 19% compared to the
SF classical model). All the aforementioned data-based approaches have been used to
describe low-density situations using specific datasets (UCY [22], ETH [18], etc.) where
social interactions techniques for collision avoidance take up to several meters.

Other researchers have focused on developing algorithms based on artificial neural net-
works to predict a pedestrian’s speed. For instance, the study proposed by Tordeux et al. [7]
applies feed-forward neural networks (FFNN) to predict the speed of pedestrians walking
on different types of facilities (corridors and bottlenecks). Several FFNNs are presented to
approximate the fitting function with different combinations of input features (relative po-
sitions, relative velocities, and mean distance to the nearest ten neighbors in front), hidden
layers, and hidden neurons. The results of FFNN show improvement by 20% compared to
the classical approach (Weidmann fitting model [23]) evaluated with mixed data (corridor
and bottleneck). In another study by Tkachuk et al. [24], the authors develop a system
that simulates pedestrians’ behavior during the evacuation process. The proposed system
uses FFNN to predict how people act during evacuations. The acceleration and average
velocity are used to predict each pedestrian’s horizontal and vertical speeds. Another
study by Yi Ma et al. [25] proposes an approach based on a multilayer perceptron artificial
neural network for simulating pedestrians’ behavior. The authors train the artificial neural
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network using pedestrians’ actual movement data to encapsulate and predict their future
behaviors. To verify the correctness of the proposed simulation system, the authors com-
pared the simulation results of pedestrian counter-flow in a road-crossing situation and
pedestrian collision avoidance with the actual experiments. The simulation results in both
studies show that the proposed models based on artificial neural networks provide greater
prediction accuracy by learning from actual experimental data rather than other models.

For brevity’s sake, our focus in this article is to apply a FFNN to investigate and
analyze empirically the impact of distance interaction range on dynamics of pedestrians
without modeling bias. Unlike most current research work, we aim to analyze single-
file movement in different homogeneous and heterogeneous gender flows to predict the
pedestrian’s speed.

3. Experimental Data and Measurement Methods

This section presents the empirical data to train and test the artificial neural networks.
Furthermore, the measurement methods to calculate movement quantities (headway and
speed) are described. To investigate pedestrian speed, we used a dataset from experiments
conducted in Palestine [12]. Single-file experiments were performed at the Arab American
university in Palestine, with a total of 47 participants (26 females and 21 males). Several
experimental runs were performed that focused on the influence of gender on pedestrian
movement. Side view videos were captured using a digital camera for different numbers
of pedestrians (densities) and various gender compositions. The experimental dataset
includes the 1D trajectories recorded in different time frames and the gender information
of each pedestrian (male and female). In the Palestine experiments, the data were obtained
after performing several runs for pedestrians walking with the same gender composition
(homogeneous: females alone and males alone) or mixed (heterogeneous: males and
females walking together) (see Figure 1). Our analysis will utilize the mixed-gender (UX,
N = 20, 24, 30), female (UF, N = 20), and male (UM, N = 20) experiments where N is the
number of pedestrians in each run. In Figure 2, we see the trajectories of pedestrians in UX
experiments over time. We notice the emergence of stop-and-go waves for high densities
(N = 30), which means that the pedestrians start to adjust their positions to avoid collision.

Figure 1. Snapshots from Palestine experiments. (Left): UM experiment, N = 20. (Right): UX
experiment, N = 24.

The same measurement method as [26] is used to calculate the individual speed and
headway for pedestrians walking at each time frame. The speed of the pedestrian i is
calculated at time t as follows:

vi(t) =
xi(t + ∆t/2)− xi(t− ∆t/2)

∆t
, (4)

where ∆t is a short time constant (10 frames, 0.4 s) and xi(t) is the x coordinate of pedes-
trian’s i position at time t. We use the small value of ∆t = 0.4 s to smooth the trajectories in
order to avoid fluctuation of the pedestrian’s step [27].

The headway is defined as the distance between a pedestrian i and its predecessor
i + 1:

hi(t) = xi+1(t)− xi(t), (5)
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where xi+1 and xi are the x coordinates of predecessor and subject pedestrian at time
t, respectively.

m m m

UX, N=30 UX, N=24 UX, N=20

Figure 2. The trajectories over time for a sample of UX experiments.

These calculated movement quantities and associated pedestrian information are
utilized as inputs to the FFNN. Table 1 shows the descriptive statistics of the input and
the output data we fed into the FFNNs. The first column presents the inputs (subject,
predecessor, and follower pedestrian’s headway distances) and the output (subject pedes-
trian speed).

Table 1. This table shows the descriptive statistics (number of pedestrians (N), mean, and standard
deviation) for the Palestine dataset [26]. The second column contains the inputs and output that are
used for the proposed FFNNs.

Experiment Factor No. of Samples Mean SD N

UX

Subject PD * speed (m/s)

15,893

0.219 0.111

15, 20, 24, 30Subject PD headway (m) 0.595 0.11
Predecessor PD headway (m) 0.608 0.124

Follower PD headway (m) 0.588 0.109

UF

Subject PD speed (m/s)

422

0.615 0.102

20Subject PD headway (m) 0.711 0.104
Predecessor PD headway (m) 0.731 0.111

Follower PD headway (m) 0.712 0.120

UM

Subject PD speed (m/s)

443

0.660 0.095

20Subject PD headway (m) 0.694 0.136
Predecessor PD headway (m) 0.689 0.121

Follower PD headway (m) 0.706 0.143

UX

Subject PD speed (m/s)

435

0.500 0.104

20Subject PD headway (m) 0.717 0.119
Predecessor PD headway (m) 0.693 0.128

Follower PD headway (m) 0.704 0.126
* PD is the abbreviation for “pedestrian”.

4. Structure of the Networks and Input Features

We apply several FFNNs to investigate the influence of interaction range (the distances
with the neighbors) on pedestrian speed. These networks are fed with various input
features for training. We analyze the results using cross-validation to control eventual
prediction overfitting and to determine the optimal complexity of the networks in terms of
layer and neuron numbers [28]. In this technique, we resample the dataset by randomly
dividing the total dataset to 80% for training (i.e., UX experiments: 12,715 observations)
and 20% for testing (i.e., UX experiments: 3178 observations). Furthermore, multiple
iterations are applied following the bootstrap resampling technique to evaluate the error
estimate precision and be able to determine whether an error difference is statistically
significant [29,30] (see Figure 3). Randomly subsampling the training and testing datasets



Appl. Sci. 2022, 12, 7563 6 of 13

allows us to obtain a distribution of the errors instead of a point estimate. The estimation is
finally performed using the average of bootstrap subsamples error, whereas the precision
of estimation is evaluated using the bootstrap confidence interval represented as a boxplot.
To quantify the error between the predicted and real values of the speed, we use the mean
squared error (MSE) loss function:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2, (6)

where n is the number of observations, Y is the vector of real speed values, and Ŷ is the
vector of predicted values.

Raw data
Pre-process data

(normalization, change 
categorical data to numerical)

FFNN
(training, testing)

Bootstrapping
(1000 iterations)

Figure 3. The methodology followed in developing the algorithms for speed prediction. In the
pre-processing step, we change the categorical to numerical values and normalize the data between
[0, 1] to have the same scale of values (an important step before training for artificial neural networks).

The developed networks are trained using the Adam optimizer [31], with a learning
rate of lr = 0.003. During the training phase, the hyperparameters, namely the number of
hidden layers and the number of hidden neurons, are tuned to reach a robust model. In
addition, the back-propagation algorithm [32] is used for training FFNNs by updating the
weights’ values. We fit the model using different epoch sizes and a batch size of 10, which in
most cases is sufficient to verify the progress of learning. Moreover, the Sigmoid activation
function is applied for all layers in the different versions of the developed algorithm.
Finally, to build a prototype for the proposed prediction model, the Keras framework [33]
is utilized.

Different versions of the proposed FFNN are employed, varying in the number of
input features fed into the input layer. These inputs indicate the movement characteristics
of pedestrians walking in a single-file experimental setup. In the analysis, we focus on
different combinations of the following headway distances as inputs:

1. Subject pedestrian headway (D);
2. Predecessor pedestrian headway (DP);
3. Follower pedestrian headway (DF).

Figure 4 illustrates the 1D path of single-file movement experiments, considering four
pedestrians in the video frame. In the UX experiments, the people are distributed in an
ordered manner (pedestrian i gender is male, female, male, etc.).

There is no standard approach for determining how many hidden layers and neurons
should be used when building a prediction algorithm. Therefore, we follow Heaton’s [34]
approach, where it is recommended to set the number of the hidden layers to be between
the number of input features and the number of outputs. We test several combinations
of hidden layers and neurons, ranging from neural networks with one hidden layer and
one hidden neuron (i.e., shallow neural networks or logistics approach) to more complex
networks with multiple layers and neurons (deep neural network). This makes the analysis
global, starting from a basic statistical approach (a logistic regression) to complex networks,
and allows for the comparison of different modeling approaches. We tried several com-
binations of hidden layers and neurons (1), (2), (3), (3, 2), (2, 2), (32, 32), and (64), where
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(x) represents one hidden layer with x number of hidden neurons. The expression (x, y)
represents two hidden layers, with a number x of hidden neurons in the first layer and a
number y of neurons in the second hidden layer. The prediction results show that the FFNN
structure with two hidden layers (3, 2) (the first and second layers with three and two
perceptrons, respectively) (see Figure 5) is enough for speed prediction with our dataset.

DPDDF
i−1 i i+1 i+2

Figure 4. Illustration of pedestrians’ positions in 1D scenario, indicating the investigated head-
way distances.

Input

Hidden

Output

Figure 5. The structure of the feedforward neural network with two hidden layers (3, 2).

5. Results and Analysis

Our research aims to investigate the influence of the follower, predecessor, and second
predecessor pedestrians’ headway distances on the speed behavior of a pedestrian. The
investigation examines the isotropic nature of the interaction behavior, considering that a
pedestrian interacts not only with pedestrians in their field of vision to regulate the speed
but also with the pedestrians behind. We start training and testing several FFNNs with
the Palestine dataset. To estimate the importance of different input features (DF, D, DP)
on predicting the speed of pedestrians, we first feed each distance alone to the FFNN and
then a combination of features. Seven networks with different input features are developed
and validated:

1. In the networks DF, D, DP, we have one input feature for each network: the head-
way distance of the follower pedestrian, subject pedestrian, and the predecessor
pedestrian, respectively.

2. In networks (DF + D), (DF + DP), and (D + DP), we predict the speed as a function
of combinations of distances in front and behind to investigate the anisotropy of the
pedestrians’ interaction behavior.

3. The (all) network fed with the headway distances of the subject pedestrian and
neighbors altogether (DF + D + DP).

In Figure 6, the MSE values of the algorithms are visualized for training and testing
phases using UX experiments, N = 20, 24, 30 samples. As we can see, the gap between the
training and testing MSE results is not wide. That means the algorithms are reliable, and
there are no overfitting problems. It is also observed that the speed prediction is enhanced
with increasing input features. Figure 7 shows the relative MSEs of the algorithms taking
D-input network for comparison. We predict the individual speed by training the networks
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for several iterations following the bootstrap approach. Considering the impact of the
influential factors, we compare the networks with the same number of inputs together. In
networks with one input feature, the D improves the estimation of speed by 1.5% compared
to the DF algorithm. That means the distance with a pedestrian in front has a greater impact
on the speed prediction than the distance with the follower pedestrian. This result was
confirmed previously, as the headway distance is the main dependency in many models [35].
Moreover, the algorithm with DP increased the MSE by 13% compared to the D algorithm.
This result indicates that the headway distance of the second predecessor has no significant
influence on the subject pedestrian’s speed. In the case of two input factors, the algorithm
(DF + D) improves the performance of speed prediction by 16% and 11% in comparison
with the (DF + DP) and (D + DP) networks, respectively. Interestingly, the combination
of distance with the pedestrian in front and right behind improves the speed prediction
compared to the combination of headway distances in front. From observing experiment
videos, we notice that the pedestrians in relatively high densities start to adjust their speed
when they approach the nearest neighbors to avoid colliding. This result demonstrates
that the interaction behavior is not strictly anisotropic in single-file movement, contrary to
classical modeling approaches that assume that only the front distances influence the speed.
Therefore, it is suggested that a dynamical model that considers both distances D and DF
is likely to describe more aspects of the single-file dynamics. Finally, the (all) algorithm
that was fed with all headway distances as inputs improves the results by 21% compared to
the D algorithm (3% compared to the (DF + D) algorithm). This result indicates that with
many input features, we can improve the speed estimation with percent corresponding to
the impact of the inputs.

Figure 8 visualizes the relationship between the subject pedestrian headway distances
and the speed values (actual and predicted) for different networks fed with UX, N = 20,
24, 30 data samples. The networks with the higher number of inputs can recapture the
variability of the data points. As shown in the sub-figures, the algorithms with the optimal
speed prediction results (best input combinations) have the highest R2 values ((DF + D)
and (all)). In other words, the optimal algorithms capture the data points’ variability better
than algorithms with inputs of low impact on the speed.

Figure 6. Visualization of the training and testing MSE values (using UX, N = 20, 24, 30 samples)
according to different input variables for networks with two hidden layers, including three and
two hidden perceptrons, respectively. The red dashed line corresponds to the networks with the
lowest values of MSEs.
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Figure 7. Boxplots represent the training MSE results of the algorithms using UX, N = 20, 24,
30 samples with complexity (3, 2). The x-axis represents the algorithm inputs we applied, and the
y-axis denotes the relative MSE calculated, with D-input algorithms as a reference case.

m

Figure 8. Examples of speed predictions from testing the neural networks (D, DF, (DF + D),
(DF + DP), (DP + D), (all)) using UX, N = 20, 24, 30 samples. As observed in the actual data
(in blue), the speed values for given headway distances tend to be close to the observed values
when we combine DF and D as inputs to the FFNN algorithm or when we have more input features
(all). The R2 values on the top-right of the figure are calculated to compare the variability of the
estimated speed.

To investigate the influence of the different distances in front and behind in heteroge-
neous and homogenous gender groups, we trained the same FFNN structure with data
for experiments UF, UM, and UX with N = 20 pedestrians. As shown in Figure 9, the
distance to the pedestrian behind significantly improves the speed prediction compared
to the distance in front for experiments UF, UM, and UX as well. For the UX experiments
(N = 20), the improvement provided by the distance behind is significant, 36%, compared
to the D algorithm (see Figure 9, UX). It is less for experiments UF and UM composed of
solely female (14%) and males (7%). Furthermore, the small sizes of the samples do to not
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allow us to systematically demonstrate statistically that the differences are significant, as
the boxplots partly overlap. Nevertheless, the influence of the distance behind is observed
for flow solely composed of males and females, especially for the females. It is, however,
clearly more pronounced for the mixed gender flow. Therefore, it does not exclude that
gender effects in the mixed flow, alternating male and female, reinforce the influence of the
pedestrian behind. Further empirical analysis with more data samples should emphasize
the influence of distance behind on pedestrian speed for homogeneous or random mixed
gender groups.

UF

UM

Figure 9. Boxplots represent the training MSE results of the algorithms with complexity (3, 2) using
UF, UM, UX, and N = 20 samples. The x-axis represents the algorithm inputs we applied, and the
y-axis denotes the relative MSE calculated, with D-input algorithms as a reference case.
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6. Conclusions

This article investigates the impact of headway distances and the interaction range
on pedestrian movement by means of FFNN. Previous research generally assumes that
pedestrian movement is mostly influenced by people in their field of vision, i.e., in the
direction of motion. Such question rely on the anisotropic nature of pedestrian interaction
behavior. In our research, we analyze the influence of the range of interaction with the
distances behind and in front on pedestrian speed in single-file movement experiments.
We predict the speed of pedestrians using a single-file experimental dataset performed in
Palestine including uniformly mixed and homogeneous gender flow. Because relatively
simple mechanisms primarily govern single-file movement, our investigation reveals that a
shallow feedforward neural network structure (3, 2) is sufficient to optimally fit the data.

We explore several algorithms by changing the number and type of input distance
features. The findings show that a prediction algorithm including the distance to the
follower pedestrian as an input feature improves the MSE results by a factor up to 18%
compared to an algorithm solely based on the distance in front. Such improvement may
reach up to 36% for certain experiments. Taking into account the headway distance of the
second predecessor has no strong influence on subject pedestrian’s speed. Even if they
are still significantly observed for gender homogeneous flow, such features are especially
pronounced for uniform mixed gender experiments. Therefore, we do not exclude that the
influence on the motion of the pedestrian behind is reinforced by gender effects.

Much previous research assumes that the pedestrian motion is strongly anisotropic,
i.e., mostly influenced by the environment in the direction of motion. However, we observe
that the distance behind in single-file motion plays a role in the dynamic. These results
suggest that the follower headway (DF) is a potential influential factor that significantly
improves the prediction of pedestrian speed. It might be considered a modeling input. Yet
the correlation we observe may be the consequence of an anisotropic mechanism. Such an
assumption should be tested using isotropic and anisotropic models.

For homogeneous gender groups (UF and UM), we notice that the distance behind
the pedestrian influences the prediction of the speed. This is especially the case for the
experiments with females. However, further empirical analysis with more data samples is
needed to highlight this conclusion. For future work, we aim to experiment and generalize
the anisotropy of pedestrian behavior for more complex geometries and dynamics and to
take into account further factors in addition to gender, e.g., cultural and age effects.
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