
Citation: Salama, S.; Zyoud, D.;

Abuelhaija, A. A Compact-Size

Multiple-Band Planar Inverted L-C

Implantable Antenna Used for

Biomedical Applications.

Micromachines 2023, 14, 1021.

https://doi.org/10.3390/mi14051021

Academic Editors: Syed Muzahir

Abbas and Ahmed A. Ibrahim

Received: 5 April 2023

Revised: 4 May 2023

Accepted: 4 May 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

A Compact-Size Multiple-Band Planar Inverted L-C
Implantable Antenna Used for Biomedical Applications
Sanaa Salama 1,* , D. Zyoud 1 and A. Abuelhaija 2

1 Telecommunication Engineering Department, Arab American University, Jenin P.O. Box 240, Palestine
2 Electrical Engineering Department, Applied Science Private University, Amman 11931, Jordan
* Correspondence: sanaa.salama@aaup.edu

Abstract: In this paper, a compact-size multiple-band planar inverted L-C implantable antenna is
proposed. The compact antenna has a size of 20 mm × 12 mm × 2.2 mm and consists of planar
inverted C-shaped and L-shaped radiating patches. The designed antenna is employed on the RO3010
substrate (εr = 10.2, tanδ = 0.0023, and thickness = 2 mm). An alumina layer with a thickness of
0.177 mm (εr = 9.4 and tanδ = 0.006) is used as the superstrate. The designed antenna operates at triple-
frequency bands with a return loss of −46 dB at 402.5 MHz, −33.55 dB at 2.45 GHz, and −41.4 dB at
2.95 GHz, and provides a size reduction of 51% compared with the conventional dual-band planar
inverted F-L implant antenna designed in our previous study. In addition, the SAR values are within
the safety limits with a maximum allowable input power (8.43 mW (1 g) and 47.5 mW (10 g) at
402.5 MHz; 12.85 mW (1 g) and 47.8 mW (10 g) at 2.45 GHz; and 11 mW (1 g) and 50.5 mW (10 g)
at 2.95 GHz). The proposed antenna operates at low power levels and supports an energy-efficient
solution. The simulated gain values are −29.7 dB, −3.1 dB, and −7.3 dB, respectively. The suggested
antenna is fabricated and the return loss is measured. Our findings are then compared with the
simulated results.

Keywords: implantable antenna; triple-band; biocompatibility; specific absorption rate; near and
far fields

1. Introduction

Implantable antennas are the main components of implantable medical devices (IMDs);
they are used for bidirectional communication in addition to external control components.
At present, the design of implantable antennas is of significant interest. In the design of
implantable antennas, many parameters (such as biocompatibility, miniaturization, radia-
tion efficiency, circular polarization, and patient safety) have to be considered. Implantable
antennas with minimal size and volume were proposed in [1–11]; however, miniatur-
ization reduces the antenna efficiency and gain. To enhance the gain, a metamaterial
technique [12–14] was used. In [12], a compact-size wideband implant antenna with two
ring slots of the same width was presented. The proposed antenna was covered by Rogers
6010 with a high εr of 10.2 and a thin thickness of 0.2 mm as a superstrate used for bio-
compatibility purposes. For gain enhancement purposes, a metamaterial superstrate with
very high epsilon was printed on the existing superstrate of the implantable antenna. The
results show a 3 dB gain enhancement due to the insertion of a metamaterial slab, while
the resonant frequency is hardly affected by the metamaterial structure. The data rate
is an issue that is critical to realizing real-time image processing for the wireless capsule
endoscope (WCE). In [13], it was proven that the radiation properties of planar antennas
can be enhanced by a slab of a grounded metamaterial with a high intrinsic impedance
for an electric dipole source and a low intrinsic impedance for a magnetic dipole source.
The optimized slab thickness is a quarter or half of a wavelength. The results in [14] show
a gain enhancement of 7 dB for a patch antenna with a dielectric superstrate (Taconic
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Cer-10 with a dielectric permittivity of 10.2 and a thickness of 3.175 mm), which differs
from the conventional patch antenna without a superstrate. In [15], zircona material with a
dielectric constant of 27 was used as a superstrate for both biocompatibility issues and gain
enhancement. In [16], an ultra-wideband technique was used to increase the data rate, but,
on the other hand, the penetration depth of the human body is inversely proportional to
the operating frequency band. To increase the transmission distance in the human body
and achieve high data rate requirements, a wideband implantable antenna was designed
for the human body communication band (HBC) from 10 to 50 MHz [17]. Two layers
of non-equally spaced helical copper foil were used to realize the proposed antenna for
a wide frequency range of 15.66 MHz at −10 dB. In [18], several techniques, such as a
defected ground structure (DGS), gap coupling, and frequency-selective surfaces (FSSs),
are discussed to compensate for the low-gain and narrow-bandwidth biomedical antennas.
In [19], a compact-size (7 × 7 × 0.254 mm3) X-shaped slotted patch antenna was presented.
The proposed antenna was printed on a Rogers RT5880 substrate and operated at the
915 MHz ISM band. Antenna measurements show a realized gain of −28 dB at 915 MHz.
The proposed antenna in [20] provided a small-size and high-performance patch antenna
for biomedical purposes. To enhance the surface current distribution and antenna efficiency,
both notches and slots were combined in the antenna design.

This study is an extension of our work presented in [4,5]. In addition to a capacitive
load, a planar inverted L-section is used as a parasitic element to obtain a compact-size
triple-band planar inverted L-C implantable antenna. The feed point and capacitive load
positions are both optimized for impedance matching purposes. The antenna design and
simulation are carried out using the computer simulation technology (CST) microwave
studio. This paper is structured as follows. An antenna design is presented in Section 2,
while simulation and measured results are discussed in Section 3. In Section 4, the effect of
skin, fat, and muscle layer thickness is given. Finally, conclusions are presented in Section 5.

2. Antenna Design

The proposed antenna mainly consists of two parts: the planar inverted C section
(considered as an active element) and the planar inverted L section (considered as a parasitic
element). The planar inverted C section has a quarter-wavelength mode (a short-circuited
pin is inserted between the planar C and the ground plane). The planar inverted L section
has a half-wavelength mode. In Figure 1, the C section length is 44 mm (12 + 20 + 12 mm)
and the L section length is 21.5 mm (13 + 8.5 mm). The corresponding wavelengths are
176 mm and 43 mm for the planar inverted C and L sections, respectively. To calculate the
related resonant frequencies, the following equation is used [21]:

f =
vp

λ
(1)

where vp is the phase velocity and λ is the wavelength.
The calculated resonant frequencies are 533.7 MHz for the planar C section and

2.15 GHz for the planar L section. For matching purposes at 402 MHz for the MICS band
and at 2.45 GHz for the ISM band, a capacitive load of 35 pF is inserted between the L
section planar and the ground plane. In addition, the positions of the short-circuited pin
and the feed are both optimized for good matching at the desired frequency bands.

The antenna is printed on the RO3010 substrate (εr = 10.2 and tanδ = 0.0023, with
a thickness = 2 mm and a size of 20 × 12 × 2.2 mm3). Antenna dimensions and design
specifications are summarized in Table 1.
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Figure 1. Structure of the planar inverted L-C implantable antenna (top, side, and bottom views).

Table 1. Antenna dimensions and design specifications.

Planar C Element 44 mm (12 + 20 + 12 mm)

Planar L element 21.5 mm (13 + 8.5 mm)
The gap between C and L elements 1 mm
Microstrip line width 2.5 mm
Substrate RO3010
Substrate thickness 2 mm
Superstrate Alumina
Superstrate thickness 0.177 mm
Three-layer model 70 × 60 × 14 mm3

Skin thickness 2 mm
Fat thickness 4 mm
Muscle thickness 8 mm

To achieve safety conditions and prevent direct contact with the human body, the
Alumina superstrate with a thickness of 0.177 mm is used (dielectric constant = 9.4 and
tangent loss = 0.006). The proposed antenna is implanted in a three-layer tissue model
consisting of a skin layer (with a thickness of 2 mm), a fat layer (with a thickness of 4 mm),
and a muscle layer (with a thickness of 8 mm). Electrical properties summarized in Table 2
for the skin, fat, and muscle layers are used for our implantable antenna design. For each
layer, the permittivity and conductivity values of 402 MHz and 2.45 GHz are defined in the
dielectric dispersion fit of CST software, as shown in Table 2. The antenna is implanted in
muscle at 8 mm from the skin–air interference. The whole antenna structure with a substrate
and a superstrate after being implanted in a three-layer model is shown in Figure 2. The
size of the three-layer model is chosen to be 70 × 60 × 14 mm3 to model the human chest.
The antenna structure is designed and simulated using CST.

Table 2. Measured performances in different operating conditions [22].

Biological Tissues
MICs Band ISM Band

εr σ(S/m) tanδ εr σ(S/m) tanδ

Skin 46.7 0.69 0.79 38.1 2.27 0.33

Muscle 57.1 0.79 0.62 52.7 1.73 0.24

Fat 5.58 0.04 0.32 5.28 0.10 0.14



Micromachines 2023, 14, 1021 4 of 13

Micromachines 2023, 14, x FOR PEER REVIEW 4 of 15 
 

 

Table 2. Measured performances in different operating conditions [22]. 

Biological Tissues MICs Band ISM Band 𝜺𝒓 𝝈 𝐒/𝐦  𝒕𝒂𝒏𝜹 𝜺𝒓 𝝈 𝐒/𝐦  𝒕𝒂𝒏𝜹 
Skin 46.7 0.69 0.79 38.1 2.27 0.33 

Muscle 57.1 0.79 0.62 52.7 1.73 0.24 
Fat 5.58 0.04 0.32 5.28 0.10 0.14 

 
Figure 2. Three-layer human model. 

3. Results and Discussion 
In Figure 3a,b, the return losses of the proposed implant antenna for the MICS band 

and the ISM band are shown, respectively. In addition, the surface current distribution 
and the near-electric-field distribution (402 MHz for the MICS band and 2.42 GHz for the 
ISM band) are shown, respectively, in Figures 4 and 5. The far-field patterns for both the 
azimuth plane at a = 90° and the elevation plane at phi = 0° are shown in Figure 6 at 402 
MHz and 2.42 GHz, respectively. 

 
(a) 

 
(b) 

Figure 2. Three-layer human model.

3. Results and Discussion

In Figure 3a,b, the return losses of the proposed implant antenna for the MICS band
and the ISM band are shown, respectively. In addition, the surface current distribution
and the near-electric-field distribution (402 MHz for the MICS band and 2.42 GHz for
the ISM band) are shown, respectively, in Figures 4 and 5. The far-field patterns for both
the azimuth plane at a = 90◦ and the elevation plane at phi = 0◦ are shown in Figure 6 at
402 MHz and 2.42 GHz, respectively.
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Figure 3. Simulated S11 values of the proposed antenna (a) at the MICS band and (b) the ISM band.
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The simulated S11 characteristic for the implantable antenna structure in Figure 2 is
presented in Figure 3. The results show that the proposed antenna operates at multiple
frequency bands. The S11 characteristics, resonant frequency, and bandwidth for these
bands are summarized in Table 3. Figure 3a shows that the designed antenna covers the
MICS band from 395.57 MHz to 409.55 MHz with an S11 value of −46 dB at 402.5 MHz. For
the ISM band, Figure 3b shows a wide frequency range from 2.4 GHz to 2.7 GHz with an
S11 value of −33.55 dB at 2.45 GHz. In addition, a third frequency band from 2.88 GHz to
3.5 GHz is obtained with an S11 value of −41.4 dB at 2.95 GHz. For the simulated current
density, Figure 4 shows that it reaches its maximum in the center at 402.5 MHz, which is
equivalent to the quarter-wavelength mode. Meanwhile, at 2.45 GHz, the peak current
values occur at the short edges of the design and this distribution is equivalent to the
half-wavelength mode. The near electric field of the proposed antenna is also simulated, as
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displayed in Figure 5. The peak value of the electric field is in the center of the structure at
402.5 MHz, as shown in Figure 5a. Meanwhile, at 2.45 GHz, the peak values of the electric
field occur at the short edges of the structure, as presented in Figure 5b. The antenna
far-fields are also simulated using CST, as Figure 6 shows. The far-fields are approximately
directed far away from the body for both MICS and ISM bands at 402.5 MHz and 2.45 GHz,
respectively. The azimuth plane at (theta = 90◦) is shown in Figure 6a, while Figure 6b
shows the elevation plane at (phi = 0◦). The simulated gain values are −29.7 dB, −3.1 dB,
and −7.3 dB at 402.5 MHz, 2.45 GHz, and 2.95 GHz, respectively. The proposed antenna in
Figure 1 is designed on the RO3010 substrate, as demonstrated in Figure 7. The measured
and simulated results are presented in Figure 8. The measured return loss is in good
agreement with the simulated results at the ISM band, while it is less matched at the MICS
band. The MICS band is more sensitive to the capacitive load value than the ISM band.
The capacitive load available in our lab is not exactly the same one that we used in the CST
simulation, which can lead to differences between the measured and simulated results,
especially at the MICS band which is more sensitive to the capacitance value.

Table 3. The frequency bandwidth, resonant frequency, and S11 values of the antenna structure
shown in Figure 2.

Frequency Bandwidth Resonant Frequency Return Loss (dB)

[395.57–409.55 MHz] 402.5 MHz −46
[2.40–2.7 GHz] 2.45 GHz −33.55
[2.88–3.5 GHz] 2.95 GHz −41.4
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The average specific absorption rate (SAR) is a critical parameter in the design of
antennas for biomedical applications. To ensure safety conditions, the SAR value should be
less than 1.6 W/Kg for the C95.1-1999 standard and less than 2 W/Kg for the C95.1-2005
standard. The simulated SAR values for 1 watt input power at 402.5 MHz, 2.45 GHz, and
2.95 GHz are summarized in Table 4 for both the 1 g and 10 g models. To satisfy safety
restrictions, the input power (as a maximum) should be reduced to 8.43 mW (1 g) and
47.5 mW (10 g) at 402.5 MHz. At 2.45 GHz, the input power (as a maximum) should be
reduced to 12.85 mW (1 g) and 47.8 mW (10 g). Meanwhile, at 2.95 GHz, the input power
(as a maximum) should be reduced to 11 mW (1 g) and 50.5 mW (10 g). In Table 5, the
maximum input power values for the 1 g and 10 g models are summarized. The simulated
SAR values for the 10 g model at 402.5 MHz, 2.45 GHz, and 2.95 GHz are shown in Figure 9.
In Table 6, a summary of the results for this study and other previous studies is given, and
the proposed antenna covers three frequency bands with size reductions of 34% and 51%
compared with the implantable antennas designed in [4,5], respectively. The proposed
antenna is 528 mm3 in size, whereas our previous antenna designed in [4,5] were 1536 mm3

and 1026 mm3, respectively.

Table 4. Simulated SAR values with a 1 watt input power for the 1 g and 10 g models.

Resonant Frequency SAR (1 g Model) SAR (10 g Model)

402.5 MHz 189.42 W/kg 42.0014 W/kg
2.45 GHz 124.246 W/kg 41.7769 W/kg
2.95 GHz 145.094 W/kg 39.572 W/kg

Standard SAR values <1.6 W/Kg <2 W/Kg

Table 5. Calculated maximum input power for the 1 g and 10 g models.

Resonant Frequency 1 g Model 10 g Model

402.5 MHz 8.43 mW 47.5 mW
2.45 GHz 12.85 mW 47.8 mW
2.95 GHz 11 mW 50.5 mW

Table 6. Comparison of the results of the suggested antenna with those of previous studies.

Reference Frequency
Band Miniaturization Technique Antenna Size Substrate Gain

dBi

[2] MICS Folded meander line 20 mm3 Dermis
εr = 46.7 −23.7

[3] ISM 816 mm3 FR-4 −8.5
[4] MICS Short-circuited pin 1536 mm3 Rogers-RO3010 −18
[5] MICS and ISM Short-circuited pin 1026 mm3 Rogers-RO3010 −30.14, 2.45
[19] ISM X-shaped slot 12.446 mm3 Rogers RT5880 −28

This study MICS, ISM, and at
2.95 GHz

Short-circuited pin and
capacitive load 528 mm3 Rogers-RO3010 −29.7, −3.1, −7.3
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4. Parametric Study
4.1. The Effect of Skin Thickness

For the MICS band, as the skin thickness increases, the matching at 402.5 MHz slightly
decreases, as shown in Figure 10a. Meanwhile, for the ISM band, as the skin thickness
increases, the matching at 2.45 GHz decreases and a shift in the resonant frequency occurs.
At 2.95 GHz, the effect of skin thickness is the same as the ISM band at 2.45 GHz, as
demonstrated in Figure 10b. S11 is simulated at three different values of skin thickness
(2 mm, 3 mm, and 4 mm).

4.2. The Effect of Fat Thickness

For the MICS band, the matching at 402.5 MHz is increased by increasing the fat
thickness, as shown in Figure 11a. For the ISM band, the matching at 2.45 GHz is increased
by increasing the fat thickness. The same effect of fat thickness is obtained at 2.95 GHz, as
shown in Figure 11b. Three different values of fat thickness are considered (3 mm, 4 mm,
and 5 mm).
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4.3. The Effect of Muscle Thickness

By increasing the muscle thickness, both the resonant frequency and the matching
for the MICS band are decreasing, as displayed in Figure 12a. Meanwhile, for ISM, by
increasing the muscle thickness, the resonant frequency increases, as Figure 12b shows.
The return loss is simulated at muscle thicknesses of 8 mm, 10 mm, and 12 mm. The effect
of muscle thickness on S11 compared to skin and fat thickness can be seen more clearly,
and this result is due to the implantation of the antenna in the muscle layer.
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Figure 12. The effect of muscle thickness on the return loss at (a) the MICS band and (b) the ISM band.

In addition, S11 at the ISM band is strongly affected by the three-layer thickness
compared to the MICS band, and this result agrees with fact that the conductivity increases
as the frequency increases [23,24].

The Effect of Planar Inverted L Section Length

The return loss is simulated at planar inverted L section lengths of 12 mm, 13 mm,
and 14 mm. For the MICS band, it is mismatched at 402.5 MHz when the L section length
becomes 14 mm, while it is well matched for L section lengths of 12 mm and 13 mm,
as shown in Figure 13a. In our design, the gap between the L section and C section is
optimized for good matching at 1 mm and the L-section length is 13 mm, so when the L
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section length is increased to 14 mm, both the L and C sections make direct contact, which
leads to a mismatching at the MICS band, as seen in Figure 13a.
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Figure 13. The effect of planar inverted L section length on the return loss at (a) the MICS band and
(b) the ISM band.

For the ISM band, it is well matched at 2.45 GHz and 2.95 GHz when the L section
length becomes 13 mm. Meanwhile, by increasing the L section length, the resonant
frequency decreases, as displayed in Figure 13b.

4.4. The Capacitive Load Value Effect

By increasing the capacitive load value, the matching at 402.5 MHz improves, as
shown in Figure 14a. The return loss is simulated at capacitive load values of 33 pF, 35 pF,
and 37 pF. Figure 14b shows that at 2.45 GHz and 2.95 GHz, the matching is very slightly
affected by the three different values of the capacitive load.
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5. Conclusions

This paper addresses the design and analysis of a compact-size multiple-band planar
inverted L-C implant antenna that can be used for biomedical purposes. The proposed
antenna covers a MICS band from 395.57 MHz to 409.55 MHz with an S11 value of −46 dB
at 402.5 MHz, an ISM band from 2.4 GHz to 2.7 GHz with an S11 value of −33.55 dB at
2.45 GHz, and a third frequency band from 2.88 GHz to 3.5 GHz with an S11 value of
−41.4 dB at 2.95 GHz. At the desired frequency bands, gain enhancement is achieved with
a compact size of 20 mm × 12 mm × 2.2 mm. The antenna is simulated in a three-layer
model, and the effect of skin, fat, and muscle thickness on S11 and impedance matching
is presented and analyzed. The far fields are approximately directed away from the body.
To ensure safety conditions, the input power as a maximum value should be reduced
to 8.43 mW (1 g) and 47.5 mW (10 g) at 402.5 MHz. At 2.45 GHz, the input power as
a maximum value should be reduced to 12.85 mW (1 g) and 47.8 mW (10 g), while at
2.95 GHz, the input power as a maximum value should be reduced to 11 mW (1 g) and
50.5 mW (10 g).

Author Contributions: Conceptualization, S.S.; Software, D.Z.; Formal analysis, S.S.; Writing—
original draft, S.S.; Writing—review & editing, A.A. All authors have read and agreed to the published
version of the manuscript.
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