
Applied Intelligence
https://doi.org/10.1007/s10489-022-04427-x

Classification framework for faulty-software using enhanced
exploratory whale optimizer-based feature selection scheme
and random forest ensemble learning

Majdi Mafarja1 · Thaer Thaher2,3 ·Mohammed Azmi Al-Betar4 · Jingwei Too5 ·Mohammed A. Awadallah6,7 ·
Iyad Abu Doush8,9 ·Hamza Turabieh10

Accepted: 23 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Software Fault Prediction (SFP) is an important process to detect the faulty components of the software to detect faulty
classes or faulty modules early in the software development life cycle. In this paper, a machine learning framework is
proposed for SFP. Initially, pre-processing and re-sampling techniques are applied to make the SFP datasets ready to be
used by ML techniques. Thereafter seven classifiers are compared, namely K-Nearest Neighbors (KNN), Naive Bayes (NB),
Linear Discriminant Analysis (LDA), Linear Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), and
Random Forest (RF). The RF classifier outperforms all other classifiers in terms of eliminating irrelevant/redundant features.
The performance of RF is improved further using a dimensionality reduction method called binary whale optimization
algorithm (BWOA) to eliminate the irrelevant/redundant features. Finally, the performance of BWOA is enhanced by
hybridizing the exploration strategies of the grey wolf optimizer (GWO) and harris hawks optimization (HHO) algorithms.
The proposed method is called SBEWOA. The SFP datasets utilized are selected from the PROMISE repository using sixteen
datasets for software projects with different sizes and complexity. The comparative evaluation against nine well-established
feature selection methods proves that the proposed SBEWOA is able to significantly produce competitively superior results
for several instances of the evaluated dataset. The algorithms’ performance is compared in terms of accuracy, the number of
features, and fitness function. This is also proved by the 2-tailed P-values of the Wilcoxon signed ranks statistical test used.
In conclusion, the proposed method is an efficient alternative ML method for SFP that can be used for similar problems in
the software engineering domain.

Keywords Software fault prediction · Machine learning · SMOTE · Dimension reduction · Meta-heuristics ·
Imbalanced data

Abbreviations
AAE Average absolute error
ABC Artificial bee colony
ACO Ant colony optimization
ADASYN Adaptive synthetic sampling method
ALO Ant lion optimizer
ANN Artificial neural networks
ARE Average Relative Error

� Mohammed Azmi Al-Betar
m.albetar@ajman.ac.ae

Extended author information available on the last page of the article.

ASD Agile software development model
AUC Area under the curve
BBAT Binary bat algorithm
BCS Binary cuckoo search
BFFA Binary firefly algorithm
BGWO Binary grey wolf optimization
BHHO Binary harris hawk optimization
BJAYA Binary jaya algorithm
BMFO Binary moth flame optimization
BN Bayesian networks
BQSA Binary queuing search algorithm
BWOA Binary whale optimization algorithm
CBL Case-based learning

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



M. Mafarja et al.

COA Coyote optimization algorithm
CS Chi-square
CSA Crow search algorithm
DA Dragonfly algorithm
DE Differential evolution
DT Decision tree
EA Evolutionary algorithm
FFA Firefly algorithm
FIS Fuzzy inference system
FN False negative
FP False positive
FS Feature selection
GA genetic algorithm
GBRCR Gradient boosting regression-based

combination rule
GOA Grasshopper optimization algorithm
GP Genetic programming
GWO Grey wolf optimizer
HHO Harris hawks optimization
IG information gain
KNN K-nearest neighbors
LDA Linear discriminant analysis
LR Linear regression
LRCR linear regression-based combination rule
ML Machine learning
MLP Multi-layer perceptron
MLR Multi-nomial logistic regression
MVO multiverse optimizer
NB Naive Bayes
OO Object-Oriented
PCA Principle component analysis
PCC Pearson correlation coefficient
PSO Particle swarm optimization
QMOOD Quality metrics for object-oriented design
RF Random forest
ROC Receiver operating characteristic
SBWOA Binary whale optimization algorithm with

S-shaped transfer function
SBEWOA Enhanced SBWOA
SC Soft computing
SDLC Software sevelopment life cycle
SDP Software defect prediction
SFP Software fault prediction
SMOTE Synthetic minority oversampling technique
SSA Salp swarm algorithm
SVM Support vector machine
TF Transfer function
TN True negative
TNR True negative rate
TP True positive
TPR True positive rate
VBWOA Binary whale optimization algorithm with

V-shaped transfer function
WOA Whale optimization algorithm

1 Introduction

Software Development Life Cycle (SDLC) represents the
phases that software passes through while it is being
developed. Starting with requirements elicitation, then the
analysis and design of the collected requirements. After that,
the programmers start developing the proposed software
based on the analysis and design phases. A vital phase
in SDLC is software testing. This phase follows the
development phase and consists of a set of activities
that assure the team is developing the right software
with high-quality levels [1]. Numerous testing types are
available to test various aspects of a software product.
These tests include but are not limited to unit testing,
component testing, integration testing, regression testing,
and user acceptance testing. Many software development
methodologies are available to be used by the development
team. The most popular SDLC models are waterfall, agile
and spiral models.

The testing stage plays an essential role in the
development process. It is usually performed as a traditional
linear model (e.g., waterfall) or a cyclic model (e.g.,
agile model). Testing process concerns with enhancing
the software quality and reducing the total cost [2, 3].
However, many factors affect the results of the testing
process, such as the limited resources (e.g., time or
software testers). Therefore, early-stage procedures such as
Software Fault Prediction (SFP) are utilized to facilitate
the testing process in an optimal way [4]. In SFP, the
faulty components of the software are detected prior to
system deployment in the early stages of the SDLC. This
is achieved by utilizing software faults datasets collected
from previous projects or predefined software metrics. It
is worth mentioning that the SFP process became more
straightforward since the adoption of the agile software
development (ASD) model in 2001 [5] as a replacement
for the waterfall model which was introduced in 1970 [6].
Adopting the ASD methodology has many benefits since
the software is developed incrementally. Moreover, ASD
opens the door to adopting volatile requirements, optimizing
resources (time and cost), bridging the gap between the
development team and business owners [7], and facilitating
performance software engineering tasks regularly such as
review, maintenance, and testing [2].

The early prediction of faults in software components
such as modules, classes, and so on has a significant
impact in reducing the needed time and effort for the
project outcomes to be delivered to the end-user. SFP
is one of the approaches that help in optimizing the

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Classification framework for faulty-software using enhanced exploratory whale...

development process by reducing the number of potential
faults in the early stages of the SDLC process [4]. Various
SFP approaches were recorded in the literature. The main
approaches include but are not limited to Soft Computing
(SC) and Machine Learning (ML) [8]. These methods need
data to be able to predict software faults. Design features
(metrics) gathered during the design stage or historical fault
datasets accumulated during the implementation of previous
versions of similar projects are two essential resources to be
used with SFP approaches for benchmarking [9].

Various types of metrics such as method-level and
class-level have been proposed for the SFP problem [10].
Method-level metrics can be collected from structured
programming or object-oriented programming-based source
codes. Halstead [11], and McCabe [12] metrics are the
most common method-level measures used by many
researchers. Class-level metrics are only appropriate when
developing SFP models for object-oriented programming-
based projects. Examples of class-level suite of metrics for
object-oriented design are CK (Chidamber–Kemerer) [13],
L&K (Lorenz-Kidd) [14], and quality metrics for object-
oriented design (QMOOD) [15]. However, in comparison
with other suites, CK metric is mostly applied when class-
level metrics are chosen [10].

Automated systems become available for almost all fields
in real life. With the advancement of software development,
and the availability of large-scale projects, analyzing the
collected software metrics becomes complicated and forms
a significant challenge. Thus, ML techniques have been
proposed as SFP solutions and shown a good performance
[16]. The main purpose behind these techniques is to predict
the faulty components in software based on the supplied
datasets. Examples of ML techniques that have been used
as SFP approaches are K-Nearest Neighbors (KNN), Naive
Bayes (NB), Linear Discriminant Analysis (LDA), Linear
Regression (LR), Decision Tree (DT), Support Vector
Machine (SVM), and Random Forest (RF) [4, 17, 18].

Among the various ML models, ensemble learning
has proven excellent performance in dealing with various
complex classification problems [19]. Ensemble learning
combines a number of ML models to create an ensemble
learner to improve the model performance by proving a
more general robust model. The RF is recognized as a well-
regarded ensemble technique that was originally introduced
by Breiman, Leo [20]. In RF, a number of DT classifiers are
fit on various sub-samples of the dataset and combine the
output of all the trees. The RF has several merits that make it
superior when compared to other traditional ML models. It
controls the over-fitting problem ofDT, reduces the variance
within the forest, and thus enhances the predictive accuracy
[21, 22].

The performance of the ML-based SFP approaches
depends mainly on a set of factors which is the applied ML

technique and the quality of the utilized dataset (in terms of
noise, irrelevant features, and imbalanced representation of
data) [23]. Therefore, dimensionality reduction (e.g., feature
selection) and data resampling (e.g., Synthetic Minority
Oversampling Technique (SMOTE)) techniques are needed
before applying the ML technique. These features can be
defined in the context of the feature selection problemwhich
can be tackled by feature selection techniques.

In feature selection (FS) the problems with high-
dimension feature space increase the hardness of the
search process. In common, various search strategies,
including complete, random, and heuristic, are available for
searching the feature space to obtain the optimal subset of
features [24]. The complete search requires generating and
evaluating all possible subsets of features. In this way, for
a set of m features, 2m features subsets will be formed.
For example, if the given problem has four features, sixteen
subsets of features will be produced. In case of random
search, the next candidate solution (subset of features)
is generated randomly while heuristic search strategies
conduct the search in adaptive way, and generate possible
solutions (feature subsets) for the problem [24–27].

Recently, metaheuristics is widely used by the research
community as a successful FS method. The metaheuristics
are conventionally categorized based on the initial solu-
tions into population-based, and trajectory-based [28]. A
trajectory-based metaheuristic is initiated with a single solu-
tion. The search follows a trajectory in the search space
based on the local modification of the current solution
until a local optimum is obtained. These methods like tabu
search [29], β-hill climbing [30], stochastic local search
[31], and variable neighborhood search [31]. In contrast, the
population-based algorithm is initiated with a population
of individuals. Iteratively, the population inherits its strong
elements to come up with an optimal solution. Normally,
population-based algorithms are classified into evolution-
ary algorithms (EAs) and swarm intelligence approaches.
Genetic Algorithm (GA) [32], Genetic Programming (GP)
[33], and Differential Evolution (DE) [34] are the base
EAs for feature selection. A swarm-based algorithm is nor-
mally built based on the idea of a group of solutions where
the group members are divided into leaders and follow-
ers. Particle Swarm Optimization (PSO) algorithm and Ant
Colony Optimization (ACO) are the base swarm intelli-
gence methods. Quite recently, several swarm intelligence
methods have been proposed for FS such as PSO [35], Salp
Swarm Algorithm (SSA) [36, 37], Dragonfly Algorithm
(DA) [38], Rate Swarm Optimizer [39], Ant Lion Opti-
mizer (ALO) [40], Harmony Search [41], Coronavirus herd
immunity optimizer [42], ant colony optimization (ACO)
[43], β-hill climbing optimizer [44], Crow Search Algo-
rithm (CSA) [45], JAYA algorithm [46], Firefly algorithm
(FFA) [47], Artificial Bee Colony (ABC) algorithm [48],

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



M. Mafarja et al.

Coyote Optimization Algorithm (COA) [49], and Grasshop-
per Optimization Algorithm (GOA) [50]. Furthermore, the
hybrid between them such as Genetic-Whale-Ant colony
algorithms [51], Grey Wolf optimizer and Random Forest
[52], hybrid Salp Swarm Algorithm [53], genetic and coral
reefs [54], etc. There are also real opportunities to adapt
newly-established optimization algorithms for FS problems
like starling murmuration optimizer [55], Quantum-based
avian navigation optimizer [56], Farmland fertility algo-
rithm [57], African vultures optimization algorithm [58],
and artificial gorilla troops optimizer [59].

Whale Optimization Algorithm (WOA) is a recent swarm
intelligence imitates the behavior of humpback whales
in hunting fish in the oceans [60]. It has impressive
characteristics over other optimization methods such as
it has few control parameters, easy to implement, simple
structure, and it has maneuver behavior to find a suitable
balance between local exploitation and global exploration.
Due to its successful attributes, WOA has been widely
utilized to deal with feature selection problems [25, 61–65].
The original version of WOA was designed to handle
continuous search space problems. In this paper, to match
the binary search space of the FS problem, WOA was
boosted with eight fuzzy transfer functions from S-
shaped and V-shaped families. Due to the No Free Lunch
[66] argument which points out that there is no superb
optimization algorithm that can excel all others for all
optimization problems, therefore, the opportunity is still
possible to investigate modifying efficient methods to
handle the SFP to improve the algorithm efficiency.

In this paper, a systematic SFP approach that considered
several ML techniques with different pre-processing meth-
ods was proposed. The major contributions are summarized
as follows:

– Several pre-processing and re-sampling techniques are
applied to prepare SFP datasets to be suitable to the ML
techniques.

– Various classification techniques, namely KNN, LDA,
SVM, LR, DT, and NB, RF, are applied. Their
performance is compared in the same environment to
adopt one technique for further experiments. As a result,
the RF classifier is adopted in this stage.

– A dimensionality reduction method based on the Binary
version of WOA was utilized to eliminate the irrele-
vant/redundant features to enhance the performance of
the RF classifier. The newly proposed method is called
BWOA, which utilizes eight transfer functions where a
transfer function that yields good results is chosen.

– An enhanced WOA version (EWOA) is introduced,
where the exploration strategies from the grey wolf
optimizer (GWO) and harris hawks optimization
(HHO) algorithms are used to enhance the diversity of

the WOA. By means of this enhancement mechanism,
the performance of WOA is improved to deal more
efficiently with the search space of the FS problem.
This yields a superior optimization framework for the
faulty-software prediction problem.

The newly proposed EWOA reveals very successful
outcomes in terms of choosing the most informative features
in the area of SFP. The findings prove that the classification
performance can be significantly improved by removing
useless features. The performance is compared with nine
state-of-the-art methods and it shows the viability of the
proposed method in terms of the accuracy, number of
features, and fitness function.

The remainder of the paper is structured as follows: a
review of the related works is presented in Section 2. In
Section 3, a theoretical background of the related aspects
to this paper is introduced. Section 4 presents the proposed
methodology. The experimental design and the obtained
results are discussed in Section 5. Finally, Section 6 includes
a conclusion about the main findings of this paper in
addition to some future work directions.

2 Related works

Recently, different ML approaches were considered to
solve the SFP problem with remarkable success [4].
Accordingly, different datasets (e.g., PROMISE repository,
NASA datasets, and Qualitas corpus) became publicly
available to the researchers [4, 67]. This section presents the
most relevant related work in the field of SFP. A general
overview of the SFP techniques is provided, and the related
ML approaches are investigated, followed by the related
work of the enhanced ML approaches by applying some
preprocessing approaches like feature selection.

2.1 ML based SFP

Different supervised and unsupervised ML techniques were
applied as prediction models in SFP. Examples of the ML
that were used with SFP are: SVM [68], DT [69], Bayesian
Networks (BN) [70], NB [71], KNN [72], Multi-layer
Perceptron (MLP) [73], Artificial Neural Networks (ANN)
[2, 74], LR [75], Multi-nomial Logistic Regression (MLR)
[73], RF [76] and ensemble MLP [77].

Singh and Malhotra [68] conducted an empirical study
to evaluate the performance of an SVM classifier in
determining the relationship between some software Object-
Oriented (OO) design matrices and fault proneness. A
dataset from the NASA repository (KC1) and Receiver
Operating Characteristic (ROC) were used to evaluate the
proposed model. The study shows that the SVM classifier

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Classification framework for faulty-software using enhanced exploratory whale...

was feasible and helpful in predicting faulty classes in
OO-based systems.

Moreover, Cahill et al. [78] introduced an approach
named Rank Sum for data representation to improve the
performance of fault porousness prediction modules. The
proposed approach is evaluated by applying the well-known
ML classifiers SVM and NB over various datasets from the
NASA repository. It was found that NB is better compared
to the SVM classifier. Erturk and Sezer [79] introduced an
SFP model that combines Fuzzy Inference System (FIS)
and Artificial Neural Network (ANN) classifiers. FIS was
applied at the beginning of the project to make predictions
depending on expert opinion because it does not need
historical data for prediction, and then ANN was employed
in the later iterations when some data about the software
project are obtainable. The proposed iterative system was
tested using a set of datasets including various versions of
many projects from the PROMISE repository. The selected
datasets consist of common OO metrics such as coupling
between objects, response for a class, and weighted methods
per class. The evaluation of the results according to the
receiver operating characteristics (ROC) with the area under
the curve (AUC) method shows that the iterative module is
capable of locating fault-prone modules in the software.

An approach named multi-strategy classifier (RB2CBL)
was introduced by Khoshgoftaar et al. [80] for the SFP
problem, where Rule-Based (RB) classifier was hybridized
with two variants of the Case-Based Learning (CBL) model.
Moreover, an embedded GA was utilized to optimize the
parameters of CBL models. The experimental results reveal
that the proposed RB2CBL classifier is superior compared
to the RB model alone. Carrozza et al. [81] proposed a
new set of software matrices for detecting mandelbugs
in complex software systems. In addition, considering the
newly proposed matrices and the conventional software
matrices, several algorithms, including DT, SVM, BN, NB,
and MLR, were applied to various datasets from the NASA
repository. The authors reported that MLR and SVM are the
best among all examined algorithms in finding Mandelbug-
prone modules.

A model based on the principle of ensemble learn-
ing methods was employed by Rathore and Kumar [82]
to predict software faults in which linear regression-based
combination rule (LRCR) and gradient boosting regression-
based combination rule (GBRCR) approaches were used to
ensemble the output of Genetic Programming (GP), MLP,
LR algorithms. Moreover, eleven datasets belonging to six
software projects were accumulated from the PROMISE
data repository to assess the performance of the proposed
ensemble models. Results of different performance evalu-
ation measures, including Average Absolute Error (AAE)
and Average Relative Error (ARE), provided evidence that

ensemble techniques can produce better results for predict-
ing software faults compared to individual fault prediction
techniques. Choudhary et al. [83] defined a set of change
matrices in addition to the existing ones to enhance the
performance of SFP modules.

Various ML classifiers were applied along with code
matrices and change matrices. Experimental results on
different releases of Eclipse projects demonstrate that
the newly introduced change matrices can improve the
performance of fault prediction modules. In [84], Shatnawi
used the ROC analysis to examine the relationship between
software matrices (features) and faults where threshold
values of matrices were identified accordingly. A threshold
value is defined for each metric to be used for deciding
whether a software module is faulty or not. Moreover, the
results of ROC were also considered for selecting the most
correlated matrices with faults. Only selected matrices were
applied to train and test a set of ML classifiers (LR, NB,
KNN, and decision trees C4.5).

From the previously investigated related work, resear-
chers confirmed that having a considerable number of
features in a dataset affects the performance of the ML
technique. Therefore, many researchers considered dimen-
sionality reduction methods to eliminate the irrelevant/
redundant features from the datasets. The most popular
dimensionality reduction technique is FS.

2.2 Preprocessing MLmethods

FS is a well-known preprocessing step in the data mining
process that aims to eliminate noisy, irrelevant, and
redundant features to reduce data dimensionality, and hence,
improve the performance of the employed ML technique
[24, 85]. In many works in the field of SFP, different filter,
and wrapper FS approaches were investigated. Catal, C. and
Diri, B. [86] employed a correlation-based feature selection
approach to select the highly relevant matrices with varying
techniques of ML (i.e., RF, DT, NB, and AIRS). They found
that FS positively affected the performance of the employed
ML approaches and that the RF classifier outperformed
other classification techniques. In [87], eighteen filter
FS methods were employed on five datasets from the
NASA repository with various classification techniques.
The obtained results revealed that using FS enhanced the
performance of the prediction models.

As presented in [88], a set of filter FS methods, including
Chi-square (CS), information gain (IG), and Pearson
Correlation Coefficient (PCC), was used to develop a hybrid
feature selection method to improve the performance of
Software Defect Prediction (SDP). In the hybrid FS method,
the features were ranked and selected according to their
values using these filter ranking methods. In addition, for

Content courtesy of Springer Nature, terms of use apply. Rights reserved.


