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A B S T R A C T   

The fuel consumption of vehicles depends on various factors including vehicle design, driving style, traffic 
management, and road design. Many manufacturers have been developing efficient and smart vehicles, which 
contributes to minimizing vehicle fuel consumption. However, traffic management and control could restrict the 
efficiency of having a sustainable mobility system. Intersections are considered as critical locations, in terms of 
fuel consumption, due to the significant impact of traffic control at these locations on the vehicle maneuver 
either by stopping or acceleration to clear these bottleneck points. Analyzing the effect of different intersection 
signal settings is, therefore, important to optimize vehicle fuel consumption. In this study, we used simulator data 
of sixty-six drivers going through signalized intersections equipped with two different signal indication settings, 
namely, control and flashing green conditions. We calculated total fuel consumption using the VT-CPFM and 
COPERT models and then applied GLME with two different model distributions: normal and log-normal to study 
the correlation between the two treatments and fuel consumption. Results showed that by displaying the 
remaining green time, flashing green treatment (i.e., signals with traffic light sequence: green, flashing green, 
yellow and red-green) produced a lower fuel consumption in comparison to control condition (green, yellow and 
red sequence), yielding to a similar performance of eco-driving. It was found that as drivers become aware ahead 
of time when the traffic light will be turning red due to the flashing green signal indication, eventually they 
either speed up a little to cross the intersection in time, or they early start decelerating, which creates a more 
optimal deceleration pattern. Results also showed that the VT-CPFM model resulted in more realistic results than 
COPERT due to its ability to capture the transient changes in speed and acceleration.   

1. Introduction 

Vehicle fuel efficiency is one of the most important factors in 
transportation energy use. For example, about 28% of total U.S. energy 
consumption usually because of transporting people and goods from one 
place to another (Raza et al., 2019). Marginal fuel consumption reduces 
when fuel efficiency (in miles per gallon) increases. Although switching 
towards a more fuel-efficient vehicles, such as hybrid vehicles, enhances 

fuel savings, the gains might be marginal for an individual consumer but 
substantially more important at the entire amount of societal savings. As 
a result, for fuel efficiency to be beneficial to society, the vehicle’s price 
should either remain constant as its fuel economy improves, or the ve-
hicle’s fuel efficiency should at the very least compensate for its higher 
price. When vehicles operate in less congested areas, they achieve sig-
nificant gains in fuel efficiency. Meanwhile, increased fuel consumption 
and emissions are caused by traffic congestion on city roads (Bigazzi, 
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2019; Rui-Qiang et al., 2019; Xie et al., 2017; Yao et al., 2021). As a 
consequence, lowering mobility exhaust emissions should be a primary 
concern in transportation systems (Karaoğlan et al., 2019). 

In the short term, road traffic management concerns the control of 
road user movement to make the most use of existing road networks. In 
the 1950 s and 1960 s, traffic management was primarily concerned 
with vehicle traffic problems in local regions and making the greatest 
use of resources, which meant to increase safety and operating efficiency 
(higher capacity, less delays, etc.) (Xie et al., 2017; Yao et al., 2021). By 
applying insufficient trade-off analysis methods, traffic engineers 
attempted to address the practical challenges produced by conflicts 
between individual objectives of safety and operational efficiency. The 
problem of fuel consumption and automotive congestion has arisen as 
demand for autos has expanded, and the notion of traffic lights has also 
been introduced. Traffic lights, that are being used to govern vehicles at 
intersections, direct and regulate the flow of vehicles at road junctions. 
Since traffic lights significantly affect the maneuver of vehicles, it also 
significantly influences the fuel consumption especially in the period of 
signal change where drivers need to take decisions of either stopping or 
accelerating to clear the intersection. Therefore, fuel consumption issue 
must be examined in the context of total traffic system management, 
which necessitates the development of models for both fuel consumption 
and traffic operational characteristics (delay, number of stops, speed, 
and so on) (Vicente and J.J.I.T.o.s., 1992). 

When traffic light turns into yellow, drivers should decide whether to 
stop or accelerate to cross the intersection safely. If the drivers come to a 
stop at a red light, they must stay stopped until the signal turns green 
(Tang et al., 2017). In another common traffic signal setting, a flashing 
green is introduced before the yellow signal indication aiming at 
informing the driver of the end of the green interval and introducing the 
start of the yellow signal indication, which is the gate to the red interval. 
Since the 1980 s, flashing green lights have been used in the city center 
and provincial highways in many parts of the world (Shen and Wang, 
2015; Tang et al., 2015; Tang et al., 2016) such as Qatar and other Arab 
Gulf countries. Because drivers must determine whether to stop or 
proceed through an intersection until the green light turns red, the 
change from green to yellow influences driving behavior. The presence 
of a flashing green indicator means that the green signal is about to 
expire. In this case, drivers usually have more time to evaluate the sit-
uation and take a decision whether to stop or proceed through the 
signalized intersection due to them realizing when the yellow light will 
turn on (Shen and Wang, 2015; Tang et al., 2015; Tang et al., 2016). If 
flashing green is not used drivers will be aware that the green signal will 
expire when the yellow signal begins (Shen and Wang, 2015; Tang et al., 
2015; Tang et al., 2016). However, drivers sometimes do not have the 
needed time to fully stop in some situations, so they decide to speed up 
and go through the stop line at the onset of the red signal (Akcelik, 
1981). The effect of flashing green on fuel consumption at intersections 
will be the focus of this research. Previous research, on the other hand, 
has primarily focused on the effects of intersection control such as 
signalization on traffic safety, as intersections are the scene of numerous 
types of crashes. When the green signal is activated, the queue is dis-
charged. The discharge rate gradually increases to a maximum flow rate 
before remaining constant until the queue is emptied or the green in-
terval has expired, accordingly. 

The bulk of research on the influence of flashing green lights on road 
safety are mainly concerned with traffic safety. According to (Shen and 
Wang, 2015; Tang et al., 2015; Tang et al., 2016), employing flashing 
green reduced the incidence of right-angle collisions and the proportion 
of red-light breaches. On the other hand, they revealed an increase in the 
number of rear-end incidents. Drivers participated in (Tang et al., 2017) 
were shown short movies depicting various circumstances on crossroads 
using flashing green settings, examining their behaviors when the traffic 
light turns from green to red. The flashing green generated an earlier 
decision reaction from the drivers, as well as a larger percentage of 
improper stopping decisions. With the flashing green light, the pattern 

of halting and crossing decisions implies a larger chance of rear-end 
incidents than without the flashing green signal. Similar results were 
observed in a driving simulator study from the state of Qatar indicating 
that the flashing green setting could enlarge the length of the indecision 
zone and hence more inconsistent stopping behaviors (Hussain et al., 
2020). Based on studies in Switzerland, Austria, and Germany 
(Rakauskas et al., 2010), the stopping behavior of cars during signals in 
both situations with and without flashing green was studied and 
modelled. According to the study, the frequency of early stops was 
enhanced in the flashing green settings, which minimizes the danger of 
crashes from the right angle. The flashing green, on the other hand, 
generates a larger decision zone in Austria, which creates ambiguity and 
may lead to an increase in rear-end collisions. Shen and Wang (Akcelik, 
1981) compared the behavior of drivers before and after the flashing 
green in China. The findings show that flashing green is an efficient 
approach in avoiding skipping yellow signals. However, only using 
flashing green would not enhance junction safety, albeit it will offer 
additional information to drivers. In Shanghai, China, the effect of 
flashing green on problem zone behavior at high-speed junctions with 
inadequate yellow intervals were explored by Tang, et al. in (Shen and 
Wang, 2015; Tang et al., 2015). By lowering the frequency of problem 
zone type I, flashing green signals may be effective in averting right- 
angle accidents. 

Moreover, the notion of eco-driving has gained popularity in recent 
years. “Eco-driving” is a term used to explain how automobiles may be 
used to save energy. In addition to the benefits of saving energy, eco- 
driving can also be beneficial for safety, driver’s awareness and com-
fort, as well as traffic efficiency. One of the most critical advantages of 
eco-driving is not only it is a low-cost technology, but also from it being 
friendly for the environment and can decrease pollution. Several pre-
vious studies assessed the efficacy of eco-driving technology using 
driving simulator data such as (Tang et al., 2016) and (Tang et al., 
2017). They have argued that eco-driving is promising and can decrease 
fuel consumption and emissions. The resulted behavior produces more 
eco-efficient driving, and according to (Rakauskas et al., 2010) and (van 
der Voort et al., 2001), if the system is properly designed, it can instruct 
what actions drivers need to take, as well as when to take that actions. 
For example, instant feedback shows how much emissions increase 
when greater accelerator power is applied, which means more thorough 
understanding of eco-driving behavior. Flashing green treatments dis-
plays the remaining green time for drivers, which is similar to eco- 
driving technology. In this study, we explored the effect of two traffic 
signal settings: control condition and flashing green treatment on fuel 
consumption of vehicles passing through signalized intersections. To the 
best of our knowledge, this study is the first of its kind investigating the 
fuel consumption for the two abovementioned traffic signal settings. 

2. Dataset and methods 

The conducted experiment took place at the driving simulator lab-
oratory of Qatar Transportation and Safety Center, Qatar University 
(Hussain et al., 2019; Almallah et al., 2021). Time, longitudinal position, 
speed, acceleration, and other data was acquired by a driving simulator 
located at the center (Hussain et al., 2020). Most traffic accidents take 
place at intersections (Hussain et al., 2020); therefore, the design of the 
simulator resembles such traffic intersections in Doha, Qatar. Sixty-six 
holders of valid Qatari driving license participated in this experiment. 
The experiment included various driving intersection scenarios. In this 
study, we’ll refine our focus to two scenarios. The first scenario takes 
place at the indecision zone (labeled as S1), where there is usually a high 
probability to cross the red light. The second scenario took place at the 
stopping zone, where the driver must stop to avoid crossing the red light 
(labeled as S2). The controlled parameter that mainly distinguishes 
these two scenarios is the distance of the vehicle from the stopping line, 
which is 80 m for indecision zone scenario (S1) and 95 m for the stop-
ping zone scenario (S2). Drivers were also exposed to two different 
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signal treatments for each driving scenario: control condition (labeled as 
T0) in which the signal indication sequence is green/flashing-yellow/ 
red, and flashing green condition (labeled as T1) in which the signal 
indication sequence is green/flashing-green/flashing-yellow/red. While 
the former has a sequence of green, yellow, and red; the latter has the 
sequence of green, flashing green, yellow, and red. The experiment was 
designed in such a way that most of the drivers will end up in the de-
cision zone at the first scenario; in contrary to the second scenario where 
only the aggressive drivers are expected to end up there. More details on 
the dataset can be found in (Hussain et al., 2020). 

3. Methods 

Vehicle’s fuel consumption is severely affected by the road design, 
road treatments, and road scenarios a driver comes across; therefore, to 
alleviate fuel consumption we need to study what circumstances are 
likely to affect fuel consumption. To find Fuel consumption, we used two 
fuel consumption models, namely, the Virginia Tech Comprehensive 
Power-Based Fuel Consumption Model (VT-CPFM) (Rakha et al., 2011) 
and COPERT model (Ali et al., 2021). 

3.1. VT-CPFM model 

As a microscopic fuel consumption model, VT-CPFM depends on 
instantaneous vehicle power. VT-CPFM was developed to avoid the need 
for calibrating specific parameters from field testing or simulators and to 
avoid producing the bang-bang control effect. It can avoid the bang- 
bang control as it has a second-degree polynomial relationship with 
vehicle specific power (VSP). Moreover, the model can be applied on 
publicly available data, which makes it feasible to be used in any 
geographical location. The model was also tested for different vehicle 
types including light- and heavy-duty vehicles (Rakha et al., 2011; Wang 
and Rakha, 2017), and buses (Edwardes and Rakha, 2014). More details 
on the model and how it can be implemented can be found in (Rakha 
et al., 2011). 

First, power can be calculated using the following Eq. (1): 

P(ti) =

(

R(ti)+
1.04ma(ti)

3, 600ηd

)

*v(ti) (1)  

where: 
P(ti) = power at time step ti (kW), m = vehicle mass (kg), a(ti) =

vehicle acceleration at time step ti (m/s2), v(ti) = vehicle speed at time 
step ti (km/h), ηd = parameter of driveline efficiency, and R(ti) = force of 
resistance at time step ti (N). 

R(ti) can be computed using the following Eq. (2): 

R(ti) =
ρ

25.92
CDChAf v(ti)

2
+ 9.8066m

Cr

1, 000
(c1v(ti)+ c2 )+ 9.8066mG(ti)

(2)  

where: 
ρ = air density (1.2256 kg/m3 at sea level and 15 ◦C), CD = coeffi-

cient of vehicle drag (unitless), 
Ch = factor to correct for elevation, Af = area of vehicle frontal (m2), 

G(ti) = grade of roadway at time step ti, and cr, c1, and c2 = parameters 
for rolling resistance (unitless) (Rakha et al., 2011). 

Fuel consumption (FC) is then computed applying Eq. (3). More 
details on the needed parameters and their values can be found in 
(Rakha et al., 2011). 

FC(ti) =

{
α0 + α1P(ti) + α2P(ti)

2
∀P(ti) ≥ 0

α0∀P(ti) < 0
(3) 

where: 
α0, α1 and α2 are constants to account for vehicle-specific calibration 

in the model. 

3.2. COPERT model 

COPERT model (Ali et al., 2021) was also used to estimate the ve-
hicle’s fuel consumption and to compare results with VT-CPFM. Two 
different equations are used to calculate fuel consumption from the 
speed profile of vehicles. Eq. (4) is used to calculate fuel consumption 
whilst the vehicle is moving; whereas Eq. (5) is used when the vehicle is 
stationary. Eq. (6) shows the total fuel consumption. 

FCma =

⎧
⎪⎨

⎪⎩

217 + 0.253V + 0.00965V2

1 + 0.096V − 0.000421V2 ifV ≥ 4.5km
/

h

0ifV < 4.5km/h
(4)  

FCsa =

{
0ifV ≥ 4.5km/h

0.361 × ΔtifV < 4.5km/h (5)  

FCtotal = FCma × Δd +FCsa × fueldensity (6)  

where FCma is the fuel consumption on vehicle’s moving activity in g/ 
km, FCsa is the fuel consumption on vehicle’s stationary activity in ml, 
FCtotal is the total consumed fuel in g, Δt in seconds is the time difference 
between the two data samples, Δd in km is the distance difference be-
tween the two data samples, V is the vehicles’ velocity in km/h, and 
fueldensity = 0.77g/ml. 

The data of the sixty-six drivers is then turned into a vector that 
contains information about: the scenarios, the treatments, the total fuel 
consumption at the intersection, the driver ID, and the intersection ID. 
Table 1 shows a sample data for the driver with ID = 1 at each one of the 
four intersections, where drivers experienced a combination of each one 
of the two scenarios (S) and two treatments (T). 

3.3. GLME model 

Generalized linear mixed-effects (GLME) model (as in Bolker et al. 
(Bolker et al., 2009) was used to investigate if there is a significant 
disparity in the results between the two signal treatments. GLME 
generally characterizes the relationship between independent variables 
and a response variable that resulting from data, which is not normally 
distributed. The relationship is characterized using coefficients that 
change with grouping variables. GLME models are extension to gener-
alized linear models (GLM) for group summarized data. Moreover, when 
the response variable for the data is not normally distributed, GLME 
represents a generalized version of linear mixed-effects models (LME). 

The term mixed-effects model represents the model composition of 
fixed-effects and random-effects terms. A linear regression is used as the 
fixed-effect term, whereas the random-effects terms are experiments 
drawn from random populations and are attributed to deviations be-
tween groups at which are likely to affect the response. The fixed-effects 
model has no pre-defined distributions; on the other hand, the random- 
effects model does, as follows: 

yi|b Distr
(

μi,
σ2

wi

)

(7)  

g(μ) = Xβ+Zb+ δ (8)  

where y is an n × 1 response vector, and yi is its i th element, b is the 
random-effects vector, Distr is a specified conditional distribution of y 
given b, μ is the conditional mean of y given b, and μi is its element, σ2 is 
the dispersion parameters, w is the effective observation weight vector, 
wi is the weight for observation i, g(μ) is a link function that defines the 
relationship between the mean response μ and the linear combination of 
the predictors, X is an n × p fixed-effects design matrix, β is a p × 1 fixed- 
effects vector, Z is an n × q random-effects design matrix, b is a q × 1 
random-effects vector, and δ is a model offset vector. The equation for 
the mean response μ is 

I. Albool et al.                                                                                                                                                                                                                                   



Case Studies on Transport Policy 13 (2023) 101022

4

μ = g− 1(η) (9) 

Where g− 1 is the inverse of the link function g(μ), and ̂ηME is the linear 
predictor of the fixed and random effects of the generalized linear 
mixed-effects model, as follows: 

η = Xβ+Zb+ δ (10)  

4. Analysis and results 

We present the analysis and results of investigating the effect of two 
signal treatments with two scenarios on fuel consumption using the two 
models: VT-CPFM and COPERT. Specifically, two treatments were 
investigated, namely, T0, which is the control condition, and T1, which 
is the condition with the traffic lights of flashing green (like some 
countries including Qatar). We also studied the two abovementioned 
scenarios, namely, S1 and S2. Table 2 shows the scenarios, treatments, 
and the intersections where the experiment was implemented. These 
junctions are located in series; nevertheless, they were not all studied in 
the same session. S1 and S2 were performed in two separate sessions that 
both include T0 and T1 which are located at different location for each 
scenario. 

We used the two models (i.e., VT-CPFM and COPERT) to calculate 
the fuel consumption for each driver at each intersection. In particular, 
we calculated the accumulated fuel consumption starting from 300 m 
before the intersection up until 200 m after clearing from the intersec-
tion. Then we applied the GLME on two distribution models normal and 
log-normal. We used Maximin Projection Learning (MPL) as a fitting 
method for GLME to extract the effect of the two scenarios (i.e., S1 and 
S2) and the two treatments (i.e., T0 and T1) on the fuel consumption of 
the different drivers. Eq. (11) shows the formula for normal GLME dis-
tribution model, whereas Eq. (12) shows the formula for log-normal 
GLME distribution model. 

TotalFuel ≅ 1+T + S+(1|Intersection) + (1|Driver) (11)  

Log(TotalFuel) ≅ 1+T + S+(1|Intersection) + (1|Driver) (12) 

where T is the treatment, S is the scenario. 
Table 3 and Table 5 show the models fit statistics for the normal and 

log-normal GLME model distributions, respectively. Table 4 and Table 6 
show the fixed effect coefficients (95% CIs) for the normal and log- 
normal GLME model distributions, respectively. 

Results showed that the Log Likelihood of the VT-CPFM model is 
− 612.19 and − 31.89, while the Log Likelihood of the COPERT is 
− 559.76 and 285.74, for the normal and log-normal GLME, respec-
tively. Based on this information, we can conclude that the second 
model has a higher Log Likelihood than the first model. Having a model 
with a higher log likelihood indicates a better fit to the data. However, in 
our case it indicates that COPERT model is less complex than VT-CPFM, 

which means it does necessarily reflect the real world. COPERT model is 
based on average speed, which makes it easier to be fitted using GLME 
model. 

As shown in the results, the p-value for T1 (flashing-green setting) 
was found to be less than 0.05 and its coefficient is negative, which 
means that T1 has a statistically significant correlation with the total 
fuel consumption and produced significantly less fuel consumption than 
in T0. However, S1 was found to have a p-value more than 0.05, which 
means that S1 has no clear effect on the total fuel consumption, which 
means we found no significant difference between the total fuel con-
sumption of drivers with respect to their position at the decision zone. 
This confirms that while proceeding the decision zones, the decisions 
taken by drivers to stop or proceed when the traffic signal changes have 
significant effect on the safety near signalized intersections but has no 
clear effect on fuel consumption according to the results of this study. 

Fig. 1 shows the speed profiles and the average speed profile for the 
drivers who have experienced T0 and T1 at S1 and has experienced T0 

Table 1 
Sample data of one drive at four intersections that covers the combination of the two treatments (T) and two scenarios (S).  

Total Fuel (g) T S Driver ID Intersection 1 Intersection 2 Intersection 3  

32.72 Control Indecision 1 0 0 0  
32.21 F-green Indecision 1 1 0 0  
30.46 Control Stopping 1 0 1 0  
30.32 F-green Stopping 1 0 0 1  

Table 2 
Locations of the studied scenarios and treatments.  

Intersection Location (km) Scenario Treatment 

1  0.7 S1 (Indecision) T0 (Control) 
2  3.2 S2 (Stopping) T1 (F-green) 
3  1.77 S2 (Stopping) T0 (Control) 
4  10.7 S1 (Indecision) T1 (F-green)  

Table 3 
Model fit statistics for normal GLME distribution model.  

FC Model AIC BIC Log Likelihood Deviance 

VT-CPFM  1234.4  1252.1  − 612.19  1224.4 
COPERT  1131.5  1152.7  − 559.76  1119.5  

Table 4 
Fixed effect coefficients (95% CIs) for normal GLME distribution model.  

Coefficient Estimate SE sStat p-value 

VT-CPFM 
Intercept  10.40  0.29  34.87  <0.001 
T1  − 0.27  0.31  − 0.87  <0.001 
S1  0.75  0.31  2.40  0.170 
COPERT 
Intercept  29.33  0.24  117.7  <0.001 
T1  − 1.97  0.25  − 7.85  <0.001 
S1  0.24  0.25  0.97  0.330  

Table 5 
Model fit statistics for log-normal GLME distribution model.  

FC Model AIC BIC Log Likelihood Deviance 

VT-CPFM  73.78  91.48  − 31.89  63.78 
COPERT  − 559.48  − 538.26  285.74  − 571.48  

Table 6 
Fixed effect coefficients (95% CIs) log-normal GLME distribution model.  

Coefficient Estimate SE sStat p-value 

VT-CPFM 
Intercept  3.12  0.28  45.23  <0.001 
T1  − 0.13  0.31  − 3.76  <0.001 
S1  0.26  0.31  1.63  0.040 
COPERT 
Intercept  3.37  0.01  377.91  <0.001 
T1  − 0.07  0.01  − 7.77  <0.001 
S1  0.01  0.01  1.36  0.180  
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and T1 at S2 shown at (a), (b), (c), and (d), respectively. The speed 
profiles in Fig. 1(b) and 2(d) shows that flashing green signal indication 
has created a relatively more optimal deceleration pattern with a 
gradual decrease in the speed than that at Fig. 1(a) and 2(c). This 
behavior cost less fuel than making more abrupt braking events as in the 
case of control condition (Rakha et al., 2011; Wang and Rakha, 2017; 
Edwardes and Rakha, 2014; Muñoz-Organero and Magaña, 2013). On 
average, T1 produced lower fuel consumption than T0. The averages of 
fuel consumptions for drivers traveling through T0 were about 65.31 g 
and 58.93 g for VT-CPFM and COPERT models, respectively. The 
average fuel consumption for drivers traveling through T1 were about 
62.53 g and 54.94 g for VT-CPFM and COPERT models, respectively. 
Summary statistics of the results are shown in Table 7. In fact, results 
sound reasonable when drivers see a flashing green (i.e., T1), they are 
made aware that the traffic signal is turning red ahead of time. Thus, 
they either speed up a little to cross the intersection in time, or they early 
start decelerating, which creates a more optimal deceleration pattern. 

On the other hand, in T0, where there is no flashing green, drivers are 
less likely to be informed when the traffic would become red. Thus, they 
tend to have a higher possibility to aggressively accelerate at the 
intersection or make an abrupt braking to stop. Although the reduction 

Fig. 1. Speed profiles of drivers, where red line is the average and black lines are speed for each driver.  

Table 7 
Summary statistics of the results.  

Model VT-CPFM COPERT 

Treatment T0 T1 T0 T1 
Mean 65.31 62.53 58.94 54.94 
Median 64.36 62.21 60.52 54.00 
Standard Deviation 11.71 10.93 3.52 3.80 
Skewness 0.17 0.10 − 1.09 0.27 
Range 48.53 45.63 13.86 12.69 
Minimum 45.77 41.88 49.87 49.84 
Maximum 94.30 87.51 63.74 62.53 
Sum 4310.73 4127.08 3889.83 3626.08  
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of fuel consumption that results from eco-driving is more likely to be 
much higher, flashing green can have similar impact to eco-driving in 
displaying the remaining green time and therefore producing a rela-
tively less fuel consumption if compared with control condition. 

4.1. VT-CPFM model vs COPERT model 

In this section, we will compare the results of VT-CPFM model and 
COPERT model. Fig. 2 shows the results of fuel consumption for the two 
models by the two treatments (i.e., T0 and T1). Fig. 2(a) shows the 
difference of resulted fuel consumption for VT-CPFM and COPERT for 
T1, and Fig. 2(b) shows the difference for T1. Results for T0 and T1 
showed that VT-CPFM, as a microscopic model, was able to incorporate 
the instantaneous distribution of driver’s kinematic values including 
their speed and acceleration. The VT-CPFM model can avoid the bang- 
bang control as it has a second-degree polynomial relationship with 
the vehicle specific power (VSP). In contrast, COPERT, as a macroscopic 
model, was found to underestimate the fuel consumption, which is 
consistent with previous studies (Gebisa et al., 2021; Martins, 2016). 
COPERT is considered as a model that is based on average speed, which 
means it fails to consider the instantaneous distribution of driver’s ki-
nematic values (Ahn and Rakha, 2008). The COPERT model is not 
capable to be consistent with driving cycle’s dynamics, which leads to an 
underestimation of localized high fuel consumption rates (Martins, 
2016). 

5. Conclusion 

This paper explored the impact of two different traffic signal settings 
on fuel consumption using a dataset gathered through an experiment 
using the driving simulator at Qatar Transportation and Traffic Safety 
Center, Qatar University. We calculated the total fuel consumption at 

the vicinity of certain intersections, where the considered traffic signal 
settings took place, using two models: VT-CPFM and COPERT models. 
Subsequently, we applied GLME model on normal and log-normal dis-
tributions to study the correlation between the fuel consumption and the 
two traffic signal settings. Results showed that by displaying the 
remaining green time, flashing green signal indication setting is similar 
to eco-driving and has a relatively lower average fuel consumption at 
signalized intersections than control condition. As the drivers become 
aware ahead of time when the green signal indication will be terminated 
and the red signal indication will start, eventually they either speed up a 
little to cross the intersection in time, or they early start decelerating, 
which creates a more optimal deceleration pattern. We also compared 
between the two fuel consumption estimated methods: VT-CPFM and 
COPERT models. We found that VT-CPFM resulted in more realistic 
results as it was able to consider the instantaneous distribution of 
driver’s kinematic values including their speed and acceleration. How-
ever, COPERT underestimates the fuel consumption as it relies on 
average numeric values rather than the instantaneous changes in 
driver’s movement including speed and acceleration. 
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