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Abstract: To operate photovoltaic (PV) systems efficiently, the maximum available power should
always be extracted. However, due to rapidly varying environmental conditions such as irradiation,
temperature, and shading, determining the maximum available power is a time-varying problem.
To extract the maximum available power and track the optimal power point under these varying
environmental conditions, maximum power point tracking (MPPT) techniques are proposed. The
application of MPPT for extracting maximum power plays a crucial role in developing efficient PV
systems. These MPPT techniques face several issues and limitations, particularly during partial
shading conditions caused by non-uniform environmental conditions. Researchers have been focusing
more on mitigating the partial shading condition in PV systems for the last few years due to the
need to improve power output and efficiency. This paper provides an overview of MPPTs proposed
in the literature for uniform and non-uniform environmental conditions broadly categorized as
MPPT-based and circuit-based methods. The MPPT-based methods are classified as conventional,
soft computing, and hybrid techniques. A critical analysis of each approach regarding tracking speed,
algorithm complexity, and dynamic tracking under partial shading is discussed. The literature shows
hybrid strategies provide fast-tracking speed and are efficient with a tracking efficiency of around 99%
compared to conventional methods; however, their design and practical implementation are complex.
This comprehensive review of MPPT methods aims to provide power utilities and researchers with a
reference and guideline to select the best MPPT method for normal operation and partially shaded
PV systems based on their effectiveness and economic feasibility.

Keywords: photovoltaic; MPPT; partial shading; global peak; MPPT classification

1. Introduction

Recently, power generation from renewable sources such as solar and wind is receiving
more attention as their operation is pollution free to reduce the environmental impact of
fossil fuels [1,2]. Photovoltaic (PV) is the fastest-growing renewable system, and it directly
converts solar energy to electrical energy. The power generated from the PV source can also
be utilized for chemical energy transformation, such as hydrogen fuel cells [3–5]. The power
generated from a PV system varies according to the temperature and irradiation received
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at any instant [6–8]. To generate the maximum available power from the PV system under
varying irradiation and temperature, maximum power point tracking (MPPT) methods are
integrated [9,10].

On the other hand, the optimal tilt and orientation of the PV panels can improve the
solar yield, as reported by a study conducted in the United Arab Emirates (UAE) [11].
However, the optimal tilt and orientation are region-dependent and vary considerably. The
Kingdom of Saudi Arabia in the Sun Belt region experiences high irradiance levels between
4.479 kWh/m2 and 7.004 kWh/m2, depending on the geographical location [12]. This
available abundance of solar power is being utilized and integrated into the grid by the
kingdom. The 300 MW Sakaka PV power plant is the first renewable-based power source
covering an area of six square kilometers in Saudi Arabia [13]. Power generation based on
PV is growing fast, and different developing countries are generating and integrating this
power into their respective grids [14,15].

In the case of uniform irradiance, one maximum power point appears in the PV
array characteristics curve that the conventional MPPT techniques can track. However,
due to shadows and clouds, PV arrays receive non-uniform irradiation, creating multiple
maximum points in the PV array curve. Many modern MPPT techniques are proposed to
handle the numerous maximum points since most conventional MPPT methods fail under
such circumstances. One of the most crucial factors in choosing a proper MPPT method
mainly lies within three specifications. The first factor is performance, which is the tracking
speed and accuracy. The second factor is the complexity of the control system, voltage and
current sensors, parameter tuning or perturbation, and partial shading detections. The
third factor is the cost of the entire MPPT system.

Several MPPT techniques for PV systems have been proposed in the last decade,
and the methods developed so far can be broadly classified into MPPT-based and circuit-
based methods. The MPPT-based method is classified as conventional, soft computing, and
hybrid techniques. Some of the techniques classified under the traditional approach include
fractional short circuit (FSC) [16,17], fractional open circuit (FOC) [18], perturb and observe
(P&O) [19–24], incremental conductance (IC) [25–32], hill climbing (HC) [33–35], curve
fitting (CF) [36], constant voltage (CV) [37,38], and ripple correlation control (RCC) [39].
FSC and FOC methods are less accurate and perform better only in low-power applications.
Although the popular MPPT techniques such as P&O, HC and IC can track the maximum
power under uniform irradiation, they fail to operate under partial shading properly and
have slow tracking speed, poor convergence, and high steady-state oscillations. Hence,
conventional methods should work with other methods to track the maximum power
under partial shading conditions [40–43].

Since PV systems have nonlinear characteristics, soft computing methods have been
proposed by researchers to handle non-linearity and are considered the prime choice
for nonlinear optimization. Numerous soft computing techniques for MPPT applica-
tion are proposed, including fuzzy logic control (FLC) [44–48], artificial neural network
(ANN) [49–52], genetic algorithm (GA) [53–56], particle swarm optimization (PSO) [57–60],
nonlinear control [61], chaotic approach (CA) [62], differential evolution (DE) [63–65], simu-
lated annealing (SA) [66], grey wolf optimization (GWO) [42,67–69], cuckoo search [70–72],
bat search algorithm, bee colony search algorithm [73,74], ant colony optimization [75–78],
firefly algorithm [79], and random search methods [80]. PSO is the most popular and
widely used optimization technique to track the maximum power in PV systems. Although
FLC and ANN effectively track the maximum power, they require large memory and data
for training and implementation. They also need detailed knowledge of the system while
implementing the algorithm.

To enhance the performance of MPPT methods under partial shading, researchers
combined conventional techniques with soft computing techniques to form hybrid strate-
gies. Some of the developed hybrid techniques include incremental conductance combined
with firefly algorithm (IC-FFA) [81], perturb and observe with artificial neural network
(P&O-ANN) [82], perturb and observe with fireworks (P&O- FWA) [83], perturb and
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observe with grey wolf (P&O-GWO) [84], perturb and observe with genetic algorithm
(P&O-GA) [85], perturb and observe with bat search algorithm (P&O-Bat) [86] and perturb
and observe with particle swarm optimization (P&O-PSO) [87,88]. Two or more intelligent
algorithms such as particle swarm optimization and simulated annealing (PSO-SA) [89],
particle swarm optimization and fish swarm [90,91], differential evolution with Jaya algo-
rithm (DE-Jaya) [92], and differential evolution with whale optimization (DE-WO) [93] can
also be combined to form hybrid methods.

This paper presents a detailed, organized, and up-to-date review of the different
maximum power point tracking (MPPT) algorithms for photovoltaic (PV) systems. The
advantages and disadvantages of each method are presented to assist power utilities and
power engineers in choosing the proper MPPT method while designing a PV generation
system under partial shading conditions. Hybrid MPPT methods based on the combination
of soft computing and conventional methods are more efficient than the other methods.
However, reducing the complexity of practical implementation is a challenge and a research
direction that should be addressed. Moreover, MPPT methods based on optimization
face challenges with respect to periodic tuning, accuracy, stability, and the number of
send parameters.

The rest of the paper is organized as follows; Section 2 describes the PV configura-
tion, Section 3 presents the details of PV under partial shading, Section 4 describes the
dynamic tracking and classification of MPPT methods under partial shading, Section 5 is
the discussion, and Section 6 concludes the paper.

2. PV Configuration

The five-parameter electric circuit model of a PV cell is shown in Figure 1 [94–96]. It
consists of a light-dependent current source, a p-n junction diode, and two resistances, one
in series and the other in parallel.
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Figure 1. Five-parameter equivalent electric circuit model of a PV cell.

Using simple Kirchhoff’s current law:

IPV = IL − ID − ISH (1)

where ID and ISH depict the diode and shunt branch currents, respectively, and are given by:

ID = I0{exp[
VPV + IPV RS

a
]− 1} (2)

ISH =
VPV + IPV RS

RSH
(3)
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Putting these expressions of ID and ISH into Equation (1) gives the complete I-V
characteristics of a PV panel:

ID = IL − I0{exp[
VPV + IPV RS

a
]− 1} − VPV + IPV RS

RSH
(4)

where IPV and VPV represent the current and voltage generated from the PV panel. IL is the
light-generated current, I0 is the diode saturation current, RS and RSH are the series and
parallel resistance, respectively, and factor a is the diode-modified ideality factor, which is
given by:

a =
NsnKT

q
(5)

where Ns is the number of cells in the PV panel, n is the ideality factor (it has a value between
one and two for the real diode), K is Boltzmann’s constant, T is the cell temperature, and q
is the electronic charge.

A standard PV cell generates a relatively low voltage (around 0.6 V); hence, PV cells
are connected in series and parallel to raise the appropriate voltage level for the required
application. PV modules are built using the PV cells’ series and parallel connections; a
PV array consists of PV modules connected in series or parallel [97]. Equation (4) can be
modified to represent the I-V relationship of the series and parallel array and written as:

IPV = Npp ∗ IL − Npp ∗ I0{exp[
VPV + IPV RS ∗ N

Nss ∗ a
]− 1} − (

VPV + IPV RS ∗ N
RSH ∗ N

) (6)

N =
Nss

Npp
(7)

where NSS and NPP represent the number of panels connected in series and parallel,
respectively. Figure 2 depicts the current–voltage characteristics of PV panels for different
irradiation levels from 200 W/m2 to 1000 W/m2 and a constant temperature of 25 ◦C.
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3. Maximum Power Point Tracking (MPPT) Methods for Partial Shading

PV arrays consisting of several panels are the most basic units of any PV system.
Based on the I–V curve depicted in Figure 3, the PV operating point can vary from zero
to the open circuit voltage. The operating point varies with the load variation and does
not always stay at the maximum power point. A unique maximum power point (MPP)
operating point exists in the I–V and P–V curves for every irradiation and temperature.
This point keeps shifting when any atmospheric change occurs [98,99]. Thus, maximum
power point tracking (MPPT) controllers are designed to keep tracking MPP, and they form
an integral part of PV systems. Figure 3 also depicts the maximum operating point, Pmp,
Vmp, and Imp, for a PV panel. In a uniform insolation case, the total maximum output power
of a PV array is equal to the sum of the maximum power values of all individual modules.
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A significant impact on the operation of PV modules is shading caused by cloud cover,
trees, or buildings. When one or more of the modules in a solar panel comes under the
effect of shading, the module voltage drops causing it to work as a load rather than as a
generator, and this causes a hot spot problem [100–102]. Each PV module is equipped with
a bypass diode to overcome the hot spot formation. However, adding the bypass diode
creates multiple peak points in the P–V curve.

Among the multiple peaks, one is the global maximum power point (GMPP) and the
others are local maxima power points (LMPPs). Multiple maximum points can confuse
traditional MPPT schemes as they can easily track and settle at a local maximum, which
reduces the available power output from the PV array. A reliable technique is required to
track the GMPP appropriately [103–105]. Conventional MPPT techniques cannot identify
the GMPP under partial shading conditions (PSC) and usually track local peaks reducing
the generated power from the PV system.

Figure 4 shows a PV module where PV modules 3 and 4 are shaded in Figure 4b due to
environmental conditions. The bypass diodes provide an alternate path for the current flow,
creating multiple peaks. The P–V curve shown in Figure 5 depicts the numerous maxima
during PSC. Modern soft computing MPPT techniques are developed to track the GMPP as
the conventional methods fail to differentiate between the GMPP and the LMPPs [106–108].
The MPPT methods for partial shading mitigation techniques will be explained in detail in
the next section.
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4. Dynamic Tracking under Partial Shading

Partial shading reduces the overall efficiency of the PV system. To generate the
maximum available power from the PV system under this non-uniform environmental
condition, partial shading mitigating techniques are essential for the PV system working in
grid-connected or standalone modes. Conventional MPPT methods have fixed step sizes
and usually become trapped in local peaks, and they fail to dynamically track the MPP
under partial shading conditions.

Partial shading mitigation techniques are broadly classified into two major groups. The
first group includes all the MPPT-based methods, which have been further classified into
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modified conventional, soft computing, and hybrid techniques, and the second group com-
prises circuit-based topologies. The classification of MPPT techniques under partial shading
is provided in Figure 6. The conventional MPPT methods under uniform irradiation, such
as P&O, IC, and HC, are thoroughly discussed in the literature and will not be covered in
this paper. This section provides MPPT techniques under partial shading conditions.
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4.1. MPPT-Based Techniques
4.1.1. Conventional MPPT

1. Modified Perturb and Observe (P&O) technique

The conventional P&O MPPT method has limitations during partial shading; hence,
overcoming this limitation is required to track the global peak. Figure 7 depicts the flow
chart of a modified P&O proposed by [109], where two routines are used. The first routine
is the main program and sets a reference voltage close to the open circuit voltage. The
main routine scans almost 80% of the P–V curve not to miss the potential global peak.
The second is the global peak-tracking routine, which is called into action after executing
the main program. Although the proposed method efficiently tracks the international
peak, the tracking speed is compromised since the algorithm scans almost the entire P–V
curve. Another modified P&O, by comparing two instantaneous power values presented
in Equation (8), is proposed in [110].

Pm(t)− Pre f (t)
Pm(t− 1)

< ε (8)

where

Pm(t) is the instantaneous measured power and
Pref(t) is the instantaneous reference maximum power.

The algorithm efficiently tracks the global peak; however, new coefficients are intro-
duced that complicate the overall MPPT process. The authors in [111] proposed another
modified P&O MPPT method by periodically changing the PV array voltage from maxi-
mum to minimum. A microcontroller is used to store the operating voltage and current.
The P&O is used to maintain the operation of the PV system after identifying the region of
the global peak.

2. Modified Incremental Conductance (IC)

The conventional incremental conductance fails to track and recognize the true MPP
as the method is based on derivative characteristics. In both global and local peaks, the
derivatives dP/dV or dP/dI are zero; hence, the IC method should be modified to identify
the true MPP. A two-stage IC method similar to the modified P&O is proposed in [112],
wherein in the first stage, the value of the maximum voltage and current are used to force
the PV system to operate close to the global peak. Equation (9) describes the first stage as:

RMP = k
VMP
IMP

(9)

where

k is the correction factor, and
VMP and IMP are approximately 80% of VOC and 90% of ISC, respectively.
VOC and ISC are the open circuit voltage and short circuit current, respectively.

The second stage moves the operating point toward the global peak. A linear function
to track the global peak is presented in [113] and is expressed as:

V∗ =
Vgrid

Iout
I(k) (10)

where

Vgrid is the output grid voltage and
Iout is the output grid current.
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Equations (11) and (12) are used to detect the occurrence of partial shading and
activation of the linear function.

V(k)−V(k− 1) < Vthr (11)

I(k)− I(k− 1)
I(k− 1)

< Ithr (12)

Although the proposed technique efficiently tracks the global peak, it can be applied
only for grid-connected PV systems.

3. Modified Hill Climbing (HC)

Like the other conventional methods, the hill climbing method also fails to track the
global peak. Several authors proposed a modified HC method to track the maximum
available power under partial shading. A modified HC method based on sweeping the
duty cycle is presented in [114]. Equation (13) is used to determine the initial value of the
duty cycle as:

D = 1−

√
RMP
RLoad

(13)

where RLoad is estimated using the rating of the PV array.
Similar to the modified IC, this method must also scan over 80% of the P–V curve.

A multiple-input boost converter for micro-inverters based on modified HC is discussed
in [115].

4.1.2. Soft Computing MPPT Techniques

1. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) provide a mechanism to use environmental con-
ditions such as irradiation, temperature, and shading to predict the PV system operation
point corresponding to the MPP [116–118]. The input parameters for the ANN are usually
PV voltage (VPV), PV current (IPV), irradiation, and temperature. After processing the
input variables, the ANN provides an output signal: the optimal voltage VMPP, optimal
current IMPP, and duty cycle [119,120]. The ANN is trained based on the experimental
measurements and simulation results and mostly uses a back-propagation (BP) training
algorithm [121–123]. Figure 8 presents the ANN structure.
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2. Fuzzy Logic Control (FLC)

Similar to ANNs, the FLC does not need the internal parameter and mathematical
model of the system. However, prior knowledge of the relationship between input and
output is required. Figure 9 presents the control structure of the FLC. Besides input and
output, the typical control structure has four control blocks: fuzzification, rules inferences,
rule table, and defuzzification. The rule inference performs the calculation based on the rule
table [125,126]. Error E and change in error ∆E are the usual input signals for the FLC-based
MPPT. Equations (14) and (15) present the error and change error input signal calculation.

E(k) =
P(k)− P(k− 1)
V(k)−V(k− 1)

or E(k) =
P(k)− P(k− 1)
I(k)− I(k− 1)

(14)

∆E = E(k)− E(k− 1) (15)

After being converted to a linguistic variable, the error and change in error will be
used as input variables to the FLC. The FLC provides output signals in the form of a change
in voltage (∆V), change in current (∆I), or change in duty cycle (∆D).
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3. Particle Swarm Optimization (PSO)

PSO is a population-based search method modeled after the behavior of bird flocks [127].
PSO has been popular to optimize and solve nonlinear problems in the last decade. It works
by assigning random initial values to the particles in the boundary limits. The particles
represent the duty cycle of the DC–DC converter and are optimization solutions. Particles
move around the search space, and its best movement in the initial phase is called Pbest.
The overall best movement in the subsequent iteration is called Gbest. Each particle is
represented in the search space by its velocity (Vi) and position (Xi), and these parameters
are updated in each iteration until the best solution is found [128,129]. The particles’
velocity and position are updated using Equation (16):

Vi(k + 1) = WVi(k) + C1rand1 ∗ (Pbesti(k)− Xi(k)) + C2rand2 ∗ (Gbesti(k)− Xi(k))
Xi(k + 1) = Xi(k) + Vi(k + 1)

(16)

where

Vi(k + 1) is the particle velocity at k + 1th iteration,
W is the inertia weight,
Vi(k) is the particle velocity at the kth iteration,
C1 is the acceleration component associated with Gbest,
Xi(k + 1) is the particle position at (k + 1)th iteration,
Xi(k) is the particle position at the kth iteration,
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C2 is the acceleration component associated with Pbest,
rand1 and rand2 are random numbers from zero to one,
Gbest is the best position of all particles, and Pbest is the best position of the particle.

The objective function of the PSO optimization is to find the global voltage and power
in the P–V characteristics curve. It is started by initializing parameters such as the swarm
size (N), maximum iteration, and the voltage and power variable dimension that must be
optimized. The global voltage with respect to Equation (16) is given as:

Xi(k) = Vg = [Vg1, Vg2, Vg3, Vg4 . . . .Vgj]
j = 1, 2, 3, . . . ..N

(17)

The best value of voltage and power that the PSO has found so far will be stored in
Pbest, and the process continues until Gbest, the best solution, is found.

The disadvantage of PSO is that since the initial position of the search agent is ran-
domly provided depending on the boundary limit, there is a delay in the convergence.
This can sometimes trap the algorithm to settle to local MPP during partial shading condi-
tions [130,131].

4. Grey Wolf Optimization (GWO)

The GWO imitates the hunting techniques of grey wolves using a meta-heuristic
optimization approach [132–135]. Four parameters, alpha (α), beta (β), delta (δ), and omega
(ω), are used to represent the attaching techniques of the wolves. The fittest solution in the
optimization is assumed to be α and followed by β. The third and fourth fit solutions are δ
and ω, respectively. Figure 10 presents the flow chart of the GWO algorithm. Equation (18)
presents the model of the hunting mechanism of grey wolves.

→
E
= | →

C.
→
XP

(t)− →
XP

(t)

→
X

(t + 1) =→
X

(t)− →
F

.→
E

(18)

where

E, F, and C are the coefficient vectors,
Xp is the position vector of the hunting prey,
X is the position vector for the Grey wolf, and
t is the current iteration.

The vectors C and F are calculated as follows:

→
F
= 2→

a
.→

r1
− →

a
→
C
= 2.→

r2

(19)

The GWO fitness function is calculated as follows:

di(k + 1) = di(k)− F.E
P(dk

i ) > P(dk−1
i )

(20)

where

d is the duty cycle,
k represents the iteration count,
i is the number of the current individual grey wolves, and P is the power.

The major advantages of the GWO technique are higher tracking efficiency and elimi-
nation of transient and steady-state oscillations [136,137].
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5. Firefly Algorithm (FA)

The Firefly algorithm is developed from the characteristic relationship between line
intensity and fireflies [138]. Different authors proposed a FA that can track the global
peak of PV systems under partial shading. Two variables, namely γ, the light absorption
coefficient, and α, the random coefficient, are used to randomize the first position of the
firefly. A modified version of FA called simplified firefly algorithm (SFA) is proposed
in [139,140], where the initial position of the firefly is selected between zero and one. The
optimization equation of SFA is represented as:

Xi
t+1 = Xi

t + β(Xj − Xi) (21)
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where

Xi represents the position of the less bright firefly,
Xj represents the position of the brighter firefly, and
β is the firefly attractiveness factor.

The objective function of SFA is to generate the maximum available photovoltaic
output power, and the firefly position represents the duty cycle d.

6. Ant Colony Optimization (ACO)

ACO is an optimization technique based on the food-searching behavior of ants. ACO
is an efficient and robust MPPT tracking the global peak of PV systems during partial
shading conditions [141]. Different researchers evaluated the technique under varying
irradiance and different shading patterns. The algorithm has a fast tracking speed of around
one-tenth of the conventional MPPT methods for partial shading conditions [142,143].

7. Artificial Bee Colony (ABC)

Similar to ACO, ABC algorithms are an optimization technique based on the food-
searching behavior of bees. The advantage of this algorithm is that it uses few parameters,
and the convergence criteria are not dependent on the initial condition of the system [74].
The disadvantage of this method is that it is complex for practical implementation, and
the tracking speed is slow compared to other MPPT methods used for partial shading
conditions. The algorithm sometimes settles at the local peak rather than tracking the
global peak [144]. The algorithm classifies the artificial bees into three categories: employed
bees, onlooker bees, and the last scouts. Figure 11 depicts the flow chart of ABC, where the
algorithm has four phases. The first phase initializes the algorithm by setting the different
parameters. The second phase activates the employed bees searching for food, and the
third phase activates the onlooker bees waiting in the hive to decide. The fourth phase
is the scouting phase, where the bees search for random food sources. All three groups
communicate and coordinate to obtain the optimal solution quickly. In the algorithm, the
food source is the maximum power, and the duty cycle of the DC–DC converter is the food
position. For implementing ABC in MPPT for PV system, the duty cycle for the DC–DC
converter is calculated as follows:

d = dmin + rand[0, 1](dmax − dmin)
newd = d + ϕe(d− dp)

(22)

where

d is the current duty cycle,
dmin is the minimum value of the duty cycle,
dmax is the maximum value of the duty cycle),
φe is a constant between [−1, 1], and
dp is the previous duty cycle.
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8. Cuckoo Search (CS)

The CS method is another optimization technique based on the levy flight mechanism
of cuckoo birds [146,147]. The levy flight mechanism algorithm represents the cuckoos’
search for a nest. The algorithm is a modified form of PSO with robust performance, high
convergence speed, and efficiency. CS needs less tuning variables compared to PSO [148].

9. Jaya Algorithm (JA)

R.V. Rao introduced JA, whichis based on animal activities [149]. The algorithm is
based on the distinct feature of animals or humans from the population. Naturally, humans
or animals try to mimic the elite members of society and want to distance themselves from
the lazy group. Figure 12 presents the flow chart of the JA. The candidate solution moves
towards the best solution and tries to move away from the worst solution. The algorithm’s
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simplicity and fast convergence make it the primary choice by different researchers to solve
various engineering problems [150,151].
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4.1.3. Hybrid MPPT Techniques

1. Hybrid GWO and P&O MPPT Algorithm

The authors in [84] combined P&O and GWO to enhance the performance of the MPPT
control of the PV system under partial shading. The method works in two phases. In the
first phase, GWO is implemented, and P&O is activated in the second phase to enhance
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the tracking speed. The computational burden and search space have been reduced by
hybridizing the two techniques. This hybrid algorithm of GWO and P&O has several
advantages, including fast-tracking speed, high efficiency, and high-tracking capability.
Figure 13 presents the flow chart of the hybrid method where GWO is executed in the first
phase and P&O in the second phase.
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2. P&O combined with PSO

Another hybrid MPPT technique for partial shading mitigation based on the combina-
tion of P&O and PSO is proposed in [154,155]. PSO is used in the initial phase to track the
global peak, and then P&O is executed in the final phase. Compared to the conventional
PSO, the advantage of this method is that it can track the global peak in a shorter time and
has a faster convergence time with better dynamic performance. The hybrid approach has
been tested in [154] with different shading scenarios, and to reduce the ripple current, the
boost converter is modified to have an interleaved topology.

3. Differential Evolution and PSO (DEPSO)

The PSO, combined with differential evolution (DE), creates an algorithm efficient in
tracking the global peak during partial shading conditions [156]. The advantage of the
algorithm is that it is system independent and has fast tracking speed. Equation (23) is
used to initialize the algorithm using the power fluctuation due to changes in irradiation.∣∣∣∣ J(Xq+1)− J(Xq)

(Xq)

∣∣∣∣> ∆P (23)

where J (Xq) is the output power of the PV panel. The algorithm efficiently differentiates
the local and global peaks using the power mismatch.

4.2. Circuit-Based Approach

Power converters interface the generated power from the PV system to the grid or local
loads. These power converters control the power flow and can enable MPPT controllers
under partial shading at different levels of the PV system such as the PV cell, module
or array [157]. Besides the power converters, changes in the PV system architecture and
converter topology improve the performance of the PV system under partial shading. Some
of the techniques the researchers implemented under this category are distributed MPPT,
monitoring the bypass diode voltage, differential power processing, and power electronics
equalizer, as described below.

4.2.1. Monitoring Bypass Diode Voltages

Monitoring the voltage of the bypass diode is effective in detecting the occurrence of
partial shading. Under normal operation, the bypass diode is inactive, however during
partial shading it will become active, and a voltage drop will appear across it [158]. Con-
ventional (classical) MPPT techniques such as P&O, IC, and HC are implemented during
normal irradiation conditions. Global search to track the global peak can be activated once
a voltage drop is sensed in the bypass diode. The method works for module-integrated
converters where the PV modules are directly connected to the power converters such
as DC–DC converters or DC–AC inverters. The advantage of this method is that, unlike
other MPPT methods where periodic scanning of the P-V curve is necessary, this technique
is activated by sensing the bypass diode voltage. The drawback of this method is that it
works for PV systems where the string voltage is accessible for measurement.

4.2.2. Distributed MPPT

Depending on the connection of the DC–DC converter and the DC–AC inverter
used to integrate the PV system-generated power into the grid, there are two types of
architectures: central and distributed. In central inverter architecture, one highly rated
DC–DC converter and one DC–AC inverter are used where the DC–DC converter performs
the MPPT, and the inverter is used for grid integration. This type of architecture does not
generate the maximum available power in partial shading. On the other hand, distributed
architecture alleviates this problem by providing the MPPT converter for each module.
This type of arrangement provides greater flexibility, and the power generated from the PV
system is better than from central-based architecture. The distributed-based partial shading
mitigation technique connects the DC–DC converter and MPPT for each PV system cell,
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module, or array [159,160]. Each system unit works and tracks the MPP independently
as a distributed sub-unit. The distributed and centralized MPPT architecture is provided
in Figures 14 and 15, respectively. To reduce the cost and complexity of the MPPT for
the distributed architecture, conventional MPPT methods such as P&O and IC are used.
The advantage of this method is that the system reliability increases as each unit has its
controller, and the failure of one of the sub-units does not affect the entire system.
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4.2.3. Differential Power Processing

This method works by placing DC–DC converters between adjacent PV modules [161].
Figure 16 depicts the differential power processing method where the adjacent converters
provide the current difference that appears between the current at the MPP of the two
modules. The converter will be active when there is a difference in the power generated
between the two adjacent modules. Conventional MPPT methods such as P&O and IC
are employed for the modules. Compared to the distributed MPPT, this method, where a
dedicated converter is connected for each module, minimizes the conversion losses and cost.
The differential power processing method also has a better overall conversion efficiency
and performs well during the partial shading condition by overcoming the challenges
associated with the mismatch MPP current. Moreover, this method tracks the global peak
with less power loss as the converter only processes the difference [162].
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4.2.4. Power Electronics Equalizer

This method works using the power independent principle where series connected
cells are operated with different voltages and currents [163]. The power electronics equalizer
method works by transferring power from the non-shaded modules to the shaded modules
so that all modules work at their respective MPP and exhibit an equal power level across
the system. The power electronics equalizer method has a better performance and power
harvesting capability as compared to the bypass diode method. The disadvantage of this
method is that an extra circuit has to be connected to recover the power from the shaded
modules, which increases the complexity of the topology. Energy storage elements such as
inductors and capacitors are used to store the power of the non-shaded cells. They will be
connected in parallel to distribute the stored power to the cells to have equal power across
each cell [164].

5. Discussion

Different MPPT methods have their own merits and demerits. To compare the MPPT
methods, different performance evaluation criteria such as tracking speed, dynamic track-
ing under partial shading, cost and complexity of the method, and differentiation between
global and local maxima are used. The partial shading condition affects the power gen-
erated from the PV system and hence global maximum power point tracking (GMPPT)
are required to increase the efficiency and harvesting capacity. Different GMPP tracking
algorithms are discussed in this paper. It can be observed from the discussion that GMPP
tracking algorithms based on hybridization of soft computing technique with conventional
technique have better performance in terms of tracking speed, high tracking accuracy, and
high convergence speed and are effective under partial shading. The hybrid method com-
pensates for the disadvantage of one algorithm with the other; however, the complexity of
implementing the technique practically increases. Some algorithms, such as ABC and ACO,
have similar performance, and choosing a suitable algorithm depends on the intended
application by comparing the evaluation criteria.

Table 1 compares MPPT-based partial shading mitigation techniques concerning ef-
ficiency, tracking speed, and level of complexity. Table 2 presents the comparison of
circuit-based MPPT mitigation techniques. Table 2 shows that the power electronics
equalizer-based MPPT technique has fast tracking speed. However, the method depends
on system parameters and is complex. Table 3 provides a comparison of conventional and
soft computing methods.
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Table 1. MPPT-based methods comparison (soft computing and hybrid methods).

Method Complexity Tracking Speed (s) Efficiency (%) Converter Application

ANN High - - Boost Island mode
FLC High 0.3 - Boost Island mode
PSO Medium 1.5 - Buck-boost Island mode
ABC Low 0.2 - Boost Island mode
ACO Low 1.1 ≈100 Boost Island mode
Jaya Low 1.18 99.99 Boost Island mode
FA Low to medium 1.3 98.8 Boost Island mode
GWO High - 99.92 Boost Island mode
CS Medium 0.3 - Boost Island mode
DE-PSO Medium 0.44 - Boost Island mode
PSO-P&O Medium 0.9 - Boost Island mode
GWO-P&O Medium 0.015 100 Boost Island mode

Table 2. Circuit-based MPPT methods comparison.

Method Complexity Tracking Speed Steady-State
Oscillation

Dependency on System
Parameter

Bypass diode High Slow No No
Distributed MPPT Moderate Variable Sometimes No
Differential Power
Processing Moderate Variable Sometimes No

Power Electronics
Equalizer High Fast No Yes

Table 3. Comparison of conventional and soft computing methods.

Method Advantages Disadvantages

Conventional Methods

P&O
• Simple in construction
• Easy to implement
• Less sensor requirement

• Oscillations around MPP
• Increased perturbation rate

IC
• Simple and highly reliable
• Highly efficient for uniform irradiation

• Poor convergence
• Frequency oscillations around MPP

HC
• Easy to implement
• Efficient for slow changes in irradiation

• Slow response during high irradiation
• Efficient only for low-power applications

Soft Computing Methods

Fuzzy Logic Control
• Robust
• Effective in error detection
• Effective if combined with other conventional methods

• Poor convergence during the dynamic change
in irradiation

• Rules cannot be changed

Artificial Neural Network
• Accurate
• Effective

• Needs large memory
• Prior training is required
• High computational time

Artificial Bee Colony
• Needs few parameters
• Independent convergence criteria with system

parameters

• Slow tracking speed
• Complex

Particle Swarm
Optimization

• Reliable
• Simple and effective for handling non-linearity
• Effective in tracking global peak
• Wide search space usage

• Difficult initializing particle parameters.
• Large computation burden for a large

population

Cuckoo Search

• Robust
• Fast tracking speed
• Faster convergence
• Less parameters

• Time-consuming calculation
• Solution and convergence speed deteriorates

Ant Colony Optimization
• Low cost
• Fast convergence speed • Complex

Grey Wolf Optimization
• Robust
• Fast tracking speed
• No steady state and transient oscillations

• High cost
• High computational time
• Needs a large search space
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6. Conclusions

This paper presented comprehensive MPPT techniques capable of tracking the global
peak during partial shading conditions. The partial shading mitigation technique has
been classified as MPPT-based and circuit-based methods. The MPPT-based method is
further categorized as modified conventional MPPT, soft computing, and hybrid methods.
The modified conventional methods are based on modifying the operation of traditional
MPPT methods, such as P&O and IC, so that they can track the global peak efficiently. The
soft computing methods are based on optimization and are fast and efficient compared
to the modified conventional techniques. Researchers have received PSO well among
the optimization methods because of its robustness, simplicity, and easy implementation.
FLC and ANN need a lot of training data, and their practical implementation is also
complex. The hybrid methods combine soft computing with conventional techniques and
are receiving more attention. Circuit-based partial shading mitigation techniques are also
discussed. The advantages and disadvantages of different optimization techniques are also
discussed to help readers choose a suitable MPPT under partial shading conditions. From
the various methods discussed to mitigate partial shading conditions, it is very challenging
to pick the best one. The current developed robust methods face high computational time
and are complex for practical implementation. Cost of implementation, accuracy, number
of sensors required, response time, and efficiency are some of the limitations associated
with the currently available MPPT methods and should be addressed in future research.
This comprehensive review of the MPPT methods is expected to provide utilities and
researchers with a beneficial tool as a reference and guideline to select the best GMPPT
method for partially shaded PV systems based on their effectiveness.
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