
Citation: Maraaba, L.; Al-Soufi, K.;

Ssennoga, T.; Memon, A.M.; Worku,

M.Y.; Alhems, L.M. Contamination

Level Monitoring Techniques for

High-Voltage Insulators: A Review.

Energies 2022, 15, 7656. https://

doi.org/10.3390/en15207656

Academic Editors: Guoming Ma,

Shuguo Gao and Hongyang Zhou

Received: 20 August 2022

Accepted: 14 October 2022

Published: 17 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

Contamination Level Monitoring Techniques for High-Voltage
Insulators: A Review
Luqman Maraaba 1 , Khaled Al-Soufi 2, Twaha Ssennoga 3,*, Azhar M. Memon 2 , Muhammed Y. Worku 4

and Luai M. Alhems 2

1 Department of Electrical Engineering, Arab American University, 13 Zababdeh, Jenin P.O. Box 240, Palestine
2 Applied Research Center for Metrology, Standards and Testing, Research Institute, King Fahd University of

Petroleum and Minerals, Dhahran 31261, Saudi Arabia
3 Department of Architecture and Built Environment, Faculty of Engineering, University of Nottingham,

Nottingham NG7 2RD, UK
4 Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), Research Institute,

King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
* Correspondence: twaha.ssennoga1@nottingham.ac.uk or ssennogatwaha2007@gmail.com;

Tel.: +44-7928531186

Abstract: Insulators are considered one of the most significant parts of power systems which can
affect the overall performance of high-voltage (HV) transmission lines and substations. High-voltage
(HV) insulators are critical for the successful operation of HV overhead transmission lines, and a
failure in any insulator due to contamination can lead to flashover voltage, which will cause a power
outage. However, the electrical performance of HV insulators is highly environment sensitive. The
main cause of these flashovers in the industrial, agricultural, desert, and coastal areas, is the insulator
contamination caused by unfavorable climatic conditions such as dew, fog, or rain. Therefore, the
purpose of this work is to review the different methods adopted to identify the contamination level
on high-voltage insulators. Several methods have been developed to observe and measure the
contamination level on HV insulators, such as leakage current, partial disgorgement, and images with
the help of different techniques. Various techniques have been discussed alongside their advantages
and disadvantages on the basis of the published research work in the last decade. The major high-
voltage insulator contamination level classification techniques discussed include machine learning,
fuzzy logic, neuro–fuzzy interface, detrended fluctuation analysis (DFA), and other methods. The
contamination level data will aid the scheduling of the extensive and costly substation insulator, and
live line washing performed using high-pressured water. As a result, considerable benefits in terms
of improved power system reliability and maintenance cost savings will be realized. This paper
provides an overview of the different signal processing and machine-learning methods adopted to
identify the contamination level on high-voltage insulators. Various methods are studied, and the
advantages and disadvantages of each method are discussed. The comprehensive review of the
islanding methods will provide power utilities and researchers with a reference and guideline to
select the best method to be used for contamination level identification based on their effectiveness
and economic feasibility.

Keywords: contamination level monitoring; high-voltage insulators; signal processing; machine learning

1. Introduction

Insulators are regarded as a highly significant power system component that can
influence the general performance of the substations and transmission lines. For example,
medical and steel mill electrical loads require an uninterruptible power supply. Therefore,
any degradation in the insulator performance may result in a sizeable loss of service and
revenue. There are two types of HV insulators based on the material used—ceramic and
nonceramic insulators—and based on the place of installation in overhead transmission
lines—pin, suspension, strain, and shackle insulators.
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The electrical performance of HV insulators is highly environment sensitive. The
withstand and flashover voltages of an insulator are reduced when it is polluted and wet-
ted [1,2]. The conventional porcelain and glass insulators that have shown durability in
field conditions are very heavy items that have quite a significant impact on the mechanical
requirements of the HV transmission networks [3,4]. For the heavily contaminated con-
ditions where much longer strings are required to be erected, the impact becomes quite
limiting on the design parameters, and therefore, heavy reliance on expensive, tedious, and
time-consuming maintenance programs becomes an essential part of the design consid-
eration. Electric utility companies have the very challenging task of providing a reliable
electric power supply to highly demanding consumers [5]. Moreover, the reliability require-
ments are becoming more stringent as the comfort of life becomes more and more power
dependent. The electric companies, therefore, welcome any technological advancement
in the insulator material which could facilitate their professional understanding with ease
without compromising the reliability of the power system. Since the 1960s, composite
insulators have been introduced as a potential replacement for conventional porcelain and
glass insulators. These insulators offer several advantages in terms of being lightweight,
easy to handle, resistant to vandalism, and relatively low cost [6–8]. Various materials
such as ethylene propylene diene monomer (EPDM), room-temperature-vulcanized (RTV)
silicon rubber, and heat transfer vinyl (HTV) silicone rubber were employed to manufacture
the polymeric insulators [5,9–11].

The design and construction of overhead transmission lines have several technical,
economic, and environmental constraints. In densely populated areas, for example, it is
essential to decrease the width of the right-of-way and to consider the visual impact of the
line [12]. In remote and less accessible areas, it is imperative to ensure that transmission
lines are of high mechanical and electrical performance. The selection of insulators has a
significant effect on overall line design. Porcelain and glass insulators have evolved over
the years, and their design has been adapted to increasing transmission voltages. The
composite long–rod insulators, because of their lightweight and high mechanical strength,
are an attractive alternative to conventional glass and porcelain insulators for transmis-
sion lines [13]. The economic benefits of composite insulators also allow the possibility
of building compact towers. Apart from these advantages, composite insulators can be
expected to provide satisfactory insulating behavior under polluted conditions for a given
creepage path, owing to their slender shape and resultant high form factor. Additionally,
long creepage paths exist, as sheds of complex shapes can be easily fabricated. Additionaly,
losses due to leakage current are reduced compared with large-surface insulators. Com-
posite insulators also offer low shock sensitivity with respect to mechanical shocks such as
the impact of a rifle bullet. Because of their light weight, transportation and installation
of emergency towers insulated with polymeric insulators can be implemented very effi-
ciently in remote areas by utilizing helicopter services. However, an important problem
with synthetic insulators is their sensitivity to atmospheric influences under electric stress.
In contrast to ceramic materials, plastics may be damaged under combined electric and
atmospheric stresses, leading to a reduction in their useful life [14].

The Kingdom of Saudi Arabia has undergone a rapid industrialization program in
the last decade. During the 2008–2018 period, the total energy sales increased at a faster
rate from 187 TWh to 299 TWh, representing an increase of 59.9%. To keep up with the
increased energy needs, high-voltage (HV) overhead transmission lines were constructed
in the Kingdom at a much faster pace. Insulators are one of the most important elements
in the transmission system [15,16]. The Kingdom of Saudi Arabia’s climatic conditions
and geography are distinctive, with enormous deserts bordered mostly by the sea. Typical
climatic conditions are characterized by extreme ambient temperatures with significant
variations between day and night, extensive changes in relative humidity, strong winds
carrying dust and sand particles, suspended dust particles, a few days with mist and fog,
and mostly sunny days during the year. The consumers of electric power in the Kingdom
are mainly clustered around the two coastal areas at the Red Sea and the Gulf and around
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the capital city of Riyadh in the central region. The airborne contamination particles are
also brought by the wind to the vicinity of an insulator string, where, under the influence
of electrostatic, gravitational, and frictional forces, the particles are attached to the insulator
surfaces. In the presence of moisture caused by light rain, high relative humidity, fog, etc.,
adhesive soluble particles form conducting layers on the insulator surface, permitting the
leakage current. Because of the inherent nonhomogenous distribution of contaminants and
moisture experienced by an energized insulator string, the degree of evaporation by Joule’s
heating varies, resulting in the formation of dry band(s). Across the dry band, a relatively
high voltage builds up, which may reach a critical value, where air ionization sets in and
bridges the gap. This process can be repeated until, under some unfavorable conditions, air
ionization develops into a partial discharge propagating into a flashover [1,17,18].

According to the literature, many methods have been used in monitoring the con-
tamination level of the insulators. Some of the methods are thermal imaging, ultraviolet
imaging, digital imaging, ultrasonic signal, acoustic signals, leakage current, and partial
discharge [19–25]. Numerous laboratories and utilities use the magnitude of the leakage
current (LC) caused by contamination on the insulator surface as a gauge for contamination
level, surface wear, or the general status of the insulator and its performance.

Observing and measuring the contamination levels in high-voltage insulators are very
crucial because of the following reasons:

• To prevent disastrous flashovers and decreases compulsory outage period by provid-
ing correct and precise information about the pollution level ahead of time;

• To decrease maintenance costs and enable effective maintenance planning (specify the
optimal time for washing);

• To improve the general dependability of the electrical system;
• To enable effective utilization of limited resources, such as workforce and time, by

creating priorities for the upkeep of insulators.

2. The Insulator Contamination and Source of Contaminants

The source of contamination of insulators refers to the type of substance that causes
the contamination of an insulator, such as cement, sand, dust, industrial pollution, and
agricultural pollution. These contaminants can affect the insulator’s performance [26,27].
Insulator pollution is usually gauged in terms of equivalent salt deposit density (ESDD)
and expressed in mg of salt (NaCl) per sq cm. of the surface area of the insulator [28,29]. It
has been observed that in some coastal areas, the insulator contamination level accumulates
to the ESDD level greater than 0.1 mg/cm2 in two months [30], warranting exclusive
consideration to lessen their effect on the power system. The online contamination level
monitoring data help with the scheduling of the extensive and costly substation insulator,
and live line washing performed using high-pressured water. Therefore, positive results
are obtained in terms of improved power system reliability and maintenance cost savings.

Tables 1 and 2 show the IEC-60815, CIGRE, and IEEE classification of contamination
severity [31–33].

Table 1. The IEC 60815 standard for contamination level classification [31–33].

IEC 60815 Standards

Leakage Distance
(kV/l mm) ESDD (mg/cm2) Site Severity

2.11 >0.40 Very Heavy

1.70 0.15–0.40 Heavy

1.37 0.04–0.15 Medium

1.09 0.01–0.04 Light

0.87 <0.01 Very Light
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Table 2. The CIGRE and IEEE standards for contamination level classification [31–33].

ESDD, mg/cm2 Site Severity

IEEE CIGRE

- >0.48 Exceptional

- 0.24–0.48 Very heavy

>0.10 0.12–0.24 Heavy

0.06–0.10 0.06–0.12 Average/Moderate

0.03–0.06 0.03–0.06 Light

0–0.03 0.015–0.03 Very light

- 0.0075–0.015 None

3. Industry Experience in Improving Insulator Performance

The disturbance resulting from insulator arcing caused by pollution flashover (FOV)
is amongst the issues faced by high-voltage grid engineers. The insulator flashover is
a serious problem whose occurrence is determined by various factors, insulator design,
operating conditions, nature of the region, and weather conditions [34,35]. One of the
most common methods applied as a solution for this problem at the design level utilities
the leakage distance extension. While addressing the problem of pollution, the nature of
the pollution in the high-voltage line needs to be identified first. Because of the severe
pollution conditions, the outdoor insulation coordination necessitates a clear geographic
mapping of the natural pollution deposit as well as comprehensive statistical studies [36].
The sampling methods, classification s as well as ranking charts are prepared to establish
the severity of the environment. It is the role of maintenance crews and design engineers to
find out how electric flashovers should be prevented. The performance of HV insulators
can be improved by either improving insulator insulation or preventing conductive layer
formation. Different ways, such as coating, creepage extenders, optimization of electric
field distribution, and cleaning, have been used by power utilities to improve the insulators’
performance [37].

3.1. Coating of Insulator

The hydrophobic material was added to the insulators’ surface to improve the perfor-
mance of the ceramic insulator. Among the popularly employed SiR in various applications
and electrical systems are; room-temperature-vulcanized silicone rubber (RTV-SiR) and
high-temperature-vulcanized silicone rubber (HTV-SiR). Out of all the silicone rubbers,
HTV and RTV silicone are highly recommended because of their better characteristics
compared with others in terms of compressive mechanical behavior, better curing, high
tensile strength, actuation, easy processing, and better hydrophobicity. The RTV silicon
rubber is frequently applied for ceramic insulator spraying and coating because it usually
drys very fast. But for HTV, it is the manufacturing process for composite insulators under
high temperature and high pressure as per standards [38]. Subsequently, the materials offer
a hydrophobic surface that prevents the conducting layer formation. Consequently, the size
of the leakage current flowing on the insulator surface is reduced, lowering the probability
of a flashover [39]. Table 3 shows the leakage current magnitude on coated and noncoated
insulators as a function of applied voltage. Results showed that the coated insulator has
less leakage current compared with the noncoated insulator at the same voltage level [40].

The effect of using RTV silicon rubber coating of ceramic insulators on the leakage
current magnitude was investigated in [40]. It was concluded that using grease silicon
as a coating material is not economical as it has to be replaced in a short period of time,
typically every six months, because of its limited lifespan. Thus, the advantage of using
the RTV silicon rubber is that its lifetime is longer, exceeding five years. The selection of
the optimum time for replacing the coating is still a topic for research [41]. Moreover, the
application and removal of the coating due to excess lifespan are complicated [9].
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Table 3. The magnitude of insulator leakage current.

Leakage Current
(mA)

RTV Coated

Leakage Current
(mA)

Noncoated

Voltage
(kV)

0.811 - 45

0.705 - 40

0.580 Flashover 35

0.478 - 30

0.394 1.601 25

0.305 0.695 20

0.224 0.371 15

0.151 0.358 10

0.073 0.226 5

3.2. Optimization of Electric Field Distribution

A method for optimizing the distribution of electric field along composite insulators
was proposed in [42], where the finite element method is used. A three-dimensional
model for the computation of the electric field was derived, whereas the surface voltage
distribution along the composite insulator was determined. It was concluded, from the
results, that the electric field towards the end of the composite was significantly reduced
because of the increase in the number of combined glass insulators.

Table 4 indicates the electric field strength reduction due to various glass insulator
installations at a voltage level of 500 kV, in which n represents the number of units of
insulators connected in series [41].

Table 4. Insulator’s electric field strength reduction when different glass insulators are installed.

n 4 3 2 1 0

Voltage of 20%
distance in high voltage

end %
38.36 41.61 45.44 51.75 63.5

Maximum electric field
Strength (kV/mm) 0.39 0.536 0.65 1.01 2.0

% Voltage of
composite insulator 53.26 57.91 63.76 73.62 100

3.3. Creepage Extenders

The flashover voltage will be adjusted by changing the creepage distance of the insula-
tor, thereby reducing the leakage current and improving the strike distance as well as the
insulator shape. Depending on the insulator type, the creepage extender is manufactured
with semirigid polymer or flexible polymeric skirts. The creepage extenders are expensive
and only used when other techniques are not possible. Figure 1 indicates the results of the
flashover test performed on 66 kV post insulators with different creepage distances and a
constant contamination level determined by the IEC507 standard. It is indicated that the
flashover voltages increase when the creepage distances increase [9,41].
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3.4. Washing of Insulator (Cleaning)

This technique allows insulator washing while the electrical lines are still energized,
and it reduces line outages caused by switching the lines off for offline insulator washing.
The live line insulator washing is conducted using high-resistivity pressurized water jets
at a nozzle pressure of about 550pa [43]. Under special conditions that lead to sudden
contaminant accumulation on the insulators, emergency washings are employed. The two
most popular techniques are listed in Table 5 [44].

Table 5. The insulator washing methods.

Cleaning Method Deposit Comments

Insulator washing High-pressure washing Deposits with poor adhesion
Time of washing Live washing?

Work hours cost if power interruptions
are required

Insulator cleaning Dry cleaning Cement fertilizers
Time of cleaning Dry material deposits

Cost Glaze damage and
insulator shattering

3.5. The Saudi Electricity Company (SEC) Experience

The Saudi Electricity Company (SEC) was established in January 2000 as the only
electricity company in the Kingdom of Saudi Arabia. The power transmission system
in this area operates at voltage levels of 69, 115, 230, and 380 kV and consists of long
transmission lines, most of which were built close to the coast of the Arabian Gulf. Some of
the industrial loads, especially in the Jubail industrial area, are process industries, which
are critically sensitive to voltage fluctuations (dips) and power outages. This fact makes
resistance to contamination the most important factor in selecting transmission lines and
substation insulators. Strict insulator specification is imposed to maintain good reliability of
the HV power transmission system. In the late 1970s and early 1980s, the electricity service
provider in Saudi Arabia experienced a high rate of pollution flashovers. In addition, a lack
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of experience in maintaining the insulators and a limited number of available washing rigs
and personnel all contributed to reducing the power system reliability. The weather-related
transmission line interruption rate at that time was as high as 12 interruptions per 100 km
per year. In addition, major power system disturbances were experienced in 1985 because
of the abovementioned reasons [45].

Eventually, SEC was required to manage the insulator contamination problem using
cost-effective high-pressure live line washing. As mentioned earlier, this was realized by
means of high-resistivity pressure jets with roughly 550 psi pressure at the outlet. The
frequency of washing jobs is related to the line’s criticality and the extent of insulator
contamination [16,45]. Accordingly, wash zones have been classified, and the respective
wash intervals in those zones vary from one month to twelve months as follows [45]:

• Zone 1—Washing every month: line insulators near major generating plants, such as
Ghazlan Power Plant, and in close proximity to the Arabian Gulf;

• Zone 2—Washing every 2–3 months: line insulators near major generating plants, such
as Berri Power Plant, but not too close to the Arabian Gulf;

• Zone 3—Washing every 6–12 months: line insulators at a distance of 20–50 km from
the Arabian Gulf;

• Zone 4—No washing: Lines located more than 50 km from the Arabian Gulf.

In extraordinary and special situations, emergency washings are needed as well. The
occurrence of a “Shamal” (northwesterly wind) can, for instance, cause an abrupt contami-
nant accumulation on the insulators, which requires urgent washings. The annual power
interruptions associated with pollution-related insulator flashovers had been reduced from
about 1.22 interruptions per 100 km per year in 1979 to 0.53 interruptions per 100 km
per year in 2001 [16,46] as a result of insulator washing and adopting improved insulator
design. However, this performance improvement was achieved with a substantial increase
in the maintenance cost. Implementation of live line and substation insulator washing,
successive enhancements in the washing expertise, proper equipment upkeep, and lastly,
optimized schedules of washing added considerably to the overall transmission system
reliability. It has already been established that insulator washing is an extremely effective
but very costly method; For SEC, the annual incurred cost is about SAR 15 million, which
roughly equals USD 4 million. Note that this does not account for the substation insulator
washing [47].

4. Contamination Indicators & Signal Processing Techniques

One of the critical aspects for reliable operations of high-voltage equipment is contam-
ination monitoring and prediction and cleaning of the high-voltage insulators. Specifically,
the prediction and monitoring capability allows the electric utilities to have an optimized
schedule for washing live lines and substation insulators. This translates into significant
cost savings while improving the electrical system’s reliability by preventing disastrous
flashover events. In what follows, various indicators used for insulator contamination
assessment and the related signal-processing techniques are discussed using a comprehen-
sive account of the relevant literature. Figure 2 shows the different contamination level
monitoring methods.

4.1. Leakage Current

The magnitude of leakage current (LC) developed on the insulator surface due to
contamination is used by various independent laboratories, universities, and power util-
ities as an indicator of surface degradation, insulation pollution severity, and insulator
performance [3]. The “dry banding” and thermal effects of the leakage current on the
contaminant result in the nonlinearity of voltage distribution. Subsequently, the entire
insulator or only its portion is covered by the dry band, resulting in a flashover [48,49].
At less than 90% of relative humidity, the LC is observed to be an unsuitable method to
determine the contamination level [50,51]. The aging cycles modeled for a 500 kV line with
lower contamination levels have revealed substantial degradation of some insulators nearer
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to the live end, although insignificant LCs were recorded [52,53]. Moreover, the existence
of supplementary electromagnetic waves in the site greatly affects the LC measurements.
Correspondingly, the reconstruction of an insulator and special arrangements have to be
made to install the LC apparatus [54].
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4.1.1. Fast Fourier Transform (FFT)

For FFT analysis of the leakage current, the odd harmonics of the FFT of LC are
analyzed to categorize different contamination levels. Most of the works consider direct
measurement of the LC; however, one study used a Rogowski coil [55] to indirectly measure
the leakage current using an induced voltage in the coil. This technique was reported to be
simple, cost effective, and did not require signal reconstruction before the computation of
FFT. In [56], 12 insulators with four different equivalent salt deposit density (ESDD) values,
0.05 mg/cm2, 0.1 mg/cm2, 0.2 mg/cm2, and 0.3 mg/cm2, were tested under wet (relative
humidity (RH) = 98%) and dry (RH = 50%) conditions. It was found that only qualitative
categorization among ESDD levels was possible as light and heavy contamination, and
the exact value of ESDD could not be obtained from LC. Other findings revealed that
the total harmonic distortion (THD) could not be used in dry or wet conditions, and the
ratios of fundamental to fifth and third harmonics were useful for dry and wet conditions,
respectively. In [57], LC was studied as a function of humidity, applied voltage, and
contamination defined in terms of ESDD. Humidity values used were 30, 60, 70, 80, and
90%, and ESDD was varied as very low, low, moderate, high, and very high. THD was
also studied as a function of humidity at a constant level of contamination. It was found
that the LC level was directly proportional to humidity, voltage, and contamination level,
while the flashover voltage was inversely proportional to ESDD. For the noncontaminated
insulator, it was observed that the third harmonic magnitude was less than that of the fifth
and 7seventh harmonics, whereas, for the contaminated insulator, the opposite was true.
Moreover, a higher THD for higher humidity levels was observed.

Results in [58] confirmed the results reported in [59] by comparing the performance
between two types of contaminants, NaCl and CuSO4, for an 11 kV glass disc insulator
contaminated at three different values. The main findings were that the probability of
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flashover and THD was higher in the case of NaCl compared with CuSO4. Similar to the
findings of [57], the magnitude of the third harmonic was less than that of the fifth harmonic
at clean or low-contamination levels; however, for a highly contaminated insulator, the
third harmonic component became critical to forecast the pollution level of the insulator.
In terms of the growth of harmonics, it was observed that the growth of the third and
fifth harmonics was uniform and rapid for NaCl but nonuniform for the third harmonic
in the case of CuSO4. Based on these findings, it was concluded that the fifth to third
harmonic component ratio was important for predicting the flashover condition. The main
shortcoming was that only the flashover probability, but not the magnitude of LC, was
compared for both contamination types.

In [55], both soluble and nonsoluble contaminations were considered by using NaCl
for the former and fine-grinded charcoal for the latter to emulate the cases where insulators
are operational near charcoal manufacturing factories and rice ash burning. The authors
used Rogowski’s coil to measure the LC. The induced voltage in the coil was analyzed by
FFT on the basis of the idea that the distortion of voltage increases proportionally to the
contamination levels due to significant dry band arcing, thus serving as an indicator of the
contamination level. Similar to the previous works cited above, it was observed that an
increase in the contamination level increased the third harmonic amplitude of the voltage
signal compared with the fifth harmonic, making the ratio of these two harmonics critical
for contamination monitoring. The same results were reported in [60].

In [61], a composite insulator FXBW-110/100 was studied under different contamina-
tion and hydrophobic levels. Pulse amplitude, energy ratio, and energy were extracted
from LC and considered characteristic parameters for contamination and hydrophobic
levels. In [62], it was reported that the even harmonics of the LC were lower in amplitude
compared with the odd ones, where the third, fifth, and seventh harmonics were dominant.

4.1.2. Time Domain Analysis of LC

In [63,64], toughened glass and porcelain insulators for 35 kV transmission lines were
tested in an artificial fog chamber with salt contamination. A total of 11 insulators were
considered with five ESDD values (0.03, 0.05, 0.1, 0.2, and 0.3 mg/cm2). A large number of
tests were repeated to arrive at the LC boundary values in the time domain to categorize
the contamination levels. It was found that the 50–150 mA range could be divided into
the first stage, “Security Stage” < 50 mA, the second stage, “Forecast Stage” 50–150 mA,
and the third stage, “Danger Stage” > 150 mA. LC waveforms were also observed at these
stages, where sine or triangular shapes was observed at the Security Stage. At the Forecast
Stage, a significant number of high-frequency spikes were seen, mainly in the wave crest
high enough to make zero crossing, and at the Danger Stage, LC showed similar sinusoidal
shapes as the first stage and the current increased. Similarly, in [65], it was found that close
to the flashover stage, the LC waveform becomes a sine wave with an increased amplitude.

An investigation of the LC at different RH levels to categorize the contamination levels
by current pulses was reported in [66]. Principal component analysis (PCA) was used to
extract the pulse information, whereby it was shown that the principal components were
highly correlated with the contamination levels. In [67], the relation between LC, ambient
temperature, and humidity was investigated. A direct relationship between the current
and humidity was observed, whereas a negative correlation was reported between the LC
and temperature.

4.1.3. Wavelet Transform

In [68], the LC of 22 kV distribution insulators was collected during a six-month
period at a sampling rate of 6.4 kHz. Discrete wavelet transform (DWT) was used to extract
the current components related to the contamination levels, and the results showed high
accuracy. DWT was also used in [69] to extract the contamination level index. As opposed to
the spectral analysis, where low-frequency components are focused on the basis of the fact
that they contain significant signal information compared with the higher harmonics, in this
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paper, high-frequency components of the LC were proposed to assess the contamination
levels. To mitigate the noise from the LC signal and compress it, the wavelet analysis
method was used in [70]. Experiments showed a good correlation between the current
and contamination levels. In [71], wavelet transform was used to analyze the LC collected
from salt–fog tests along with the presence of nonsoluble contamination on ceramic and
polymeric (SIR) insulators. The current signal was divided into the local arc and sinusoidal
component; besides surface resistance and charge measurement, the LC surge counting,
and peak recording were used to monitor the contamination levels. It was shown that
the cumulative charge and the components were highly related to hydrophobicity and
contamination level. In [72], the LC and its nonlinear characteristics were investigated to
monitor the performance of suspension ceramic insulators (XWP2-70) in heavy salt–fog
setting along with nonsoluble contamination. The spectral information of the flashover
process was obtained using wavelet transform and visualized using a recurrent plot, which
showed that the high-frequency components were highly correlated with the transition
to flashover.

Wavelet fractal dimension, calculated as the sum of high-frequency values of the signal,
was used in [73] for the analysis of the insulator state. The results showed that the fractal
dimension effectively describes the arcs discharge in LC and is also a good eigenvalue for
flashover discrimination and risk prediction.

4.1.4. S Transform

The main limitation of FFT is its applicability to only stationary signals where the
spectral properties do not change over time. However, LC is known to be nonstationary,
making FFT an inadequate methodology to effectively track the magnitude, frequency,
or phase changes. On the other hand, wavelet transform depends on the selection of a
suitable wavelet and gives sparse information with nonunique spectral regions. S transform
overcomes these drawbacks and is suitable for transient analysis with the presence of noise.

In [74], tests were conducted on an 11 kV silicone rubber insulator for various pollution
levels. S transform was successfully used to analyze LC to investigate the threshold at
which the current transitions to severe arcing with increased contamination level. The effec-
tiveness of the transform was reported, and the results showed that the surface condition
of insulators could be easily identified.

Table 6 shows the comparison between the abovementioned signal processing tech-
niques for leakage current in terms of accuracy. It can be observed that when mathematical
morphological function and statistical operations are used in the preprocessing stage to
test the porcelain insulator, the highest accuracy of 100% is obtained while the lowest
accuracy (2%) is achieved when FFT signals are used to test the porcelain, glass, and
polymer insulators.

Table 6. The comparison between different signal processing techniques for leakage current in terms
of accuracy.

Reference Insulator Type Preprocessing Stage Metrics Accuracy

[75] Porcelain Time domain analysis and
discrete wavelet transform

Out-of-bag (OOB) error rate
and identification rate

The identification rate
is 98%

[33] Porcelain Autocorrelation Accuracy 90.7%

[76] Polymer stepwise regression Accuracy KNN is 57.5%, polynomial
is 65%, and fuzzy is 56.3%

[77] Porcelain Discrete S transform Accuracy 95% to 97%

[2] Silicone rubber stepwise regression, PCA,
and moving average filter Accuracy, RMSE 68% for four classes and

95% for two

[78] Porcelain STMHT and FLDA Accuracy 90%

[79] Porcelain Extract distortions Error 4% to 7%
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Reference Insulator Type Preprocessing Stage Metrics Accuracy

[80] Porcelain
Mathematical morphological
function and
statistical operations

Precision 100%

[81] Glass
Data augmented using:
Gaussian, Salt and Pepper,
Poisson, and Speckle noise.

Accuracy 99.76%

[82] Ceramic Modelling current equation MAPE MAPE= 0.4%, for
Imax = 1.292 mA

[83] Ceramic GLCM and Tamura features
of the spectrograms

Accuracy and
computational time 90.6%

[84] Polymeric Hyperbolic window
Stockwell transform

Accuracy, sensitivity,
and specificity RF (=97.5%)

[85] Porcelain
Data are standardized using
the KMO test and Bartlett
spherical test

MAE, RMSE, MAPE, mean
squared percentage error
(MSPE), Theil inequality
coefficient (TIC), coefficient
of determination (R2),
modeling time (TM), and
prediction time (TP)

MAPE is 1.567

[86] Porcelain, glass,
and polymer FFT Error 2%

4.2. The Imaging Method

In this section, various imaging methods will be discussed that are used for contam-
ination level monitoring. Visual image analysis is a cost-effective method that does not
require expensive imaging equipment or high relative humidity (RH). On the other hand,
methods based on infrared (IR) and ultraviolet (UV) images are promising; however, they
require relatively expensive equipment and high RH. In addition, the images are limited to
specific bands, which limits the information acquired from the insulator surface. To cater to
these limitations, hyperspectral technology is used to achieve multiband high-resolution
images, thus combining the advantages of visible, IR, and UV bands; a comparison was
tabulated in [87] and is reproduced in Table 7.

Table 7. Comparison of different detection conditions [87].

Visible Light Infrared Ultraviolet

Temperature - ≥5 ◦C
5 ◦C or higher -

Relative humidity - ≤85%
85% or less -

Wind speed ≤5 m/s ≤0.5 m/s ≤1.5 m/s

Weather

The weather is sunny
and should not be
thunder, rain, fog,

snow, etc.

The weather is cloudy,
and it is advisable to

avoid thunder, rain, fog,
snow, etc.

Should not be thunder
or heavy rain

Visibility High Relatively high Relatively high

Best time

Daytime for surface
shape test, night

for partial
discharge detection

At night, two hours
after sunset At night

Electromagnetic
interference - Avoiding Avoiding

Heat source radiation - Avoiding -

Background radiation - Balance -
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Thermal imaging, which is used to determine if the insulator is at an acceptable
temperature, has weaknesses because it depends on the amount of current that heats
parts of the material or where spots can be detected using images. This method requires
maintaining the correct distance and angle and specialized software for image analysis.

4.2.1. Digital Imaging Method

In [88], image-based contamination detection was reported for ZSW-10/4 insulators
under different contamination levels, where the mean value of the V component in YUV
color space was used to distinguish between contamination levels in terms of ESDD. A
neural network (NN)-based detection system gave 90% testing accuracy for contamination
level monitoring. Another NN-based study was reported in [10], which used linear alge-
braic features of HSV color space to correlate with ESDD. Similarly, in [1], both statistical
and linear algebraic features of images were used to train a NN for contamination level
detection. Very high detection performance was reported.

Due to several advantages of silicone rubber insulators, it is highly relevant to study
the deterioration of these insulators as their performance is highly affected by severe
contamination levels. In this spirit, image processing techniques were developed and
reported in [89] for the assessment of silicone rubber insulator contamination. Textural
and statistical features, such as discrete cosine, wavelet, Radon, contourlet transformation,
gray-level co-occurrence matrices, and stepwise regression, were used. Moreover, the tested
classifiers included k-nearest neighbor, neural networks, and linear classifiers. An accuracy
of 96.5% was reported for seven hydrophobicity conditions using NN classification of the
fused features.

The red, green, and blue (RGB) and hue, saturation, and value (HSV) images of 70 kN
disc-type porcelain insulators in a laboratory setting were analyzed in [90], where the
dust density was 5 times the salt density. The extracted features comprised mean, stan-
dard deviation, maximum, minimum, range, mode, median, kurtosis, and skewness. To
determine the pollution level, cluster analysis was used. Another study for porcelain insu-
lators [91] used images to classify NSDD. Four classifiers were used, namely Polynomial,
NN, quadratic discriminant analysis (QDA), and adaptive neuro–fuzzy inference system
(ANFIS), and their performances were compared. The highest accuracy was reported with
ANN of 93.75%, and a minimum overall accuracy of 91% was recorded.

Field-polluted composite insulators were analyzed in [92] using the features of R, G,
B, H, S, and V component images. Specifically, the S component features served as an input
to support the vector machine for contamination grade classification. An accuracy of 97.5%
was reported.

4.2.2. Thermal Image (Infrared, Thermal Vision)

In [93], both visible and infrared images were used to detect the fine details and large-
scale edge information, respectively, using guided image processing. To decompose the
image, a novel and efficient methodology based on latent low-rank representation (LatLRR)
was introduced. The experiments were reported to show superior performance compared
with the multiscale decomposition for insulator contamination level monitoring. In [94],
infrared images were used to detect the contamination level on high-voltage insulators.
Specifically, the images were processed by denoising and segmentation, and the features
were extracted for radial basis function NN (RBFNN) to enhance the detection accuracy.
Recently, photothermal radiometry (PTR) was used to classify pollution levels on ceramic
discs in [95] in terms of ESDD and NSDD, where NaCl and Kaolin were used to emulate
the soluble and nonsoluble contaminants. A multiclass semisupervised support vector
machine was employed to cater to the nonavailability of labeled data. A direct relationship
between contamination level, time, and frequency domain characteristics of thermal images
and the high accuracy of the methodology were reported.
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4.2.3. Ultraviolet Image

THD and fundamental components of UV signals were used as features for the NN
in [96] to determine the contamination and aging levels of various insulators. The network
was able to predict the flashover events on the basis of the discharge intensity levels. In [97],
an accurate deep-learning-based contamination level predictor was designed, which used
UV discharge images for a sparse autoencoder (SAE) and a deep belief network (DBN).
Humidity and contamination levels varied while recording the UV spot area sequence for
contamination recognition. The reported accuracy for three humidity levels of 80, 85, and
90% were 91.25%, 93.125%, and 92.5%, respectively. For ceramic insulators, a cost-effective
UV sensor was employed to detect the contamination level in combination with texture
analysis, time-frequency technique, and support vector machine (SVM) [83]. It was found
that the combination of texture feature extraction methods with the SVM classifier gave an
accuracy of 90.6%, which was far superior to a single time feature or other texture features.
Another study of ceramic insulators was reported in [98], where a ceramic string consisting
of 3 pieces of XWP-70 insulators was used. Four ESDD levels tested were 0.05, 0.1, 0.2,
and 0.3 mg/cm2 with fixed NSDD at 1.0 mg/cm2. Curves for fuzzy logic inference were
obtained by observing that the corona and partial arc discharge UV image areas and the
number of discharge events are correlated with humidity and contamination severity.

A study involving combined features of IR and UV images of polluted ceramic in-
sulators was given in [21] under humid conditions. PCA was used to obtain significant
features, which were given to a particle swarm-optimized backpropagation neural network
(PSO-BPNN) to distinguish between the contamination grades.

4.2.4. Hyperspectral Images

In [99], color information, hyperspectral spectral line characteristics, and image texture
were combined as the detection basis for the classification algorithms. Compared with
the model based on only spectral line features, the results of the fusion-based approach
showed a detection accuracy of 95%. In the context of information fusion for contamination
detection, [100] introduced a method that involved significant features selected out of
36 color and seven temperature features using visible and infrared images, respectively,
which translated into high accuracy. No-dry, dry, and dry band arc heating models were
numerically solved to theoretically evaluate the differences in temperature profiles depend-
ing on various operational conditions. Similarly, in [21], the fusion of infrared and UV
image features based on PCA was reported to efficiently characterize contamination levels
of artificially polluted ceramic insulators. The RH varied in the experiments with 80%, 85%,
and 90% values. Similar to the previous works, the authors reported superior performance
using combined infrared and UV images compared with using these features separately
for each.

Another study based on the hyperspectral images of insulator contamination with
soluble and nonsoluble contaminants was reported in [101]. The images were fed to a
multiclassification model of extreme learning machine (ELM) to accurately classify the
degree of pollution. Specifically, for different types of pollutants, the absorption peak,
position of reflection peak, amplitude, and the change trend of the hyperspectral curve
varied. However, only amplitude change was observed when the level of the same type of
pollutant was varied. An accuracy of at least 95% was recorded for NaCl, CaSO4, and mixed
NaCl-CaSO4. For silicone rubber coating of a composite insulator, [102] analyzed the hyper-
spectral images with both soluble and nonsoluble contaminations. The method based on
combined multivariate scattering correction (MSC), successive projection algorithm (SPA),
and linear discriminate analysis (LDA) gave the best classification performance. Table 8
shows the accuracy of using different types of images in detecting contamination levels.
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Table 8. The accuracy of using different types of images in detecting contamination levels.

Reference Insulator Type Input Signal Preprocessing Stage Test Type (Dataset) Metrics Accuracy

[21] Ceramic IR and UV image Fisher criterion
and KPCA

Experiment-Field
(120 samples for
testing and 280

for training)

Accuracy 96.67%

[10] Porcelain Images
Matrix manipulation

and edge-based
segmentation

Experiment-Field
(51 samples: 36 for

training and 15
for testing)

Mean absolute
error (MAE),

predicting rate

MAE: 0–0.045 and
predicting rate

is 80%

[90] Porcelain Images
Denoising, image

segmentation,
and PCA

Experiment-Field
(40 groups of samples)

Probability
density -

[103] Porcelain IR images Flat shot to image test
pieces, grayscale

Experiment-Lab
(700 images: 560 for

training and 140
for testing)

Accuracy 93%

[94] Porcelain IR image

Denoising technique
based on MAP
segmentation,

estimation, and
wavelet generic

Gaussian distribution

Experiment-Lab Accuracy
and time 97.31%

[1] Glass and
porcelain Images RGB to grey, RGB to

HSV, and SVD

Experiment-Lab (40 for
training and 19

for testing)

MSE and
accuracy 84.2%

[77] Porcelain Leakage current Discrete S transform Experiment-Lab Accuracy 95% to 97%

[91] Ceramic Images
Template matching

and grayscale
histogram

Experiment-Lab
(96 images: 24 for

each level)
Accuracy ANN = 93.75%

[101] Silicone rubber Hyperspectral
images

multiplicative scatter
correction and

black-and-white
correction

Experiment-Lab
(120 sets for training

and 120 sets
for testing)

Accuracy From 87.5% to
90%

[104] Porcelain IR images Denoising and
enhancing contrast

Experiment-field
(300 frames) Accuracy 100%

[92] Silicone rubber RGB and
HSV images

Segmentation method
based on randomized
Hough transform, and

Fisher criterion

Experiment-Lab
(65 samples for light
and 59 for heavy, and

the ratio is 2:1 for
training and testing)

Accuracy,
precision, recall,
and f-measure

97.5%

[97] Ceramic UV discharge
images

The grayscale images
were converted to

binary images, all set
to black, excluding the

white pixels.

Experiment-Lab
(320 samples for
training and 160

for testing)

Accuracy 92%

[95] Ceramic Images PCA
Experiment-Field

(frame size of
640 × 512 pixels)

Accuracy 90%

[102] Silicone rubber Hyperspectral
image MSC, PCA, SPA Experiment-Lab

(176 variables)
Accuracy and

Kappa LDA (=97.5%)

[105] Ceramic Images Bounding box Experiment-Field
(2973 images)

Mean average
precision

(mAP) and
processing time

onshore: mAP is
0.67 and

processing time is
0.55 s, onboard:
mAP is 0.26 and
processing time

is 1.27 s

[106] Polymeric
Audible

(ultrasound)
signal

wavelet transform
(WT), filtering, and

noise reduction

Experiment-Lab
(20,000 samples: 70%
for training and 30%

for testing)

RMSE, MAPE,
MAE, and R2 R2 is 0.9982

[107] Porcelain Discharge image
Grayscale, binarization,
and main spot feature
extraction on the image

Experiment-Field
(1243 pictures: 994 for

training and 249
for testing)

Accuracy 84.8%

[99] Porcelain Hyperspectral
image

GGCM, color feature,
and KPCA

Experiment-Lab (Ten
sets for each pollution
level: 20 for training
and 20 for testing)

Accuracy 95.0%
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[108] Porcelain Images

Gaussian filtering,
Canny algorithm,
edge location, and

multiplicative scatter
correction

Experiment-Lab
(1200 samples with

ratio of 7:3 for training
and testing)

Accuracy 96.9%

4.3. Acoustic Emission (AE), Microwave & Ultrasonic

The precipitation of contaminants on the insulator surface is known as a prevalent
cause of partial discharges (PD). In a practical sense, as the level of contamination rises, the
severity of PD grows. The existence of PD produces acoustic noise that can be attained and
compared with the contamination levels to predict the severity of pollution [109]. A study
conducted an artificial pollution test to compare the contamination level with the acquired
signal (PD noise). It was observed that the system produces reasonable indicators of the
contamination level [110,111].

Contamination level monitoring methodologies based on LC, IR, or UV images give
reliable results only when the contamination layer is dampened, whereby the occurrence of
a flashover event might be premature, i.e., before the right time for cleaning or maintenance
service. Moreover, in the case of LC, an additional disadvantage results from the installation
of its measurement equipment which reduces insulation security [112]. An alternate method
to determine the need for insulator maintenance is the perception of AE based on the
experience of the network operators. Even with relatively low accuracy, it is an effective
indicator of the risk of power system outages and for defining the maintenance actions in
the search for the optimum time to clean insulators.

In [113], it was demonstrated that the frequency-related features of AE signals have a
good correlation with the polluted insulator’s corona, partial, and arc discharge. For glass
insulators, wavelet transform was applied to extract contamination level information from
the AE of corona discharge (CD) [114]. Salt-based pollution was simulated in a humid
environment. It was reported that the wavelet transform could successfully differentiate
between the background noise and AE due to CD, where both contain the same features.
In [110], the pollution severity was correlated with the time and frequency domain char-
acteristics of the AE signal, and the developed system was able to correctly identify the
contamination level.

Besides AE, microwave and ultrasonic are other nonelectrical techniques used for
the monitoring of contamination levels. Microwave nondestructive testing techniques
can detect small thickness variations in dielectric layers and small variations in some
dielectric properties in stratified dielectric composites because they can penetrate limited-
loss dielectric materials and interact with their inner structure without being exceedingly
attenuated [115,116].

In [112], the use of a 10.45 GHz microwave reflectometer was reported, whereby the
power level of microwave energy reflected back from contaminated glass insulators under
dry conditions was able to correctly differentiate between different contamination levels.
The idea was that the electromagnetic energy reflected by a contaminated insulator is
different from a clean insulator. The ESDD was varied from 0.02 to 0.15 mg/cm2 and
correctly differentiated by the developed technique.

In [106], ultrasound signals from in-service porcelain insulators were used to forecast
the contamination levels. It was reported that the hybrid forecasting technique based on
the combination of stacking ensemble learning model and wavelet transform outperformed
adaptive neuro–fuzzy inference system (ANFIS) and long-term short-term memory (LSTM).
Table 9 shows the accuracy of using different signal processing techniques for the acoustic
signal in detecting contamination levels.
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Table 9. The accuracy of using different signal processing techniques for acoustic signals in detecting
contamination levels.

Reference Insulator Type Preprocessing Stage Metrics Accuracy

[117] -
Bottom-Up segmentation,
wavelet energy coefficient,
principal component analysis,

Recall, precision, accuracy,
time, and F-measure 98%

[118] Glass WPT RMSE, MAE, R2 R2 for testing in grid
partition is 0.9592

[106] Polymeric wavelet transform (WT),
filtering, and noise reduction

RMSE, MAPE, MAE,
and R2 R2 is 0.9982

4.4. Contact Angle

Contact angle (CA) measurement is performed to assess the hydrophobicity property
(HP) of the insulating material and is used to quantify the wetting of a solid by a liquid.
Increasing the contact angle of the water drop is a sign of improving the hydrophobicity.

In [16,119], the effect of contamination on the hydrophobic properties of silicone
rubber was investigated, while [120,121] investigated the effect of algae contamination.
In [122,123], the study was conducted after applying hydrophobic insulator coatings. The
results showed that having less contact angle indicated poor hydrophobicity.

The insulators are coated with Silicone rubber in some cases. However, the HP of
these coatings significantly deteriorates under humid conditions, which changes the CA
of water droplets. In this spirit, [124] investigated Silicone coating performance under
the influence of humidity with varying CA. Field samples of DC composite insulators in
South China were tested in [125] to study their HP using the CA method and compare
them with the samples without contamination. Moreover, hydrophobicity transfer with
artificial contamination was also studied. It was observed that the middle part of the
insulator outperformed the high- and low-voltage ends in terms of hydrophobicity and
hydrophobicity transfer.

4.5. Partial Discharge (PD)

It was reported in [126] that the intensity, duration, and rise-time of the PD pulse
increases significantly with an increase in surface wetness, regardless of the contamination
level on the insulator surface. A relationship between RH and PD spectrum was given such
that for RH values of 60% to 80%, most of the PD energy lay in the 6–25 MHz frequency
range, whereas for higher RH (90% and above), the signal energy was focused more in
2–6 MHz range. The study was also extended to the case of polluted conditions, where
the PD pulse duration increased with higher contamination levels. In [127], SIR insulators
were studied for the occurrence of PD. It was observed that the low-frequency components
(0–78 Hz) dominated the discharge signal’s spectral content at any stage from initiation to
complete discharge. In [128], it is reported that the discharge signals are proportional to the
water conductivity, contamination level, and damage on the insulator surface.

5. HV Insulator Contamination Level Classification Techniques

The following sections summarize the work done in the last decade on HV insulator
contamination level classification techniques.

5.1. Machine Learning

Neural network (NN) is a kind of machine learning, and it is also called artificial
neural network (ANN), where the network employs complex mathematical models for
data processing. NN connects a network of units called neurons, and the collection of these
neurons constructs a network called a neural network. In addition to the neurons, NN
contains links and weights, activation functions, layers, hyperparameters, learning rate,
and cost function. Each ANN in the system consists of a set of layers with multiple neurons
worked by using activation functions, and it is designed to be adjusted to a dynamic input.
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Indeed, each neuron receives different versions of the input along with a weight value,
and it is then added to a small value called bias. After that, it is passed to the activation
function that determines the final output value.

5.1.1. Backpropagations Neural Network (BPNN)

Jin and Zhang [21] proposed a technique to figure out the contamination severity in
the ceramic insulator based on the feature fusion of both the ultraviolet (UV) and infrared
(IR) image information. After preprocessing the images, a Fisher criterion was applied to
gain features of IR and UV images. For feature fusion, kernel principal component analysis
(KPCA) was adopted to reduce the dimension of the generated features and obtain only a
three-dimensional fused feature. These features were fed into a particle swarm-optimized
backpropagation neural network (PSO-BPNN) classifier to realize the contamination grade.
Paper [10] presented a developed intelligent technique for specifying the contamination
level of high voltage (HV) insulators. Maraaba, Al-Hamouz et al. adopted two methods in
the feature extraction stage to extract the main features from the insulator images. The first
is matrix manipulation, and the second is edge-based segmentation. After that, the singular
value decomposition (SVD) was applied to obtain the linear algebraic features. Then, a
multilayer feed-forward neural network was fed with these features to predict the ESDD
level of the insulator. He, Luo et al. [94] proposed a learning model based on the radial basis
function neural network (RBFNN) and the collected infrared images from the porcelain
insulators to define the contamination level. They used the first-order, second-order, and
third-order color moments as the main features, along with the relative humidity for the
detection process. Since RBFNN has many parameters that affect its accuracy and speed,
they used the support vector regression technique to define the number of hidden centers.
Another technique based on statistical analysis was used to determine the initially hidden
centers. This improved learning model combined with the random number control factor
and gradient descent algorithm to achieve higher accuracy with less time. In paper [1],
Maraaba, Alhamouz et al. proposed a neural network model for predicting the contami-
nation level of the HV glass and porcelain insulators. It indicates the contamination level
without the requirement of the deposition of hydrophobic materials and depends on the
captured images. They extracted two types of features based on singular value decomposi-
tion (SVD): linear algebraic features and histogram-based statistical features. Then, they
constructed three neural network scenarios for testing one type of these features or both,
and the output of the neural network was the contamination levels. In a paper [129], Al
Khafaf and El-Hag presented a new learning model based on a Bayesian regularized neural
network to predict the future values of the leakage current. They used the recorded leakage
current signal, and they selected some components from the signal. These components
were fed into the neural network to predict the future time series of both the fundamental
and third harmonic of the leakage current.

Patel, Maarouf, et al. [91] proposed a technique of pollution level estimation that
can be adopted on live lines with the use of pattern recognition and image processing
technology. Template matching and grayscale histograms were used on the collected
images to clean and extract the main features. Three classification methods were used (i.e.,
Quadratic discriminant analysis (QDA), polynomial, artificial neural network (ANN), and
Leave-one-out cross-validation (LVOCV)) to predict the pollution level, and all of them
achieved high classification accuracies. An intelligent contamination prediction model
proposed in [130] is based on an optimized backpropagation (BP) neural network with a
genetic algorithm (GA). Here, Jinlei, Chao, et al. used the genetic algorithm to make the
learning model faster and more robust for any change. The extracted features that were
used to feed the BP are temperature, precipitation, wind, relative humidity, and air quality
index (AQI). And the output of the BP model is the equivalent salt deposit density (ESDD)
and nonsoluble deposit density (NSDD). In [96], Suhaimi, Bashir et al. studied the UV
signals’ time and frequency components of the insulators under different contamination
levels by using artificial neural networks (ANNs). The experimental studies showed that
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there is a high correlation between the discharge intensity levels. Hence, this was used to
extract the total harmonic distortion and fundamental frequencies from the signal. Then,
the selected features were fed into the ANNs model to determine the flashover prediction
with respect to the discharge intensity level of the insulator. In paper [131], Yan, Gang et al.
designed a risk monitoring interface based on neural networks and fussy logic technologies
for predicting the insulator flashover. It is constructed based on a trained backpropagation
network to define the real-time state of the insulator. The input vector of the neural network
was leakage current amplitude, relative humidity, and the ratio of the 3rd harmonic of the
leakage current to the amplitude of the fundamental harmonic. In addition, the output of
the neural network was the security state of the insulator linked to the fuzzy interface. They
used three fuzzy subsets to represent the security state of the insulator (i.e., safe state, light
alarm, and serious alarm). Liu, Yang, et al. [132] adopted the use of a backpropagation(BP)
neural network in developing a local insulator pollution diagnosis device to provide a
real-time diagnosis of the pollution in the insulators. This local insulator has the ability
to communicate with the ultraviolet imager in real time. They used a set of parameters
(i.e., apparent discharge, detection distance and gain, and photoelectron number) obtained
from the ultraviolet imager as input of the BP neural network. The output of the BP neural
network was the pollution level.

5.1.2. Support Vector Machine (SVM)

Zhao, Jiang, et al. [133] presented a new insulator technique for predicting the severity
of the contamination level and avoiding any pollution flashover accidents. They used
a set of features based on the environmental and experimental variables for finding the
contamination level: relative humidity (RH), ambient temperature (T), leakage current
(LC), namely the maximum pulse amplitude (Ih), the energy ratio (K), and the energy (E).
Then, a variation from these features was obtained and fed to the least squares support
vector machine (LS-SVM) model to define the level. Xia, Song, et al. [77] proposed a
learning method that combines the S transform and the support vector machine (SVM) for
classifying the contamination level of porcelain insulators. They used S transform in the
feature extraction stage to extract the phase and the amplitude of each frequency point of
the recorded leakage current signal. Hence, three main parameters (i.e., amplitude, phase,
and total harmonic distortion (THD)) were selected as the input to the SVM model, and the
output of the SVM was fed into four fuzzy subsets to determine the level. In this paper [134],
Mahdjoubi, Zegnini, et al. improved the performance of the outdoor insulators by using an
intelligent detection method based on the least square support vector machines (LS-SVM)
learning strategy. They set the support vectors according to a quadratic Renyi criterion by
adopting the training set. Insulator height, leakage length, insulator diameter, number of
elements in the string, surface conductivity, and number of sheds were used as the input of
the LS-SVM model, and the output was the flashover voltage. Here, the training data for
this model were generated based on the finite element method. Abedini-Livari, Eshaghi-
Maskouni, et al. in [19] discussed the partial discharge (PD) on polymeric insulators under
different changes in the impact of physical defects, accelerated salt–fog aging process,
and varying amounts of contamination. Here, they recorded the partial discharge of the
insulators by using a UHF antenna. A wavelet packet tree was used in extracting the feature
from the partial discharge signal. Then, the selected features (i.e., Skewness, kurtosis) were
fed into a support vector machine (SVM) model to predict the condition of the insulator.
Chen, Li et al. in [92] proposed a classifier based on a support vector machine and the color
characteristic of visible images to predict the contamination level. They used an ellipse
segmentation technique based on randomized Hough transform to extract the main feature
from the visible images. So, around 36 types of characteristics of HSV and RGB components
were extracted from the previous process. The mean and median of the S component were
selected as the main features based on the Fisher criterion. These features were then fed
into the support vector machine classifier to predict the contamination level. In a paper [95],
Liu, Mei et al. presented a machine-learning technique based on a semisupervised support
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vector and the use of photothermal radiometry (PTR) for predicting the contamination
level. PTR was used in the measurement to define the pollution severity parameters:
NSDD and ESDD on the transient and frequency thermal radiation characteristics of the
contamination. Then, the main features were extracted, and their dimensions were reduced
using principal component analysis (PCA). After that, a semisupervised classifier was
fed with the remaining features to predict the contamination level based on a four classes
problem. In paper [56], Sun, Zhang et al. proposed a learning model that combines the
exploratory factor analysis (EFA) and the use of a support vector machine for predicting
the contamination level of the insulators. They used EFA to minimize the factor variables,
which could reduce the complexity of the model. Then, the selected factor variables were
fed into the least squares support vector machine (LSSVM) to predict the contamination
level. To achieve better results, they applied a nondominated sorting genetic algorithm II for
defining the optimal LSSVM parameters. Results showed that the optimized EFA-LSSVM
model outperforms the original LSSVM, multiple linear regression, and backpropagation
neural network model in the model performance. Zhou and Chen [135] adopted the
support vector machine model with data mining techniques to predict the flashover voltage
under different gray and salt densities. The average value of the collected data points
should not exceed 10%. The results showed that the support vector machine regression
model improved the model performance in terms of error values and prediction accuracy,
and it provided a reference for the measures of the insulators.

5.1.3. The k-Nearest Neighbours (KNN) Algorithm

Chaou, Mekhaldi, et al. [136] proposed a new method called recurrence quantification
analysis (RQA), which has the ability to indicate the Recurrent Plot (RP) structures and
to quantify the leakage current dynamics during the process. It was proposed to study
the RP structures and leakage current dynamics and extract the main features from the
current signals for detection purposes. Hence, eight RQA indicators were used to study
and investigate the leakage current signals under different conductivities. After that, the
mean values of the eight RQA indicators are considered as the input to KNN in order to
predict the contamination severity.

Abouzeid, El-Hag, et al. [2] developed a nonintrusive method based on a machine
learning technology to monitor and evaluate the silicone rubber insulators by predicting
ESDD level. They used stepwise regression in the feature extraction stage and PCA to
reduce the dimension of the extracted features from the leakage current. KNN was adopted
to predict the ESDD level. In [102], Xia, Ren et al. proposed a new learning model based on
hyperspectral imaging technology (HSI) for evaluating the high-temperature-vulcanized
silicone rubber insulators. The Canny operator method was applied to the collected
hyperspectral images to select the interesting areas and extract the spectral data. They
also used a multivariate scattering correction (MSC) method to pre-treat the extracted data
and PCA to reduce the dimension of the extracted features. Then, a successive projection
algorithm (SPA) was applied to define the targeted bands. These bands were fed to KNN to
predict the contamination level. Ma, Jin, et al. [83] proposed a new learning technique based
on the texture features from the UV signals to predict the samples into local arcs, coronas,
and long arcs. The texture analysis technique was adopted into the images obtained from
the spectrograms of UV signals, and it was used to figure out the Tamura features and the
grey-level co-occurrence matrix (GLCM). Then, the extracted features were fed to KNN to
classify the partial discharge fault.

In [84], Sit, Das et al. presented an efficient method to predict the contamination level
of the polymer insulators. They analyzed the leakage current in the time–frequency domain
using hyperbolic window Stockwell transform (HST), and they extracted a two-dimensional
complex time–frequency HS matrix. Then, they divided the HS matrix into magnitude
and phase spectrum, and hence 16 features were extracted from the spectrum. Next, they
used the least absolute shrinkage and selection operator (LASSO) method to select the best
features (i.e., five features) from the extracted ones. The selected features were fed into
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KNN to predict the contamination level. In [137], the KNN classifier based on insulator
images is used for detecting contamination levels. The 40 porcelain insulators used in this
study were artificially polluted. Six statistical features were extracted from insulator images
and considered as inputs to the classifier, such as mean, variance, asymmetry, kurtosis,
energy, and entropy. The classifier showed 85.17% accuracy using k-fold cross-validation.
The accuracy of KNN was compared with other classifiers such as decision tree, ensemble
subspace, and support vector machine and outperformed them.

5.1.4. Random Forests (RF)

In [75], Kannan, Shivakumar, et al. presented a machine learning technique based on
a random forests (RF) classifier for classifying the contamination level of the HV insulators.
A set of experiments was conducted, and the leakage current (LC) was recorded in the lab
on the porcelain insulator at 11 kV AC voltage. They used the discrete wavelet transform
technique and time-domain analysis to extract the histogram and basic features of the
leakage current. Around 48 features were extracted from the current and then fed to the RF
model in order to define the pollution severity. Ren, Li et al. [28] proposed a new learning
technique for predicting the pollution severity of the insulators based on random forests
(RFs). Moreover, they proposed 16 factors that are linked to the nonsoluble deposit density
(NSDD) and equivalent salt deposit density (ESDD) for the learning process. Then, they
adopted the mutual information (MI) theory for the feature extraction process based on
the weights of the 16 factors. The regression model of RFs was constructed based on the
extracted features and tested to predict the ESDD and NSDD levels and then compared
with the result of the support vector machines (SVM) model. In [80], Sit, Chakraborty,
et al. proposed a learning method based on the mathematical morphological function and
the random forests classifier to classify the contamination level in the porcelain insulators.
Leakage current was collected on different contamination levels from extensive experiments.
They used different statistical operations and mathematical morphological functions in the
feature extraction stage. Then, a different number of features (i.e., 1, 2, 3, and 21) was fed
into the random forests classifier to predict the contamination level.

5.1.5. Ensemble Learning (EL)

Stefenon, Grebogi, et al. in [117] solved the faults in insulators as a multiclass problem
using an ensemble extreme learning machine (EN-ELM) and particle swarm optimization.
They applied 13.8 kV (rms) in contaminated, drilled, and good insulators and recorded
the data using an ultrasound detector connected to a computer. They used wavelet energy
coefficient, bottom-up segmentation, and principal component analysis in the feature
extraction stage. The extracted features were fed into the optimized ensemble extreme
learning machine to predict the class of contamination in the insulator. In paper [101], Qiu,
Wu et al. proposed a detection technique based on the hyperspectral concept and machine
learning technology. They collected samples from the hyperspectral images with different
pollution levels by using a hyperspectrometer. Then, they used multiplicative scatter
correction and black-and-white correction to correct the collected images. After that, they
obtained from the corrected images the hyperspectral curves using the region of interest
(ROI). The extracted features from these images were fed into a multiclassification model of
extreme learning machine (ELM) to detect the pollution degree of the insulator. Stefenon,
Ribeiro, et al. [59] proposed a learning model based on stacking ensemble in the prediction
of polluted porcelain insulators. They used ultrasound equipment to record the signal and
then a wavelet transform to filter the signal and remove the noise effects. The extracted
signal was fed into a stacking ensemble model to predict the contamination of the insulator.
A set of metrics was introduced in the results as mean absolute percentage error (MAPE),
coefficient of determination (R2), and root means square error (RMSE). Yin, Xiao, et al. [61]
presented a technique based on spectral characteristics and the hyperspectral image to
detect the pollution degree in the insulators. They extracted image texture, characteristic
color data, and hyperspectral spectral line characteristics of the insulator using the gray-
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level gradient co-occurrence matrix (GGCM) and used kernel principal component analysis
(KPCA) to reduce the dimension of the extracted features. Then, they fused the selected
features to be used in the detection process. Next, the fused features were fed into an
ensemble learning model to classify the sample into one of the four levels (i.e., light,
medium, heavy, and very heavy).

5.1.6. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) model was proposed in [103] for the diagnosis
of the state of the porcelain insulators in the transmission lines. Liu, Pei, et al. used
infrared image technology and then fed them to the LeNet CNN model; it was applied
to optimize the network structure. The model showed a high classification rate, and it is
robust and offers a better rate under different conditions such as humidity, temperature,
thermal load, and position of deterioration on the insulator. In [104], a deep learning
model was developed to find the zero-sequence insulators with different air humidity,
contamination, and different locations. The authors used infrared images after removing
the noise effect and increasing the contrast in the method. The output images were fed
into a regional proposal network (RPN) and fast region-based CNN (RCNN) detection
network for detecting the insulators. In [138], Feng, Xuran et al. proposed a deep learning
model to locate and identify the defects of the insulators by the use of infrared images.
They collected the infrared images and then filtered the interference of the background.
Then, the cleaned images were fed into the multitarget detection algorithm YOLO for
detecting the defects based on multifeature fusion. Once the defect is located in the infrared
image, then the type of the defect is identified accordingly. In [81], Mussina, Irmanova,
et al. proposed a fusion convolutional network (FCN) architecture for the evaluation of
the contaminated outdoor HV insulators. FCN adopts the multimodal information fusion
(MMIF) of UAV images with the leakage current and classifies the contamination of the
insulator into conditions that are present before the failure, such as snow, water, salt, and
metal dust. Using MMIF in the model reduced the complexity of the learning process
and achieved better accuracy. In a paper [58], Waleed, Mukhopadhyay, et al. developed a
drone-based system for monitoring the ceramic insulator on the power lines. The drone
system is equipped with a Raspberry Pi single-board computer and onboard cameras to
monitor the state of the insulators. The system also has the capability to perform some
computer vision tasks related to the monitoring process; it can perform these tasks onboard
or onshore at a ground station. In the case of onshore mode, the drone takes images and
simultaneously transmits them to the ground station. Then, object detection methods (i.e.,
Single-Shot MultiBox Detector (SSD) Mobilenetv2) can be applied to classify the insulators
into three levels: healthy, dirty, and broken insulators, while in the onboard mode, images
were fed directly to region-based CNN (RCNN) to predict the level. In a paper [60], Liu, Lai,
et al. proposed a convolutional neural network (CNN) model by using the discharge image
to predict the pollution state of the insulators. They applied the binarization, grayscale,
and main spot on the collected images in the feature extraction stage. Then, the extracted
features were trained using a CNN model, and the pollution state was defined. The results
showed that the discharge state of the insulators is positively correlated with humidity
and surface pollution. In a paper [62], Zhao, Yan et al. proposed a learning model based
on the hyperspectral technology for predicting the states in the porcelain insulators. They
extracted the edges from the images using Gaussian filtering and the Canny algorithm to
locate the cracks. Then spectral information was used to predict the state of the insulator
by using the Efficient Net CNN model. The results showed that the achieved accuracy by
using this model is 96%, which is better than other learning models and without the use of
hyperspectral data. In a paper [139], Vigneshwaran, Maheswari, et al. proposed a learning
model based on feature fusion and the dual-input VGG convolution neural network (CNN)
for predicting the pollution severity of the insulator. The measured partial discharge signal
was shaped as a time–frequency image named by a scalogram and 3D phase-resolved
partial discharge (PRPD) patterns. The authors fed the dual-input CNN by the scalogram
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and 3D PRPD patterns. Then, a weighting fusion method was used to select the best feature
from the scalogram and 3D PRPD pattern features and to improve the recognition rate
of the network. After extracting the features, the network was learned by adopting three
different learning models based on the selected optimizer for the minimal loss function, i.e.,
root means square propagation (RMSPROP) optimizer, stochastic gradient descent with
momentum (SGDM) optimizer, and adaptive momentum (ADAM) optimizer. Additionally,
they used a Bayesian optimization for selecting the hyperparameters of the network.

5.2. Fuzzy

Fuzzy logic is introduced as many valued logic forms, and it contains multiple logical
values of a variable between 0 and 1, which are partially true and partially false. Sometimes,
humans cannot decide whether something is true or false in real life. Hence, the term
fuzzy represents the things that are not obvious and not clear. A fuzzy algorithm gives the
system some flexibility to find the best possible solution to the problem after considering
all available information between the true and false values. The fuzzy logic algorithm
has been used in different fields, from machine theory to artificial intelligence (AI), such
as microcontrollers and workstation-based algorithms, for achieving the required output.
It can also be executed in both software and hardware. In terms of HV insulators, three
previous fuzzy logic approaches are discussed in this research.

In [98], Lu, Wang et al. studied the characteristic of the ceramic pollution discharge
with the use of Ultraviolet (UV) images along with the artificial climate chamber. Based
on the discharge UV image, they divided the discharge type into two types. The first
one is the corona discharge (CDA), and the second is the partial arc discharge area (PDA)
and partial arc discharge repetition (PDR). Then, a digital image processing algorithm
was applied to the UV image for segmentation purposes, the number of the partial arc
discharges at specific times was counted, and the correlation of the resulting variables
with the relative humidity (RH) was found. After that, the fuzzy logic inference was used,
where the correlated variables are the input, and the pollution grade is the output of the
technique. Wang, Lin, et al. [140] used the mean of the leakage current and environment
facts in a fuzzy logic system to define the pollution condition of the HV lines. They selected
a set of parameters, such as the dew-point deficit, leakage current, wind speed, and relative
humidity, to be the input of the fuzzy logic system after conducting data analysis. The
output of the system is pollution level, and it was linked to a webpage service. Petri,
Moutinho, et al. [141] presented a method for evaluating the state of the insulators based
on the severity degree generated by an instrument. The instrument consists of two main
parts, the first one is the algorithm’s part, such as a fuzzy inference system or convolutional
network, and the second part is the Raspberry Pi board. This instrument gives a range of
severity degrees from 0 to 10, which indicates partial discharge activity. This degree was
obtained using Mamdani fuzzy inference system and the extracted parameters from the
partial discharge signals.

5.3. Nero Fuzzy

Lu, Yu et al. [142] proposed a new contamination detection technique based on a
fuzzy neural network technology to overcome the drawback of the traditional detection
techniques. They considered the characteristics of leakage current, relative humidity,
and temperature while building the technique. Hence, as the input variables, the neural
network included virtual value (Fl), leakage current peak value (Fp), temperature (T),
leakage current pulse frequency (Ff), and humidity (H), and the weights of this network
were constructed during the training process. The equivalent salt deposit density (ESDD),
nonsoluble deposit density (NSDD), and hydrophobicity classification (HC) are the outputs
of this network. In a paper [76], Khaled, El-Hag, et al. proposed a learning process for
predicting the ESDD contamination level on the polymer insulators based on the recorded
leakage current signals. After that, they used the stepwise regression method in the feature
extraction stage and selected a set of features based on this method to feed to the learning
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model: salt–fog conductivity, insulator length, voltage stress, leakage current peak value for
5 h, rate of change of peak value, rate of change of average peak value, and leakage current
peak value for 15 min. Then, the authors fed these features to different classifiers: KNN,
polynomial, and neuro–fuzzy classifiers to specify the contamination level based on the
resulting ESDD range. They also found that when they reduced the classification problem
from four classes to three classes, the recognition rate increased from 65% to 78% in the
polynomial classifier. In [143], Salem, Abd Rahman, et al. proposed an artificial intelligence
(AI) method which combines an artificial neural network (ANN) and adaptive neuro–fuzzy
inference system (ANFIS) for predicting the voltage of the pollution flashover. Data used in
this method were collected from the experimental works, and the theoretical results were
generated from a validated model. Diameter D, form factor F, height H, equivalent salt
deposit density (ESDD), creepage distance L, and flashover voltage correction (C) are the
features that were used to train the AI network for predicting the voltage values.

Frizzo Stefenon, Zanetti Freire, et al. [118] proposed an offline time series forecasting
method with an adaptive neuro–fuzzy inference system (ANFIS) to predict the insulator
fault. They collected signals from the insulators using an ultrasound device. Then, they
used a wavelet packet transform (WPT) to remove the noise effect in the collected signal
and improve the efficiency of the time series forecasting process. They fed the extracted
data into three system structures: fuzzy c-means clustering, subtractive clustering, and
grid partition. They found that the wavelet neuro–fuzzy system with c-means clustering
achieved the best accuracy compared with other structures.

5.4. Detrended Fluctuation Analysis (DFA)

In [144], Singh et al. used the detrended fluctuation analysis (DFA) on the recorded
leakage current to predict the contamination level of the insulators. They observed that
the DFA variable follows a specific behavior with the contamination level or the NaCl.
Hence, this behavior was used to classify the contamination level, and this method showed
the ability to remove the noise effect in the leakage current signal. Deb, Das, et al. [79]
proposed a method for assessing the outdoor insulators based on the recorded leakage
current and the use of detrended fluctuation analysis (DFA). They extracted the distor-
tions from the recorded leakage current using a developed tracker signal based on the
fundamental component; the authors found that these distortions give an indication of
the contamination level of the tested insulator. Dey, Dutta, et al. [145] proposed a method
based on the detrended fluctuation analysis (DFA) of the recorded leakage current to define
the contamination level of the insulator. They used NaCl, Kaolin, and water to emulate
the pollutant layer in the 11 kV suspension insulator disc. They showed that the DFA
parameter gives a good indication of the level with respect to ESDD and conductivity.

5.5. Miscellaneous Techniques

Banik, Dalai, et al. [33] proposed a rough set theory (RST)-based method for classifying
the contamination level of the porcelain insulators. These insulators were contaminated by
the solid layer method (SLM) based on IEC60507, and the leakage current of the insulators
was recorded for different levels and at different humidity values. Then, they used the
autocorrelation concept for the feature selection process from the recorded leakage current
since it is perfect for nonstationary leakage current and it has the ability to remove the
effect of the noise in the current signal. After that, RST was applied to the extracted features
to specify the contamination level of the insulator. In paper [78], Deb, Choudhury, et al.
proposed a technique for predicting the contamination level on the HV lines based on the
use of short-time modified Hilbert transform (STMHT) and sparse representation-based
classification. They used STMHT and Fischer linear discriminant analysis (FLDA) in the
feature extraction and feature reduction stages based on the recorded leakage current
signals. The selected features were peak, mean, standard deviation, charge, and crest factor.
These features were fed into the sparse representation-based classification model to predict
the contamination level. In [93], Yan, Duan et al. proposed a method called latent low-rank
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representation (LatLRR) for image fusion. They collected the infrared and visible images
of insulators from the HV substations under normal operation. Then, they preprocessed
the visible images by guiding and filtering the images to preserve edge information in the
images. This method showed that it has the ability to extract the temperature information
from the infrared image so as to define the state of the insulator in the infrared image
and keep the texture details of the visible image in the fusion image. So, the remaining
information in the fusion image will define the contamination of the insulator. Liao, Li et al.
in [146] used the technology of laser-induced breakdown spectroscopy system (LIBS) along
with principal component analysis (PCA) to predict the contamination level of the insulator.
The laser system was used to bombard the natural and artificial contaminated insulators
with different contamination levels. The authors used a camera and spectrometer to collect
the emission spectrum. The peak of the spectral line was used in specifying the element
types, and then the PCA was used for classifying the spectral line into four contamination
levels. In [25], de Santos and Sanz-Bobi proposed a method for predicting the leakage
current of the insulator while considering the weather and environmental information of the
insulator’s location. They developed a Cumulative Pollution Index (CPI) to find the soluble
pollution deposit value on the insulator. The resulting value, along with wind, directional
dust, and rain data, were learned using the random forests algorithm in order to determine
the leakage current in the RTV silicone-coated insulators and toughened glass. In [147],
Ahmad, Tahir, et al. presented a learning method for predicting the flashover parameters
in the silicone rubber insulators under different values of ESDD, NSDD, humidity, and
temperature. Data were collected from experimental works in the lab under controlled
conditions. Four parameters and their effect on flashover voltage, arc inception, and surface
resistance were studied. Cleaned data from the four parameters were trained using different
learning models such as decision tree (DT), artificial neural network (ANN), least squares
boosting ensemble (LSBE), polynomial support vector machine (PSVM), and Gaussian
SVM (GSVM). In addition, to improve the accuracy of the model, the authors used the
bootstrapping technique to increase the sample space. Zhang and Chen [97] presented
a deep learning model based on the use of a deep belief network (DBN) and a sparse
autoencoder (SAE) for predicting the contamination grade in the insulator. They used
a double-layer stacked SAE to extract the spare features from the ultraviolet discharge
images. Then, the extracted features were trained using DBN, which consists of three layers
of restricted Boltzmann machine (RBM), to predict the contamination grade. Palangar
and Mirzaie [148] proposed a technique for predicting the critical conditions in the glass
and porcelain insulators using the leakage current. They defined a new index called by
phase index; it represents the cosine of the phase angle of fundamental harmonics of the
current. Based on the index, when the value is lower than 30%, the insulator is considered
in an efficient state, and there is no flashover. On the other hand, when the index is higher
than 30%, the insulator is put under investigation. Additionally, the authors found that
when the humidity increases, the index increases accordingly. In paper [149], an innovative
method was proposed to evaluate the risk of uniform and nonuniform pollution and wet
glass insulator. Salem, Abd-Rahman, et al. proposed an alternative index to estimate the
risk of the insulator, called Rhi, which is constructed based on the third, fifth, and seventh
harmonic components of the leakage current. They tested the new index experimentally
under different contamination conditions and estimated the risk of the insulator using
normal and probability distribution functions (PFD). Moreover, they studied the impacts
on the degree of flashover occurrence probability and the flashover voltage gradient.

Ibrahim and Abd-Elhady [55] proposed a monitoring method for pin-type and cap
and pin-type HV insulators. The method depends on the use of a low-cost Rogowski coil
transducer that fits around the pin of the insulator. They analyzed the output voltage from
the coil winding by using fast Fourier transform (FFT). Based on the obtained spectrum,
the pollution level of the insulator can be defined directly. It was validated and tested using
an experimental setup by recording the voltage and leakage current and then finding the
pollution level from their spectrum using the FFT analysis. In [150], Wahyudi, Setiawan
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et al. investigated the ultraviolet (UV) released by a partial discharge that occurred in the
dry and polluted conditions of the insulators. The intensity and UV image were recorded
for one minute per voltage change per pollutant weight change, and the voltage stress
was varied until the flashover happened. It was observed that there was a fixed relation
between the UV emission parameters and the pollutant weight. In addition, it was noted
that the UV intensity has three main values—minimum, maximum, and average—and they
fluctuated in the recording stage. Based on these values, the authors showed that there
were two UV-image patterns that could be identified: concentrated light and scattered
points. The higher UV intensity means a higher deviation between the minimum and
maximum values, and the highest concentrated light pattern was defined during a critical
condition. Salem, Abd-Rahman, et al. [26] presented an innovative and alternative method
to predict the pollution level of the HV insulator based on the higher component up to
the seventh component of the leakage current. They formulated the new harmonic index
based on the ratio of the sum of the seventh and fifth components to the third harmonic
component. Next, they recorded the leakage current using a shunt resistor and current
transformer. Then, a set of lab tests was conducted on porcelain and glass insulators under
a salt–fog pollution state, and they are represented by three levels: light, high, and medium
contamination. In a paper [151], Banik, Nielsen, et al. studied the effect of the distorted
supply voltage on the leakage current of the silicone rubber insulators. They found that the
supply voltage distortion causes an impact on the measured leakage current as in relative
humidity and contamination severity. Hence, they proposed a crest factor-based leakage
current analysis method to predict the pollution level of the insulator under distorted
supply voltages. Based on the crest method, four clusters were identified with respect to
the crest factor values of different insulators. Those clusters were used to define the severity
level of the silicone rubber insulator.

Castillo-Sierra, Oviedo-Trespalacios, et al. [82] presented a method for predicting and
monitoring the leakage current of the polluted insulator to define the suitable washing date.
The exponentially weighted moving average (EWMA) control chart was used to specify
the suitable days for washing the insulator so that the washing omissions and false alarms
could be reduced.

6. Conclusions

This paper has reviewed the different methods adopted to identify the contamination
levels in high-voltage insulators. Various techniques have been discussed alongside their
advantages and disadvantages based on the published research work in the last decade. The
major high-voltage insulator contamination level classification techniques discussed include
machine learning, fuzzy logic, neuro–fuzzy interface, detrended fluctuation analysis (DFA),
and various other techniques. However, each of these major categories includes various
methods which have been proposed by different researchers and have been discussed
throughout this work. The insulator contamination and the sources of contaminants have
also been discussed. Moreover, the different methods of improving insulator performance
in the industry have been analyzed. It has been noted that different techniques, such as
coating, creepage extenders, optimization of electric field distribution, and cleaning, are
being used by the power utilities to improve the insulators’ performance. For instance, it
has been noted that adding hydrophobic material on the surface of insulators improves the
performance of ceramic insulators, such as the use of high-temperature-vulcanized silicone
rubber (HTV-SiR) and room-temperature-vulcanized silicone (RTV-SiR) which offer better
characteristics in terms of high tensile strength, better curing, easy processing, actuation,
compressive mechanical behavior, and better hydrophobicity, among other silicone rubbers.
Furthermore, it has been noted that the coated insulator has less leakage current compared
with the noncoated insulator at the same voltage level. The use of the leakage current
magnitude as a gauge for the pollution severity on the insulation has been analyzed by
reviewing different methods. It has been observed that when mathematical morphological
function and statistical operations are used in the preprocessing stage to test porcelain
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insulator, the highest accuracy of 100% is obtained while the lowest accuracy (2%) is
achieved when FFT signals are used to test the porcelain, glass, and polymer insulators.
Hence, it is expected that this work will act as a reference guide for power utilities and
researchers to select the best methods for contamination level identification based on their
effectiveness and economic feasibility.
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