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Abstract: In Saudi Arabia, Origanum vulgare is widely disseminated. In the present work, we used
GC-MS analysis to identify the components of Origanum vulgare essential oil. The disc diffusion assay
was used to assess the essential oil’s in vitro antibacterial efficacy against Gram-positive and Gram-
negative Staphylococcus aureus and Escherichia coli. The antimicrobial efficacy against many microbial
proteins, including tyrosyl-tRNA synthetase (TyrRS), DNA gyrase, and dihydrofolate reductase
(DHFR), was further evaluated using molecular docking. Eighteen compounds were identified
using GC-MS analysis, which constituted 99.81% of the total essential oil content. Terpinen-4-ol
(34.3%), Beta-Terpineol (16.96%), 3-Epimoretenol (11.84%), and Alpha-Terpineol (3.86%) were the
main substances identified. According to the antibacterial investigation, the inhibition zone against
Staphylococcus aureus was 8 mm and 6 mm against Escherichia coli. High affinities were found between
3-Epimoretenol and tyrosyl-tRNA synthetase (TyrRS) and dihydrofolate reductase (DHFR) compared
to positive controls (Clorobiocin, SCHEMBL2181345); the affinity values were −8.3 Kcal/mol and
−9.2, respectively. The results of the present study indicate that Origanum vulgare essential oil can be
used as a nutraceutical to treat infectious diseases.

Keywords: Origanum vulgare; essential oils; antimicrobial; gas chromatography; molecular docking

1. Introduction

Pharmacological industries have created new antibiotics during the past three decades [1].
However, these medicines have not been able to stop the spread of many bacteria with the
genetic capacity to spread and develop drug resistance [2]. Therefore, infections with these
bacteria are linked to substantial morbidity and death, particularly in individuals who are
immunocompromised [3,4].

As a result, interest in alternative and natural antibacterial agents is developing.
Alternative agents, such as essential oils (EOs) extracted from fragrant plants, have been
suggested [5]. Numerous papers in the literature [6,7] discuss the antibacterial activity of
essential oils against a variety of microorganisms. The main mechanisms and sites of action
of the different constituents of essential oils are: alteration of the cell wall, degradation of
the cytoplasmic membrane, alteration of membrane proteins, leakage of cellular contents,
coagulation of the cytoplasm and exhaustion of the force of proton motion [8,9]. In addition,
The fundamental benefit of using these natural compounds is that, unlike prolonged use of
synthetic antibiotics, they do not increase antibiotic resistance [10]. In addition to having
antimicrobial qualities, essential oils and their constituents have also been demonstrated
to have antiviral, antimycotic, antitoxic, antiparasitic, and insecticidal qualities, which
may be connected to how these substances work in plants [11]. These activities are due
to the fact that essential oils contain a complex mixture of volatile compounds that are
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characterized by their low molecular weight and hydrophobicity. Among them are carbides
(ex. limonene), alcohols (ex. geraniol), aldehydes (ex. cinnamaldehyde), ketones (ex.
carvone), acids (ex. cinnamic acid), esters (ex. bornyl acetate), ethers (ex. 1,8-cineole),
peroxides (ex. ascaridole), and phenols (ex. thymol and carvacrol) [12].

Origanum vulgare (oregano), one of numerous Origanum species from the Lamiaceae
family are widely distributed. Oregano is a herbaceous or sub-woody plant at the base, 30
to 90 cm tall, with square stems bearing about forty branches with small, oval dark green
leaves [13]. The inflorescences are spike-like and united in compound inflorescences. The
calyx of oregano is tubular with five short teeth, bilabiate or not. The corolla is white, pink
or purple [14]. The genus Origanum is mainly distributed around the Mediterranean basin.
Of the Origanum species, 81% (35 out of 43 species) are found exclusively in the eastern
Mediterranean, mainly in Turkey, Greece, and the Middle East. The species Origanum
vulgare is also widely found in Eurasia and North Africa [15]. In this context, Origanum
vulgare is one of the most common spices used in many foods. In addition, its oil and
its compound are not limited to the use of aroma and flavor, but rather it has shown its
effectiveness in many biological activities, including antioxidants (as a result of containing
phenols, which play a role in neutralizing free radicals and also in the decomposition of
peroxides) [16], antifungal [17], antibacterial [18], anticancer (explained by the potential of
HE21 to inhibit the penetration of mutagens into cells; inactivating mutagens by trapping;
directly capturing radicals produced by a mutagen or activating cellular antioxidant en-
zymes; to inhibit the metabolic conversion of cytochrome P450 by mutagens; or to activate
the enzymatic process of detoxification of mutagens) [19], insecticidal [20], herbicidal [21],
and nematicidal [22] properties. According to several studies, oregano essential oil has
been shown to be analgesic, emmenagogue, decongestant, diaphoretic, vermicidal, an-
tipyretic, anti-inflammatory, sedative, antimutagenic, larvicidal, laxative, nacritic, pectoral,
tonic, and diuretic [23]. As a result, oregano essential oil is used in the composition of
several pharmaceutical and parapharmaceutical preparations [24]. Its volatile oil contains
up to 70% monoterpenoids (thymol and carvacrol) and sesquiterpenoids, dependent on
geographic origin and plant developing stage [22,25].

The aim of the present study was to determine the main compounds in the essential oil
of Origanum vulgare plant that was harvested from Saudi Arabia using GC-MS analysis and
compare it with other studies, as well as investigate its antibacterial activity on antibiotic-
resistant strains and clarify the antibacterial mechanism through in silico receptor-ligand
docking study.

2. Materials and Methods
2.1. Chemicals

Mueller–Hinton agar and Mueller–Hinton broth were purchased from Biokar Diag-
nostics, Beauvais, France; dimethyl sulfoxide (DMSO) and Hexane were purchased from
Sigma-Aldrich, Darmstadt, Germany.

2.2. Plant Material and Essential Oil Extraction

Origanum vulgare aerial portions were taken in March from Altaif city in Saudi Arabia’s
southern area during the spring season (2022). The plant was harvested, dried in the shade
at room temperature, and powdered. The essential oil of Origanum vulgare plant was
extracted using a Clevenger-type hydrodistillation equipment for 3 h (100 g plant material
in 1 L water). The essential oil produced was stored at +4 ◦C until tested and evaluated.

2.3. Gas Chromatographic Analysis

The essential oil of Origanum vulgare plant was diluted with hexane at a ratio of
1:10 [26]. The GC-MS analysis to determine the volatiles compounds was performed at the
research center of College of Pharmacy, King Saud University, Riyadh, by using a Clarus
500 PerkinElmer (30 m × 0.25 mm ID × 1 µm of capillary column) gas chromatograph
equipped and coupled to a mass detector Turbo Mass Gold according to method described
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by Khalil et al. [27]. The initial column temperature was programmed to 110 ◦C and
maintained for 2 min. At an increment rate of 5 ◦C/min, the temperature was increased
to 280 ◦C and kept for a period of 9 min. A volume of 1 µL of diluted oil was injected in
temperature ensured as 250 ◦C with helium gas flow at rate 1 mL/min. The ionization
voltage was 70 eV and the mass spectral scan range was set at 45–450 (m/z). By contrasting
the mass spectra obtained with the mass spectra from the Adams Library [28] and the Wiley
GC/MS Library (McLafferty and Stauffer, 1989) [29], the chemical makeup of the Origanum
vulgare essential oil was determined.

2.4. Antimicrobial Activity Determination
2.4.1. Micro-Organism Tested

Gram-positive (Staphylococcus aureus: ATCC 25923) and Gram-negative (Escherichia
coli: ATCC 25922) strains were used in this study. The strains are clinical isolates which
are an important opportunistic pathogens in humans and isolated in Seattle, United States.
The strains are commonly used in many studies as a quality control strains for antibiotics
sensitivity and commercial products [30,31].

2.4.2. Preparation of Culture Media

Muller–Hinton agar medium (MH) was obtained by dissolving 38 g of Muller–Hinton
agar medium in 1 L of distilled water (pH is 7.5 ± 0.2) and Muller–Hinton broth (21 g/L in
distilled water). Each medium was sterilized in an autoclave at a temperature of 115 ◦C for
15 min.

2.4.3. Inoculum Preparation

Colonies were taken from 24 h cultures and suspended in sterile saline (0.9% NaCl).
After vortexing for 15 s, the density of suspended was adjusted to a turbidity of 0.5
McFarland by using a spectrophotometer method. The final concentration of the inoculum
was approximately 108 cfu/mL [32–34].

2.4.4. Disk Diffusion Assay

The antibacterial activity of Origanum vulgare essential oil was determined using the
disc diffusion assay. A volume of 100 µL of suspensions (108 CFU/mL) in the growing
phase was spread on Mueller–Hinton agar medium [35]. A volume of 20 µL of Origanum
vulgare essential oil (dissolved in dimethyl sulfoxide (DMSO 2%); v:v) was added to 6 mm
filter paper disk and placed on the inoculated Petri dishes. Then, the dishes were incubated
at 37 ◦C for 24 h. The inhibition zone was measured to evaluate the antibacterial activity
against the microorganism studied.

2.5. Molecular Docking
2.5.1. Preparation of the Ligand

From PubChem, we acquired the SDF format of beta terpineol (CID: 8748), terpinen-
4-ol (CID: 11230), and 3-epimoretenol (CID: 604951). Using MyPol software, the SDF file
was converted to PDB format and then to PDBQT by using AutoDock Tools v1.5.7. The
nonpolar hydrogen atoms were combined, Gasteiger partial charges were added, and
rotatable bonds were established for the finished ligand production.

2.5.2. Preparation of the Receptors

The PDB file for each receptor was downloaded from the Protein Data Bank website.
The X-ray crystal structures of the receptors were chosen due to their completeness, res-
olution, and suitability for our research objective. Table 1 gives details about the chosen
receptors. To prepare the receptors in the form of PDBQT, Discovery Studio Visualizer
v19.1.0 was used at the beginning, which removes water molecules and heteroatoms. After
that AutoDock Tools v1.5.6 was used to add Gasteiger charges and polar hydrogen atoms.
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Table 1. Description of the studied receptors.

Receptors ID Class

TyrRS 1jij Ligase

DNA gyrase 1KZN Isomerase

DHFR 3fyv Oxidoreductase
TyrRS: tyrosyl-tRNA synthetase, DHFR: dihydrofolate reductase.

2.5.3. Docking Simulation

To run the docking simulations between receptors and molecules that used in this
study, we used a AutoDock Vina 1.1.2 software.

2.5.4. Docking Validation Protocol

To examine the accuracy of the molecular docking algorithms, we compared the
active sites experimentally produced by the X-ray diffraction method to the results of
intermolecular interactions using the same previous methodology. Next, we applied the
re-docking process, based on the overlay of the co-crystallized ligand bound to each target
protein (coded 1JIJ, 1KZN, and 2FYV) on the docked co-crystallized ligand using the
molecular docking simulation [36,37].

3. Results and Discussion
3.1. Phytochemical Analysis of Origanum vulgare

The Origanum vulgare essential oil was examined using a GC/MS system and the
chromatogram results present in Figure 1.
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Figure 1. GC-MS chromatogram of Origanum vulgare.

The chemical composition of the essential oil of Origanum vulgare plant was analyzed
by the gas chromatography–mass spectrometry (GC-MS) method. Table 2 and Figure 2 lists
the elements along with their respective proportions (% of Area). A total of 18 compounds
representing 99.98% of the total content were determined by GC/MS. The principal compo-
nents of the essential oil of Origanum vulgare were terpinen-4-ol (43.32%), beta-terpineol
(16.96%), 3-epimoretenol (11.84%), gamma-terpinen (6.35%), and alpha-terpieol (3.86%).
These compounds constituted 82.33% of the total content, while the rest of the compounds
constituted 17.65%. It should be noted that terpinen-4-ol was the higher content in this
essential oil with an important concentration compared to the others. The results in the
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present work are consistent with those conducted by Busatta et al., which showed that
terpinen-4-ol is the main compound with a ratio of 21.43% [38]. However, Imtara et al.
found that the main constituents in Origanum vulgare essential oil from Morocco were
carvacrol (48.38%), thymol (26.55%), and γ-terpinene (7.90%) [26]. In the same country,
Hayani et al. identified thymol (38.59%), carvacrol (26.65%), and o-cymene (14.33%) as the
main compounds in this essential oil [39]. Similarly, Origanum vulgare essential oils from
Italy are characterized by a high percentage of thymol, carvacrol, linalyl acetate, and γ-
terpinene in greater quantities [40]. However, Portuguese researchers found that carvacrol,
thymol, γ-terpinene, and β-fenchyl alcohol are considered the main molecules present in
Origanum vulgare essential oil [41]. In 2018, a study conducted by Stešević et al. on Origanum
vulgare essential oil from Montenegro showed that β-caryophyllene, linalyl acetate, and
α-terpineol are the main compounds [42]. However, the variation seen in the percentages
of the main components of the essential oils analyzed in this and several studies could
be attributed to the origin of the plant, different environmental influences (geographical,
seasonal and climatic conditions, sunlight, and salinity, as well as the effect of crop, and
time of harvest), genetic background, and the extraction method of the plants [43–45]. As
a result, the influence of these factors on biosynthetic pathways causes differences in the
qualitative and quantitative terms of the characteristic majority chemicals, which result in
the existence of several chemotypes distinguishing essential oils from various origins [46].

Table 2. The chemical composition of Origanum vulgare essential oil using GC-MS analysis.

# Compound Name Chemical
Formula

Molecular Weight
(g/mol) RT (min) Area %

1 Beta-Terpinene C10H16 136.23 6.73 2.94
2 Beta-Myrcene C10H16 136.23 6.99 0.53
3 2-Carene C10H16 136.23 7.42 2.29
4 O-Cymene C10H14 134.22 7.55 2.21
5 Gamma-Terpinene C10H16 136.23 8.08 6.36
6 Terpinolene C10H16 136.23 8.55 1.31
7 Beta-Terpineol C10H18O 154.25 8.75 16.97

8
2-Cyclohexen-1-ol,

1-methyl-4-(1-methylethyl)-,
trans-

C10H18O 154.25 9.1 1.71

9
Cyclohexanol,

2-methyl-5-(1-methylethenyl)-,
(1α,2α,5β)-

C10H18O 154.25 9.38 0.85

10 Terpinen-4-ol C10H18O 154.25 9.99 43.32
11 Alpha-Terpineol C10H18O 154.25 10.16 3.86
12 Linalyl anthranilate C17H23NO2 273.37 10.98 0.48
13 Caryophyllene C15H24 204.35 13.36 1.65

14 1,5-Heptadiene,
2,5-dimethyl-3-methylene- C10H16 136.23 14.33 0.53

15 9,17-Octadecadienal, (Z)- C18H32O 264.4 21.03 0.48
16 3-Epimoretenol C30H50O 426.7 25.07 11.84
17 (8S,14) Cedran-diol, C15H26O 238.4 27.93 1.43
18 Cycloeucalenyl acetate C32H52O2 468.8 28.33 1.22

RT: Retention time.
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3.2. Antimicrobial Activity

The disc diffusion method is acknowledged as a practical semi-quantitative approach
for assessing the susceptibility of bacteria to various chemicals [38,47]. By examining the
existence of inhibitory zone values, the antibacterial activity of Origanum vulgare essential oil
against the pathogens taken into account in this investigation was determined. The results
show that the greatest inhibition zones (8 mm) and the highest activity were seen against
Staphylococcus aureus (Table 3). However, the essential oil antibacterial activity was effective
against Escherichia coli as well (6 mm). These results support Gram-positive bacteria being
more sensitive than Gram-negative bacteria [48]. Also shown in Table 3, it was observed that
Staphylococcus aureus strain was resistant to two types of antibiotics (Penicillin G and Fusidic
acid), while Escherichia coli strain was resistant to five antibiotics, namely, ciprofloxacin,
trimethoprim/sulfamethoxazole, cefotaxime, amoxicillin, and cefuroxime. The essential
oils are characterized mainly by their hydrophobicity. This allows their solubilization in
the membranes, which causes a destabilization of the structure and an increase in the
membrane permeability [49]. These changes lead to leakage of ions and intracellular
compounds. Loss of cytoplasmic material results in cell bursting [50]. The mode of
action of certain antibacterial molecules has been described in the literature. Chemical
compounds of essential oils known for their antimicrobial effectiveness and broad spectrum
are phenols (thymol, carvacrol, and eugenol), alcohols, (α-terpineol, terpinen-4-ol, and
linalool), aldehydes, ketones, and, more rarely, carbides [51]. Terpinen-4-ol is the main
compound identified in the present work and this compound is known for its antibacterial
activity. This compound acts on many bacterial species, including Gram-positive and Gram-
negative bacteria, and is highly effective against MRSA (Methicillin-resistant Staphylococcus
aureus) infection [52]. In addition, according to Lambert et al., the combination of the main
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active compounds would act synergistically by potentiating the antimicrobial action of the
essential oil [53].

Table 3. Inhibition zone generated by Origanum vulgare essential oil on bacteria studied and list of
antibiotics that bacteria have resisted.

Escherichia coli Staphylococcus aureus

Origanum vulgare essential oil 6 mm 8 mm

DMSO - -

Antibiotic resistant CXM, AML, CTX, SXT, CIP PG, FA
-: not active, mm: millimeter, DMSO: Dimethyl sulfoxide, PG: Penicillin G, FA: Fusidic acid, CXM: Cefuroxime,
AML: Amoxicillin, CTX: Cefotaxime, SXT: Trimethoprim/sulfamethoxazole, CIP: Ciprofloxacin.

A study was carried out by Sahin et al. on 24 bacteria, including two types of Staphylo-
coccus aureus, one of which was found to be resistant to the antibacterial activity of Origanum
vulgare essential oil, and the other had a diameter of inhibition 10 mm, which is consistent
with our results. Another study conducted by Busatta et al. on nine types of bacteria
showed that all of these species are sensitive to the antibacterial effect of Origanum vulgare
essential oil, with the exception of Pseudomonas aeruginosa [38]. In addition, the inhibition
zone of Origanum vulgare essential oil in his study on Escherichia coli was 17.33 mm and
on Staphylococcus aureus was 26.8 mm and these results are better than those in our study.
The reason for this difference may be due to the fact that Origanum oil, in a Busatta et al.
study, contained carvacrol and thymol compounds, which is known to antibacterial ac-
tivity [54,55]. A study carried out on Bacillus cereus has elucidated the mode of action of
carvacrol. This compound crosses the lipid bilayer and is localized between the chains of
fatty acids. This deformation of the structure increases the membrane fluidity, leading to
a modification of the passive permeability. A decrease in intracellular ATP was noted in
bacteria exposed to carvacrol, as well as a decrease in membrane potential [8]. Concerning
thymol mechanism action, a study showed that thymol alters membrane permeability,
causes loss of intracellular substances, and interacts with intracellular sites [8]. However,
it is important to note that several factors can affect the diameter of the inhibition zones
of essential oils among them the diffusion and viscosity of the essential oils [8]. In 2018,
Hamada et al. conducted a study on the synergistic effect of Origanum vulgare essential oil
with different types of honey of different plant origin. The study showed that when mixing
the oil with honey, it enhances the antibacterial activity of honey. At the same time, this
mixture reduces the toxicity of essential oils [31].

3.3. Docking Validation

The results presented in Figure 3 demonstrate that ASP195, ASP40, Tyr170, GLN174,
ASP80, ASP177, and TYR36 amino acids residues are the active sites of 1JIJ.pdb protein
in A-chain. Two of these intermolecular interactions are obtained computationally using
molecular docking simulation as ASP40 and ASP195 amino acids residues. In addition, the
result of superposition show that root mean square deviation (RMSD equal to 1.375 Å) is
minimal and less the threshold 2 Å.

The results presented in Figure 4, show that ASN46, ASP73, and ARG136 amino
acids residues, are the active sites of 1KZN.pdb protein in A-chain. ASN46 amino acid is
one of these three intermolecular interactions, which is produced computationally using
molecular docking simulation. In addition, the result of superposition shows that root
mean square deviation (RMSD equal to 1.987 Å) is minimal and below the threshold 2 Å.
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The results presented in Figure 5 show that LEU5, PHE92, and ASP27 amino acids
residues are the active sites of 2FYV.pdb protein in X-chain. ASP27 and PH92 amino acids
residues are two of these three intermolecular interactions, which are produced compu-
tationally using molecular docking simulation. In addition, the result of superposition
show that root mean square deviation (RMSD equal to 1.948 Å) is minimal and below the
threshold 2 Å. Consequently, the process of molecular docking is successfully validated.
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3.4. Molecular Docking

Based on the results of the GC/MS, the major abundant compounds (Beta-terpineol,
Terpinen-4-ol and 3-epimoretenol) were selected to clarify their role in antibacterial activity
by conducting a molecular docking analysis between these compounds and the receptors
that were selected based on several studies [56–58]. The results of affinities between
the compounds and receptors are shown in the Table 4. In addition, chlorobiocin and
SCHEMBL2181345 were used as positive controls to evaluate the outcomes of the molecules
with receptors.

Table 4. Affinity results of the selected receptors and molecules.

Affinities (Kcal/mol)

TyrRS DNA Gyrase DHFR

Beta-terpineol −4.4 −6.1 −5.7
Terpinen-4-ol No interaction −6.6 −6.1

3-epimoretenol −8.3 −7.4 −9.2
Clorobiocin −8.2 −9.1 _

SCHEMBL2181345 _ _ −6.3
TyrRS: Tyrosyl-tRNA synthetase; DHFR: dihydrofolate reductase; _: no affinity.

The 3-epimoretenol and beta-terpineol compounds showed good affinities with the
tyrosyl-tRNA synthetase (TyrRS) receptors with values of −8.3 Kcal/mol and −4.4 Kcal/mol,
respectively, while there was no binding between terpinen-4-ol and the same receptor.
(Figure 6). In addition, the value of the affinity between the positive control (Clorobiocin)
and the tyrosyl-tRNA synthetase (TyrRS) was −8.2 Kcal/mol. This indicates that the inter-
action between the 3-epimoretenol compound and the tyrosyl-tRNA synthetase (TyrRS)
receptor is almost similar to the interaction between the Clorobiocin and the tyrosyl-tRNA
synthetase (TyrRS) receptor.

Among the tested compounds, 3-epimoretenol had the best affinity value with DNA
gyrase receptor (−7.4 Kcal/mol), but it was less than that between the DNA gyrase receptor
and the Clorobiocin (−9.1 Kcal/mol). Beta-terpineol had the lowest affinity value, which
was −6.1 Kcal/mol (Figure 7). While the value of the affinity between terpinen-4-ol and
DNA gyrase receptor is −6.6 Kcal/mol.
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(B): Terpinen-4-ol (C): 3-epimoretenol.

With regard to the dihydrofolate reductase (DHFR) receptor, it interacted with the
three tested compounds; the highest value was for the 3-epimoretenol compound with
a value of −9.2 Kcal/mol (Figure 8), followed by the terpinen-4-ol and beta-terpineol
compounds with values of −6.1 Kcal/mol and −5.7 Kcal/mol, respectively. The value
of the affinity between the SCHEMBL2181345 and the dihydrofolate reductase (DHFR)
receptor was −6.3 Kcal/mol, which is less than that found with 3-epimoretenol. This
indicates that the interaction between the 3-epimoretenol compound and the dihydrofolate
reductase (DHFR) receptor is better than the interaction between the SCHEMBL2181345
and the dihydrofolate reductase (DHFR) receptor.
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Figure 8. The interaction between dihydrofolate reductase (DHFR) and tested compounds. (A): Beta-
terpineol; (B): Terpinen-4-ol (C): 3-epimoretenol.

4. Conclusions

The aim of the present study was to determine the chemical compounds and antibac-
terial activity of Origanum vulgare essential oil. The GC-MS results in the present work
showed that terpinen-4-ol, beta-terpineol and 3-epimoretenol are the main compounds of
Origanum vulgare essential oil. The results of the antibacterial activity have indicated that
Origanum vulgare essential oil can be considered a potent against the antibiotic-resistant
bacteria that were used in the present study. In addition, the results of molecular docking
showed that among the three main compounds, 3-epimoretenol had the best interaction
with the tyrosyl-tRNA synthetase (TyrRS), DNA gyrase, and dihydrofolate reductase
(DHFR) receptors followed by beta-terpineol, and this confirms the antibacterial activity
of this essential oil. According to the findings, the present study indicates that Origanum
vulgare essential oil can be used as a nutraceutical to treat infectious diseases.
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Abbreviation

GC-MS Gas chromatography–mass spectrometry
TyrRS Tyrosyl-tRNA synthetase
DHFR Dihydrofolate reductase
EO Essential oil
DMSO Dimethyl sulfoxide
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CFU Colony forming unit
PDB Protein data bank
RT Retention time
mm Millimeter
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