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We establish a powerful numerical algorithm to compute numerical solutions of 
coupled system of variable fractional order differential equations. Our numer-
ical procedure is based on Bernstein polynomials. The mentioned polynomials 
are non-orthogonal and have the ability to produce good numerical results as 
compared to some other numerical method like wavelet. By variable fractional 
order differentiation and integration, some operational matrices are formed. On 
using the obtained matrices, the proposed coupled system is reduced to a system 
of algebraic equations. Using MATLAB, we solve the given equation for required 
results. Graphical presentations and maximum absolute errors are given to il-
lustrate the results. Some useful features of our sachem are those that we need 
no discretization or collocation technique prior to develop operational matrices. 
Due to these features the computational complexity is much more reduced. Fur-
ther, the efficacy of the procedure is enhanced by increasing the scale level. We 
also compare our results with that of Haar wavelet method to justify the useful-
ness of our adopted method. 
Key words: variable fractional order differential equations,  

coupled system, Bernstein polynomials

Introduction

 Fractional calculus is the generalized class of classical calculus whose foundation 
was given by Newton and Leibnitz. Different characteristics of fractional calculus have been 
sparked in last two decades. Due to these researchers have taken keen interest in the said area. 
Also the applications with particular attention the simulation of physical problems have got 
much popularity. To model many real life process, biological and engineering phenomenons 
have been rigourously investigated through fractional order models. For diverse application 
in the area bio medical engineering as well as in other scientific and engineering disciplines 
like mechanics, chemistry, visco-elasticity, signal and image handling phenomenon, financial 
mathematics, optimization theory, control theory, aerodynamics, electrodynamics of complex 
medium and polymer rheology, we refer few books as [1-3]. One feature that makes fractional 
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order operators more papular is the preserving of memory and hereditary property. Further frac-
tional differential operators are more flexible and hold greater degree of freedom. Therefore, in 
most cases the results of fractional order models are more accurate and efficient as compared to 
the integer order [4-6]. The most important property of fractional order differential is non-local 
property of the fractional operator where as integer order operators are local operators. Geo-
metrically fractional order derivative of a function provides an accumulation which include 
the corresponding integer counter part as a special case. Inspired from the aforesaid features 
and advantages of fractional order operators, researchers have given much importance to the 
mentioned filed [7].

On the other hand, researchers continually investigating various aspects of fractional 
oeder differential equations (FODE) including existence results, numerical analysis as well sta-
bility and control theory by utilizing different tools of non-linear functional analysis and fixed 
point theory. One of the prominent area of research in fractional calculus is devoted to investi-
gate uniqueness and existence of solutions for fractional order coupled systems. The said area 
has been extensively well investigated in last two decades [8-10]. On the other hand numerical 
aspects have also been very well investigated. As the analytical solution of every system is not 
possible due to the complex nature of fractional order derivative. Therefore, researchers have 
given attention compute approximate solutions by using various tools from numerical analysis 
[11]. For instance to compute numerical results, difference methods [12], perturbationols [13], 
eigen function procedure [14], transform methods [15], decomposition schemes [16], iteration 
techniques [17], collocation techniques [18], Tau methods [19], wavelet analysis [20] etc. have 
been applied very well. All these techniques have their own merits and demerits. However, for 
the better results about solutions to FODE, operational matrices have been constructed in order 
to obtain numerical solutions [21]. In all mentioned work the order of derivative has been con-
sidered constant fractional order.

Here we remark that variable order calculus has also got more popularity during 
last few years. Although the said area has been initiated by Samko and Ross [22]. Variable 
order differentiations and integrations are the natural extension of their real order counter 
part. Here the order can vary continuously as a function of either dependent or independent 
variables of differentiation or integration. The said extension in order is natural and it posses 
more flexibility than the traditional fractional order. In this regards recently various results 
including existence theory, numerical analysis and stability analysis have been established, 
we refer some as [23-26]. Also some authors have worked for variable FODE from numerical 
point of view like [27].

Inspired from the aforementioned vast applications of fractional calculus and numer-
ical solutions for many phenomenons, in this article, operational matrices of variable order 
integration and differentiation have been constructed by using Bernstein polynomials (BP) [18]. 
The important features of the said polynomials are that they are non-orthogonal and hence 
produce very good numerical results as compared to other orthogonal polynomials. Further, BP 
have been introduced by a Russian mathematician Bernstein. Also BP have been used in the 
proof of famous Weierstrass approximation theorem. Also it is interesting that every continuous 
real valued function over closed interval [a, b] can be approximated uniformly with the help of 
Bernstein basis. Also BP over [0, 1] play important roles in the description of parametric curve 
increasingly used in computer graphics. To the best of our knowledge the operational matrix 
method that omit discretization and collocation via BP for variable FODE are very rarely used 
in paste. Therefore, we will establish an adequate algorithm for computing numerical solutions 
to coupled system of variable order FDE:
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with 1 < θ(t) ≤ 2 and gi (i = 1, 2): [0, 1] × R × R → R are linear continuous functions.
By using BP operational matrices of fractional integration and differentiation, the con-

sidered system is reduced to some algebraic system of equations. By computational software, we 
solve the systems and hence receive the corresponding numerical solution the proposed prob-
lems. We treat different version of function gi (i = 1, 2) under different conditions for numerical 
solutions. Our numerical algorithm needs no discretization and collocation for constructing the 
required operational matrices. Further we treat various coupled systems for numerical solutions 
graphically. Our procedure accuracy can be increased by enlarging scale level.

Preliminaries

Here we recollect some basic definitions [23, 28]. 
Definition 1. Let θ(t) > 0 and if v ∈ L[0, T], then variable order integral of order θ is 

given:
( ) ( ) 1

0
0

1I [ ( )] = ( ) ( )d
( ( ))

t
t

t v t t v
t

θ θ ωω ω ω
θ

−−
Γ ∫ (3)

Let v(t) = (t – 2)µ be a function, then:

 
( ) ( )

0
( 1)I [( 2) ] = ( )

( ( ) 1)
t t

t t t p
t

θ µ µ θµ
µ θ

+Γ +
− −

Γ + +

Definition 2. If v ∈ C[0, T], then variable order Caputo derivative for 0 < θ ≤ 1 is 
defined:
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Further if 1 < θ ≤ 2, then:
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Definition 3. [29] The BP are defined:
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which further in closed form can be expressed:
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 Remark 1. Since, BP are non-orthogonal, in this regard the inner product of two Ber-
nstein basis [29] is given:
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where K = m + 1. 
 Remark 2. [29] Any square integrable function v ∈ L2[0, 1], can be approximated in 

term of the said basis:
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where j = 0, 1, 2,... Therefore, we may write eq. (9):
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where S1xK = [Ʊ0, Ʊ1,..., Ʊm] is the coefficient matrix. Further one has:
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Lemma 1. Let P TK(t) be function vector defined in eq. (6), then the variable fractional 
order integration is given:
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where ∪ θ(t)
K × K stands for operational matrix of variable order integration. Further:
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Proof 1. Following the same fashion of [24, 29], we can easily proved the result. 
Lemma 2. Let P TK(t) be the vector function of BP, then the variable fractional order 

derivative of P TK(t) is given by:
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 Proof 2. By same fashion of [24, 29] we can prove this results. 
 Remark 3. [24] Let v ∈ L2[0, 1] be K + 1times differentiable function and
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and the given inequality present the maximum bound of error, where H = max{1 – t0, t0}.  

General algorithms for coupled system of differential equations

Here we describe a general algorithm for our considered system. Here we discuss two 
cases:

Case I: When 0 < θ ≤ 1, then let from eq. (1), we consider:
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Using approximation for initial values:
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Therefore, in terms of eq. (21), our considered system (1) yields:
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The concerned algebraic system can be solved to get the required solution.
Case II: If the order 1 < θ ≤ 2, by using the following approximations:
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second system (2) yields:
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By using computational software we will solve these algebraic equations to get the 
required numerical solutions. 

Illustrative examples

To support our numerical findings, we here present some examples and their numer-
ical interpretation.

Example 1. Consider the coupled system which is describing drug therapy in human 
body [30]:
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where amount of lidocaine in the bloodstream is denoted by v and amount of lidocaine in 
body tissue by w. From physically significance point of view initial data is taken zero drug in 
the bloodstream and injection dosage = w0. Analytical solution of the problem at θ = 1 can be 
derived:
 0 0( ) = 0.2367 exp( 0.1204 ) 0.2696 exp( 0.0076 )v t w t w t− − + −

 0 0( ) = 0.2696 exp( 0.1204 ) 0.7304 exp( 0.0076 )w t w t w t− + −

Here we present the comparison between exact and numerical solutions of the coupled 
system (23) in fig. 1. While in fig. 2, we give their absolute errors by taking w0 = 250.

 
Figure 1. Analytical and numerical solutions comparison of v and w,  
respectively at scale Level 6 of Example 1

 Here we present the numerical solutions of the coupled system (23) in fig. 3 at some 
variable order. While in fig. 4, we give the absolute errors at different values of t aking variable 
order θ = 1 – exp(–t).
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Figure 2. Absolute errors in v and w at given scale level of Example 1

Figure 3. Graphical presentation of numerical solutions of v and w at scale Level 6  
and different variable orders of Example 1 (for color image see journal web site)

Figure 4. Absolute errors in v and w at different values of t for variable order  
θ = 1 – exp(–t) and scale Level 6 of Example 1 (for color image see journal web site)
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Example 2. Consider the coupled system which is describing growth and decay model of 
radioactivity when some amount of radium v decays at rate a, then as a results Radon creates with 
amount w. But Radon is unstable and decay at rate b, thus the phenomenon is modeled as [31]:
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The exact solution of the problem at θ is given:
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Here we present the comparison between exact and numerical solutions of the coupled 

system (24) in fig. 5. Using a = 0.00043, b = 66.14, and v0 = 10000 we check the approximation. 
While in fig. 6, we give their absolute errors at two different scale levels. 

Here we present the comparison between exact and numerical solutions of the coupled 
system (24) in fig. 7. While in fig. 8, we give their absolute errors at different fractional orders. 

Figure 5. Analytical and numerical solutions comparison for v and w, respectively  
at scale Level 6 of Example 2

Figure 6. Absolute errors in v and w at given scale Level 6 of Example 2
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Figure 7. Graphical presentation of numerical solutions of v and w at scale Level 6  
and different variable orders of Example 2 (for color image see journal web site)

Figure 8. Absolute errors in v and w at different values of t for variable order  
θ = 1 – t/2 and scale Level 6 of Example 2 (for color image see journal web site)

Example 3. Consider the coupled system:
5 ( )
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At θ(t) = 2, the analytical solution can be deduced:

 
5 4( ) = , ( ) =v t t w t t

Here we present the comparison between exact and numerical solutions of the coupled 
system (25) in fig. 9. While in fig. 10, we give their absolute errors at two different scale levels. 
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Here we present the comparison between exact and numerical solutions of the coupled 
system (25) in figure 11. While in fig. 12, we give their absolute errors at different fractional 
orders. 

 Here we compared our numerical scheme with Haar wavelet method [32] in the case 
of given problem.

Figure 9. Analytical and numerical solutions comparison of v and w,  
respectively at scale Level 6 of Example 3

Figure 10. Absolute errors in v and w at given scale Level 6 of Example 3

Example 4. Consider the coupled system:
( )

0
( )

0

D ( ) = , 0 < ( ) 1

D ( ) = , 0 < ( ) 1
(0) = 0, (0) = 0

c t
t

c t
t

v t v w t

w t v w t
v w

θ

θ

θ

θ

+ ≤

− + ≤ (26)

At θ(t) = 1, the analytical solution can be deduced:
 ( ) = exp( )sin , ( ) = exp( )cosv t t t w t t t
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Figure 11. Graphical presentation of numerical solutions of v and w at scale Level 6  
and different variable orders of Example 3 (for color image see journal web site)

Figure 12. Absolute errors in v and w at different values of t for θ = (t + 1)/2  
and scale Level 6 for Example 3 (for color image see journal web site)

Figure 13. Analytical and numerical solutions comparison for v and w,  
respectively at scale Level 6 of Example 4
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Here we present the comparison between exact and numerical solutions of the coupled 
system (26) in fig. 13. While in fig. 14, we give their absolute errors at two different scale levels. 

Here in fig. 15, we present the numerical solution for different variable order. 
Here in fig. 16, we give absolute errors at different values of t for taking fractional 

variable order θ = 1 – (t/2).
Here in tab. 1, we compared our numerical results with the computational results of 

Haar wavelet method for the given Problem 4. From the present table we see that our spectral 
method produces much more better results than the mentioned wavelet method. Further as 
compared to wavelet method the adopted numerical scheme is simple and easy to implement. 
Also the proposed spectral method apply to any linear problem has been proved stable and 
convergent, see [33].

Figure 14. Absolute errors in v and w at given scale Level 6 of Example 4

Figure 15. Graphical presentation of numerical results for v and w at different variable 
fractional order and scale Level 6 for Example 4 (for color image see journal web site)
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Figure 16. Absolute errors in v and w at different values of t for θ = 1 – (t/2)  
and scale Level 6 for Example 4 (for color image see journal web site)

Table 1. Comparison between the absolute errors at proposed method  
for scale Level 10 and Haar wavelet method at collocation Points 32  
for fixed order θ = 1

Time  Proposed method  Haar wavelet method [32] 
t  Lv Lw Lv Lw 

0.1 3.7995 ⋅ 10–5 3.08750 ⋅ 10–5 4.13150 ⋅ 10–4 1.13860 ⋅ 10–3 
0.2 3.9876 ⋅ 10–6  6.00987 ⋅ 10–6  3.90876 ⋅ 10–4 .8353 ⋅ 10–3

0.3 6.78650 ⋅ 10–6 2.49109 ⋅ 10–6
7.00050 ⋅ 10–4 2.4860 ⋅ 10–3

0.4 1.98008 ⋅ 10–6 7.33214 ⋅ 10–6 2.03367 ⋅ 10–4 3.12345 ⋅ 10–3

0.5 8.34567 ⋅ 10–7 4.48763 ⋅ 10–7  3.5678 ⋅ 10–4  3.13789 ⋅ 10–3

0.6 6.92340 ⋅ 10–7 6.7703 ⋅ 10–7 2.34521 ⋅ 10–4 4.00123 ⋅ 10–3

0.7 7.98123 ⋅ 10–7 4.90903 ⋅ 10–7 1.61546 ⋅ 10–4  1.03342 ⋅ 10–3

0.8 1.92350 ⋅ 10–7 8.12345 ⋅ 10–7  3.09871 ⋅ 10–4 2.12345 ⋅ 10–3

0.9 9.00431 ⋅ 10–8 7.07650 ⋅ 10–8 3.3456 ⋅ 10–5 8.45678 ⋅ 10–3 
1.0 4.98750 ⋅ 10–8 2.4130 ⋅ 10–8 1.03367 ⋅ 10–5 4.05860 ⋅ 10–4

 

Conclusion and discussion

 The over investigation and discussion take us to the conclusion that the modern strat-
egy is exceptionally proficient for the numerical solution of coupled system of fractional order 
differential equations. Operational matrices in relation with the Bernstein type polynomials 
gives the best approximation of any system. The approximate solution of any coupled system 
with initial and boundary conditions can easily be calculated by using the developed technique. 
Also the developed operational matrices can be extended to higher dimension. The accuracy 
rate of the developed algorithm is higher for the numerical solutions. Further we have compared 
our numerical techniques with that of Haar wavelet method solutions in tab. 1, we see that our 
procedure is much more efficient than the said one. Also the we have compared the numerical 
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solutions with the exact results of the corresponding problem, we see that they have close agree-
ment at small scale number. Also we have recorded some values of absolute errors at different 
values of t in the case of variable order by using fixed scale level. Briefly the procedure is good 
to apply various systems or scaler problems of variable order differential equations.
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