
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.032822

Article

Shared Cache Based on Content Addressable Memory in a Multi-Core
Architecture

Allam Abumwais* and Mahmoud Obaid

Computer Systems Engineering, Arab American University, Jenin, 240, Palestine
*Corresponding Author: Allam Abumwais. Email: allam.abumwais@aaup.edu

Received: 30 May 2022; Accepted: 20 September 2022

Abstract: Modern shared-memory multi-core processors typically have
shared Level 2 (L2) or Level 3 (L3) caches. Cache bottlenecks and replacement
strategies are the main problems of such architectures, where multiple
cores try to access the shared cache simultaneously. The main problem in
improving memory performance is the shared cache architecture and cache
replacement. This paper documents the implementation of a Dual-Port
Content Addressable Memory (DPCAM) and a modified Near-Far Access
Replacement Algorithm (NFRA), which was previously proposed as a shared
L2 cache layer in a multi-core processor. Standard Performance Evaluation
Corporation (SPEC) Central Processing Unit (CPU) 2006 benchmark
workloads are used to evaluate the benefit of the shared L2 cache layer.
Results show improved performance of the multicore processor’s DPCAM
and NFRA algorithms, corresponding to a higher number of concurrent
accesses to shared memory. The new architecture significantly increases
system throughput and records performance improvements of up to 8.7% on
various types of SPEC 2006 benchmarks. The miss rate is also improved by
about 13%, with some exceptions in the sphinx3 and bzip2 benchmarks. These
results could open a new window for solving the long-standing problems with
shared cache in multi-core processors.

Keywords: Multi-core processor; shared cache; content addressable memory;
dual port CAM; replacement algorithm; benchmark program

1 Introduction

Nowadays, multi-core architecture is widely used in processor design, and the cache hierarchy is
moved from one level cache to multi-level cache in the modern multi-core system [1–4]. Cache Level
1 (L1) is usually private for each core while other levels are either private or shared. Within a multi-
core system, the interconnection network connects cores to the shared level of caches (L 2 or L 3 in
most systems). Therefore, shared cache architecture affects overall system performance [5]. This work
adopted two levels of the cache hierarchy, private L1 cache and shared L2 cache, to improve cores
communication.

https://www.techscience.com/
https://www.techscience.com/journal/cmc
http://dx.doi.org/10.32604/cmc.2022.032822
https://www.techscience.com/doi/10.32604/cmc.2022.032822
mailto:allam.abumwais@aaup.edu

2 CMC, 2022

As the cores count increases, the contention on the shared cache between cores becomes more
intense because only one core can access the shared cache simultaneously. In addition, there are also
some other problems that need to be improved. First, a quick replacement of data that is not accessed
yet can occur due to the limited shared cache space architecture and competition between cores to
access cache lines. This causes shared data access failure and requires, in most cases, reading data from
lower level memory [1]. As a result, the system performance will be decreased [6]. Second, In addition
to cache architecture, the cache replacement algorithm also has the main function of determining the
effective response of the cache. The replacement algorithm’s goal is to replace the block that will not
be accessed in the near future when the cache becomes full or the data becomes un-useful.

In the previous work [7] a special purpose shared memory architecture based on CAM called
DPCAM was presented. In addition, an efficient replacement algorithm, called NFRA, which is
based on hardware rather than software executed by the cache controller was also presented. The
main purpose of the DPCAM and NFRA design is to allow simultaneous access and achieve less
access latency to the shared memory. The DPCAM design was implemented on cyclone V Field
Programmable Gate Array (FPGA) family as a standalone memory, and then the performance related
to power consumption and access latency was estimated. However, evaluation of the DPCAM as a
standalone memory could not reflect its performance within a multi-core system. So, the performance
of DPCAM inside a multi-core system should be evaluated.

In this paper, a new L2 shared cache architecture based on DPCAM is embedded inside the
multi-core. DPCAM has two dedicated ports, one for reading and the other for writing, to enable
simultaneous access and reduce the contention over shared memory. Moreover, This shared cache
includes a modified NFRA replacement algorithm based on simple hardware, that reduces the
access latency and miss ratio. Performance of the multi-core with DPCAM is measured in terms of
throughput and access miss rate. All results are compared with those of traditional multi-core systems,
which use the Least Recently Used (LRU) replacement algorithm and set-associative in the L2 cache.

The rest of the paper is organized as follows. In Section 2, the literature review of shared cache in
multi-core systems is summarized. In Section 3, a detailed description of DPCAM within a multi-core
architecture is presented. In Section 4, a modified replacement policy for DPCAM inside multi-core
system is given. In Section 5, the implementation of the DPCAM within a multi-core system and the
performance analysis are presented. Finally, Section 6 represents the conclusion of this work.

2 Related Works

Reference [3] states that due to the increasing number of on-chip cores and the deterioration
of power-performance penalty of off-chip memory locations, shared Last-Level Caches (LLC) have
emerged as among the most critical drivers of multi-core efficiency in today’s architecture. A new
hardware-software technique was proposed to partition the shared cache between cores to allow
simultaneous execution and reduce the contention. Pan’s discussion on how multi-cores improve
shared LLC performance will be an important piece of literature for this research in understanding
shared cache based on content-addressable Memory in a multi-core.

Reference [6] contributes to the research topic by Chip Multiprocessor (CMP) has emerged as
the de-facto standard for next-generation scalable multiprocessor architecture. Having better cache
utilization by selective data storage is Tiled CMP (TCMP) is becoming common technological
advancement. A large number of cores typically share the Last Level Cache in CMP. In contrast to
static Non-Uniform Cache Architecture (NUCA), which has a set address mapping strategy, Dynamic
NUCA (DNUCA) permits blocks to be relocated closer to the processor cores when the workload

CMC, 2022 3

demands it [6]. In LLC, the NUCA is used to partition it into many banks; each may be accessed
separately from the others. The DNUCA-based CMP may consistently distribute workloads to each
bank, resulting in improved worldwide utilization.

The previous article [7] findings support incorporating DPCAM as tiny shared cache memory
inside multi-core CPUs to improve performance. Many related works improve the shared level of
caches in multi-core systems. By coming up with a new design that addresses the multi-core systems
that address the issue of gaping memory speed and processor, there is a fundamental aspect of
solving the issue of our research on shared cache based on content-addressable memory in a multi-
core architecture. Abumwais contributes to the discussion by proposing that DPCAM is a novel
architecture for a specialized pipeline cache memory for multi-core CPUs that are being shown
DPCAM [7]. Also included a novel replacement algorithm based on hardware, referred to as an
NFRA, which is intended to lower the cost inefficiency of the cache controller while simultaneously
improving the delay of cache accesses. It was discovered via the experiments that the delay for writing
and read operations is much smaller when compared to a predefined cache memory. Furthermore, it
has been demonstrated that the latency of a write operation is almost constant irrespective of the size
of the DPCAM array used.

However, low-power advantages come at the expense of a high write latency. Some research
focused on reducing write latency or minimizing its effects on power. Reference [8] proposed an
adaptive shared cache that allows LLC configurations to be modified to applications in multi-core
systems during runtime execution. A fairness access method to the shared cache between cores was
proposed in [9]. The fairness method assigns a shared cache to multiple cores to achieve balance access
and reduce the contention.

With the Internet of Things being able to generate high amounts of data creating high energy and
performance in the traditional CPUs and Graphics Processing Unit (GPUs), there is an important
improvement in cache and memory bandwidth. Reference [10] constitutes our research topic by
proposing a Customizable Associative Processor (CAP), which speeds computing by utilizing several
parallel memory-based cores capable of estimated or precise matching, which can be configured to
meet specific requirements.

Through associative co-processors, there is always a chance to have special-purpose computers
run heavy programs, as [11] explained. Reference [11] proposes using current hardware components
to construct a multi-core processor for particularly unique computer systems. This work aims to
develop an associative co-processor centered on the FPGA platform for high-performance multi-core
processors, specifically for systems that perform associative operations and digital storage functions.
The procedures of retrieval and sorting are commonly utilized in both user- and system-level systems.

The use of promising technology is fundamental in solving the issue of having a multi-core
architecture that replaces the Static Random Access Memory (SRAMs) that have a low cache.
Reference [12] contributes to the topic of research by stating that one of the most serious issues with
Spin Torque Transfer RAM (STT-RAMs) is the significant error rate that results from stochastic
switching during write operations. Cache management algorithms have a significant influence in
determining the number of write operations performed into caches. As a result, it is required to develop
cache replacement methods to consider the additional issues posed by STT-RAM caches. For L2
caches, he offers a cache replacement mechanism dubbed Least Error Rate (LER), which he claims
will cut the error rate by 50%.

Attempts to address the problem have taken different research directions, leading to major
developments in parallel search and Artificial Intelligence (AI) applications for non-volatile Ternary

4 CMC, 2022

Content Addressable Memory (TCAM). Attempts to implement SRAM-based TCAM in a shared
cache for the parallel are also broadly discussed in the literature [13]. Efforts to implement a new
design of non-volatile TCAM (nvTCAM) cells have targeted multiple outcomes, such as a reduction
in area overhead and power consumption [14], promising great improvements in TCAM performance.

A novel hybrid memory system composed of Dynamic RAM (DRAM) and Non-Volatile Memory
(NVM) has also been proposed to improve the access latency and throughput of the computer system
[15]. DRAM-NVM presents a Multi-hash (MuHash) algorithm to solve the problem of limited size
in series write operation and to decrease the unnecessary read accesses. DRAM-NVM has been
implemented using Intel Optane memory on a single-core [16].

This literature gives input to the research topic: pipeline shared cache based on DPCAM memory
in a multi-core architecture. The main contribution of this article is to improve multi-core performance
by exploiting DPCAM and the NFRA technique. The comparison points between the proposed work
and the existing works are shown in Table 1.

Table 1: Comparison between the proposed work and the existing works

Work [3,8,9] [12] [14] [16] [10] [7] Proposed
work

Memory types Set-associative STT-RAM SRAM-based
TCAM

Hybrid
DRAM and
NVM

Resistive
CAM
(RCAM)

CAM LLC DPCAM

Replacement
algorithm

Standard and
modified LRU

LER - MuHash - NFRA Modified
NFRA

Implementation LLC cache
within
multi-core
system

The imple-
mentation is
performed on
the Advanced
Reduce
Instruction Set
Computer
(RISC)
machine
(ARM)
processor
provided by
gem5.

The use of
TCAM and
nvTCAM for
search
operations
and AI
applications is
investigated.

Has been
implemented
using Intel
Optane
memory on a
single-core

As a
stand-alone
and as a
hybrid
computing
unit besides
CPU and
GPU.

FPGA
standalone
memory

L2 shared
cache
within
multi-core
system

Aimed Proposed a
new hardware-
software
replacement
technique to
partition a
shared cache
among the
tasks of the
parallel
application.

Proposed a
LER
replacement
algorithm that
improves the
throughput
and power
consumption
compared
LRU.

By outlining
the current
state of
SRAM-
TCAM and
nvTCAM
research, this
paper aims to
inspire more
advanced
research.

Improve the
access latency
and
throughput of
the computer
system.

Accelerate
computation
approximately
in CPU and
GPU.

Allow
simultaneous
access, achieve
less access
latency and
reduce the
power
consumption.

Improve
perfor-
mance of
the
multi-core
systems.

CMC, 2022 5

3 Proposed DPCAM Inside Multi-Core System
3.1 DPCAM Architecture

To the best of our knowledge, DPCAM that was proposed in [7] is the first work that addresses
using the content addressable memory as a shared cache and taking advantage of its features. Fig. 1
shows DPCAM within a multi-core system architecture.

Figure 1: DPCAM architecture within a multi-core system

DPCAM was redesigned for a special purpose to be employed as a shared cache in the multi-core
system. This architecture allows simultaneous access to the same shared module based on dual port
architecture. It reduces the access latency due to the simple architecture and simple NFRA technique.
The DPCAM shared cache is mainly divided into two techniques; dual port and NFRA. The main
points are as follows:

A. The Store Back (SB) unit of all cores in the multi-core system can use the first port (write port)
of DPCAM to write the shared data where each new write is controlled by the Control Unit
(CU).

B. The Operand Fetch (OF) unit of all cores in the multi-core system can use the second port
(read port) of DPCAM to read the shared data, which has been stored by other cores.

C. For the writing mechanism, the DPCAM memory architecture is built to store the shared
data in the first available empty location or to the oldest location written in case of no empty
location. Therefore, there is no unused DPCAM location.

D. The shared data in any location will not be overwritten before at least n times writing elapses,
where n is the number of DPCAM locations or lines. All principles of DPCAM in Fig. 1 are
applied in this work using the Gem5 simulator.

6 CMC, 2022

3.2 Multi-Core Using DPCAM Architecture

The main parts of the multi-core system are the cache levels, shared cache architecture, cache
coherence, Interconnection Network (IN) and the main memory. Fig. 2 shows the main parts of the
proposed multi-core architecture. This architecture is built based on two-level cache, IN using crossbar
switch, Modified-Exclusion-Shared-Invalid (MESI) cache coherence protocol and main memory
access.

Private
Cache
L1=64KB

Private
Cache
L1=64KB

Private
Cache
L1=64KB

DPCAM-L2
Shared cache

DPCAM-L2
Shared cache

DPCAM-L2
Shared cache

Crossbar Switch (interconnection networks between cores and shared cache)

MMU

To main memory

Core0 Core1
Core n

Size =1 MB

SB
unit

OF
unit

Key: MMU= Memory Management Unit OF= Operand Fetch SB= Store Back

����

Figure 2: Multicore architecture using DPCAM shared cache

Accessing the shared cache memory still has the problem of contention between the cores. This
leads to an increase in the access latency and hence decreases the system throughput. Both cache levels
design and INs among cores are the main factors that affect the performance in multi-core systems
[1]. In the multi-core Architecture Using DPCAM, the DPCAM is employed as a global L2 (shared
cache) and the local data cache is graded as a set-associative L1 cache.

When the Memory Management Unit (MMU) loads the threads to the L1 instruction cache, it
loads the local data of the thread to the local data cache, and the shared variables to the DPCAM. A
shared variable, of course, is seen and can be accessed by all cores in multi-core system [1,2,4]. During
the thread execution, the OF unit can equally access the local and the shared cache to fetch the required
operands. The SB unit writes the resulting shared variables to be accessed by other cores. The tag of

CMC, 2022 7

the variable includes its address, its version number and its valid bit. In the memory hierarchy access,
cores first check L1 cache and L2 cache respectively. A miss is returned if no cache hits are found
and the request for data is forwarded to the main memory. On the other hand, shared data should be
checked whether another core has changed them or not in order to preserve the consistency between
cores. This action has been achieved using MESI cache coherence protocol.

The proposed multi-core architecture has been compared with the traditional multi-core architec-
ture using Gem5 simulator. Both architectures have the same parts of level of caches, cache coherence,
IN and main memory. The shared cache memory is the sole difference, as the proposed design uses
DPCAM in shared cache and the traditional design uses a four-way set-associative shared cache. The
comparison results for both architectures will be shown in Section 5.

4 A Modified Replacement Policy for DPCAM

In the proposed DPCAM, a NFRA replacement algorithm and a new writing mechanism were
presented in [7]. The write operation is based on a pointer is implemented in the CU. If the core writes
shared data in Location x (Lx), the next write operation (from the same of other cores) will store shared
data into location Lx + 1. This mechanism can be repeated until location Ln−1, then returns to L0 to
overwrite the oldest shared data. This technique is practical for implementation in a single-core or a
limited number of cores inside a multi-core system. The main problem of this mechanism is that an
empty DPCAM location that stores a shared data related to a process recently terminated can be found
with any DPCAM location. e.g., if the pointer points to location L10 to write a shared data, then the
next coming data from any core will be stored in L11 automatically, whether it is empty or overwriting
if it is full. This happens although there may be several empty locations in DPCAM because the CU
automatically writes to the next location. Of course, this problem will decrease the system throughput
because the shared data may be replaced before its use.

As a solution to this problem, a modified mechanism of the write operation and a replacement
policy are proposed. For this purpose, a new bit is added to the tag field in each DPCAM location.
Whether a location is valid to be written (if it is empty) or invalid to be written (if it is full) is indicated
using the most significant bit in the tag field tag {16}. If tag {16} equals zero, it means that the location
is empty and can be written, otherwise, the location is full and it cannot be written except if it is pointed
to by the CU and no other empty location in DPCAM exists.

Fig. 3 shows the flowchart of the proposed mechanism, in the beginning, the CU was set to initially
point to the first location and test the tag {16}. Because the DPCAM is empty, the tag {16} always
equals zero in all locations. Therefore, the first write operation will occur on the first line of the
DPCAM, and so on until location n−1 (Ln−1). This means n write operations can happen before
there is a need for overwriting any location. When the DPCAM becomes full, the pointer is pointed
to the current location (L[k]) and the tag {16} is tested. If tag {16} equals zero then the shared data is
directly written to the current pointer location and the pointer is incremented. Otherwise, if tag {16}
equals one the tag {16} for another location is tested until finding an empty location. This means that
writing the first empty memory location and then return to the current location (L[K]) for the next
write operation. In case that no empty location is found, the pointer returns to its current location and
overwrites the new shared data then it is incremented to point to location (L[K++]).

Note that tag {16} values are tuned by the scheduler in the compiler which must ensure that data is
used during allowed time. Furthermore, if any core requires the read version of shared data for longer
than the allowed time, it can store it in its private L1 cache.

8 CMC, 2022

Figure 3: A modified replacement policy for DPCAM

CMC, 2022 9

5 Evaluation the MPCAM Within Multi-Core System
5.1 Experimental Setup

The Gem5 simulator and various types of SPEC CPU 2006 benchmarks are chosen to study
the performance of multi-core system based DPCAM as the second level of cache (shared cache).
In Gem5, we use a full-system functional and timing simulator of multi-core memory system called
Ruby. Ruby is a part of Gem5 project. It provides full specifications and flexible cache memory such
as cache architecture, cache coherence protocols, cache replacement algorithm and various IN models
[17]. Ruby uses a first level of cache as private L1 data and instruction, and a second level of cache
as shared L2. In our proposed study, same size and cache coherence protocol type of L1 and new
architecture of DPCAM with same size of traditional set-associative L2 cache are used. Table 2 shows
the detailed configuration of the multi-core architecture (number of processors, cache hierarchy, cache
coherence protocol and main memory) used in our proposed system.

Table 2: The configurations of the experimental multi-core architecture

System component Values

No. of processor 4
Processor specifications Out-of-order, 2,6 GHz.
Cache levels 2
L1 cache specifications 2-way set-associative, size = 64 KB and block size = 64 B.
L2 cache specifications Size = 1MB and size of each Bank = 256 KB.
Cache model Non Uniform cache Access (NUCA).
Memory 1 GB

5.2 Simulation Result

According to the above configuration, the proposed architecture has been simulated with various
test benchmarks. Figs. 4 and 5 show a comparative study of system performance in terms of Instruction
per Cycle (IPC) and miss rate between a multi-core system that uses L2 based set-associative shared
cache and the proposed multi-core system which uses L2 based DPCAM shared cache. The proposed
architecture exploits the features for DPCAM and NFRA replacement algorithm to improve its
performance. All of these findings are displayed in Figs. 4 and 5 are normalized to the traditional
architecture result for each benchmark.

Table 3 and Fig. 4 shows the performance of the multi-core system of the traditional and the
proposed DPCAM design in terms of IPC with various benchmark programs. The average IPC for
seven benchmark programs for both designs is shown on Table 4. Following that, Eq. (1) is used to
determine the overall performance improvements in terms of IPC.

Throughput improvements = 1 −
(

mean of traditional design
mean of DPCAM design

)
× 100% (1)

It can be observed that the DPCAM architecture improves performance by about 8.7% from the
average of various benchmark programs. In addition, it can be seen that among all test programs,
mcf and astar do not produce any improvement. On the contrary, the system performance declines in

10 CMC, 2022

terms of IPC. This happens because some benchmark programs are memory intensive and they may
not benefit from using the shared cache. This is the case for the mcf and astar programs [18].

Figure 4: System performance in (IPC) comparison

Figure 5: System miss rate comparison

Table 3: The IPC for seven benchmark programs

Benchmark name IPC for traditional design IPC for DPCAM design

Bzip2 0.90 1.062
astar 0.50 0.455
gammes 0.70 0.812
hummer 0.78 0.9516
gcc 0.83 0.9877

(Continued)

CMC, 2022 11

Table 3: Continued
Benchmark name IPC for traditional design IPC for DPCAM design

mcf 0.92 0.7636
sphinx3 0.87 0.9918

Mean 0.786 Mean 0.861 Improvement 8.71%

Table 4: The access miss rate for seven benchmark programs

Traditional design DPCAM design

Benchmark
name

Number of
L2 cache
references

Number of
misses

Miss rate Number of
DPCAM
references

Number of
misses

Miss rate

Bzip2 30491718 838316 2.7% 30491718 875213 2.87%
astar 5234678 183213 3.5% 5234678 20155 0.38%
gammes 8971498 376802 4.2% 8971498 18840 0.21%
hummer 10967781 570324 5.2% 10967781 20400 0.19%
gcc 9873018 473904 4.8% 9873018 18265 0.185%
mcf 5994666 194826 3.25% 5994666 20981 0.35%
sphinx3 34491313 896716 2.6% 34491313 961917 2.78%

Table 4 and Fig. 5 present the miss rate for the proposed DPCAM with NFRA instead of the LRU
replacement policy in traditional design. The number of L2 cache references, number of misses, and
the miss rate for seven benchmark programs are shown on Table 4. In the proposed architecture, the
DPCAM miss happens if the data has not yet been created due to a scheduling issue or if it has been
overwritten due to a size limitation. Otherwise, if the shared data is produced it becomes available to
all OFs units.

Generally, it can be observed that the miss rate of the proposed system is clearly reduced with an
average of about 13% compared with traditional design. However, the miss rate is reduced for all test
programs except for test programs sphinx3 and bzip2. Sphinx3 has produced around a 1.9% increase
in miss rate. On the other hand, bzip2 has produced a 1.2% increase in miss rate. This is because of the
large number of reference instructions and iterations for these two types that have about three billion
load instructions. Finally, it can be observed that in some benchmarks, the shared cache miss rate is
not enough to judge the system performance, because it does not take into account the cause of miss,
penalty of misses, and the latency of access in hit. This is obvious in bzip2 and sphinx3 where they do
not improve the miss rate but the performance is clearly increased.

6 Conclusion

The proposed architecture exploits the features of content addressable memory and NFRA
replacement algorithm to improve the system performance. The performance of the proposed system
was evaluated using the Gem5 simulator and a set of SPEC CPU 2006 benchmarks and compared to
a traditional multi-core system. The comparison of system performance in terms of IPC and miss rate

12 CMC, 2022

between a multi-core system with associative shared L2 cache and a multi-core system with L2-based
shared DPCAM cache.

The experimental results showed a significant improvement in the performance of the proposed
architecture by up to 8.7% in terms of IPC for average types of benchmarks. This improvement is due
to the architectural features of DPCAM that enable concurrent reads and writes in shared memory
without any contention. The NFRA design contributes to a significant improvement by enabling
parallel seeks and sequential writes to all memory locations. In addition, the error rate is reduced
by about 13% for average benchmark types, except for the sphinx3 and bzip2 benchmarks. This
improvement is due to the effectively modified NFRA, which increases the lifetime of shared data
on DPCAM. As a result, the missing access only occurs when there is a delay in the production of the
shared data by the processors or after a premature overwrite of the shared data before reading due to
cache capacity limitations.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. Hennessy and D. Patterson, Computer Organization and Design: The Hardware Software Interface, 2nd

ed., Cambridge, United States: Elsevier, pp. 520–550, 2020.
[2] W. Stallings, “Computer organization and architecture designing for performance,” in Pearson Education

International, 8th ed., New Jersey, USA: Prentice Hall, pp. 111–140, 685–699, 2013.
[3] A. Pan and V. Pai, “Runtime-driven shared last-level cache management for task-parallel programs,” in

Proc. of the Int. Conf. for High Performance Computing, Networking, Storage and Analysis, Austin Texas,
USA, pp. 1–12, 2015.

[4] A. Abumwais and A. Ayyad, “The MPCAM based multi-core processor architecture: A contention free
architecture,” Wseas Transactions on Electronics, vol. 9, no. 13, pp. 105–111, 2018.

[5] J. Mars, R. Hundt and N. A. Vachharajani, “Cache contention management on a multicore processor based
on the degree of contention exceeding a threshold,” Patent and Trademark Office, Patent No. 9,268,542,
pp. 1–25, 2016.

[6] S. Das and H. K. Kapoor, “Towards a better cache utilization by selective data storage for CMP last level
caches,” in 29th Int. Conf. on VLSI Design and 15th Int. Conf. on Embedded Systems (VLSID), Kolkata,
India, pp. 92–97, 2016.

[7] A. Abumwais, A. Amirjanov, K. Uyar1 and M. Eleyat, “Dual-port content addressable memory for cache
memory applications,” Computer, Material & Continua, vol. 3, no. 70, pp. 4583–4597, 2021.

[8] K. Korgaonkar, I. Bhati, H. Liu, J. Gaur, S. Manipatruni et al., “Density tradeoffs of non-volatile memory
as a replacement for SRAM based last level cache,” in ACM/IEEE 45th Annual Int. Symp. on Computer
Architecture (ISCA), Los Angeles-California, pp. 315–327, 2018.

[9] D. Wang and J. Li, “Shared cache allocation based on fairness in a chip multiprocessor architecture,” in
Int. Conf. on Advanced Hybrid Information Processing, Harbin, China, pp. 501–504, 2017.

[10] M. Imani, D. Peroni, A. Rahimi and T. S. Rosing, “Resistive CAM acceleration for tunable approximate
computing,” IEEE Transactions on Emerging Topics in Computing, vol. 7, no. 2, pp. 271–280, 2016.

[11] A. Martyshkin, I. Salnikov, D. Pashchenko and D. Trokoz, “Associative co-processor on the basis of
programmable logical integrated circuits for special purpose computer systems,” in Global Smart Industry
Conf. (GloSIC), Chelyabinsk, Russia, pp. 1–5, 2018.

[12] A. Monazzah, H. Farbeh and S. Miremadi, “LER: Least error rate replacement algorithm for emerging
stt-ram caches,” IEEE Transactions on Device and Materials Reliability, vol. 16, no. 2, pp. 220–226, 2016.

CMC, 2022 13

[13] W. Jiang, Q. Wang and V. K. Prasanna, “Beyond TCAMs: An SRAM-based parallel multi-pipeline
architecture for terabit IP lookup,” in IEEE INFOCOM the 27th Conf. on Computer Communications,
Phoenix, AZ, USA, pp. 1786–1794, 2008.

[14] K. J. Zhou, C. Mu, B. Wen, X. M. Zhang, G. J. Wu et al., “The trend of emerging non-volatile TCAM for
parallel search and AI applications,” Chip, vol. 1, no. 2, pp. 100012, 2022.

[15] S. Mittal and J. S. Vetter, “A survey of software techniques for using non-volatile memories for storage
and main memory systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 5, pp.
1537–1550, 2015.

[16] Y. Li, L. Zeng, G. Chen, C. Gu, F. Luo et al., “A multi-hashing index for hybrid DRAM-NVM memory
systems,” Journal of Systems Architecture, vol. 128, pp. 102547, 2022.

[17] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi et al., “The gem5 simulator,”ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[18] T. K. Prakash and L. Peng, “Performance characterization of spec cpu2006 benchmarks on intel core 2
duo processor,” ISAST Trans. Computer Software Engineering, vol. 2, no. 1, pp. 36–41, 2008.

	Shared Cache Based on Content Addressable Memory in a Multi-Core Architecture
	1 Introduction
	2 Related Works
	3 Proposed DPCAM Inside Multi-Core System
	4 A Modified Replacement Policy for DPCAM
	5 Evaluation the MPCAM Within Multi-Core System
	6 Conclusion

