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Abstract—In this paper, we present an enhancement for 

Particle Swarm Optimization performance by utilizing CUDA 

and a Tree Reduction Algorithm. PSO is a widely used 

metaheuristic algorithm that has been adapted into a CUDA 

version known as CPSO. The tree reduction algorithm is 

employed to efficiently compute the global best position. To 

evaluate our approach, we compared the speedup achieved by 

our CUDA version against the standard version of PSO, 

observing a maximum speedup of 37x. Additionally, we identified 

a linear relationship between the size of swarm particles and 

execution time; as the number of particles increases, so does 

computational load – highlighting the efficiency of parallel 

implementations in reducing execution time. Our proposed 

parallel PSOs have demonstrated significant reductions in 

execution time along with improvements in convergence speed 

and local optimization performance - particularly beneficial for 

solving large-scale problems with high computational loads. 
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I. INTRODUCTION 

Optimization techniques are crucial in various domains for 
finding optimal solutions to complex problems. However, 
Particle Swarm Optimization, a widely used metaheuristic 
algorithm, has demonstrated limitations in terms of 
convergence speed and local optimization performance [1] [2]. 
As a result, researchers have turned to parallel computing 
techniques like Compute Unified Device Architecture (CUDA) 
a parallel computing platform and application programming 
interface (API) developed by NVIDIA, to enhance the 
performance of PSO by implementing it on a parallel 
architecture. Significant reductions in computing time 
compared to traditional implementations using different 
programming languages have been observed by researchers. 

In the field of parallel computing, practitioners often 
employ various techniques to break down a computational task 
into smaller subtasks that can be executed simultaneously on 
multiple processors. These subtasks, commonly known as 
threads, are vital in this approach and are managed for 
execution by an operating system. CUDA supports shared 
memory parallel programming, which enables multiple 
processors or cores to access a shared memory space efficiently 
[3]. 

The integration of CUDA technology plays a pivotal role in 
enabling the seamless implementation of Particle Swarm 
Optimization (PSO) within a parallel architecture. This cutting-
edge approach harnesses the power of GPUs to efficiently 
distribute workloads into smaller tasks, allowing for concurrent 

processing on the Graphics Processing Units. By utilizing 
CUDA for the parallel execution of PSO on GPUs, 
computational tasks benefit from enhanced efficiency and 
performance through the utilization of parallel processing 
capabilities, ultimately leading to accelerated computations and 
improved results in various applications such as optimization, 
machine learning, and scientific simulations [4]. 

This parallel method empowers each particle to 
autonomously execute a designated number of iterations before 
resynchronization occurs. Many researchers have successfully 
implemented PSO algorithms using CUDA for GPUs, and the 
outcomes from these endeavors unequivocally indicate that 
parallelization significantly enhances the performance 
capabilities of PSO [5]. 

This paper produces a CUDA version of the PSO algorithm 
called (CPSO). The tree reduction algorithm and the CUDA 
shared memory were used in CPSO to reduce the comparison 
operations to half and reduce the amount of time spent 
accessing global memory. The contributions of this work are 
summarized as follows: 

1) Propose a CUDA version of the PSO algorithm. 

2) Enhance the CUDA implementation of the PSO 

algorithm using the tree reduction algorithm and the CUDA 

shared memory. 

3) Compare the proposed algorithms in terms of execution 

time and speedup to demonstrate the effectiveness and 

efficiency of our proposed algorithm. 

The structure of this paper is outlined as follows: Section II 
presents the background information, Section III discusses 
related work, Section IV details the implementation of PSO 
algorithms, Section V outlines the experimental setup, Section 
VI presents the results and discussions, and Section VII 
provides the conclusions and suggestions for future work. 

II. BACKGROUND 

A. Graphics Processing Unit 

The Graphics Processing Unit (GPU) was initially 
developed in the 1970s as an electronic circuit for displaying 
vector graphics [6]. Over the years, the GPU has undergone 
significant development and has evolved into a highly parallel 
processor capable of performing complex computations, 
providing significant performance boosts for graphics-intensive 
applications [7]. One of the main advantages of the GPU is its 
ability to provide higher instruction throughput and memory 
bandwidth than the Central Processing Unit (CPU) within the 
same power envelope. Unlike the CPU which is designed to 
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execute threads as fast as possible and execute only a few 
threads in parallel depending on the number of cores, the GPU 
is designed to execute thousands of sequences of operations, 
called “threads,” in parallel up to 1024 threads per block limit 
of the GPU [8]. The main architecture of the CPU and GPU is 
illustrated in Fig. 1, where the CPU (host) and GPU (device) 
work together and communicate via a PCI-express bus [9]. 

  
                       (a)                                         (b)   

Fig. 1. The architecture of (a) CPU; and (b) GPU. 

B. Compute Unified Device Architecture 

NVIDIA, a leading player in the field of visual computing 
and parallel processing, introduced the CUDA in 2007 as a 
parallel platform programming model [10]. CUDA provides a 
set of tools that enable the development of high-performance 
applications to be executed on GPUs. Typically, a CUDA 
program consists of two parts: the first part is executed on the 
host CPU, while the second part is executed on the device 
GPU, with the result being returned to the host CPU [11]. As 
shown in Fig. 2, the CUDA programming architecture consists 
of N number of grids which depends on the limitations of the 
GPU hardware. Each grid is composed of blocks, and each 
block contains multiple threads that can be executed 
concurrently. The thread blocks are organized into 1D, 2D, or 
3D arrays of threads [12]. 

 

Fig. 2. CUDA 2D grid and thread block indexes presentation. 

Each thread within a block has a specific index that is used 
to identify its location during the execution of the CUDA 
function, known as the 'kernel' function. The thread index for a 
1D dimension is calculated using the following equation [13]: 

𝑡ℎ𝑟𝑒𝑎𝑑 𝑖𝑛𝑑𝑒𝑥 = (𝑏𝑙𝑜𝑐𝑘𝐼𝐷𝑥. 𝑥 × 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥) + 

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥   (1) 

Here, 𝑏𝑙𝑜𝑐𝑘𝐼𝐷𝑥. 𝑥 represents the x-dimension identifier of 
the thread block, 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥  represents the x-dimension of 
the thread block, and 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥 represents the x-dimension 
identifier of the thread. 

In GPUs, threads can be executed together in parallel in 
groups called "warps" which consist of 32 or 64 threads 
depending on the GPU architecture [14]. Within each warp, the 
threads execute the same instruction at the same time, a 
concept known as Single Instruction Multiple Threads (SIMT) 
which minimizes the amount of branching and divergence 
between threads which can result in performance penalties 
[15]. Each CUDA thread possesses its private local memory 
and can access data from multiple memory spaces. 
Furthermore, each block has shared memory that can be 
accessed by its threads or by other thread blocks as illustrated 
in Fig. 3. Local memory offers the fastest memory access 
speed for each thread, followed by shared memory. Global, 
static, and texture memory speeds are relatively slower [15]. 

 
Fig. 3. Memory hierarchy in GPUs. 

CUDA provides a function called “cudaMallocManaged” 
for unified memory management between CPU and GPU 
without explicit data transfers. It acts like a single memory 
space that can be accessed by both CPU and GPU. The 
overhead of explicit data transfer between CPU and GPU is 
reduced which improves the overall performance by providing 
a unified memory space [16]. Also, CUDA provides a function 
called “cudaMemPrefetchAsync” to prefetch data from the host 
or device memory to the device cache before it is needed. The 
main advantage of “cudaMemPrefetchAsync” is that data 
movement operation is performed asynchronously, optimizing 
memory access patterns and reducing data transfer latency in 
CUDA applications [17], [18]. Typically, a GPU program 
consists of one or more kernels which are collections of tasks 
executed sequentially by GPUs. These kernels are composed of 
blocks, separate groupings of Arithmetic Logic Units (ALUs). 
Each block contains multiple threads, representing various 
levels of computation. Usually, the threads within a block 
collaborate to calculate a specific value. It is important to note 
that threads within the same block can share memory, enabling 
efficient data interchange. In the context of CUDA, the most 
common computation involves transferring data from the CPU 
to the GPU [19] The main steps of the CUDA program flow, as 
depicted in Fig. 4, are: the data is loaded into the host CPU 
memory and then transferred to the GPU memory using a 
function called "cudaMemcpy". Subsequently, the kernel is 
launched on the GPU using the syntax "kernel<<<numBlocks, 
threadsPerBlock>>>" [14]. The "<<<>>>" notation is 
employed to configure the execution of the kernel by 
specifying the number of thread blocks and the number of 
threads per block [20]. 

 
Fig. 4. GPU program workflow. 
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III. RELATED WORK 

PSO has been applied and extended in various studies. In 
this context, several works have focused on optimizing the 
performance of PSO algorithms, particularly by leveraging 
parallel computing techniques. 

In study [21] the authors provide an overview of the PPSO 
algorithm which is commonly used in complex optimization 
problems requiring significant computational power. They 
discuss different parallelization options for PPSO, including 
programming languages and communication topologies. Also, 
they cover various models of parallelization, implementation, 
and uses of PPSO algorithms, making them a valuable resource 
for researchers and developers working with PPSO and other 
parallel optimization algorithms. 

In study [22] the authors propose a novel algorithm called 
"cuPSO" that reduces the computation time of PSO-based 
algorithms with massive threads on GPUs. The proposed 
algorithm addresses excessive memory accesses and thread 
synchronization overheads faced by traditional reduction-based 
methods through the use of atomic functions. Experimental 
results show that cuPSO achieves over 200x speedups 
compared to the serial version running on the CPU and 
outperforms the state-of-the-art method by a factor of 2.2 in 
terms of computation time. Similarly, the authors focus on 
optimizing particle systems using CUDA-assisted 
multithreading. They aim to improve the performance of 
particle systems by enhancing a CUDA particle demo 
developed by Nvidia using a Python script. The experimental 
results in their work demonstrate the achievement of desired 
performance levels by adjusting the number of particles, grid 
size, and grid orientation. It also presents hypotheses regarding 
the impact of changing these parameters on processing time 
and provides experimental results to support these hypotheses 
[23]. Furthermore, another work introduces a new approach to 
running standard particle swarm optimization (SPSO) by 
utilizing GPU's parallel computing capability and NVIDIA's 
CUDA software platform. Experiments were conducted to 
optimize benchmark test functions using both GPU-SPSO and 
CPU-SPSO, results show that GPU-SPSO significantly reduces 
running time compared to CPU-SPSO more than 11 times 
faster than CPU-SPSO, especially for large swarm population 
applications and high dimensional problems [24]. 

The authors explore and evaluate two different ways of 
utilizing GPU parallelism in the implementation of particle 
swarm optimization (PSO) on graphics processing units 
(GPUs). The execution speed of these two parallel algorithms 
is compared with a standard sequential implementation of PSO, 
known as SPSO. The study also includes a comprehensive 
analysis of the computation efficiency of the parallel 
algorithms, considering speed-up and scale-up with SPSO. 
Also, the authors investigate the extent to which PSO can 
benefit from a parallel implementation using CUDA. The 
design of the two parallel versions of PSO considered in this 
study was influenced by the structure of CUDA and compatible 
GPUs. Additionally, the practical implications of the parallel 
algorithms resulted in two possible solutions that differentiate 
the potential use of each version [5]. 

Finally, another work introduces a parallel implementation 
of Cooperative Particle Swarm Optimization (CPSO) using 
CUDA. The work includes a comparison between CPSO 
implemented in C and C-CUDA, and tests were conducted on 
standard benchmark optimization functions. The results 
showed improvements in speed and convergence time, with 
CUDA's randomizing procedures contributing to better 
solutions. The paper emphasizes the utility of CUDA for 
complex and computationally intensive applications [25]. 

IV. PSO ALGORITHMS IMPLEMENTATION 

In general, the choice of data structure in the PSO 
algorithm is crucial for effectively representing and 
manipulating particles within the swarm. The main data 
structure used in proposed PSO algorithms is the Particle 
structure as illustrated in Fig. 5(a), which encapsulates the 
necessary information for each particle. This structure typically 
includes components such as the current position, best position, 
velocity, and best value. The current position represents the 
particle's location in the search space, while the best position 
stores the particle's personal best solution found so far. The 
velocity determines the particle's movement in the search 
space, and the best value represents the fitness or objective 
value associated with the best position. The struct position as 
illustrated in Fig. 6(b) represents a two-dimensional position in 
space, with x and y coordinates stored as floating-point values. 
It also includes two member functions and two overloaded 
operators. PSO algorithms can efficiently update and track the 
positions and velocities of particles, facilitating the exploration 
and exploitation of the search space by utilizing these data 
structures. The design and implementation of these data 
structures are critical for the success of PSO in finding optimal 
solutions to optimization problems. 

  

                               (a)                                                    (b) 

Fig. 5. Data structure for (a) The particle struct; and (b) The position struct. 

   
                         (a)                                     (b)                                    (c)  

Fig. 6. A 2D visualization for PSO with 5000 particles: (a) The initial state of 

particles; (b) The particle's state after 100 iterations; (c) The particle's state after 

200 iterations. 

A. Standard PSO Algorithm 

The Standard Particle Swarm Optimization (SPSO) 
algorithm is one such technique that draws inspiration from the 
social behavior of bird flocking or fish schooling. It is 
categorized as a population-based optimization technique and 
was first introduced in 1995 by Kennedy and Eberhart. In 
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SPSO, each solution is referred to as a "particle" that moves 
through the search space, seeking the optimal position as 
illustrated in Fig. 6. The search for the optimal position is 
guided by a "fitness function." Each particle has its position 
and velocity which are adjusted in each iteration based on its 
experience and the collaboration with its neighbors in the 
search space [26], [27]. 

This collaboration is demonstrated by the following 
equations [28]: 

𝑣𝑖
𝑛  = 𝜔𝑣𝑖

𝑛 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖
𝑛 − 𝑥𝑖

𝑛) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑛 − 𝑥𝑖
𝑛)  (2) 

𝑥𝑖
𝑛+1  = 𝑥𝑖

𝑛 + 𝑣𝑖
𝑛+1       (3) 

where, the 𝑣𝑖
𝑛 𝑎𝑛𝑑 𝑥𝑖

𝑛 present the current velocity and the 
position of the particle 𝑖 at the 𝑛th iteration respectively, the 𝜔 
presents the inertia weight, the 𝑐1 𝑎𝑛𝑑 𝑐2 present the cognitive 
and social coefficients, respectively, the 𝑟1 𝑎𝑛𝑑 𝑟2 are random 
numbers in the range [0,1] , the 𝑝𝑏𝑒𝑠𝑡𝑖

𝑛  represents the best 
position of the particle 𝑖  in the 𝑛th iteration and the 𝑔𝑏𝑒𝑠𝑡𝑛 
represents the best position among all particles at the 𝑛 th 
iteration. 

Algorithm 1 demonstrates the pseudocode of the SPSO 
algorithm, with the following description of the SPSO 
parameters [26]: 

 Population: It presents the total number of particles in 
the swarm space. 

 Tmax present the maximum number of iterations. 

 xi and vi  present the current position and the velocity, 
respectively, for the particle pi. 

 italicsfitnessi  and pbest_fitnessi : present the fitness 
value and the best fitness value, respectively, for the 
particle pi. 

 pbesti presents the best position for the particle pi. 

 gbest and gbest_fitness present the team best position 
and best fitness value, respectively, of the entire swarm 
space. 

 Termination condition presents the criteria that 
determine when the SPSO will stop searching for the 
optimal solution. 

Algorithm 1 Sequential SPSO algorithm 

For every particle pi in the swarm space, where 0 ≤ i <

population do: 

        Initialize the xi and vi randomly 

        Evaluate the fitnessi by the xi using the fitness function. 

        Initialize the pbest_fitnessi and 𝑝𝑏𝑒𝑠𝑡𝑖. 

        Update the 𝑔𝑏𝑒𝑠𝑡 and the 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠. 

End  

For every iteration 𝑡 = 0,1,2, … , 𝑇𝑚𝑎𝑥, do: 

     
   For every particle pi in the swarm space, where 0 ≤ i <

population do: 

 
   Update the position xi and the velocity vi for 

particle pi by the Eq. (4) and (5). 

 
   Evaluate the new fitnessi by the xi using the fitness 

function. 

 
   If the new fitnessi > pbest_fitnessi then update 

pbest_fitnessi by new fitnessi and 𝑝𝑏𝑒𝑠𝑡𝑖 by xi. 

 
   If the new fitnessi > 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 then update 

𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠  by new fitnessi and 𝑔𝑏𝑒𝑠𝑡 by 𝑝𝑏𝑒𝑠𝑡𝑖. 

 
   If the 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 met the termination condition,     

then exit from main and secondary loops. 

    End 

 End 

The time complexity of the SPSO algorithm is 
typically𝑂(𝑇 × 𝑃), where the 𝑇 is the number of iterations and 
the 𝑃 is the number of particles in the swarm space. 

B. CUDA PSO Algorithm 

The SPSO algorithm is one such technique to leverage the 
power of parallel computing of GPU, to introduce the CUDA 
Particle Swarm Optimization (CPSO). The CPSO involves 
parallelizing by assigning each particle to a separate thread on 
the GPU to update its position and velocity based on its own 
best position (𝑝𝑏𝑒𝑠𝑡) and the best position (𝑔𝑏𝑒𝑠𝑡) founded by 
any particle in the swarm space. Also, the unified memory 
management and shared memory within each block have been 
utilized since the SPSO is a memory-bound problem. The 
CPSO consists of three kernels update particle velocity, update 
particle position, and compute the best position (𝑔𝑏𝑒𝑠𝑡). The 
pseudocode of the CPSO is demonstrated in Algorithm 2. 

Algorithm 2 CUDA PSO Algorithm (CPSO) 

Set the blockSize equal to 32 and determine the grid size by 

the Eq. (3). 

Allocate memory for particles, 𝑔𝑏𝑒𝑠𝑡 and the 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

using cudaMallocManaged. 

Initialize the particles with random starting positions, 

velocities, and 𝑝𝑏𝑒𝑠𝑡. 

compute 𝑔𝑏𝑒𝑠𝑡 and the 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 using 

ComputeGlobalBestPosition kernel. 

Prefetch the particles array to the GPU. 

For every iteration 𝑡 = 0,1,2, … , 𝑇𝑚𝑎𝑥, do: 

    Update the velocity of each particle using the kernel 

updateParticleVelocity. 

    Update the position of each particle using the kernel 

updateParticlePosition. 

    Update the 𝑔𝑏𝑒𝑠𝑡 and the 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 using the 

kernel ComputeGlobalBestPosition. 

    If the 𝑔𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 met the termination condition,   

then terminate. 

    End 

End 

Wait for GPU to finish the computation. 

Free allocated memory. 

The kernel “ComputeGlobalBestPosition” is implemented 
by applying the "tree" reduction algorithm where each block 
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calculates its bbest within its shared memory where the bbest 
presents the best position within each block. This means that 
each block independently determines the bbest among the 
particles it is responsible for. The resulting minimum bbest is 
stored in shared memory and then reduced across all blocks to 
find the overall minimum value to obtain gbest. The following 
Fig. 7 illustrates a chart that shows how this works for a block 
of eight threads. 

 
Fig. 7. Tree reduction algorithm workflow for eight threads. 

For the first iteration, Thread 0 compares the best fitness 
value at index 0 with value at index 4, Thread 1 compares 
value at index 1 with value at index 5, Thread 2 compares 
value at index 2 with value at index 6, Thread 3 compares 
value at index 3 with value at index 7 and Threads 4-7 do 
nothing. For the second iteration, Thread 0 compares value at 
index 0 with value at index 2, Thread 1 compares value at 
index 1 with value at index 3 and Threads 2-3 do nothing. For 
the third iteration, Thread 0 compares value at index 0 with 
value at index 1 to obtain the final minimum value. 

In each iteration of the loop, the number of threads that 
perform a comparison is halved. This means that the number of 
iterations required to reduce all values to a single minimum 
value is 𝑙𝑜𝑔2(𝑁), where N is the number of threads in the 
block. After the parallel reduction loop completes, each thread 
block has found its own minimum value and corresponding 
index. These values are stored in shared memory. The final 
step is to reduce across all thread blocks to find the overall 
minimum value and corresponding index. This is done on the 
CPU after all threads have completed their computations. 

The pseudocode of the “ComputeGlobalBestPosition” is 
illustrated in Algorithm 3. 

Algorithm 3 ComputeGlobalBestPosition kernel 

Declares a shared memory array blockBestValueArray with a 

size of 32 that will be used for the parallel reduction within 

each block. 

Compute the thread ID within the block 𝑡𝑖𝑑  for the current 

thread by threadIdx.x and the idx for the current thread by Eq. 

(1). where 𝑖𝑑𝑥 is the global index of the particle that this 

thread is responsible for. 

Initialize 𝑏𝑙𝑜𝑐𝑘𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝐴𝑟𝑟𝑎𝑦[𝑡𝑖𝑑] with 𝑝𝑏𝑒𝑠𝑡 value of  

𝑖𝑑𝑥′𝑠 particle. 

Synchronize all threads within the block using __syncthreads 

() to ensure that all threads have finished updating the shared 

memory variables. 

loop i=
𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑥

2
, 𝑖 < 0, 𝑖 >>=  1 do the following: 

 If the 𝑡𝑖𝑑   < 𝑖 then 

 

If 𝑏𝑙𝑜𝑐𝑘𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝐴𝑟𝑟𝑎𝑦[𝑡𝑖𝑑] >

 𝑏𝑙𝑜𝑐𝑘𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝐴𝑟𝑟𝑎𝑦[𝑡𝑖𝑑 + 𝑖], then update 

𝑏𝑙𝑜𝑐𝑘𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝐴𝑟𝑟𝑎𝑦[𝑡𝑖𝑑] with 

𝑏𝑙𝑜𝑐𝑘𝐵𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝐴𝑟𝑟𝑎𝑦[𝑡𝑖𝑑 + 𝑖]. 

 End 

 End 

End 

Synchronize all threads within the block using __syncthreads 

() to ensure that all threads have finished updating the shared 

memory variables. 

If the 𝑡𝑖𝑑   = 0 then 

 
Update the 𝑔𝑏𝑒𝑠𝑡 value by the first element of 

blockBestValueArray. 

End  

The kernel “updateParticleVelocity” is implemented where 
each thread is responsible for a particle update their velocity 
based on Eq. (4). The pseudocode of the “updateParti-
cleVelocity” is illustrated in Algorithm 4. 

Algorithm 4 updateParticleVelocity kernel 

Compute the idx for the current thread by Eq. (1) where 𝑖𝑑𝑥 is 

the global index of the particle that this thread is responsible 

for. 

Declares a shared memory variable 𝑔𝑏𝑒𝑠𝑡 to access by all 

threads within each block. 

Synchronize all threads within the block using __syncthreads 

() to ensure that all threads have finished loading the shared 

memory variable. 

If the 𝑖𝑑𝑥  < population  then 

 Update the velocity for particle pidx by the Eq. (4). 

End 

The kernel “updateParticlePosition” is implemented where 
each thread is responsible for a particle updating its position 
based on Eq. (5) and updating its pbest. The pseudocode of the 
“updateParticlePosition” is illustrated in Algorithm 5. 

Algorithm 5 updateParticlePosition kernel 

Compute the idx for the current thread by Eq. (1) where 𝑖𝑑𝑥 is 

the global index of the particle that this thread is responsible 

for. 

If the 𝑖𝑑𝑥  < population  then 

 Update the position for particle pidx by the Eq. (5). 

 
Evaluate the new fitnessidx by the xidx using the fitness 

function. 

 

If the new fitnessidx > pbest_fitnessidx then update 

pbest_fitnessidx by new fitnessidx and 𝑝𝑏𝑒𝑠𝑡𝑖𝑑𝑥 by 

xidx. 

End 
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V. EXPERIMENTAL SETUP 

The software and hardware specifications for the computer 
used to implement and test the PSO and CPSO algorithms are 
listed in Table I and Table II respectively. The details 
specification of the Graphics Card is listed in Table III. 

TABLE I. SOFTWARE SPECIFICATION 

Name Version 

Microsoft Windows 11 22H2 

Visual Studio 2022 

Nsight Systems 2023.2.3 

CUDA 12020 

OpenMP 2.0 

TABLE II. HARDWARE SPECIFICATION 

Specification Properties 

Processor 

AMD Ryzen 9 5900HX, 3301 MHz, 8 Core(s), 16 
Logical Processor(s) 

Physical Memory 

(RAM) 
32.0 GB 

Graphics Card NVIDIA GeForce RTX 3080 Laptop GPU 

TABLE III. THE DETAILS SPECIFICATIONS OF THE GRAPHICS CARD 

Specification Properties 

Global memory 16,383 MB 

Shared memory 48 kb 

Block registers 65,536 

Max threads per block 1024 

Max dimensions of a block (1024, 1024, 64) 

Max dimensions of a grid (231 − 1, 65535, 65535) 

Warp size 32 threads 

CUDA core 6,144 cores 

Memory bandwidth 760.3 GB/sec 

Memory channels 8 

memory bus width 256-bit 

Memory clock 1750 MHz 

An important design parameter of the PSO algorithm is the 
fitness function. We choose the Euclidean distance function as 
the fitness function for all the experiments, as shown in Eq. (4). 
The parameter 𝑤 used by the fitness function is set as 1 and 
learning factor 𝑐1 and 𝑐2 as 2, which are commonly seen 
settings [29].  

𝑓(𝑥, 𝑦)  = √𝑥2 + 𝑦2  (4) 

VI. RESULTS AND DISCUSSION 

The experiments were conducted ten times per particle 
number to calculate the minimum, maximum, and average 
execution time to ensure the reliability of results. Also, the 
median execution time and standard deviation were calculated. 
Table IV provides execution time data of the SPSO algorithm 
on CPU for different numbers of particles. The data shows that 

as the number of particles increases, the median execution time 
also increases. For example, the median execution time for 32 
particles is 328 (ms), while the median execution time for 
65,536 particles is 793,717 (ms). This indicates that the SPSO 
algorithm on the CPU becomes slower as the number of 
particles increases. In addition, the standard deviation also 
increases as the number of particles increases. This indicates 
that there is more variation in the execution times for larger 
numbers of particles which may be due to increased memory 
usage and/or contention for system resources. 

TABLE IV. SPSO ALGORITHM EXECUTION TIME ANALYSIS 

Particles Iteration 

SPSO CPU 

Execution Time (MS) Median 

Execution 

Time (MS) 

Standard 

Deviation 

(MS) MIN MAX AVG 

32 100,000 309 387 335.90 328 23.31 

64 100,000 604 693 634.30 622.50 28.35 

128 100,000 1,222 1,401 1,259.30 1,243 48.38 

256 100,000 2,676 2,813 2,735.10 2,731.50 40.05 

512 100,000 5,378 5,664 5,489.90 5,482 81.48 

1,024 100,000 11,189 12,237 11,496.10 11,360.50 309.38 

2,048 100,000 24,548 25,640 4,865.50 24,812 296.38 

4,096 100,000 45,907 47,328 46,369.80 46,248.50 387.45 

8,192 100,000 101,203 103,771 102,598 102,670 703.28 

16,384 100,000 199,465 201,425 200,503 200,560 796.56 

32,768 100,000 93,643 402,628 398,791 399,447 3,717.68 

65,536 100,000 788,879 798,531 793,711 793,717 4,784.19 

TABLE V. CPSO ALGORITHM EXECUTION TIME ANALYSIS 

Particles Iteration 

CPSO CPU 

Execution Time (MS) Median 
Execution 

Time (MS) 

Standard 
Deviation 

(MS) MIN MAX AVG 

32 100,000 5,405 5,432 5,422.33 5,430 15.04 

64 100,000 5,478 5,617 5,537 5,516 71.84 

128 100,000 5,703 5,823 5,752.33 5,731 62.78 

256 100,000 5,783 5,902 5,824 5,787 67.58 

512 100,000 5,769 5,882 5,829.67 5,838 56.96 

1,024 100,000 5,797 5,893 5,841.33 5,834 48.42 

2,048 100,000 5,806 5,939 5,864 5,847 68.11 

4,096 100,000 5,931 6,027 5,988 6,006 50.47 

8,192 100,000 6,179 6,268 6,221 6,216 44.71 

16,384 100,000 6,828 6,904 6,869.67 6,877 38.53 

32,768 100,000 13,121 13,212 13,180.33 13,208 51.42 

65,536 100,000 21,382 21,471 21,431 21,440 45.18 

Table V shows the execution time data for the CPSO 
algorithm on a CUDA-enabled GPU for different numbers of 
particles. The data indicates that as the number of particles 
increased, the average and median execution times also 
increased. The minimum and maximum execution times were 
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also increased, with the highest execution time being 21,471 
ms for 65,536 particles and 100,000 iterations. However, the 
standard deviation shows that there is relatively little variation 
in the execution times across the different numbers of particles. 

As shown in Fig. 8 the execution times for SPSO increase 
significantly as the number of particles increases. For example, 
the execution time for 65,536 particles is 793,711 (ms). The 
execution times for CPSO are much lower than SPSO and 
show much more consistent execution times across different 
numbers of particles. For example, the execution time for 
65,536 particles is 21,431 (ms), and the percentage of the 
decrease in execution time is approximately 97.308% by CPSO 
compared to SPSO. 

 
Fig. 8. Comparison of average execution time (ms) between SPSO on CPU 

and GPSO on GPU with respect to number of particles. 

To compare the performance of these implementations, we 
calculated the speedup for CPSO relative to SPSO using the 
execution time for SPSO as a baseline. The speedup for CPSO 
was calculated using the following formula [30]: 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =  
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑆𝑃𝑆𝑂)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛)
 (5) 

Table VI shows the speedup for CPSO relative to SPSO 
using the execution time for SPSO as a baseline. Based on the 
provided data for SPSO and CPSO with different particle 
counts and iterations, here is a summary of the key findings: 

1) Execution time trends: The execution time increases as 

the number of particles and iterations increase. Also, for both 

Standard PSO (SPSO) and Constricted PSO (CPSO), the 

execution time generally follows an increasing trend with 

higher particle counts. 

2) Speedup comparison: The speedup values for SPSO 

and CPSO range from 0.1 to 37.0 across different particle 

counts. These values indicate the parallelization efficiency, 

with higher values indicating better performance improvement 

with parallel processing. 

3) Comparison between SPSO and CPSO: In most cases, 

CPSO shows lower execution times compared to SPSO for the 

same particle count and number of iterations. This difference 

suggests that the constriction factor used in CPSO may 

contribute to faster convergence and better optimization 

performance. 

4) Impact of particle count: Increasing the number of 

particles has a significant impact on execution time, with 

higher particle counts leading to longer execution times. The 

data shows a clear trend of increasing execution time as the 

number of particles grows exponentially. 

5) Optimal performance considerations: The choice 

between SPSO and CPSO should be based on the specific 

optimization problem and the desired trade-off between 

execution time and convergence speed. It is essential to 

consider the balance between speedup, execution time, and 

convergence efficiency when selecting the appropriate PSO 

variant. 

TABLE VI. THE SPEEDUP FOR CPSO RELATIVE TO SPSO 

Particles Iteration 
Execution Time (MS) 

speedup 
SPSO CPSO 

32 100,000 335.90 5,422.33 0.1 

64 100,000 634.30 5,537 0.1 

128 100,000 1,259.30 5,752.33 0.2 

256 100,000 2,735.10 5,824 0.5 

512 100,000 5,489.90 5,829.67 0.9 

1,024 100,000 11,496.10 5,841.33 2.0 

2,048 100,000 4,865.50 5,864 4.2 

4,096 100,000 46,369.80 5,988 7.7 

8,192 100,000 102,598 6,221 16.5 

16,384 100,000 200,503 6,869.67 29.2 

32,768 100,000 398,791 13,180.33 30.3 

65,536 100,000 793,711 21,431 37.0 

VII. CONCLUSIONS 

In this work, we propose a CUDA version of the standard 
PSO algorithm to shorten the execution time for solving the 
PSO problem. We have shown the key ideas of the 
parallelizing algorithms for CUDA. Many experiments were 
conducted to improve the execution efficiency of the proposed 
algorithm by leveraging the power of parallel computing of 
GPU with the tree reduction algorithm, the CPSO achieving 
37x speedup compared with the serial version SPSO and 
outperforming SPSO in terms of speedup. The result obtained 
shows that the relationship between swarm particle size and 
execution time is linear as the number of particles increased, 
the computational load also increased, making parallel 
implementations more effective at reducing the execution time. 
However, CPSO performed faster than SPSO for a high 
dimensional population, there was no significant improvement 
for the small number of particles. So, CPSO can especially 
benefit from optimizing with a large swarm population. For 
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future work, further optimization and fine-tuning of the CPSO 
algorithm could be explored to enhance its performance with 
smaller particle numbers. Additionally, investigating the 
scalability and adaptability of the proposed CUDA-based PSO 
algorithm to handle even larger swarm populations and more 
complex optimization problems would be a valuable direction 
for future research. Integration with advanced parallel 
computing techniques and exploring hybrid approaches could 
also be considered to push the boundaries of speed and 
efficiency in solving PSO problems. 
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