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Abstract 

Stroke is currently ranked as the third leading cause of death worldwide. While 

computed tomography (CT) and magnetic resonance imaging (MRI) are 

commonly used for stroke diagnosis, they have their limitations. CT scans can be 

time-consuming, taking up to 8 hours to complete diagnosis, while MRI 

procedures can be lengthy, often making it impractical for most stroke patients. 

This has led to the necessity of exploring new methods for stroke detection, 

particularly utilizing EEG signals. In this paper, we propose a cloud computing-

based machine learning (ML) system that leverages MUSE2 to diagnose stroke 

patients by analysing EEG signals. Our dataset, collected from Al Bashir Hospital 

between 2021 and 2022, consists of a randomly selected sample of 31 stroke 

patients and 31 healthy individuals. To pre-process the collected dataset, we 

employ Fourier and wavelet transformations. The processed EEG signals are then 

transmitted over the Internet to the ML model for stroke diagnosis. Real-time 

results are delivered to authorized personnel via SMS. During our research, 

various classifiers were evaluated, and a modified XGboost classifier emerged as 

the most effective choice. It outperformed other ML classifiers with an 

impressive accuracy of 96.87%. 

Keywords: Cloud, EEG, Machine learning, MUSE2, Stroke, Wearable devices.  
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1. Introduction 

Every year, approximately sixteen million individuals worldwide suffer from 

strokes, with six million of them losing their lives and another five million left 

permanently disabled [1]. Improving the classification of strokes during their early 

stages would significantly enhance patient outcomes and their overall quality of 

life, even in cases where current treatments cannot fully prevent the stroke's 

consequences. Swift recognition and treatment of ischemic stroke offer a higher 

chance of survival and complete recovery. Therefore, identifying the condition 

before reaching the hospital, whether at the patient's residence or in transit via 

ambulance, can be the determining factor between life and permanent disability [2]. 

Currently, computed tomography (CT) and magnetic resonance imaging (MRI) 

are employed to detect haemorrhagic or ischemic strokes due to their ability to 

provide detailed anatomical and pathological information about the brain. CT scans 

have proven reliable in diagnosing strokes within 6-8 hours. However, MRI 

imaging offers higher precision and the potential to detect a stroke within just 30 

minutes. Unfortunately, MRI is not suitable for all patients and is typically available 

only in major medical centres [3-5]. It is crucial to accurately diagnose the type of 

stroke (brain infarction, cerebral haemorrhage) and determine the extent of brain 

damage within three hours of the stroke's onset [6].  

Clinical studies have demonstrated that the rate of stroke recurrence within a 

year ranges from 10 to 15 percent [7], although this varies depending on the type 

of stroke and individual risk factors. Therefore, it is crucial to develop tools for 

early prediction in stroke patients and those with a history of stroke. Over the past 

decade, non-invasive structural imaging techniques such as EEG have transitioned 

from research and medicine to the commercial sector. By interpreting and 

correlating the electrical activity recorded by EEG with corresponding mental 

processes, researchers can gain valuable insights into how the brain functions. 

In the realm of medical studies, clinical research stands out as the field that 

extensively utilizes clinical neuroimaging instruments, which demand high 

precision and advanced capabilities [8]. Among these instruments is MUSE2, a 

portable device capable of monitoring EEG waves at a sampling frequency of 256 

[9]. Consequently, the primary objective of this study is to develop a faster and 

more user-friendly solution that can be implemented in real-time, either by the 

patient at home or during transport in an ambulance en route to the hospital. The 

classification of strokes using wearable EEG sensors, coupled with the application 

of ML algorithms, requires further investigation. This approach is expected to yield 

more accurate results compared to previous methods. 

Businesses and various sectors can leverage the outcomes of predictive data 

processing facilitated by ML techniques [10]. The abundance of data available 

today has paved the way for the establishment of data and market structures, as well 

as statistical models that aid in making informed decisions [10]. Algorithms based 

on ML techniques are then applied to these extensive datasets to determine which 

model best captures the relationship between the provided descriptive features and 

the target feature [10]. 

In recent years, advancements in technology have introduced innovative 

methodologies for understanding the functioning of the central nervous system, 

including Electroencephalography (EEG). This technology enables the collection 
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of vital brain signals and has proven to be an invaluable instrument for studying 

brain activity. By serving as a brain-machine learning tool, EEG allows for the 

extraction of valuable data on the internal structural dynamics of the brain. The 

output waveform obtained represents the underlying behavior of brain regions 

beneath the cortex, with symmetrical representation between the right and left 

hemispheres [11]. 

Typically, EEG data is represented in terms of rhythmic patterns, classified into 

four recurring categories: alpha, theta, delta, and beta. The alpha wave, associated 

with relaxation and tranquillity, was the primary focus of this study [12]. Recent 

studies have demonstrated the utility of raw EEG data alone in the real-time 

diagnosis of seizure patients [13]. To facilitate this process, a cloud computing-

based system has been developed, allowing the patient's EEG signal to be captured 

using the portable MUSE2 device and transmitted over the Internet for prompt 

diagnosis. To expedite the process and enhance accessibility, the patient's data is 

processed through a prebuilt model, and the results are promptly sent as text 

messages to authorise individuals within minutes. 

In this research, the XGBoost classifier was modified as detailed in paper [14] 

to aid in the stroke classification process. Since EEG signals were the primary 

source of data for stroke diagnosis, the XGBoost classifier needed to be customized 

to better understand and interpret them. 

To improve its performance and efficacy in analysing EEG signals, the 

XGBoost classifier was modified in a number of key ways. These adjustments 

probably included adjusting the parameters of the algorithm and incorporating 

feature engineering methods tailored to the analysis of EEG data [14]. 

The study aimed to enhance the precision and consistency of EEG-based stroke 

classification. To accomplish this, we used the modified version of the XGBoost 

classifier that takes into account the specific features and patterns found in the EEG 

data. Because of this, stroke cases could be diagnosed with greater accuracy. 

The dataset obtained from Al Bashir Hospital was used with a variety of classifiers, 

including Modified XGBoost, Naive Bayes (NB), ), Linear Discriminant Analysis 

(LDA), Support Vector Machine (SVM), Decision Tree Bayes (DT), Random 

Forest (RF), and Logistic Regression (LR). 

Overall, the utilization of the modified XGboost classifier in this research 

demonstrates the researchers' efforts to tailor ML algorithms specifically for EEG-

based stroke classification, potentially leading to more accurate and efficient 

diagnostic outcomes. 

This paper makes several contributions. Firstly, it develops a cloud computing-

based system that allows stroke diagnosis in a few minutes using the stroke dataset 

collected from Al Bashir Hospital in Jordan within two years. Secondly, it utilizes 

a modified XGboost classifier for stroke classification. Lastly, it designs the 

framework of a decision support system in the cloud computing environment, 

providing the ability to diagnose strokes quickly and efficiently from any location 

at any time. 

The remainder of this paper is organized as follows: Section 2 presents a 

comprehensive literature review on EEG and ML for stroke classification. Section 

3 delves into the cloud computing setting and describes the proposed EEG-based 
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stroke diagnosis system based on ML. Section 4 provides a detailed discussion of 

the experiments conducted, while Section 5 concludes the paper and provides 

recommendations for future studies. 

2. Related Works  

Recent studies have expanded the scope of EEG. The rapid detection of seizures is 

addressed in paper [14], where the authors propose a Modified XGboost Classifier 

model. This model is specifically designed to expedite the process of identifying 

seizures through a classification approach. The model incorporates a focal loss 

function to minimize training and testing inaccuracies, thus improving the accuracy 

of epilepsy predictions. The evaluation involves using sample data from the CHB-

MIT SCALP Electroencephalography (EEG) dataset, obtained from multiple 

patients. The goal is to achieve effective differentiation between seizures and non-

seizures by employing an efficient classification process. The obtained performance 

results are compared to various state-of-the-art techniques, focusing on average 

sensitivity and average specificity. The performance evaluation includes metrics such 

as classification accuracy, sensitivity, and specificity for each patient. 

Lee et al. [15] and Yang et al. [16] studied epilepsy, revealing abnormal brain 

waves in patients with various conditions such as stroke, schizophrenia, and 

depression. In the identification of brain dysfunction, absolute power value (based 

on relative power value) and the frequency domain have proven to be more reliable 

indicators than the raw EEG spectrum [2]. Absolute power value measures the ratio 

of total amplitude across the frequency band, providing a measure that is 

independent of electrical resistance, skull thickness, or other non-brain wave 

electrical activity. Interpreting EEG signals requires expertise in noise filtering, 

psychoanalysis, neuroscience, and understanding the distinction between absolute 

and relative power [17]. 

The MUSE2 portable device has been extensively studied for EEG data 

processing in stroke detection. For instance, Wilkinson et al. [18] demonstrated the 

feasibility of pre-hospital stroke diagnosis using a portable EEG unit. They 

recorded brainwaves from 25 participants, including 16 with acute ischemic stroke, 

and correlated the results with accuracy controls that included stroke mimics. EEG, 

a physiological signal used for detecting and analysing brain waves, has been 

employed in studies investigating stroke patients [19-23]. Stroke is characterized 

by abnormal and slow signals in the delta wave and decreased normal and rapid 

activity in the alpha wave, as confirmed by Choi et al. [21].  

The results of these tests demonstrate the efficacy of using ratios of delta power 

to alpha power and theta wave power to beta wave power, as well as the combining 

of these two parameters, for the detection and prediction of stroke. Yu  et al. [22] 

used EEG frequency analysis and topographic maps to show that 27 out of 30 

patients with a moderate stroke had an increase in big delta waves and a decrease 

in alpha wave activity. Varelas, and Hacein-Bey [23] verified that a patient with 

epilepsy had a high-amplitude theta wave as opposed to a delta wave following a 

stroke. The theta wave, beta, alpha, and high gamma increased rapidly in the right 

hemisphere, as reported by Ip et al. [20], who also confirmed that the activity and 

stability of theta and delta waves in stroke patients were affected by measurements 

of brain waves in the cerebral cortex. 
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Gottlibe et al. [24] explored the classification of patients into "control" and 

"stroke" groups using a single, brief EEG recording. They collected data from 

individuals who had recently experienced an ischemic stroke, while volunteers with 

intermediate scores were included as the control group. By evaluating the spectral 

energy similarity between the two brain hemispheres using the pdBSI (Updated 

Brain Symmetry Index), they assessed the feasibility of classifying patients. In 

another study by Djamal et al. [25], data from 25 individuals, including 16 with 

severe ischemic stroke, were recorded using the portable EEG device MUSE2. 

Significant improvement (p<0.01) was observed in patients with major ischemic 

strokes. The authors employed MUSE2 and an enhanced ML method to analyse 

EEG data and achieve accurate stroke detection. 

In their study, Sawan et al. [26] utilized the same dataset as described in [25]. 

However, they employed different machine learning classifiers and methodologies. 

Specifically, they explored eight machine learning techniques for their analysis, 

and the XGBoost classifier demonstrated superior performance compared to other 

classifiers. It achieved an impressive accuracy rate of 83.89% in identifying 

strokes. These findings showcased a significant improvement of 7.89% in accuracy 

compared to the previous study [25]. 

In summary, the key highlight of this research is the ability to obtain stroke 

classification results in real-time. However, there are limitations associated with 

the use of deep learning algorithms, as they can be time-consuming. On the other 

hand, traditional machine learning algorithms are not specifically designed for the 

classification of EEG signals, resulting in less accurate outcomes. Nevertheless, the 

reviewed related studies have confirmed the effectiveness of the modified XGboost 

classifier developed in [14] for EEG signal classification. It has demonstrated 

promising results and is considered suitable for EEG data analysis. 

By employing the modified XGboost classifier, we successfully addressed the 

limitations associated with both deep learning and traditional machine learning 

algorithms. Furthermore, according to the reviewed literature, EEG classification 

has primarily been utilized in hospital-based applications, requiring patients to be 

physically present before analysis can be conducted. However, our research 

leveraged cloud computing technology in conjunction with the modified XGboost 

classifier, enabling the transmission of EEG classification results from any location 

with internet coverage. This innovative approach yielded highly accurate results 

within a matter of minutes, a novel contribution that, to the best of our knowledge, 

has not been explored within this domain before.  

3. Background   

3.1. MUSE2 EEG 

The MUSE2 EEG device is equipped with electrodes and a pressure sensor to 

record brain waves. Electrodes are placed on specific locations on the scalp, 

including TP9, TP10, AF8, and AF7 as can be seen in Fig. 1, which are identified 

using the internationally recognized 10-20 system. These electrodes capture the 

electrical activity of the brain, and the MUSE2 device measures this activity at a 

sampling rate of 256 Hz. EEG data can be collected and wirelessly transmitted via 

Wi-Fi for real-time analysis when used in conjunction with the MUSE2 display 

program on mobile devices [9]. 
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Fig. 1. (a) Device (b) Electrode positions [27]. 

3.2. Machine learning classifiers  

The background information on the classifiers that were utilized in this study can 

be found in a condensed form in the following section. 

3.2.1. EXtreme Gradient Boosting (XGBoost) and the Modified XGBoost   

Friedman invented gradient boosting, and XGBoost implemented it efficiently and 

scalably. It uses linear models, trees, and solver learning. Regression, scoring, and 

classification are among its objective functions. XGBoost's expandability lets users 

easily customize their goals [28]. A focal loss function was used in a modified 

XGBoost model [14]. This change reduced the performance gap between training 

and test sets, improving model accuracy and reliability. The predictive performance 

of the model improved by integrating the focal loss function with the original 

XGBoost classifier. 

 

3.2.2.  Random forest  

The RF algorithm is an ensemble classifier that constructs a variety of decision 

trees by making a random selection of the training variables and data. Because of 

its trustworthy classifications, it has a strong reputation in the field of remote 

sensing [29]. RF improves accuracy and robustness by utilizing multiple decision 

trees, which is one of the reasons why it is such a popular choice for use in remote 

sensing applications. 

3.2.3.  Decision tree  

To construct a  DT , the feature space is partitioned iteratively based on the training 

set. The aim of a DT model is to generate a set of decision rules that effectively 

divide the feature space, resulting in an efficient and robust hierarchical 

classification model. The process begins with the entire training set at the root node. 

In each step, the algorithm identifies the feature that provides the best data split, 

employing certain criteria like maximizing information gain or minimizing 

impurity. This splitting process continues recursively, creating branches and sub-

nodes, until a stopping criterion is satisfied, such as reaching a maximum depth or 

having a minimum number of samples in a node [30]. 

3.2.4.  Support-vector machines  

SVM refer to a category of machine learning algorithms utilized for solving 

classification and regression problems. SVMs are particularly effective when it 
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comes to binary classification tasks, where the objective is to categorize data points 

into two distinct groups. The fundamental concept behind SVMs involves 

transforming the input vectors into a high-dimensional feature space using a non-

linear mapping. Within this transformed feature space, SVMs strive to identify an 

optimal decision boundary, known as the hyperplane, that maximally separates the 

two classes. This decision boundary is constructed in a manner that maximizes the 

margin, which represents the distance between the decision boundary and the 

closest data points from each class. These data points, situated closest to the 

decision boundary, are referred to as support vectors [31]. 

3.2.5.  Naive Bayes classifiers  

NB classifiers are particularly well-suited for large-scale problems because the 

number of parameters they require scales linearly with the number of variables 

(features/predictors) involved in a learning task. This makes them highly applicable 

in such scenarios. Unlike many other classifiers that employ iterative 

approximation, maximum likelihood classifiers can be trained in linear time using 

a closed-form expression evaluation, which is more time-efficient and avoids 

unnecessary computational overhead [32]. 

3.2.6.  Logistic regression  

LR is a regression analysis technique where the log-odds of an event are modelled 

as a linear combination of one or more independent variables in a logistic model, 

also known as a logit model [33]. This method is used to estimate the parameters 

(coefficients) of the logistic model in regression analysis. In binomial logistic 

regression, there is a single dependent variable with two possible values (0 or 1), 

represented by an indicator variable. The independent variables can be binary (0 or 

1) or continuous (any real value). The label "1" indicates the possibility of the value 

falling between 0 and 1, and the logistic function is utilized to convert logarithmic 

odds into probabilities. The term "logit" is derived from "logistic unit," as it 

represents the unit of measurement on the log-odds scale [33]. 

3.2.7.  Linear discriminant analysis  

LDA also known as Normal Discriminant Analysis (NDA) or Discriminant 

Function Analysis (DFA), is a statistical method employed to discover a linear 

combination of features that effectively distinguishes between multiple groups or 

categories of things or events. LDA can be utilized in two primary ways: as a linear 

classifier or, more commonly, as a dimensionality reducer to facilitate subsequent 

classification. LDA is closely related to other statistical techniques such as 

ANOVA and regression analysis, all of which aim to model the dependent variable 

as a linear function of independent variables [34]. While discriminant analysis 

employs continuous independent variables and a categorical dependent variable, 

analysis of variance (ANOVA) employs categorical independent variables and a 

continuous dependent variable [35]. 

3.3. Fast Fourier transform 

Fast Fourier Transform (FFT) calculates a sequence or signal's discrete Fourier 

transform (DFT) quickly. The DFT divides a time-domain signal into frequency 

components [36]. 



2854       A. F. Sawan et al. 

 
 
Journal of Engineering Science and Technology      December 2023, Vol. 18(6) 

 

The FFT uses Fourier transform symmetry and periodicity to simplify 

computation. The algorithm recursively solves DFT subproblems until it reaches 

the base case. 

Signal processing, image processing, data analysis, and more use the FFT 

algorithm. It has revolutionized these domains by enabling rapid and accurate 

frequency analysis, facilitating noise filtration, spectral analysis, compression, 

pattern recognition, and more [36]. 

3.4. Wavelet transform 

The Wavelet Transform analyses time- and frequency-domain signals and data. It 

breaks a signal into wavelets, small functions with time and frequency localization. 

This makes it more detailed and flexible than the Fourier Transform [37]. 

The Wavelet Transform allows multi-resolution analysis of high- and low-

frequency signals. This transformative approach provides valuable information 

about the amplitude and location of signal frequency components, enabling 

efficient signal processing and analysis [37]. 

4. Methodology  

The depiction of the proposed method can be observed in Fig. 2. Exhaustive 

explanations of each sub step are provided below, offering a comprehensive 

understanding of the approach. 

4.1. Data collection 

The experiments exclusively focused on EEG data as the primary source of 

information. EEG activity data of patients were collected from the ICU and care 

units of Al Bashir Hospital during the years 2021 and 2022. Specifically, 

individuals who had experienced a stroke within the preceding 72 hours were 

selected as participants. In 2021, the study involved 17 stroke patients and 32 

healthy controls, while in 2022, 16 stroke patients and 21 controls participated. Two 

measurements from stroke patients were excluded due to excessive noise and lack 

of clarity. To ensure a fair comparison, 31 stroke patients and 31 healthy individuals 

were randomly selected from the available pool. 

Prior to commencing any experiments, participants or their legal guardians were 

provided with detailed information about the procedures and requested to provide 

informed consent. The participants' scalp and earlobes were cleaned using alcohol 

and swabs, and the MUSE2 device was also cleaned before and after each session 

using alcohol wipes. Following a brief break, two separate three-minute EEG 

recordings were made (one with the patient’s eyes open and one with them closed). 

A fixation cross was placed in the centre of the patient’s field of vision so that he 

could rest with his eyes open and focus on it.  

The final dataset contains 32 men, with an average age of 58.18, a standard 

deviation of 12.75, the oldest being 79, and the youngest being 31. The mean age 

of the 30 women in the sample was 55 years old, the standard deviation was 12.77 

years, the age range represented was 37-81, and the median age was 55. The expert 

physicians at Al Bashir Hospital agreed on the outcomes for all patients.  
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4.2. Data cleaning and features extraction 

Data preparation for algorithmic analysis is a complex procedure that necessitates 

close attention to detail, especially when dealing with signal errors. In the first step 

of data processing, data cleaning is performed using FFT and Wavelet Transform. 

The FFT was used to examine the signal's frequency spectrum. This required 

frequency-domain transformations of signals and the application of filters to 

remove unwanted interference and noise. The Wavelet Transform was also used to 

separate the signal from the noise by removing the high-frequency noise 

components. Reconstructing the original signals after removing or weakening these 

components significantly reduced the background noise level. 

Signals were transformed and cleaned to extract many features. These extracted 

features include: The Delta-Theta Ratio (DAR) is calculated by dividing the total 

power at the delta frequency range (1-3 Hz) by the power at alpha (8-13 Hz) in an 

EEG signal. Formula 1 shows the relative power or activity in these frequency bands. 

𝐷𝐴𝑅 =
(𝐷𝑒𝑙𝑡𝑎 )

 (𝐴𝑙𝑝ℎ𝑎 )
                                                                                             (1) 

The Delta-Theta-Alpha-Beta Ratio (DTABR) is derived from EEG signals. It is 

calculated by adding the EEG signal's delta (1-3 Hz) and theta (4-6 Hz) voltages. 

The sum of these voltages is divided by the sum of the voltages associated with the 

alpha frequency range (8-13 Hz) and the beta frequency range (14-20 Hz). The 

DTABR can be calculated using formulas 2. 

𝐵𝐴𝑇𝑅 =
(𝐷𝑒𝑙𝑡𝑎 +𝑇ℎ𝑒𝑡𝑎)

(𝐴𝑙𝑝ℎ𝑎+𝐵𝑒𝑡𝑎)
                                                                                             (2) 

The pdBSI (Pair-Derived Brain Symmetry Index) measures spectral power 

density symmetry between EEG electrode pairings. The pdBSI formula is: 

∑ ∑ |
(𝑅𝑖𝑗−𝐿𝑖𝑗)

(𝑅𝑖𝑗+𝐿𝑖𝑗)
 |      𝑛

𝑖=1
𝑀
𝑗=1                                                                                              (3) 

In this formula, The variables Rij and Lij represent the spectral power density 

of the signals at each electrode pairing (i=1, 2,..., M) and frequency (j=1, 2,..., N) 

in this formula. The i values range from 1 to M, and the j values range from 1 to N. 

The difference in power densities of the signals coming from the right (R) and left 

(L) electrodes is what the numerator of the formula is used to calculate. On the 

other hand, the power densities are added together when using the denominator to 

perform the calculation. The primary categories, features, and parameters that have 

been extracted from the dataset are outlined in detail in Table 1, which offers a 

comprehensive overview of these elements. 

4.3. Processing  

The frequency properties, such as beta, alpha, theta, delta, and gamma, were 

gathered and compiled during this stage of the process. The gathered information 

was then uploaded to Dropbox for further processing. The first step in the 

preprocessing stage involved removing artifacts from the signals using the Wavelet 

Transform and FFT. This process, as depicted in Fig. 2, was carried out using 

Python within the Jupyter Notebook environment on Google Colab. 
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In order to achieve the best possible results and the highest level of accuracy, ML 

methods were employed in the classification stage. The accuracy of the modified 

XGBoost classifier was validated by comparing it with various other ML classifiers. 

Table 1. Features from signals. 

Main categories for features 

Age Gyroscope- Root Mean Square 

(RMS)-X 

Gender Gyroscope-RMS-Y 

Delta-Theta Ratio (DAR) 

hemisphere 

Gyroscope-RMS-Z 

Delta-Theta-Alpha-Beta Tatio 

(DTABR) 

Gyroscope-Standard 

Deviation(STD)-X 

Pair-Derived Brain  Symmetry 

Index (pdBSI) 

Gyroscope-STD-Y 

Relative-Beta power Gyroscope-STD-Z 

Relative-Alpha power Gyroscope-RMS-X 

Relative-Theta power Accelerometer-RMS-Y 

Relative-Delta power Accelerometer-RMS-Z 

High-Frequency-pdBSI Accelerometer-STD-X 

Low-Frequency-pdBSI Accelerometer-STD-Y 

PdBSI-Front and Back Accelerometer-STD-Z 

Frequency of Delta Frequency of Alpha 

Frequency of Beta Frequency of Theta 

Fig. 2. Processing. 

4.4. Data preparation and ML steps 

The data preparation and ML steps are listed as below: 

• Replace the null value with a zero value.  

• Using the dummies approach, convert category variables to binary values. 

• Normalize and scale data Normalization refers to the calculation of measured 

statistical characteristics in the range of 0 to 1. The data were subjected to 

normalization in order to guarantee that each characteristic is accorded the 

same amount of significance and lies within the acceptable range of values, 

which is between 0.0 and 1.0. The equation for normalization (Equation 4) 
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made use of the mean (µ) and standard deviation (σ) of attribute X, with a 

weighted value (α) that was set to 1/ 0. 

  𝐷𝐴𝑅 =
(𝐷𝑒𝑙𝑡𝑎 )

 (𝐴𝑙𝑝ℎ𝑎 )
                                                                                             (4) 

• RFE selects features. It removes less important features from a dataset to find 

the most important ones. RFE reduces the "curse of dimensionality" in high-

dimensional data. RFE improves model interpretability and performance by 

focusing on the most informative features. 

• Five types of data partitioning are used, including 5-fold cross-validation, 10-

fold cross-validation, 20-fold cross-validation, an 80/20 training-testing split, 

and a 67/33 training-testing split. 

• Seven different machine learning classifiers are used on the dataset, and their 

effectiveness is analysed in terms of accuracy, recall, precision, and F-score. 

The results of accuracy, recall, precision, and F-score based on the confusion 

matrix are presented in Table 2. 

Table 2. Confusion matrix. 

Confusion Matrix Actual Stroke Actual Normal 

Prediction Stroke TP FP 

Prediction Normal FN TN 

• FP (False Positives): This occurs when a healthy person is mistakenly 

diagnosed as having a stroke. 

• FN (False Negatives): This happens when someone who is experiencing a 

stroke appears normal and is not detected. 

•  TP (True Positive): This refers to correctly identifying an individual who is 

experiencing a stroke. 

•  TN (True Negative): This indicates successfully identifying a normal 

individual without a stroke. 

The following criteria are used to evaluate classifiers: 

• Accuracy is a performance metric utilized to assess the effectiveness of 

classifiers. It quantifies the overall accuracy of a classifier in correctly 

classifying instances as either stroke or non-stroke cases. Accuracy is 

computed by dividing the total number of correctly classified cases (true 

positives and true negatives) by the total number of cases present in the dataset. 

A higher accuracy score indicates a more dependable classifier that accurately 

predicts both stroke and non-stroke cases. 

  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                                                                                                 (5) 

• Precision is a performance metric commonly employed to evaluate classifiers, 

particularly in binary classification tasks. It quantifies the proportion of 

relevant instances (true positives) correctly identified out of all the instances 

classified as positive by the classifier (true positives and false positives). 

Essentially, precision assesses how effectively the classifier identifies true 

positive cases while minimizing the inclusion of false positive cases. A higher 
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precision value signifies a classifier with a lower rate of false positives and 

greater precision in identifying relevant instances. 

(𝑇𝑃)

(𝑇𝑃+𝐹)
                                                                                                                 (6) 

• Recall, also referred to as sensitivity or true positive rate, is a performance 

metric employed to assess classifiers in binary classification tasks. It quantifies 

the proportion of actual positive instances (true positives) correctly identified 

by the classifier out of all the positive instances present in the dataset (true 

positives and false negatives). In essence, recall measures how well the 

classifier captures all relevant positive instances. A classifier with a higher 

recall value accurately identifies positive instances and has a lower false 

negative rate. 

(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
                                                                                                                 (7) 

• Precision and recall are combined in the F1-score performance metric. A 

classifier's performance is balanced by the harmonic mean of precision and 

recall. Precision and recall are considered in the F1-score. When the dataset 

has a positive-negative imbalance, this metric is useful. A classifier with a high 

F1-score balances precision and recall, resulting in better performance 

2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
                                                                                                                 (8) 

5. Results  

5.1. Experiments setup   

This section describes the experimental system environment and parameter 

settings. Google Colab hosted a Python Jupyter notebook for all experiments. This 

ensured accurate comparisons. The notebook's 12.68 GB of RAM and 107.72 GB 

of disk space allowed SKlearn, Matplotlib, Pandas, and Numpy to implement a 

variety of machine learning algorithms. Notebooks used these libraries.  

Table 3 lists parameter settings. Cross-validation (CV) with fivefold, tenfold, 

and twentyfold iterations assessed machine learning algorithm performance. Five, 

ten, and twenty data samples were used for training (80%, 90%, and 95%) and 

testing (20%, 10%, and 5%) respectively. This process was repeated five, ten, or 

twenty times, ensuring that each sample had the opportunity to appear in both the 

training and testing sets. By utilizing CV, we obtained less biased results compared 

to the simple method, which was also used for testing in this paper (80% training 

and 20% testing) and (67% training and 33% testing). repeated five times, These 

different types of splitting were conducted to ensure the achievement of the highest 

accuracy possible. It is important to note that the best results are highlighted using 

boldface formatting. 

Various classic and advanced classification algorithms were evaluated to 

determine the most effective one for the given dataset. Among the algorithms tested 

were Modified XGBoost, NB, NB, SVM, DT, RF, LR, and LDA. The specific 

configurations and settings of these approaches can be found in Table 3. 
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5.2. Data exploration  and classification  

After collecting the original dataset for this study, it consisted of 34 features. 

However, through the process of feature extraction, the dataset was expanded to 

include a total of 66 features that are suitable for ML classification. Figure 3 

visually represents the data and highlights significant trends in certain features 

between patients with stroke and normal individuals. 

Table 3. List of the parameter’s settings for the classifiers. 

Classifier Parameter Value 

Decision Tree Min samples 2 

Tree depth 5 

Naive Bayes Var smoothing 1.00E-09 

Support Vector Machine Degree 3 

Kernel set linear 

Modified XGBoost Max depth 4 

Objective binary: logistic 

N Estimators 100 

Min child weight 4 

Learning rate 0.2 

Random Forest Max depth 70 

N Estimators 400 

Bootstrap TRUE 

Min samples split 10 

Logistic Regression Solver newton-cg 

Penalty None 

max iter 1000 

Linear Discriminant 

Analysis 

Solver svd 

Shrinkage auto 

The results of different classifiers were presented in the section,  including the 

modified XGBoost classifier, as well as DT, LDR, LR, SVM, NB, and RF. The 

performance evaluation of each classifier was conducted using five different 

approaches for data partitioning. Accuracy and F1-score results are presented in 

Table 4, while precision and recall results are shown in Table 5. The best results 

for each classifier on the test data are indicated in bold. The findings depicted in 

Table 4 clearly demonstrate that the modified XGBoost classifier outperformed all 

other classifiers in terms of accuracy and F1-score. Specifically, when employing 

10-fold cross-validation to split the dataset, the modified XGBoost achieved the 

highest accuracy of 96.87% (as illustrated in Fig. 4) and an F1-score of 96.87%. 

These results highlight the superior performance of the modified XGBoost 

classifier in accurately classifying the dataset. 

When compared to the dataset that was divided into 80% training and 20% 

testing, the modified XGBoost classifier demonstrated a significant improvement 

of 0.30%. This is an important finding that deserves to be highlighted. This 

indicates that a more extensive training dataset contributed, at least in part, to the 

improved accuracy of the classifier. 
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Fig. 3. Data bases on target. 

Table 4. Accuracy and F1-score results. 

 
Classifier 

Train 80/20 Train 67/33 5-Fold CV 10-Fold CV 20-Fold CV 

 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

 XGBoost 96.57 96.47 96.73 96.66 96.78 96.7 96.87 96.87 96.86 96.87 

 RF 92.61 92.16 92.44 92.03 92.63 92.38 92.52 92.25 92.51 92.23 

 SVM 87.05 86.77 86.96 86.72 86.74 86.61 86.53 86.45 86.52 86.48 

 NB 77.94 77.1 84.91 84.87 84.99 85.15 85.03 85.19 85.01 85.17 

 DT 88.64 88.41 90.14 90.45 89.18 89.4 89.06 89.31 88.97 89.11 

 LR 85.52 85.09 85.53 85.13 86.82 86.83 86.75 86.77 86.78 86.79 

 LDA 86.61 86.33 86.42 86.18 86.17 86.18 86.11 86.1 86.1 86.08 

On the other hand, the NB classifier demonstrated the worst accuracy and F1-

score, in particular when the dataset was divided so that 80% of it was used for 

training and 20% was used for testing. The accuracy of the NB classifier was 

measured at 77.94%, and its F1 score was measured at 77.1%. Based on these 

findings, it appears as though the NB classifier does not perform as well as other 

classifiers when it comes to accurately classifying the dataset. 

The findings, taken as a whole, shed light on the outstanding performance of 

the modified XGBoost classifier, in particular when employing the 10-fold cross-

validation method for the purpose of dataset splitting. 
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Fig. 4. The accuracy of the classifiers. 

In Table 5, we see further evidence that the modified XGBoost classifier 

outperforms other classifiers in terms of precision and recall. The results clearly show 

that a split of 80% training data and 20% testing data yielded the highest precision 

(97.15%) for the modified XGBoost classifier. The modified XGBoost classifier also 

had the highest recall (97.12%) using 10-fold cross-validation. These results show 

that the improved XGBoost classifier distinguishes false positives and negatives well. 

The NB classifier had the lowest recall and precision rates with an 80% training and 

20% testing data split, 77.47% and 76.73%, respectively. These results suggest that 

the NB classifier may underclassify stroke and non-stroke cases. 

Table 5. Recall and precision results. 

Classifier 
Train 80/20 Train 67/33 5-Fold CV 10-Fold CV 20-Fold CV 

Rec Prc Rec Prc Rec Prc Rec Prc Rec Prc 

XGBoost 95.81 97.15 96.53 96.8 97.03 96.55 97.12 96.62 97.11 96.64 

RF 94.68 89.77 95.06 89.2 89.42 95.55 89.1 95.64 89.06 95.66 

SVM 85.83 87.72 86.51 86.92 86.66 86.27 86.63 86.49 86.42 86.38 

NB 77.47 76.73 83.35 86.45 86.11 84.2 86.22 84.19 86.22 84.16 

DT 87.34 89.52 86 95.39 91.35 87.57 91.57 87.21 90.32 87.94 

LR 84.86 85.32 85.65 84.62 86.95 86.73 86.93 86.63 86.93 86.68 

LDA 85.32 87.37 85.86 86.51 86.23 86.14 86.12 86.11 86.06 86.14 

In conclusion, the modified XGBoost classifier's precision and recall are 

excellent, as shown in Table 5. The modified XGBoost classifier outperforms the 

other classifiers, including the NB classifier, in dataset classification. The classifier 

outperforms other classifiers consistently. These results demonstrate the modified 

XGBoost classifier's ability to produce accurate and reliable results in the 

classification task. 

The Modified XGBoost model's 10-fold cross-validation ROC curves are 

shown in Fig. 5. The curves demonstrate the model's classification accuracy. 
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Fig. 5. ROC curves for the Modified XGBoost. 

5.3. Comparing the results with other studies 

We utilized the modified XGboost model on an international dataset that employed 

MUSE-2 for capturing EEG waves from stroke patients [38]. The results, as 

presented in Table 6, demonstrated a notable 9.2% increase in accuracy compared 

to previous findings. Additionally, when compared to the results reported in [26] 

on the same dataset, our approach achieved a further 1.31% increase in accuracy. 

Table 6. Dataset from paper [38]. 

Dataset Accuracy Precision Recall F1-score 

Results by using proposed model  0.8520 0.8616 0.8620 0.8617 

Results in paper [38] 0.76    

Results in paper [26] 0.8389 0.8518 0.8473 0.8493 

6. Discussion  

The primary aim of this research is to utilize ML models for stroke classification 

based on EEG signals captured by the MUSE 2 portable device. we have developed 

an innovative cloud-based decision support system for stroke identification. The 

system's structure is illustrated in Fig. 6, and the key steps of the proposed model 

are as follows: 

• Real-time data collection: EEG signals are collected using the MUSE 2 

wearable device. 

• Data gathering and preparation: Python in the Jupiter Notebook, accessed 

through Google Colab, is employed to retrieve data from Dropbox and perform 

the necessary cleaning and pre-processing steps to make it suitable for ML 

algorithms. 

• Stroke outcome classification: Traditional and modified ML models classify 

stroke outcomes using the dataset. 

• Categorization result and notification: An ML model classifies and sends an 

SMS to the specified phone number. 

Our stroke diagnosis system is novel because it uses these procedures. It uses 

the MUSE 2 device, cloud computing, and machine learning algorithms to gather 

real-time data, process it, and classify it to quickly identify and notify stroke cases. 
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Its affordability makes this system accessible to a wide audience. It offers a cost-

effective solution for people of different financial means. The system's adaptability 

makes it easy to use anywhere. 

 
Fig .6. Module structure. 

Internet and the MUSE2 device are needed to use the system, By having these 

two components, healthcare providers can initiate the diagnostic process and 

anticipate receiving the results on their mobile phones within a matter of minutes. 

This swift response time allows for timely interventions and decision-making 

concerning stroke-affected patients. In general, the system's cost-effectiveness, 

availability, and prompt result delivery establish it as an invaluable resource for 

stroke diagnosis, benefiting healthcare professionals and patients alike. 

7. Conclusion and Future Work  

Currently, the diagnosis of stroke presents challenges as it typically relies on CT 

scans, which can take up to 8 hours to confirm, or MRI scans, which are often 

impractical due to their lengthy thirty-minute procedure time. Consequently, there 

is a need for alternative approaches to analyse EEG waves for stroke diagnosis. 

Thus, we propose a cloud-based stroke diagnosis system that leverages the portable 

MUSE 2 device for this purpose. 

In our research, we employed a modified XGboost along with other machine 

learning classifiers to classify the stroke dataset. We captured measurements from 

various positions using the four electrodes on the MUSE 2 portable device, 

enabling us to extract raw spectra and raw spectrum values. Additionally, we 

generated and evaluated 66 new attributes by extracting further features from the 

collected dataset. 

To enhance efficiency and provide immediate access to results, diagnostic 

findings will be promptly delivered to authorized individuals via real-time short 

messages on their mobile phones. Furthermore, our study employed a modified 

XGboost in a 10-fold cross-validation, achieving a 96.87% prediction accuracy for 

stroke patients based on data gathered from Al Bashir Hospital. 

These findings present compelling evidence that this system effectively delivers 

timely diagnoses for stroke patients, highlighting its potential impact. 

However, there are certain considerations to bear in mind. While the cloud 

computing environment offers accessibility from any location, it is advisable to 

utilize high-speed internet for optimal performance. As this system has shown 
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promising results for stroke patients, our future research will focus on its practical 

application and integration into clinical trials for real-world implementation. 

Additionally, we plan to incorporate electrocardiogram (ECG), hypertension, and 

other vital signs readings into the system to enhance its diagnostic capabilities for 

stroke patients. 
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