Regular Paper

Journal of Electromagnetic Engineering and Science 2024;24(2):120-128.

DOI: https://doi.org/10.26866/jees.2024.2.r.211 Published online March 31, 2024.

Built-In Coil Current Sensing for 7-Tesla ¹H/²³Na and ¹H/³¹P Magnetic Resonance Imaging

Ashraf Abuelhaija¹, Gameel Saleh², Samer Issa¹, Osama Nashwan¹, Sanaa Salama³

Correspondence: Ashraf Abuelhaija,Email: a abualhijaa@asu.edu.jo

Received: 21 February 1983 • Revised: 20 April 2023 • Accepted: 7 June 2023

Abstract

This article introduces two designs for dual-tuned built-in radio-frequency coil current sensing in 7-Tesla magnetic resonance imaging based on the current forcing property of the quarter-wave transmission line. The first design offers dual-tuned built-in coil current sensing at $^1\text{H}/^{23}\text{Na}$ resonant frequencies to probe the coil current consecutively at 298 MHz and 78.8 MHz, without the need for any integrated sensor on the coil. The second design enables dual-tuned built-in coil current sensing at $^1\text{H}/^{31}\text{P}$ resonant frequencies to probe the coil current at 298 MHz and 120 MHz consecutively. The first design achieved good matching (<-40 dB) and low insertion loss (<0.5 dB) for ^1H and ^{23}Na magnetic resonance signals. The $^1\text{H}/^{31}\text{P}$ design also exhibited good matching (<-30 dB) and low insertion loss (<0.67 dB). Therefore, both designs show promising potential for monitoring current flows in dual-tuned coils at the Larmor frequencies of different atomic nuclei.

Key words: <u>Current Sensing</u>, <u>Dual-Tuned</u>, <u>Magnetic Resonance Imaging</u>, <u>Power Amplifier</u>, <u>Radio</u> Frequency

¹Department of Electrical Engineering, Applied Science Private University, Amman, Jordan

²Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

³Department of Telecommunication and Engineering, Arab American University, Jenin, Palestine