
Arab American University

Faculty of Graduate Studies

Using Deep Reinforcement Learning Model to
Design Sustainable Bicycle Mobility Infrastructure

Rabee Adel Al

This Thesis was Submitted in Partial Fulfillments
of the Requirements for the Master's Degree in Data

Science

@ Arab American University

Arab American University

Faculty of Graduate Studies

Using Deep Reinforcement Learning Model to
Design Sustainable Bicycle Mobility Infrastructure

By
Rabee Adel Al-Qasem

Supervisor
Prof. Giovanni Stilo

This Thesis was Submitted in Partial Fulfillments
of the Requirements for the Master's Degree in Data

Science and Business Analytics

January / 2022

@ Arab American University 2022 All Rights Reserved

Using Deep Reinforcement Learning Model to
Design Sustainable Bicycle Mobility Infrastructure

This Thesis was Submitted in Partial Fulfillments
of the Requirements for the Master's Degree in Data

All Rights Reserved

I

Using Deep Reinforcement Learning Model to
Design Sustainable Bicycle Mobility Infrastructure

By
Rabee Adel Al-Qasem

This thesis was defended successfully on 29/ 1 /2022 and approved by:

Committee Members Signature

1. Dr. Prof. Giovanni Stilo (Supervisor)

2. Majdi Owda (Internal Examiner)

3. Prof. Rushdi Hamamreh (External Examiner)

II

Declaration

I, Rabee Adel Al-Qasem, one of the students of the Faculty of Graduate Studies at the

Arab American University hereby declare that this thesis entitled “Using Deep

Reinforcement Learning Model to Design Sustainable Bicycle Mobility

Infrastructure”, is all by my own work and the resources that are used in this thesis

(including the internet resources) have been referred to and properly acknowledged as

required.

I declare that I have fully understood the concept of plagiarism and I acknowledge that

my thesis will be immediately rejected in case of including any type of plagiarism.

Rabee Adel Al-Qasem

Signature:

Date: 29 /1 /2022

III

Acknowledgments

First and foremost, I’d like to express my gratitude to my supervisor, Dr. Giovanni

Stilo1, for allowing me to work with him on my thesis. Without his help, this project

would not have been possible. He was always willing to give me advice on my work and

recommendations when I was stuck on something. He was always open to meeting with

me on short notice if I needed assistance. Next, I would like to thank both my parents,

my dear sister Lubna and my two brothers Imad and Ahmed, for their support and love

throughout my life. And finally, I would like to thank my university for opening the

Data science major, which was a dream that came true to be one of the first students

who enroll in this major.

1 Dr. Stilo is partially supported by Territori Aperti a project funded by Fondo Territori Lavoro e
Conoscenza CGIL CISL UIL.

IV

Abstract

Using Deep Reinforcement Learning Model to Design Sustainable Bicycle Mobility

Infrastructure

Nowadays, the whole world is concerned with the increasing environmental issues, and

many countries are working towards reducing the impact of humans on the environment

by adopting various sustainable development strategies. One of the promoted actions to

face this issue is encouraging the use of bicycles as the primary mean of transportation. If

cycling becomes the primary mean of transportation, there will be a need for new and

suitable routes and paths that suit the needs of the bicycles’ riders. In this thesis, we will

tackle the problems and propose solutions to the issues that cyclists may face concerning

the city’s topography (e.g., types of road, road surface, and their slope).

This thesis proposes a solution that promotes using an AI agent that utilizes reinforcement

learning and neural network to find the best path in a way that is customized by user

preferences. We first presented the data collection process and how these data will be

used in a readily available way by the agent. Then, we tested several reinforcement

learning algorithms to find the most suit- able method to be used in our challenging

scenario. We have also converted the map into a graph which represents the deep

reinforcement learning environment, and converted each feature into a sub-reward in

our complex reward system. Finally, we trained multiple reinforcement learning

models.

The results show that Dual Deep Q Network has the best outcome; we achieved 7500

cumulative rewards in less than 5 hours of training time, and our agent was able to

design a route based on the end-user specification and overpass all the roads that do not

meet the criteria.

V

Table of Contents

Contents Page
Declaration II

Acknowledgement III

Abstract IV

Table of Contents V

List of Tables VII

List of Figures VIII

Chapter One :Introduction 1
1.1 Problem Definition 4

1.2 Research Goal 4

1.3 Contribution 5

1.4 Motivation 5

1.5 Thesis Outline 5

1.6 Conclusion 6

Chapter Two :Background 8
2.1 Deep Neural Networks 9

2.1.1 Introduction 9

2.1.2 Building Units 9

2.1.3 Feed Forward Networks 11

2.1.4 Loss 12

2.2 Deep Reinforcement Learning 13

2.2.1 Introduction 13

2.2.2 Environment 14

2.2.3 Return 14

2.2.4 Discount Factor 15

2.2.5 Policy 15

2.2.6 Value Function 16

2.2.7 Advantage Function 16

2.2.8 Bellman Equations 17

2.2.9 Markov Decision Process 17

2.2.10 Epsilon Greedy 17

2.2.11 Model-free Methods 18

2.2.12 Value Function Based Methods 19

2.2.13 Actor Critic Methods 20

2.2.14 Policy Search Methods 21

2.3 Conclusion 21

Chapter Three :State Of the Art 23
3.1 Literature Review 24

3.2 Modern Deep Reinforcement Learning Algorithms 25

3.2.1 Deep Q-Network 26

3.2.2 Dueling DQN 28

3.2.3 Asynchronous Advantage Actor Critic - A3C 29

3.2.4 Policy Gradient Methods-PPO 31

3.3 Conclusion 32

VI

Contents Page
Chapter Four: Data Gathering and Collection Process 33
4.1 Introduction 34

4.2 Data Sources 34

4.3 Data Collection 36

4.3.1 OpenStreetMap 36

4.3.2 Google Earth Engine 45

4.4 Conclusion 48

Chapter Five: Modeling 49
5.1 Introduction 50

5.2 Setting up the Environment 50

5.2.1 Action Space 51

5.2.2 State Space 51

5.2.4 State Decoding 52

5.2.5 Reward 53

5.3 Model Evaluation and Validation 58

5.3.1 Evaluation protocol 58

5.3.2 Validation protocol 59

5.3.3 Conclusion 59

Chapter Six: Implementation 60
6.1 Implementation using DQN 61

6.1.1 Experiment 1: testing the possible hyper-parameters 61

6.1.2 Experiment 2: Testing the possible loss functions 69

6.1.3 Experiment 3: testing DQN on different Problem Sizes 71

6.1.4 Experiment 4: Comparison with A3C 78

6.1.5 Experiment 5: Comparison with Dueling DQN 80

6.2 Conclusion 84

Chapter Seven: Conclusion and Future Work 85
7.1 Conclusion 86

7.2 Current Limitations 91

7.3 Future Works 91

References 93
Appendix A 96
 BCDEF105 ا

VII

List of Tables

NO. Table Page
Table 4.1 Possible API 36

Table 4.2 Commonly used values with highway tag 38

Table 4.3 Commonly used values that can be used with amenity tag 43

Table 6.1 Training on multiple hyper-parameters 64

Table 6.2 Training on multiple hyper-parameters 68

Table 6.3 Hyper-parameters for 22 nodes 72

Table 6.4 Rewards wights 72

Table 6.5 hyper-parameters G=47 74

Table 6.6 rewards system weights 74

Table 6.7 hyper-parameters G=147 76

Table 6.8 Training Weights for 147 nodes 77

Table 6.9 Training on multiple hyper-parameters 79

Table 6.10 Training Weights for 147 Nodes 81

Table 6.11 hyper-parameters G=147 81

VIII

List of Figures

NO. Figure Page
Figure 2.1 Feed Forward Network 11

Figure 2.2 Epsilon greedy 18

Figure 2.3 Off Policy 19

Figure 2.4 On Policy 19

Figure 3.1 Dueling Architecture 29

Figure 4.1
The distribution of nodes and ways with this key. Relations
are not shown.

37

Figure 4.2 Way selection in a specific bounding box 39

Figure 4.3 The selection of a single way on OpenStreetMap 41

Figure 4.4 Nodes that represents the way on OpenStreetMap 41

Figure 4.5
The distribution of nodes and ways with this key. Relations
are not shown.

42

Figure 4.6 Single way and the amenities near it. 44

Figure 4.7 Calculation of the slope 47

Figure 5.1
Representation of a small sector of the city in graph
representation.

51

Figure 5.2 Reward for the distance 55

Figure 5.3 Reward for the slope of the road 55

Figure 5.4 Evaluation Plotting examples 58

Figure 6.1 22 Nodes Representation 62

Figure 6.2 Neural Network’s Architecture 63

Figure 6.3 Training output for 1000000 episodes 65

Figure 6.4 Convert State into Vector 67

Figure 6.5 Epsilon Exponential Decay 68

Figure 6.6 Training Output for 1000000 Episodes 69

Figure 6.7 100K Iterations 70

Figure 6.8 500K Iterations 70

Figure 6.9 Loss functions for 500K iterations 71

Figure 6.10 Training results 73

Figure 6.11 Training results 74

Figure 6.12 OpenStreetMap view 75

Figure 6.13 Training results 77

Figure 6.14 Reward and Loss results for 18e 78

Figure 6.15 Reward and loss results for 18e 80

Figure 6.16 Training Area with 147 Nodes 80

Figure 6.17 Training metrics 82

Figure 6.18 Agent path 82

Figure 6.19 Map View 83

Figure 6.20 Training Metrics 83

Figure 6.21 Agent Path 84

1

Chapter One

Introduction

2

Chapter One

Introduction

The core of the thesis is to explore the possible solutions to create a support

system for Mobility managers which allow designing a sustainable mobility

infrastructure for bike lanes. The proposed solution uses an Artificial Intelligent

approach called reinforcement learning to consider the many conditions from a real-

world environment. The Agent learns to achieve a goal in an uncertain environment.

The shortest path algorithm, also known as Dijkstra’s algorithm, allows finding the

fastest path among two places; it has been used successfully in many mobility apps.

Many research works on adding several variables to the considered model, for example,

taking into consideration the traffic and the road’s vibrations, to compute the most

comfortable route. Our research will use the virtual Agent to determine the most

convenient path between two locations. The route generated by the Agent will take into

consideration a lot of variables like: the characteristics of road networks, geographical

features of the territory (e.g., altitudes, presence of shade), information of all kinds of

traffics, the population of an area, the characteristics of the used vehicle (e.g., battery-

powered vehicles), the energy expenditure of the driver, and other information that we

are going to collect. Our thesis will answer the following questions:

(1) Are there publicly available sources of information that contains rich geographical

data?

(2) The publicly available data are sufficient for training and testing a virtual agent able

to compute personalized smart paths?

(3) Which can be the best mechanism to integrate all the aforementioned geographical

information?

3

(4) Which is a possible reward modulization which encompasses all the collected rich

geographical information?

(5) Which is the best Neural Network architecture that must be employed by our Agent is

the best deep reinforcement learning algorithm that can be used in this specific

application scenario?

The above questions have driven us during this of this project.

The shortest path approach focuses only on one variable, for example, traffic.

Using reinforcement learning in our project will help us find a new way to choose the

best path between two locations based on multiple variables that can interest the cyclist.

The main goal of Reinforcement Learning (RL) is to give the Agent the wisdom and the

knowledge to react like a human being in an unknown environment by obtaining the

optimal strategy by maximizing long-term compensation by providing the current state

reward (Liu & Chen,2019). Moreover, few researchers used RL for route planning in

general and not only in Bike Lane planning. Most of the research conducted on this

subject mainly uses the shortest path algorithm. The research enhances it by using one

or two prediction models considering very few factors; the drivers’ or the cyclists’ faces

on the road. On the other hand, our project focuses on adding as many variables as

possible and hopes that the Deep Reinforcement Learning agent can handle it.

Lastly, this thesis will help the municipalities implement the routes (or their

variations) that are best suitable to promote hybrid mobility infrastructure. Also, this

study will help the researchers take a new approach in route planning for different

sectors (disabled people, water supply network for agriculture areas, pipeline transport

for oil and gas, etc.) and consider many cities’ variables.

4

1.1 Problem Definition

Nowadays, due to the pandemic diffusion and the raising interest of many

countries to reduce the pollution that is caused by gas emissions from cars, countries now

encourage their citizens to use bicycles for mobility, which raises the interest and need

for cycling routes (bike lanes). This adoption allows mitigating the pollution and

exposure to the virus. One problem for the public administration officers related to this

rising interest in designing the new bike lanes fast and thoughtfully is that the mobility

manager (officer) cannot simply design the bike lane considering the shortest route, but

several other factors must be evaluated. For example, cyclists may prefer to use a route

with shadows where the traffic jam is low. Sometimes the cyclist uses an e-bike, thus

considering its power and battery capacity can be an additional factor to consider at the

designing phase. From the mathematical standpoint, the number of considered variables

and the problem’s size can be in- tractable to be tackled with classic optimization

techniques. For this reason, we propose to build an artificial intelligence agent based on

the city’s data. The virtual cyclist (the agent) learns to balance all the variables and

draws the city’s bike routes. To solve the problem mentioned above, we need to:

• Understand which are the involved variables

• Obtain the required data

• Model the problem in terms of a Reinforcement Learning based Agent

• Test the proposed solution on actual data

1.2 Research Goal

The thesis investigates the advantages of applying DRL algorithms to high-

dimensional systems and complex reward systems. Therefore, the following research

questions are addressed:

5

• Is there a suitable source to extract geographical data with many features, especially for

roads, that we can use in our reward system?

• Can the Neural Network handle the complex state representation with the many

features used in the reward system and find an optimal policy and best action in each

state?

1.3 Contribution

This thesis will help researchers take a new route planning approach for different

sectors, like; located disabled people facilities, water supply network for agriculture

areas, pipeline transport for oil and gas in consideration of a huge number of variables by

using the deep reinforcement learning method, which is customized based on each

sector’s needs. Another contribution is defining how we can collect different GIS data

sources and combine them into one data-set that can be used in many machine learning

applications.

1.4 Motivation

One of the primary motivations for working on this thesis is to provide

intelligent decision support on planning of roads in all global regions. Road planning

does not only depend on human decisions, but also on the support of Artificial

intelligence that aids in planning for better routes that satisfy all individuals. Another

personal motivation is to help the Palestinian government to plan for safer roads to avoid

any danger that the citizens might face due to political reasons.

1.5 Thesis Outline

The remaining sections of the thesis are organized as follows:

6

• Chapter 2 provides a formal introduction to Neural Networks by explaining the

mathematical preliminaries. Also, it discusses Reinforcement Learning, Deep

Reinforcement Learning components, model-free methods, and policy-based

methods.

• Chapter 3 provides some previous studies which implemented DRL in their projects.

Also, it introduces widely used algorithms and discusses the code for each one of

them.

• Chapter 4 discusses the process starting from searching for the best GIS data source

to collecting the data and finally integrating it into one data set.

• Chapter 5 discusses the environment of our agent, state representation and the

rewards system.

• Chapter 6 is the core of the thesis which presents and discusses the modeling and

implementation of our code.

• Chapter 7 provides an overview and conclusion of the work done in the thesis, as

well as future research directions.

1.6 Conclusion

In this chapter, we discussed the main idea of the thesis and how we aim to

explore the possible options to create a support system for mobility managers.

Moreover, the proposed solution uses an Artificial Intelligent approach by using

reinforcement learning methods to generate routes based on the end-user’s preferences.

The route generated by the agent will consider many variables, like; the characteristics

of road networks, the geographical features, and traffic patterns. We also discussed how

this project will help the city municipalities to plan bicycle routes which need for them

7

is increasing due to the massive increase of citizens using bicycles as the primary means

of transport. We also addressed the research goal, and we aim to investigate the

advantages of applying DRL algorithms on the high-dimensional environment and

complex reward systems. Finally, we explained how the thesis contributes in helping

researchers take a new route planning approach for different sectors, like; the located

disabled people facilities, water supply network for agriculture areas, and pipeline

transport for oil and gas. Another contribution is defining how we can collect different

GIS data sources and combine them into one data set.

8

Chapter Two

Background

9

Chapter Two

Background

2.1 Deep Neural Networks

2.1.1 Introduction

Deep Neural Networks (DNN) is now at the root of some of the most significant

advances in AI and machine learning in recent years. They’re at the heart of some of

the most innovative technologies, including self-driving cars, image recognition

systems, speech recognition systems, and self-driving robotics. They have reached state-

of-the-art results in these tasks.

DNN is a general framework for estimating non-linear functions based on

training data. Real value, discrete-valued, and vector-valued functions are all possible.

DNN’s success is due to its capacity to learn from data and extract key features without

manual work.

This section will provide a quick overview of neural network design, training

techniques, and regularization.

2.1.2 Building Units

Artificial neural networks are based on the workings of the human brain. The

human brain is a complex web of interconnected neurons that can extract critical

information from inputs and produce an output signal (signal). On the other hand, an

artificial neural network is made up of a series of interconnected neurons organized in

layers, each of which takes real-valued inputs and outputs real-valued results

(Rashid,2016).

10

Artificial Neuron

The following is how the neural network works: given a vector of inputs x, the

neuron calculates the weighted sum of the inputs, with the weights denoted by w

(Rashid,2016). Then, the weighted sum is added to a bias term, b, and then passed

through an activation function, f and finally it calculates the output based on the

following equation1.

 �� = � �� ��� 	�� + ���)1(

Activation Functions

The activation function provides non-linearity in a neuron’s output. This helps

the network’s learning of non-linear representations from training data. Some activation

functions, such as Sigmoid, Hyperbolic Tangent, and a Rectified linear unit, have been

proposed in the literature. The following are the most widely used activation functions:

• Sigmoid:

 ��� = 11 + ���)2(

• Hyperbolic Tangent:

 ��� = �� − ����� + ���)3(

• Rectified Linear Unit (ReLU):

 ��� = ����, ��)4(

In modern neural networks,

linear unit or ReLU due to its performance (

2.1.3 Feed Forward Networks

The Feed-Forward neural network is

(Rashid,2016). The neurons are arranged in layers in this framework. This architecture

has three types of layers: an input layer, a few hidden layers, and an out

Information flows from the input layer to the hidden levels and then to the output layer

to calculate the output. this process is illustrated in the following graph

Training The Network

Backpropagation is

The idea behind this method is to start with a random weight initialization and then

calculate the output for a

difference between the generated and

weights. The technique is called backpropagation because the output layer weights are

updated first and then back propa

11

In modern neural networks, the default recommendation is to use the rectified

linear unit or ReLU due to its performance (Goodfellow, Bengio, & Courville

Networks

Forward neural network is the most popular DNN architecture

). The neurons are arranged in layers in this framework. This architecture

has three types of layers: an input layer, a few hidden layers, and an out

Information flows from the input layer to the hidden levels and then to the output layer

to calculate the output. this process is illustrated in the following graph 2.1

Figure 2.1: Feed Forward Network

 a technique used to train the weights of the

behind this method is to start with a random weight initialization and then

calculate the output for a particular input. Using a gradient descent approach, the

difference between the generated and actual output is used to update the network’s

weights. The technique is called backpropagation because the output layer weights are

updated first and then back propagated into the network.

the default recommendation is to use the rectified

Goodfellow, Bengio, & Courville,2016).

the most popular DNN architecture

). The neurons are arranged in layers in this framework. This architecture

has three types of layers: an input layer, a few hidden layers, and an output layer.

Information flows from the input layer to the hidden levels and then to the output layer

2.1.

 neural network.

behind this method is to start with a random weight initialization and then

ticular input. Using a gradient descent approach, the

output is used to update the network’s

weights. The technique is called backpropagation because the output layer weights are

12

In recent years, stochastic gradient descent has become a popular method for

training neural network weights. A few better stochastic gradient descent variations,

such as ADAM (Kingma & Ba,2015), have also been proposed. These approaches have

an advantage over traditional gradient descent in that they can adjust learning rates

dependent on the distribution of the training data. This eliminates the need for precise

learning rate selection, allowing the algorithm to converge faster.

Regularization

Regularization is a machine learning technique that helps to avoid the problem

of over-fitting statistical models. The purpose of regularization is to increase the

network’s generalizability to unseen data. L1 or L2 regularization is the traditional way

at tackling the problem of over-fitting. The primary idea behind this strategy is to

incorporate a penalty element in the cost function for the weights.

2.1.4 Loss

Loss functions are related to model accuracy and are a key component of AI/ML

governance. Loss functions are a way to assess how well the models perform on the

data. Your loss function will show a higher value if model predictions are completely

wrong. It will give a lower number if they’re pretty decent. In a way, the loss function

will inform you if the model is making progress after you tweak parts of your algorithm

to enhance your model. Multiple famous loss functions are used in DRL, like mean

square error and Gaussian loss, but (Co-Reyes et al.,2021) suggested two new loss

DQNClipped and DQNReg which we will implement and use later in 6.

13

DQNClipped equation.

L���� !""#$ = %&�'()* , &*�, +, + -*. + %&� /()*, &*� − -* , 0 1%&�2  (*245)*, &�6,7 (5)

• Where -* = 8* + 0 ∗ %&�2  (:;<=)*, &�

• + = ()*, &*� − -*

DQNreg equation.

 >���?#= = 0.1 ∗ ()*, &*� + +,)6(

2.2 Deep Reinforcement Learning

2.2.1 Introduction

Reinforcement Learning (RL) is an area of machine learning (ML) that deals

with sequential decision making by using an Artificial intelligence (AI) agent that

interacts with an environment to get rewards which indicate how good the action that the

agent took in the environment is (Sutton & Barto,2018a). The primary purpose of RL is

to learn how to map each state in the environment to action and maximize the expected

sum of rewards, which is defined as Policy. In contrast with other ML supervised and

unsupervised techniques, the AI agent is not told the right action to take in a given

state. Instead, the agent explores the environment to achieve the optimal Policy. The

path to success in Reinforcement Learning isn’t as straightforward: the algorithms

contain a lot of moving components that are difficult to debug, and they take a lot of

adjusting to produce decent results.

In this chapter, we will discuss the RL problem, the components of RL, such as;

the Environment, Policy, value function, the bellman equation and finally Markov

Decision Process (MDP)

14

2.2.2 Environment

An environment is a virtual world that the agent interacts with to learn. It could

be a hole 3D space or 2D space, like the Chessboard. It can represent the whole world

through maps or represent a board game, like Tic Tac Toe or chess or even an Atari

games. An environment mathematically consists of a set of States St that represent the

state space of the environment D 7.

 B* ⊂ D)7(

Where St represents a State S in time step t which is a subset of State-space

D.

2.2.3 Return

As we mentioned before, the main purpose of the RL framework is to make the

agent learn how to maximize its future rewards by taking the sequences of action that

lead to positive rewards and avoiding the penalties to maximize its return which is

formulated according to the following equation 8:

 E* = 8* + 8*FG + 8*F, + ⋯ + 8I�G)8(

Where Rt represents the return in a particular time step t and N represents the

end of the episode. For stochastic environment, we can rewrite the equation as the

following 9:

�  J
KL� MNFK)9(

15

2.2.4 Discount Factor

The discount factor γ determines how much the agent cares about the

rewards in the near and late future. We ca n consider the discount factor as a

learning parameter, its value varies from 0 ≤γ ≤1 (Sutton & Barto, 2018a). If γ is

close to zero, the agent will consider the closest rewards for the present state. On

the other hand, if the γ is close to one, it will be considered as a future reward and

all future rewards will be equally important and the return equation will look like

this:

 �  ∞

OLP 0O8*FO)10(

2.2.5 Policy

A policy denoted by π is a map determining what action should be taken in a

specific state (Sutton & Barto,2018a). The policy that collects the most significant

amount of rewards for an environment is called an optimal policy, and is denoted by π∗.
There are two types of policies: deterministic and stochastic. The deterministic policy is

when the agent execution of action at is guaranteed, and it can be formulated as the

following equation:

 Q)*� = &*,)* ⊂ D&* ⊂ R)11(

On the other hand, in the stochastic policy, the action at is considered as a

certain probability, and it can be formulated as follows:

 Q&* ∣)*� = T� ,)* ⊂ D , &* ⊂ R , 0 ≤ T� ≤ 1)12(

16

2.2.6 Value Function

Value function represents how good it is for the agent to act in a given state. The

value function depends on the policy where the agent picks the action to perform in a

given state (Sutton & Barto, 2018a). Therefore, value functions are represented as

follows:

 W: WY → E, WY)� = [Y\E* ∣)* =)] = [Y ^�  ∞

OLP 0O8*FO ∣)* =)_)13(

where E{} denotes the expected value the agent follows π , and is any t.

Action value function, also known as Q-function, is defined as the sum or

rewards expected to occur while taking action a in state s, by policy, and is formulated

as follows:

(Y), &� = [Y\E* ∣)* =)&* = &] = [Y ^�  ∞

OLP 0O8*FO ∣)* =)&* = &_)14(

2.2.7 Advantage Function

The Advantage function, denoted as R), &�, measures how good or bad a

particular action is given a particular state. In other words: what is the advantage of

choosing a specific action from a specific condition? The Advantage is mathematically

defined as:

 R), &� = ['8)|&� − 8)�.)15(

• where 8)|&� is the reward of a state given a certain action

• 8)� the reward of the current state

and also, it can be viewed as the following:

17

 R), &� = (), &� − W)�)16(

2.2.8 Bellman Equations

The Bellman equations express maximizing the expected return in terms of the

value function. It helps in policy comprising. Bellman The Policy Q is considered better

than Q′ if the expected return Q is more significant than Q′ for all) ∈ B (Divyam,2017).

Therefore, the optimal value function denoted by W⋆)� which is known as the Bellman

optimality equation can be mathematically formulated as:

 W⋆)� = cRd2 �  
e′

\f) ′ ∣), &�'E), &,) ′� + 0W⋆) ′�.])17(

2.2.9 Markov Decision Process

Markov Decision Process (MDP) is a mathematical framework used in decision-

making that helps the agent in making decisions (Sutton & Barto, 2018a). MDP is 4-

tuple B, R, T&, E&� where:

• S is a set of states called in the state space

• A is the set of actions in the action space

• P is the probability that action & in states at time t will lead to state s’ at time g + 1,

• R is the expected immediate reward that the agent received after transitioning from

one state to another due to the action.

2.2.10 Epsilon Greedy

Epsilon-Greedy is a simple strategy for balancing exploration and exploitation

by the agent by randomly choosing between random action or action based on the neural

network.

18

Figure 2.2: Epsilon greedy

2.2.11 Model-free Methods

We can apply all RL problems using model-free methods since they don’t need

any environment model. There are two Model-free methods; the first is the Value-based

methods, which try to learn the value function and infer an optimal policy. The second

approach is called Policy search methods that search in the policy parameters’ state-

space to find an optimal policy.

We can also classify the model-free methods as on-policy or off-policy. Off-

policy use exploratory policy to generate actions as compared to the policy which is

being updated and save its experience or appended it to the replay buffer D, which will

represent samples from QP, QG, … QO,and all the data that is stored will be used to train

the new policy πk + 1 as presented in 2.3.

In contrast, the On-policy method uses the current policy to generate actions

and update the cur-rent policy. In other words, the policy QO is updated with data

collected by QO itself. By optimizing the current policy, we can determine which

spaces and actions to do next 2.4.

19

Figure 2.3: Off Policy

Figure 2.4: On Policy

2.2.12 Value Function Based Methods

Monte Carlo Method

The Monte Carlo method (MCM) is a learning method for estimating value

function and dis- covering optimal policies. MC requires only experience from states,

actions, and rewards from the agent’s interaction with the environment. MCM solves

reinforcement learning problems based on averaging sample returns. To ensure good

returns are available, we assume experience is divided into episodes, and all episodes

terminate at the end no matter what actions are selected (Sutton & Barto,2018b). MCM

can be incremental an episode-by-episode, but not in a step-by-step. MCM uses the idea

20

of generalized policy iteration (GPI). The GPI is composed of two steps. The first step is

called the policy evaluation step, which builds an approximation value function based on

the current policy. The second step is called the policy improvement step. It improves

the existing pol- icy based on the current value function. Despite the easy

implementation of the method, the main disadvantages of this method are that it takes a

huge iteration.

Temporal Difference

Temporal Difference (TD) uses the same idea as the GPI. It uses the temporal

error rather than accumulated reward, like what is used in the MCM. Temporal error

calculates the difference between the new estimate and the old estimate of the value

function. It also considers the current reward, and uses it to update the Value function.

This method helps in reducing the variance but increases the bias in the estimation of the

value function. The equation from the value function will be as the follows 18:

 W)� ← W)� + j'8 + 0W) ′� − W)�.)18(

Where α is the learning rate, r is the reward received at the current time, s
′

is the

new state, and sis the old state

2.2.13 Actor Critic Methods

Actor Critic Methods are TD methods but with two components, which are: the

actor representing the policy that provides the action in a given state and the value

function that acts as the critic, and it helps in evaluating the policy based on the temporal

difference error. One of the main advantages of Actor-Critic Methods is that it provides

better convergence than most TD methods—faster action computations, especially for

continuous tasks. One of the most used algorithms that massively solve complex

21

problems in RL problems is the A3C algorithm which can use multiple CPU cores to

run the reinforcement learning and distribute the agent training. We will discuss this

algorithm later in chapter 3.

2.2.14 Policy Search Methods

The Policy Search Method (PSM) is RL algorithm that use parameters policies

πθ
π, with θπ

 being the parameter vector. To determine the reward, the policy is evaluated

by executing rollouts from the existing policy. Gradient descent is then used to update

the policy in the direction of increasing expected return. The equation for the update rule

for the parameters of the policy can be formulated as follows:

k*FGY = k*Y + j∇mno , o = pY∑  JOLP 0O8O�)19(

This method has well convergence properties and can learn stochastic policies,

which are not possible with value-based approaches (Divyam,2017)

The major drawback of PSM is their policy evaluation step, which suffers from a

significant variance and can slow the process of learning good policies. This can happen

in a variety of inter- actions with the environment, making it unsuitable for tasks

involving actual robots.

2.3 Conclusion

In this chapter, we introduced some of the basic concepts for both

Reinforcement learning and Neural Network where we mentioned the primary learning

methods for deep reinforcement learning, which are three. First, the value-based

method, which learns the value function and infers an optimal policy. Second, the

policy-based method, which uses the vector parameter θ to determine the probability of

taking action a when at state s. Lastly, the actor critics method that has two com-

22

ponents; the critic estimates the value function, and the actor updates the policy

distribution in the direction suggested by the critic. We also mentioned the concept of

Epsilon-greedy, which helps the agent balance the exploration-exploitation which helps

the agent have a better understanding of the environment. Finally, we introduced some

of the essential elements for the neural network and its training process.

23

Chapter Three

State Of the Art

24

Chapter Three

State Of the Art

3.1 Literature Review

The last decade is characterized by the increasing availability of public

Geographical information. These data can be publicly accessed on the internet due to the

efforts made by Volunteered Geographic Information(VGI), geosocial media platforms

such as OpenStreetMap (OpenStreetMap contributors,2017) or Earth Engine

(earthengine,2021), and the raised interest in such data ex- pressed by the mainstream

social media platforms (e.g. Twitter and Facebook). Due to the afore- mentioned

reasons, route planning received more interest from many researchers who would like to

find a feasible way to embed this data in the routing planning process. Unfortunately,

we could not find previous studies on using deep reinforcement learning for planning

bikes routes, however, most of the researches used different approaches to plan roads or

paths based on the current routing algorithms. The study conducted by (Wang &

Zipf,2020) provides a quiet routing service using a new Dijkstra-based routing

algorithm that minimizes the exposure of pedestrians to traffic noise pollution by

maintaining the route distance constraint. In order to build the traffic noise model on the

base of their algorithm, there will be a need to combine volunteered geographic

information, official socio-economic data, and open access GPS trajectory data. The

approach was tested on the road network of Heidelberg (Germany) showing a great

capability in generating quiet routes.

Despite its experiments’ success, this approach has several limitations: i) the

model that is used to estimate the traffic volume is rough; ii) the ‘residential’ zones were

25

not considered. Another study by (Lamouik & Sabri,2018) presents a study conducted

on behalf of the University of Sidi Mohamed Ben Abdallah, where they introduce a

dynamic routing system for traffic in intersections based on real-time traffic conditions

(individual vehicle speed, destination, and traffic light status). The approach uses deep

convolutional neural networks to estimate and recommend the fastest path for vehicles in

an intersection. The model’s result has been tested using simulation tools that show that

the recommended path had lower travel time and fewer red lights which helps in

avoiding the long queues of vehicles at red lights and as a result the agent will favor

using the roads with lite traffic. This result was achieved by predicting the future state

of traffic lights from an intersection away. (Liu & Chen,2019) proposed a new path

selection method for an intelligent driving vehicle that solves path planning in case of

traffic jams, restricted driving, and accidents. The approach is based on prior knowledge

in applying reinforcement learning, to enhance the shortest path algorithm. The

simulations show that the algorithm has advantages in terms of path length. Finally,

(Zhiguang Cao,2020) experimented on both artificial and real large road networks using

the Q-learning approach to solve the probability tail model-based stochastic shortest

path problem targets to minimize the probability of delay occurrence. By using Q-

values, they represent the probability of reaching the destination before the deadline.

Their models show an accuracy of 97.5% and are ready to be applied in the real-world

scenario.

3.2 Modern Deep Reinforcement Learning Algorithms

In this chapter, we will discuss multiple algorithms that are used in the field. We

will start with Value-based Algorithms like DQN (Mnih et al.,2013). We will discuss

the actor-critic method, which we will go through over A3C, the most hyped algorithm.

26

Finally, we will discuss Proximal Policy Optimization, which is one of the policy

gradient algorithms.

3.2.1 Deep Q-Network

The core principle behind Deep Q-Network (DQN) (Mnih et al.,2013) is to

adapt the Temporal Difference method based on this formula 20 which is similar to the

gradient descent process while training a neural network to handle a specific regression

problem.

 (∗), &, k� = k ∗), &)20(

Where all θ form a vector of parameters k ∈ E|e||2|
First, the algorithm supposes y as the target of our regression task, i. e. the

quantity that our model is trying to predict is:

 �), &� ≔ 8)s� + 0%&�2t  (∗)s, &s, k�)21(

Where)s is a sample from f)s|), &�and), & is input data. In this notation 20 is equivalent

to:

 k*FG = k* + j*'�), &� − (∗), &, k*�.�e,2)22(

Where we multiplied scalar value j*'�), &� − (∗), &, k*�. on the following vector:

 ��,�e,2: = u1 v, w� =), &�0 v, w� ≠), &�y)23(

According to (Mnih et al.,2013) it is important that dependence of � from k is

ignored during gradient computation. On each step of the temporal difference algorithm,

a new target � is con- structed using the current Q-function approximation, and a new

regression task with this target is set. For this fixed target one Mean squared error

27

(MSE) optimization step is done, and on the next step a new regression task is

defined.

We now suppose that the appropriate Q-function may be approximated using the

neural network (∗ k), &� with parameters k. Note that in the discrete action space

case, this network can only take s as input and output |R| integers representing

(m∗), &G� … (m∗ z), &|{||, allowing for a single forward pass through the net to discover

an optimal action in a given state). As a result, goal y for a particular transition

), &, 8 ′,) ′, done � can be computed in one forward pass, and the optimization step in

one additional forward and one backward pass.

The only minor drawback to this simple strategy is that training neural networks

with batches of size one is unrealistic. (Mnih et al.,2013) propose using experience

replay to save all collected transitions), &, 80,)0, }~��� as data samples and a batch of

standard for neural network training size for each iteration sample. The loss function is

assumed to represent an average of losses for each batch transition. Because the TD

method is an off-policy algorithm, it can work with arbitrary transitions obtained from

any agent’s interaction experience. This use of previously experienced transitions is

legitimate. Another significant advantage of experience replay is sample decorrelation,

which occurs when successive transitions from an interaction are generally identical to

one another since the agent is usually located at a specific portion of the MDP.

Though the empirical results of the presented algorithm were impressive, the

behavior of (m∗ values revealed that the learning process was unstable. Reconstruction

of the target after each optimization step resulted in a so-called compound error, which

occurred when approximation error spread in an avalanche fashion from close to-

terminal states to the starting point, resulting i

genuine (∗ value. To overcome this issue, (

network, which core idea is to handle a fixed regression problem for

recompute target every � −
We get the classic DQN method by combining everything and adding the greedy

strategy to make exploration easier as represented in

3.2.2 Dueling DQN

Dueling DQN acts the same as DQN, but the difference is that Dueling DQN

aims to build a network that computes the advantage

as figure 3.1 and then only combines them into a single q

based on the equation:

28

terminal states to the starting point, resulting in a guess 10� times larger than the

value. To overcome this issue, (Mnih et al.,2013) proposed

network, which core idea is to handle a fixed regression problem for �
− g� step instead of each.

We get the classic DQN method by combining everything and adding the greedy

strategy to make exploration easier as represented in 1 by (Mnih et al.,2013

Dueling DQN acts the same as DQN, but the difference is that Dueling DQN

aims to build a network that computes the advantage A and value functions

and then only combines them into a single q-function at the final layer

(), &� = W)� + R)|&�

times larger than the

proposed the target

� � 1 steps, i.e.,

We get the classic DQN method by combining everything and adding the greedy

2013).

Dueling DQN acts the same as DQN, but the difference is that Dueling DQN

and value functions V separately

function at the final layer

)24(

3.2.3 Asynchronous Advantage Actor Critic

Where DQN uses a single agent associated with a single neural network that

interacts with the environment,

iterations with the Actor critic method that we mentioned in

and many worker agents with their local Neural network in A

other agents engage with their environments. Each of these agents interacts with its own

copy of the environment. One of the reasons this works bette

is because each agent’s experience

result, the entire training experience available becomes more diverse and faster

al.,2016).

A3C updates both the policy and the value function in the forward view, using a

combination of � step returns. The policy and value function are modified after each

action’s �%&� value or when a terminal state is reached as represented in

mentioned in (Mnih et al.,2016

 ∇
Where ��N, �N; �, ��� is an estimate of the advantage function given by:

29

Figure 3.1: Dueling Architecture

Asynchronous Advantage Actor Critic - A3C

Where DQN uses a single agent associated with a single neural network that

environment, A3C learns more effectively by combining

critic method that we mentioned in 2. There is a global network

and many worker agents with their local Neural network in A3C. At the same time,

other agents engage with their environments. Each of these agents interacts with its own

copy of the environment. One of the reasons this works better than having

experience is separate from the experience of

result, the entire training experience available becomes more diverse and faster

C updates both the policy and the value function in the forward view, using a

step returns. The policy and value function are modified after each

value or when a terminal state is reached as represented in

2016) paper. The updated equation 25 is as the following:

∇m′ log Q&* ∣)*; k ′�R)*, &*; k, k��

is an estimate of the advantage function given by:

Where DQN uses a single agent associated with a single neural network that

combining many above

There is a global network

C. At the same time,

other agents engage with their environments. Each of these agents interacts with its own

having a single agent

 the others. As a

result, the entire training experience available becomes more diverse and faster (Mnih et

C updates both the policy and the value function in the forward view, using a

step returns. The policy and value function are modified after each

value or when a terminal state is reached as represented in 2 as

is as the following:

)25(

is an estimate of the advantage function given by:

 �O�G
�LP

30

�  G
P 0�8*F� + 0OW)*FO; k�� − W)*; k��)26(

31

3.2.4 Policy Gradient Methods-PPO

Policy Gradient Methods (PPO) are fundamental to recent breakthroughs in

using deep neural networks for control, from video games, to 3D locomotion, to GO,

(Schulman,2020). However, attaining acceptable results using policy gradient

approaches is difficult since they are sensitive to the step size chosen; if it’s too small,

then the signal is drowned by the noise, or catastrophic de- clines in performance may

happen. They also have a low sample efficiency which requires millions (or billions) of

time steps to learn basic tasks. We can quickly implement the cost function, run gradient

descent on it, and be confident that we’ll obtain fantastic results with minimal

hyperparameters modification thanks to supervised learning. PPO tries to find a

compromise between ease of implementation, sample complexity, and tuning ease by

computing an update at each step that minimizes the cost function while ensuring a

modest divergence from the preceding policy. PPO uses a novel objective function not

typically found in other algorithms 27 (Schulman,2020):

 >����k� = [*'%v�8*k�R*, clip8*k�, 1 − �, 1 + ��R*�.)27(

• � is the policy parameter

• Et denotes the empirical expectation over timesteps

• rt is the ratio of the probability under the new and old policies, respectively

• At is the estimated advantage at time N

32

3.3 Conclusion

In this chapter, we introduced previous work of multiple studies that used

machine learning techniques to find a new routing method for different routing

preferences. We also introduced two algorithms that are used in deep reinforcement

learning, firstly; DQN, that uses two Neural networks to calculate the Q-Values for both

the current state and future state. Secondly, the duel DQN, which uses the same method

as DQN but it differs in the neural network structure. The difference is that in the duel

DQN we calculate the A and V in the last hidden layer A3C that uses Actor critic

method and in how we can use multithreading training using CPU to train our DRL agent

faster. Finally, we introduced the PPO algorithm that uses the Policy learning method

that uses vector parameter θ to determine the probability of taking action at state Si.

33

Chapter Four

Data Gathering and Collection Process

34

Chapter Four

Data Gathering and Collection Process

4.1 Introduction

In this chapter of the thesis, we will discuss the procedures and the tools we used

to gather all the necessary data for our model. This section will also discuss data

transformation that we applied to a particular aspect of the collected data to help us in

developing our model.

4.2 Data Sources

Since our project focuses on smart city planning and most of our data are

geographical data, the leading search criteria were to find an excellent geographic

database to extract data from it. We can define a geographic database as a repository

that stores data that are spatially referenced. The collected data are related to each other

through location, data structure, or type. (Geography,2021)

There are two types of geographic databases Graphic and Nongraphic.

Nongraphic data does not describe graphic map features, but instead describes a

particular map feature or is linked to graphic elements through geocodes identifiers. It

takes the form of a geographic index or is used to describe a spatial relationship

(Geography,2021).

On the other hand, graphic data contain points, lines, polygons, and other map

features such as projections, coordinates systems, and cartographic symbols—this type of

data is stored in two ways vector or raster. Vector is represented by coordinates of

longitude and latitude of specific nodes and lines or rules to connect the area. In

35

comparison, raster data is stored as a set of a uniform grid of cells representing the

continuous surface.

These databases can be accessed by Application Programming Interface (API),

which helps developers create applications from it or use for research studies, as we are

doing in our thesis.

So, we collected data from the internet on the API that has a comprehensive

geographical database that we can extract information from that is useful for our project.

Our ideal API must cover the following:

(1) The API must cover all the globe since a lot of GIS APIs cover only Europe and the

USA, but we are also concerned about other continents.

(2) The API must contain information about Natural terrain since we are interested in

finding the best path for a cyclist in areas outside the cities and villages.

(3) The API must contain information on the roads in each city or village, like the main

roads, cycle path, footpath, unclassified roads, living street, etc.

(4) We must extract information on physical facilities in a particular area, like; cafes,

bathrooms, shops, parks, etc.

(5) The API should help us in getting information on the traffic and the roads’

conditions.

Table 4.1 illustrates all possible APIs that can be used to extract data from it.

Each one of these APIs has its pros and cons, but we try to use most of them to

extracts data from and transform it into a unified format that we can use in our model.

36

Table 4.1: Possible API

Application
name

Owned by API
API

NAME
Pricing

Number of
transaction

open-
streetmap

Openstreetmap
Organization

yes
Overpass

api
Free Unlimited

Google
Earth
engine

Google inc. yes
Earth

engine
api

Free to use for
research, teaching,

and charitable
purposes. They

provide paid
commercial
licenses for

commercial uses.

–

Tomtom
developer

Tomtom yes
Tomtom
maps-api

0.42$ per 1000
transaction

Limited by
the cost

HERE
developer

Here Yes Rest API
Has a free version
and pain version

The free
version

has 250K
transaction

and you
can pay for

more

4.3 Data Collection

In this section, we will describe how we used each API to extract the data and

how we stored it into our unified JSON file.

4.3.1 OpenStreetMap

OpenStreetMap (OSM) is an open-source collaborative project founded in 2004

(OpenStreetMap contributors,2017). It collects data on houses, forests, road networks,

and there are many features included in its database. OSM has an API called Overpass

API which helps the developers fetch and save raw geodata from the OpenStreetMap

database (Openstreetmap,2021b). Every feature on the ground, e.g., roads or places, is

decorated using tags attached to its data structures.

OSM has three essential elements representing the physical world’s conceptual

data: nodes, ways, and relations. These elements have one or more associated tags

37

(which describe a particular element’s meaning) (Openstreetmap,2021c). A node

represents a point on earth defined by its longitude and latitude, and each node has its

unique id. For example, a node can represent a café, bathroom or crossroad, etc. A Way

is an ordered list from 2 to 2000 nodes that define a polyline, and it represents any linear

feature such as roads and rivers. Lastly, a relation is a data structure rep- resenting a

relationship between two or more data elements, for example, a building and a parking

spot.

Roads

To extract roads from the OSM database, we need to use the key highway=*,

which helps us extract any roads, streets, or paths, and the value of the key represents

the highway’s importance within the road network. Figure 4.1 shows the coverage of

the tag worldwide and is represented by the red color on the map, and from the graph,

we can see that it covers a massive proportion of the globe (Openstreetmap,2021d).

Figure 4.1: The distribution of nodes and ways with this key. Relations are not shown.

38

Furthermore, Table 4.2 below from OSM WIKI (Openstreetmap,2021d) shows us

the multiple values we can assign to the highway tag.

Table 4.2: Commonly used values with highway tag

motorway unclassified secondary link busway track

trunk residential tertiary link footway bus guideway

primary motorway link living street bridleway escape

secondary trunk link service steps raceway

tertiary primary link pedestrian corridor road

Table 4.2 shows how much data we can export from the OSM database that is

related to each road; for more information about each value, you can check the full table

in the appendix A.2.1. Each road comes with a set of attributes based on the data that

the users enter, and these attributes are:

• Access: describe the legal permission for using the road by people, animals, bicycles,

and vehicles.

• Max height: describe the legal height of a vehicle that can use the road.

• Max width: describe the legal width of a vehicle that can use the road.

• Max speed: describe the legal speed of a vehicle or a motorcycle, for example.

• Max weight: describe the legal weight of a vehicle.

• Onaway: show if the road is one way or not

• Width: show us the width of the road in meters

• Road surface: show us the material or the structure of the road. For example, if the

surface of the road is asphalt, concrete, dirt, paving stones, or others.

• Number of lanes in the road

Finally, we used python to extract the roads from the specific bounded box as

shown in Figure 4.2 and converted it into a JSON file output 1 to use it later in our

model, as shown in the example below.

Figure

39

Figure 4.2: Way selection in a specific bounding box

40

Path/Road Distance

The road distance is one of the primary key elements in our project. There are

two reasons that we need to compute the distance for:

To calculate the road slope, which will help the agent understand if there is an

inclining or declining on the road in order to compute the road’s distance. Although we

are not interested in finding the shortest path in our project, we can use the distance of

the road as one of the rewards that the agent will receive; for example, if we have two

similar roads with the same attribute, we can help the agent choose the shortest road.

As we mentioned in the previous section, the Ways structure in OSM contains

nodes; each node has a longitude and latitude and a unique ID as Figure 4.3 illustrates.

We used a Python package called Pyproj, a great package to work with map

projections. Pyproj takes longitude and latitude for two-point and returns the distance in

meters. In order to calculate the distance for the whole way, we calculated the distance

between each node and its neighbor, then added it to a list and finally summed all of the

list. After we found the distance of the hole way, we added it as a key attribute in our

JSON file. See code 2.

41

Figure 4.3: The selection of a single way on OpenStreetMap

Figure 4.4: Nodes that represents the way on OpenStreetMap

Listing 2 Representation of a single road with distance attribute in JSON file

1
2
3
4
5

22912146:{

'id':22912146,

'distance':125.11237377238788,

'nodes':[246677458,246677459,246677460],

'type':'way'}

42

Physical Facilities

OSM represents the physical facilities like restaurants, public bathrooms, banks,

supermarkets, and other facilities as a single node with a unique ID. To extract these

data, we need to use the key amenity=*. Figure 4.5 shows the coverage of this key on

the globe represented by the red dots. From the map, we can see that the amenity tag

covers most of Europe, North America, and some of the middle east. However, on the

other hand, some parts of north Africa and Australia do not have many amenities in

them, which will cause an issue if we would like to test our model in these countries

(Openstreetmap,2021e).

Figure 4.5: The distribution of nodes and ways with this key. Relations are not shown.

43

Table 4.3: Commonly used values that can be used with amenity tag

bar public bookcase grit bin waste basket

biergarten social center motorcycle parking waste disposal

cafe stripclub parking waste transfer station

fast food studio parking entrance animal boarding

food court swingerclub parking space animal breeding

ice cream theatre taxi animal shelter

pub courthouse atm baking oven

restaurant embassy bank childcare

college fire station bureau de change clock

toy library prison hospital gym

music school ranger station nursing home hunting stand

school townhall pharmacy internet cafe

university bbq social facility kitchen

bicycle parking bench veterinary kneipp water cure

bicycle repair
station

dog toilet arts center lounger

bicycle rental drinking water brothel marketplace

boat rental give box casino monastery

boat sharing parcel locker cinema photo booth

bus station shelter community center place of mourning

car rental shower conference center place of worship

car sharing telephone events venue public bath

car wash toilets fountain public building

vehicle inspection water point gambling refugee site

charging station watering place love hotel vending machine

ferry terminal
sanitary dump

station
nightclub user defined

Furthermore, Table 4.3 from OSM WIKI (Openstreetmap,2021a) shows us the

multiple values we can assign to the amenity tag and more information about each value’s

description from the table all the needed information mentioned in the appendix A.2.

The main goal of using physical facilities in our project is to determine the best path that

has the amenities suitable for the cyclist. For example, the road that has a supermarket

and public bathroom is more suitable for the cyclist than the road that has multiple

restaurants in it. Another example is if the cyclist is in Saudi Arabia or Algeria, he/she

would be more interested in a water point on the road because of the weather in such

countries is hotter, and a road that has a water point will help him/her more than one

44

with a lot of fast-food restaurants. We can determine the importance of the amenities in

the reward system in our model.

In the code’s implementation, we computed the distance between nodes of the

road and amenities near the road. If the distance is less than ten meters, we add the

road’s amenity as an attribute of the road. Figure 4.6 shows an example of how we

added the amenity into our JSON file3. As we can see, the road with the blue line is

surrounded by a café, bar, cloth shop, and drinking water point. All of these amenities

have been added as a list of their id’s in our dictionary with the key ’amenities’ for

future access in our model.

Figure 4.6: Single way and the amenities near it.

45

Listing 3 Representation of a single road with amenities attribute in JSON file

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

As we mentioned before in our reinforcement model, We will focus not only on

the number of amenities in the road, but also on their type. We will furtherly discuss in

our thesis the reward system.

4.3.2 Google Earth Engine

Google earth engine (GEE) combines a multi-petabyte catalog of satellite

imagery and geospatial datasets with planetary-scale analysis capabilities and makes it

available for scientists, re- searchers, and developers to detect changes, map trends, and

quantify differences on the Earth’s surface (earthengine,2021).

Elevation

In our project, we had to extract elevation for each node of the road to calculate

the road’s slope. The slop will help the agent determine if there is an incline or

decline in the road, and we can use it in our reward system for our model. To extract

elevation, we used an Elevation dataset called SRTM 90m Digital Elevation Database

{'amenities':[1324874797,

3781268652,

4551731590,

4875923521,

1324874753,

1324874797],

'distance':125.11237377238788,

'id':22912146,

'nodes':[246677458,246677459,246677460],

'slop':0.0,

'slop_degrees':0.0,

'tags':{'highway':'residential',

'maxspeed':'30',

'name':'Via Plauto',

'oneway':'yes',

'surface':'sett'},

'type':'way'}

46

v4.1, produced by NASA originally, and it is a breakthrough in digital mapping of the

world. This data set’s main advantage is to provide high-quality elevation data for large

portions of the globe. SRTM dataset can be integrated easily in GEE. By giving GEE the

longitude and latitude for each node of the road, it will return the elevation for each

point in meters, and then we add it as a value of the node, as we can see in code 4.

Listing 4 Elevation value in each node in the file

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Slope Calculation

As we mentioned earlier, we need the slope to find the road’s incline and decline

because the cyclist prefers the road with a decline rather than the road with an incline in

it, because it takes him/her less effort in the declining. To calculate the slope, we need

to use the slope equation as Figure 28.

 % = �, − �G�, − �G)28(

• m=slope

• ��, ��� coordination of the first point in the line

• ��, ��� coordination of the second point in the line

{'type':'node','id':6875735244,'lat':41.90542,

'lon':12.4611844,'elevation':26}

{'type':'node','id':3135817825,'lat':41.9058197,

'lon':12.4612333,'elevation':26}

{'type':'node','id':6875735241,'lat':41.9058536,

'lon':12.4612373,'elevation':26}

{'type':'node','id':246677429,'lat':41.9059068,

'lon':12.4612455,'elevation':31}

47

So, to calculate the slope for the whole road, we will consider the difference in

�2 − �1� as the elevation difference between maximum elevation point and minimum

elevation point in the same road, while the value of �2 − �1� is the distance of the

road. See Figure 4.7, which was computed earlier then we added the value in the JSON

file as shown in Code 5.

Figure 4.7: Calculation of the slope

Listing 5 Slope and slope degrees for a single way

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

{'distance':110.67147153782149,

'id':734205333,

'nodes':[6875735244,

3135817825,

6875735241,

246677429,

3135817807,

83656707],

'slop':0.04517876134222424,

'slop_degrees':2.586793319868952,

'tags':{'highway':'residential',

'lanes':'1',

'lit':'yes',

'name':'Via

Properzio',

'oneway':'yes',

'parking: lane: both’: ‘diagonal',

'parking:lane:both:diagonal':'painted_area_only',

'parking:lane:left:capacity':'10',

'parking:lane:right:capacity':'8',

'surface':'asphalt'},

48

4.4 Conclusion

In this chapter, we discussed the data gathering and collecting process where we

searched for multiple GIS database sources, their availability and their data integrity.

Then we compared each one of them and mentioned the advantages and disadvantages of

each source. We also discussed the extracted feature from both Overpass API and Earth

Engine API, and how we used these extracted features to calculate new features, like the

slope of the road. Finally, we discussed integrating both data sources into one uniform

data structure in the form of a JSON file that helped us later in building the Deep

Reinforcement Learning agent environment. We believe that this integration method can

be used in different machine learning applications and handle not only two GIS sources,

but multiple and different ones.

49

Chapter Five

Modeling

50

Chapter Five

Modeling

5.1 Introduction

In this chapter, we will discuss the modeling phase of our project. First, we will

discuss how we set up the environment. Second, we will discuss how we set up our

agent’s reward system. Finally, we will discuss all the methods we used to enhance the

accuracy of the agent’s policy to make the best action.

5.2 Setting up the Environment

As aforementioned in chapter 4, our data have been collected from multiple GIS

data sources, like; OSM and Earth Engine. The data have been collected and formulated

as a JSON file. The keys of the file are id’s of the intersections, and the values of the key

are the attributes of the road, like; max speed, road name, the distance between

intersections, etc. Since our data contain a lot of information, we need a representation of

the environment that will help the DRL models to get easy and fast access to each road.

So, we decided to use Graphs denoted by � as a state representative for our DRL model.

Graphs ideally have no assumptions about the size or topology that should be made to

ensure their general applicability. Graph processing methods ought to be designed in the

absence of known and fixed causal dependencies (medium,2020).

In our case, Vertex (nodes) denoted by V in our environment represents the

intersection of the roads. As we mentioned before, each intersection has a specified ID,

describing the node’s ID in our graph. The edges of the graph, which are lines that

connect two nodes and denoted by E, will represent the road between two intersections,

and all the information of the road is stored in E. The figure 5.1 shows how we

51

transformed the map of a small number of blocks in Rome and Italy into a graph

representation.

Figure 5.1: Representation of a small sector of the city in graph representation.

5.2.1 Action Space

Action space (A) is the set of all our agent’s actions in a given state. Since we

use Graphs as state representations, the agent will encounter each graph node to move

from one point to another. In other meaning, the set of actions will be the total number of

nodes in our graph. The agent should distinguish which node is linked to gathering and

which of the nodes are not by specifying a reward and penalty for each case. We will

discuss it later in this chapter. We can formulate the equation of as follows:

 R = W)29(

Where n is the total number of V in G and of the A.

5.2.2 State Space

In RL the agent comes across a state S, and then takes action A according to the

state it’s in.

52

In our project, the State Space (SB) is the set of all V that the agent will

encounter from VA (representing the starting node) to Node VB (which is the goal that

the agent will reach). So, the state space of SA→B will be the total number of nodes of the

same graph. For example, if we have a graph of 5 nodes and the nodes’ id are from 1 to

5, and we need to find a path between node number 2 to node number 5, the state space

will be the total number of nodes which is 5 and we can formulate it according to the

following equation:

 B�2 → 5 = � = 5)30(

Where n is the total number of nodes in G

However, the user should pick any two-points on the map and find the optimal

path based on their preference. So, to achieve this, the agent should be trained on all

graph nodes; as starting node and destination node. Based on equation 30, if we take all

the nodes of the graph, the state space will be the sum of N for all possible starting and

destination nodes, which can be represented as the power of 2 for the number of V in G

as following:

 B� = �,)31(

So, in our example of the 5 node graph, the State space of the graph is 25.

In our case, after we extracted a small section of the city of Rome, we get a total

number of nodes of 3080. If we implemented equation 31, we would get 9486400

states, which is a massive number of states for a small section of the city.

5.2.3 State Encoding

Another aspect of our DRL models in any RL environment is that encoding the

states should be in a way that shows the current node the agent is at and the goal

53

destination it should reach. Equation32shows the encoding process for each state in our

state-space.

 B£ = ¤ + � ∗ ¥)32(

Where ¤ ∈ W is the current node, ¥ ∈ W is the final node and n is the total

number of V in G.

For example, if we use the 5 nodes graph case that we mentioned before and we

suppose that the agent is in node number 4, and the goal is node number 1, the state will

be as the following:

 B = 5 + 5 ∗ 1 = 10)33(

So, we will be in state number 10 in our state space which contains 25 states

5.2.4 State Decoding

For coding purposes, we needed to decode the state the agent is at and the next

state that the agent will go to to get all the information stored in the edge between these

two nodes. The equation below shows how we decoded the state. Equation 35 shows

how we decoded the state to get the V

 ¤ = B¤ %~} �)34(

 ¥ = B¤ − ¤�)35(

for example, if we have S = 10 based on the equation 35:

 W¤¦88��g = 10 %~} 25 = 5)36(

5.2.5 Reward

The reward system for our DRL project is complex and has multi-features that

need to be man- aged, and a reward equation needs to be set for each one of the features

54

that we have. We will discuss how we construct each one of them, and lastly, we will

discuss the whole equation that returns a single value for the step function that the

agents take in each state.

Node Links

The agent action space, as we have aforementioned, represents all the nodes in G,

therefore, the agent needs to learn to take the action that leads to going to another state

that has an edge between their nodes. Accordingly, we decided to give the no-link

between the two nodes a penalty of -1000, whereas, if there is a link, a penalty of 0 and

other types of rewards will be given to the agent, like; distance, max speed, road type,

etc., as the equation 37:

 8�	§�¨O�� = ©0 ⟺ � ∈ [−1000 ⟺ � ∉ [y)37(

Distance:

The distance between two nodes is the most fundamental aspect of any cyclist.

The cyclists prefer to take the shortest distance of the road, so, the shorter the distance

is, the better it is for the cyclist. Thus, the longer distance we have, the higher the

penalty to be taken by the agent. So, the most convenient solution is to convert the

distance into a negative value by multiplying it by -1 according to equation 41.

 8�	¬�e*2¨£ = −�¬�e*2¨£)38(

Figure 5.2 shows that the reward equation represents the linear decay. The

longer the distance is, the higher the penalty will be. For example, the agent will avoid

going by the highways and prefer to go by the shorter distances.

Slope

The slope of the road is also like distance in being one of the essential aspects of

the road for any cyclist. The more incline the road has, the more effort the cyclist needs

to put in. Therefore, the main idea here is to

slope, which means the inclining. Additionally,

when we have two slope

slop2=10.124, the reward for both of these two slopes should be the same; since they

are relative values to each other. As a result, we decided to choose the power function

base on equation 39, and this will help us in giving more minor penalties for lower

slopes and higher penalties for large slopes, as

Figure

55

Figure 5.2: Reward for the distance

The slope of the road is also like distance in being one of the essential aspects of

any cyclist. The more incline the road has, the more effort the cyclist needs

to put in. Therefore, the main idea here is to give the agent a penalty

slope, which means the inclining. Additionally, this must take into consideration

slope values near each other, for example, slop

, the reward for both of these two slopes should be the same; since they

are relative values to each other. As a result, we decided to choose the power function

and this will help us in giving more minor penalties for lower

slopes and higher penalties for large slopes, as figure 5.3 shows:

Figure 5.3: Reward for the slope of the road

The slope of the road is also like distance in being one of the essential aspects of

any cyclist. The more incline the road has, the more effort the cyclist needs

the agent a penalty for the higher

consideration that

other, for example, slop1=10.123 and

, the reward for both of these two slopes should be the same; since they

are relative values to each other. As a result, we decided to choose the power function

and this will help us in giving more minor penalties for lower

56

 Rew Slope = −z�slope |¯
)39(

Road Type

In this feature, we have many values for road type. As we mentioned in chapter

4, we have up to 50 values, so we decided to give the user the ability to decide which

road type he/she prefers to use. For example, the user might like to use secondary,

tertiary, and cycle path roads for the agent to have higher rewards, but in our case, since

this project is for cyclists, any road that has a cycle-path or a cycle-way tag will have

higher rewards as the following equation:

 8�	4°2±²³´µ�� = ¶100 �4°2±²³´µ ∈ \cyclepath,cycleway]50 �4°2±²³´µ ∈ \road type user preferences]−50 �·)� y)40(

Max Speed

Max speed of the road is one of the features that we have. Cyclists usually prefer

to not use the roads that have high speed since it leads to more accidents. So, the higher

the speed limits are, the higher the reward will be. We will use an equation like the one

we used for distance equation 41

 rew ¸2�¹º± = −�¸2�¹º±)41(

Road Surface Type

In the road surface, we are going to use the same method as we used in the road

type. Some cyclists do not mind, for example; taking a dirty road or paving stones road

that has shorter distance or users. So, we will give them the ability to choose which road

surface to use, and we will use the same equation 40

57

Road Lighting

 8�	rond_surfacx = ©50 road surface user preferences −50 else
y)42(

As we mentioned in chapter 4 , road lights have different categories, such as;

”Yes”, ”24/7”, ”sunset-sunrise”, ”automatic”, ”operating times”, ”No”, and ”disused”.

Accordingly, we decided that the roads that have lights on always ”yes” will have a

reward of 50, ”24/7”,”sunset-sunrise”, ”automatic”, ”operating times” will have a small

reward of 10 and finally ”No” and ”disused” categories will have a penalty of -20 and

can be formulated as equation 43.

 rew road _lights = ^50 yes 10 24/7, sunset − sunrise, automatic, operating times −20 no, disused

y)43(

Tracer Number Reward

As we mentioned before, we used the trace number that we extracted from the

OSM user tracking system to denote if the streets are used by many people or not. We

prefer to use the roads that have less people in, so we decided to have a simple equation

for this feature and only multiple the number of tracings for the users by -10, and this

will help the agent to select the road that have fewer people in it.

 8�	number of tracers = −10 ∗ �number of tracers)44(

Total Reward

Since the agent needs to have a single reward in every action, we need to

formulate an equation that can merge all of the rewards that we have into one final

reward. We also need to take into consideration the interest of the user, and we need to

give weight to each feature of the reward. The equation 5.2.5 explains how we combined

all the rewards into one.

58 8�	*°*2§ = ¾G ∗ 8�	±�e*2¨£ + ¾, ∗ 8�	4°2±_*¿º + ¾, ∗ 8�	e§°º + ¾À ∗

8�	 Á;ÂÃ´µµÄ _ + ¾̄ ∗ 8�	eÅ4Æ2£²³´µ + ¾Ç ∗ 8�	§�5È*�¨5 + ¾� ∗ 8�	*42£4ÉÊËÌµÍ)45(

where:

 ¾P + ¾G + ¾, + ¾À + ¾̄ + ¾Ç + ¾� = 1)46(

5.3 Model Evaluation and Validation

5.3.1 Evaluation protocol

In Deep Reinforcement Learning, we look into the two criteria to evaluate the

performance of the trained models. First, we examine the cumulative rewards that the

agent receives during the entire training, where we desire that the agent receive a

positive cumulative reward in the early stages of the training, as shown in graph

5.3.1.The second metric is the loss where we desire to reach the minimum loss faster in

the early stages, as shown in graph 5.3.1.

Figure 5.4: Evaluation Plotting examples

59

5.3.2 Validation protocol

In order to determine if the model results are valid or not, we need a way to

validate the result of the agent output, and the standard way to validate the result of any

DRL is to compare the cumulative agent rewards and maximum rewards with the actual

maximum cumulative rewards of the optimal solution. Unfortunately, in our case, we do

not have an optimal cumulative reward since we have different scenarios to calculate the

maximum cumulative rewards. So, in order to validate our results, we decided to

compare our results with the Dijkstra algorithm which finds the shortest path. In order

to do so, we will give the rewDistance higher weight than the other variables, and if the

agent was able to find the same path as the Dijkstra algorithm, then we can be sure that

the agent performance is excellent.

5.3.3 Conclusion

In this chapter, we discussed the modeling part of our model, where we

discussed the DRL environment and the JSON file which we converted into a graph

representation. Also, we discussed the state encoding and decoding that will help the

agent understand the current node that the agent is at, and the destination node and then

convert the encoded state into vector representation that will represent the input of the

neural network. Furthermore, we discussed our complex reward system that depends on

the end-user preferences. We used each feature as a sup-reward and used a uniformed

equation that calculates the final reward that the agent will receive.

60

Chapter Six

Implementation

61

Chapter Six

Implementation

6.1 Implementation using DQN

6.1.1 Experiment 1: testing the possible hyper-parameters

For the first implementation, we did choose a small sample of our main G, which

contains 3080 nodes but, since this number needed much time to train the agent on, we

sampled a node of 22 nodes, as figure 6.1.1 shows. We also decided to choose a fixed

starting and ending node, to not have the need to train our model on each node as

starting and ending nodes.

The neural network that we are using will take s and output a list of 22 nodes

representing the number of actions that will be used in the Argmax to choose an action.

Figure 6.2 shows the neural network’s architecture. The NN architecture’s input layer

will take one single value and output of 128, the second layer will take 128 and output

of 64, the third layer will take 64 nodes and output of 32, and the output layer will be 32

and the output will take 22 values.

Table 6.1 explains the results from training the DQN model with different

hyper-parameters, like; changing the number of training episodes, learning rate, and

batch size. We used the same hyper-parameters that are mentioned in (Mnih et al.,2013).

A fixed list with a size of 10000 to save the transactions, and we used smooth L1 to

calculate the loss between the q-network and the target network. Finally, we used linear

epsilon decay for the epsilon-greedy method. However, the agent did not perform well

in every situation, the maximum rewards did not surpass 0, and the loss function did not

converge as expected and it took so much time. As shown in figure 6.1.1 the reward

62

curve of one of the training trials kept decreasing, and loss increased. This might be

because of three reasons: First, the input of the neural network needs to be more than

one and needs to be encoded into the one-hot vector. The second reason is that it might

be because of the loss function, so, we need to explore more than one loss function. The

final reason is that it might be because the agent is exploring more than exploiting the

network is not getting enough optimization from the training loop.

Figure 6.1: 22 Nodes Representation

63

Figure 6.2: Neural Network’s Architecture

64

Table 6.1: Training on multiple hyper-parameters

number
of

episodes

max
reward

min reward avg reward
loss for the

last 100

explore

exploit

LR

time

batch
size

100000 0 -1428437.078 -1017564.335 1097907.622 55056 44944 0.01 0.011215278 32

500000 0 -1040055.495 -828232.426 2024357.758 275123 224877 0.01 0.025798611 32

1000000 0 -960477.7964 -724461.2733 6395742.307 548904 451096 0.01 0.0396875 32

2000000 0 -1099749.413 -720137.615 2215640.349 1100345 899655 0.01 0.107743056 32

100000 0 -1473775.17 -973039.9728 938048.1829 54941 45059 0.01 0.003101852 64

500000 0 -1473775.17 -875211.284 44537.70373 274571 225429 0.01 0.015717593 64

1000000 0 -1166130.288 -824403.3387 2242083.187 550050 449950 0.01 0.031631944 64

100000 0 -1040437.401 -719450.822 206383.1865 55005 44995 0.001 0.286805556 32

500000 0 -1091517.954 -872580.9445 5364185.617 275583 224417 0.001 0.024097222 32

1000000 0 -915838.0495 -776889.3067 6438665.339 549899 450101 0.001 0.049548611 32

2000000 0 -945932.3073 -369164.8433 2472125.135 1100220 899780 0.001 0.109467593 32

100000 0 -1275453.819 -882831.7635 1039184.755 55159 44841 0.001 0.003171296 64

500000 0 -1049088.763 -935383.0827 69594.58524 274969 225031 0.001 0.015277778 64

1000000 0 -926163.3303 -757734.499 2048730.334 550096 449904 0.001 0.031388889 64

100000 0 -1409200.466 -984122.5152 246061.7164 55138 44862 0.0001 0.004965278 32

500000 0 -1659793.262 -1103674.093 308459.6945 274830 225170 0.0001 0.025138889 32

1000000 0 -1634936.503 -1046251.191 422429.4037 549339 450661 0.0001 0.107384259 32

65

Figure 6.3: Training output for 1000000 episodes

Furthermore, we tried to change the state shape that the NN receives as an input

and make it more complex, so, we changed it from one state number into a binary

representation. The basic idea is to decode the state to get the current node in G, which

the agent is at, and the terminal node that the agent attends to reach. Then encode both

nodes into a list of zeros, and the node’s index in the G will be one in the array of the

One hot encoder. Figure 6.4 presents an example of how

We changed State number 148 into a binary representation with G = 8. First, we

decoded the state using the state decoding function 35, giving us two outputs, the

66

current and terminal nodes. Second, we assigned each node ID to index the node’s

location in G. Third, we converted each node into a list of zeros, and the node’s location

in G will be one. Finally, we concatenated the two lists into one.

Another change we did in the model is changing how the epsilon decay works.

In the previous training, we made the epsilon decrements in a linear method that made

the model explore more than exploit. So, we decided to make the exploitation part more

than exploration. Therefore, we decided to decay the epsilon in an exponential method,

as we can see in figure 6.1.1 which is one of the model’s training we did before. In this

figure, the agent starts exploiting two-thirds of the time, and this will do more

optimization for the NN.

As we can see from table 6.1.1,the changes that we made in state representation

and the exponential decay of the epsilon improved the agent performance, especially in

the loss convergence values for the last 100 episodes, and the values of the loss are near

zeros for all of the experiment with different hyper-parameters. However, as figure 6.6

shows, the cumulative rewards did not change much, and that might be because the NN

did not find an optimal policy due to the in- sufficient convergence of the loss.

Therefore, we need to try different loss equations on different hyper-parameters, which

will be discussed in the following experiment.

67

Figure 6.4: Convert State into Vector

68

Figure 6.5: Epsilon Exponential Decay

Table 6.2: Training on multiple hyper-parameters

number
of

episodes

Max
reward

Min reward Avg reward
mean loss
for the last

100

explor

e

exploit

LR

Time

batch
size

100000 0 -1339175.08 -1015476.229 160.537522 43053 56947 0.01 0.26597222 32

500000 0 -1482216.88 -1090516.242 287.06559 215667 284333 0.01 0.53125 32

1000000 0 -1325859.32 -1048380.321 195.447582 432637 567363 0.01 1.875 32

100000 0 -1166633.07 -939755.4216 216.48597 43174 56826 0.01 0.31736111 64

500000 0 -947340.606 -853799.3743 601.834865 216086 283914 0.01 1.60763889 64

100000 0 -1295025.58 -9490539368 173.624174 43244 56756 0.001 0.28125 32

500000 0 -1289354.32 -956076.9008 167.887373 216150 283850 0.001 1.20833333 32

1000000 0 -1384660.5 -1075206.933 110.250113 432197 567803 0.001 0.0453125 32

100000 0 -1185564.55 -912106.2395 74.0372241 43120 56880 0.0001 0.25069444 32

500000 0 -1272237.68 -948267.1576 50.8578429 216292 283708 0.0001 1.31666667 32

69

Figure 6.6: Training Output for 1000000 Episodes

6.1.2 Experiment 2: Testing the possible loss functions

In this section, we experimented different loss functions in order to solve the

decreased reward issue, which might be related to SmothL1 loss that did not converge in

each training we did be- fore. Therefore, we tried multiple loss functions, which are:

Gaussian negative log-likelihood loss GaussianNLLLoss, Negative log-likelihood loss

with a Poisson distribution of target PoissonNLL and Mean square error MSELOSS.

We also tried using a new loss function, which was mentioned in Chapter 2, Clipped

loss and Reg loss, then we compared it with the smoothL1 loss function. We ran the

following function and did

games and 500K games. We

the rewards system, both MSE

other loss functions we used.

the loss of MSE, Regloss, and GaussianLoss is

Regloss converges faster than

the Regloss for the implementation of our

70

did training with 32 batches: a learning rate of

We can notice from the figures 6.1.2, 6.1.2 that, in regards to

MSE and Clipped loss performed more efficient

used. Furthermore, figure 6.1.2 shows that the convergence of

the loss of MSE, Regloss, and GaussianLoss is faster than the other

than MSE and GaussianLoss. As a result, that we will choose

the Regloss for the implementation of our code.

Figure 6.7: 100K Iterations

Figure 6.8: 500K Iterations

of 0.01 and 100k

that, in regards to

efficient than all the

shows that the convergence of

 three. However,

a result, that we will choose

71

Figure 6.9: Loss functions for 500K iterations

6.1.3 Experiment 3: testing DQN on different Problem Sizes

G=22 nodes

In the first training, we used a G of 22 nodes, and we set the starting node at

node number 1130166767 and the node goal at 1731824802. With these hyper-

parameters in table 6.1.3, and we set the weights of the rewards system as the following

table 6.1.3. As we can see, the distance and the slope have more weight than the others

which means that the agent is more interested in finding a road with short distance and

less slope.

72

Table 6.3: Hyper-parameters for 22 nodes

episodes 100000

lr 0.01

gamma 0.99

target update freq 0

loss dqn reg loss

epsilone expodinal decay

epsilone start 1

epsilone end 0.1

Buffer size 10KB

Table 6.4: Rewards wights

β0 distance 24.93%

β1 road type 21.47%

β2 slop 6.29%

β3 lane number 13.72%

β4 lights 6.22%

β5 max speed 20.30%

β6 surface type 0.28%

β7 number of traces 6.80%

Figure 6.10 shows that the agent performed exceptionally well and started

getting positive re- wards after 20k episodes, which means that the agent started to

distinguish the linked node quickly avoided the disconnected nodes and reached a

maximum reward of 4700 in a training time of 7:03 minutes. Another point we can note

from the figure is that the loss function also converged quickly. The output of this

training shows the sequence of nodes that the cyclist should take to reach their

destination. And since we are more interested in the distance because it has a higher

weight than the other feature, we can see that the output is similar to the shortest path.

73

Figure 6.10: Training results

Agent path = 1130166767 → 2364408910 → 2003461246 → 2003461235 → 1731824802

Shortest path = 1130166767 → 2364408910 → 2003461246 → 2003461235 → 1731824802

G=47 nodes

Under this training, we wanted to increase the number of nodes to 47 to see if the

training model works on a larger scale to construct the model on it. We used the same

hyper-parameters, but we changed the episodes number and the weight’s size, as you

can see in table 6.1.3 ,6.1.3.

74

Furthermore, we can see from figure 6.1.3 that the agent performs well as we

expected with maximum reward of 7450, but it took 20:04 minutes and that is expected

because there are more episodes the agent needs to be trained in.

Table 6.5: hyper-parameters G=47

episodes 280000

lr 0.01

gamma 0.99

target update freq 0

loss dqn reg loss

epsilone expodinal decay

epsilone start 1

epsilone end 0.1

Buffer size 10KB

Table 6.6: rewards system weights

β0 distance 20.00%

β1 road type 7.69%

β2 slop 20.91%

β3 lane number 2.40%

β4 lights 0.83%

β5 max speed 6.71%

β6 surface type 16.83%

β7
number of

traces
24.63%

Figure 6.11: Training results

75

G=147 nodes

In the previous two implementations that used G=22 and G=47, we could not

see the effects of the rewards system for our DRL model since both graphs represent a

tiny proportion of the city. So, we extended our graph into 147 nodes to observe the

output of the training in the map. In figure 6.1.3, we observed the set of nodes that we

will use in the training, and we set a starting node (id=153531392) in blue marker and

red marker to present the destination node (id=5239133571). This small proportion of

the map can test our model performance on a bigger scale.

Figure 6.12: OpenStreetMap view

For the weights in Table 6.1.3, we assigned a higher weight for the slope of the

road (29% of the total weights) in order to observe if this will affect the path selection in

76

larger areas and the number of traces, and to make the agent avoid the heavy traffic roads.

So, we increased the road type weight to see if the agent will avoid the primary roads and

take another type of road. We decided to increase the buffer size to 122KB for the hyper-

parameters in table 6.1.3 because we have a larger area that will lead to many paths that

the agent will explore. Another thing we increased the number of episodes to 1 million

episodes and increased the batch size to 256.

However, the training took a massive time to finish (up to 9 hours) due to the

large episode number and the large batch size. It did not give the anticipated results as

the figure shows that the reward curve of our training kept decreasing exponentially, but

as we can see, the curve slightly increased between episodes 200K and 400K. However,

we can notice from the horizontal lines that the agent takes so much time to reach the

terminal state, but at the end of the episode, the neural network did not perform well

after we finished the exploration time. Additionally, we can see that the loss was

performing well at the beginning of the training until mid of the training and started to

increase massively at the peak of 1.3517703435770656e+17, which is a lot.

Table 6.7: hyper-parameters G=147

episodes 1000000

lr 0.01

gamma 0.99

target update freq 0

loss dqn reg loss

epsilone expodinal decay

epsilone start 1

epsilone end 0.1

Buffer size 122 KB

77

Table 6.8: Training Weights for 147 nodes

β0 distance 8.42%

β1 road type 9.08%

β2 slop 29.38%

β3 lane number 14.91%

β4 lights 3.99%

β5 max speed 1.24%

β6 surface type 10.61%

β7
number of

traces
22.37%

Based on the previous result, we increased the episodes to 18e5 with the same

hyper-parameters and weights.

Figure 6.13: Training results

78

The training took 23 hours and 12 minutes. In figure 6.1.3, we can observe that the

rewards kept decreasing as before, but on the other side, the loss function started to

converge after 1m and 250K episodes with a mean loss for the last 100 episodes that

equals to 46459, which is a massive difference between this training and the previous

run. This means that if we double the time of the episode, it could help the loss to

converge more.

Figure 6.14: Reward and Loss results for 18e

6.1.4 Experiment 4: Comparison with A3C

In the previous implementations that used DQN, we noticed that a longer

training time helps the agent find the maximum rewards for our problem based on our

rewards system. However, unfortunately, DQN for a more significant number of nodes

might take the agent two weeks or even more to find an optimal path, which is not

efficient. We needed find a more efficient way to train our agents in a shorter time, so

we decided to go with the A3C algorithm. A3C depends on the asynchronous method

and uses multiple agents that interact with the same environment. While training, each

agent shares their experience with the other agents, which will help solve the problem of

79

training time. Chapter 3 discussed the algorithm, so we experienced different learning

rates and the number of episodes, as shown in table 6.9. We decided to go with smaller

episodes number because each agent in each episode keeps looping until it reaches the

terminal state or a maximum number of steps, which is 500 steps, and we only changed

the learning rate.

Table 6.9: Training on multiple hyper-parameters

Number
of

episodes

T
max

Min
reward

Max
reward

Average
reward

Mean loss
for last 100

LR
Training

time / hour

1000 10 -95875000 -9215172.982 -95043174.25 2.76162E+12 0.01 0.481161088

3000 10 -95875000 -220066.3139 -95217482.43 3.09885E+12 0.01 1.428449744

5000 10 -95875000 -95855022.95 -95874988.02 3.10685E+12 0.01 2.205047536

1000 10 -95875000 19956.20407 -83997064.09 8.41058E+12 0.001 0.441795206

3000 10 -95815117.24 19961.96181 -70488383.28 6.91288E+12 0.001 1.197373971

5000 10 -95875000 -95650531.33 -95874536.95 2.71697E+12 0.001 2.182557049

1000 10 -95875000 -90062.91339 -94208516.9 8.65978E+12 0.0001 0.465871826

3000 10 -95875000 19971.15828 -74277832.08 8.85677E+12 0.0001 1.212614794

5000 10 -95785102.63 -30038.03819 -74504542.92 7.83753E+12 0.0001 1.86164805

1000 10 -95710176.39 -45028.84172 -68718484.94 5.48005E+12 1.00E-05 0.384759826

3000 10 -95755103.62 -110043.1704 -64387189.76 6.14386E+12 1.00E-05 1.130657925

5000 10 -95855047.42 -30028.84172 -74148199.3 6.02149E+12 1.00E-05 1.816622731

In table 6.9, we can notice that the agent did not perform well in g=22 nodes in

any of the experiments. For example, in learning rate 0.01, the average reward was -

95217482, which is remarkably low, and the loss did not converge. The same thing was

for learning rate 0.001 and 0.0001. The result was to use a learning rate of 0e−5, and it

got an average reward of-64387189.76. We can see average reward was lower than the

learning rate of 0.01, but not significant. The experience’s best from the figure that the

loss and the reward are not stable and increase and decrease in each episode, which

might be from the way the agent calculates the loss. However, the DQN was faster in

G=22 and reached positive rewards in less time. We also need to experiment more on

80

using an asynchronous method for a value-based method, like; using asynchronous

DQN for future enhancement of the model.

Figure 6.15: Reward and loss results for 18e

6.1.5 Experiment 5: Comparison with Dueling DQN

As a last try to get results from using 147 nodes, we decided to experiment using

Dueling DQN, which acts the same as DQN but with different architecture in NN, as we

mentioned in3. We used the location in the same city as we can see in 6.1.5 and we

decided to choose the start and ending nodes that are far from each other to see a

noticeable output.

Figure 6.16: Training Area with 147 Nodes

81

So, in our training, we gave the slope, max speed, and surface type higher

weights than the others and reduced the weight of our agent’s distance. Also, we used

the hyper-parameters in 6.11, like the following:

Table 6.10: Training Weights for 147 Nodes

β0 distance 7.1%

β1 road type 3.5%

β2 slop 14.8%

β3 lane number 6.2%

β4 lights 15.3%

β5 max speed 25.9%

β6 surface type 18.3%

β7 number of traces 8.9%

Table 6.11: hyper-parameters G=147

episodes 1000000

lr 0.01

gamma 0.99

target update freq 0

loss MSE

epsilone expodinal decay

epsilone start 1

epsilone end 0.1

Buffer size 250 KB

The algorithm took about 4 hours to end the training, and we can see from the

metrics graph that it even reached a max reward of 8500 and mean reward of

−5877.18444, the loss coverage was very fast, and it gave outstanding results for this

large scale of nodes. The algorithm gave a path similar to the shortest path algorithm,

even though we weight of 14 at the slope of the road. However, after analyzing the area,

we found out that the selected area is flat with a slope of 0.0005. And as we can see

from the graph in which the red dots represent the path that the agent needs to take to

reach the goal destination.

82

Figure 6.17: Training metrics

Figure 6.18: Agent path

For the sake of exploration, we wanted to see if we increased the slope of one of

the roads that the agent used in the previous training, if the agent would change the road

to a different one. The road we changed its slope appears in figure 6.1.5 and we used the

same weights and hyperparameters in table 6.11 6.10

83

Figure 6.19: Map View

Figure 6.20: Training Metrics

The agent took 4 hours to finish the training, and we can see from figure one that

the reward curve kept increasing until it reached the maximum reward of 7500, whereas,

the loss was decreasing. The most important thing that the agent avoided the road was

that we manually increased its slope and used another path for it 6.1.5.

84

Figure 6.21: Agent Path

6.2 Conclusion

In this chapter, we experimented multiple DRL models. The first model we used

is DQN which we have tested in 3 phases. In the first phase, we selected a small number

of nodes G=22, and the agent gave us a Maximum reward of 4700 in 7:03 minutes,

which is an excellent performance in a short amount of time. In the second phase, we

increased the number of nodes to G=47, and the agent gave us great results of a

maximum reward of 7450 in 20 minutes. However, in the third phase, when we

increased the number of nodes to G=147, the algorithm did not perform well due to the

enormous number of paths the agent needed to explore at the early stages, which will

take much time and more computational power. In our experiment, we used the second

model which is A3C, that uses the Actor-Critic method and multithreading techniques

to find the optimal policy. Unfortunately, the algorithm did not perform sufficiently, and

the agent did not give us the expected results; we achieved a maximum reward of -

110043 and an average reward of -64387189. Finally, we experimented the Duel DQN

that uses the same method of DQN but utilizes different neural network architecture.

The algorithm performed well, as we reached a maximum reward of 7500, and the agent

avoided the roads that did not meet the end-user requirements.

85

Chapter Seven

Conclusion and Future Work

86

Chapter Seven

Conclusion and Future Work

7.1 Conclusion

Deep Reinforcement Learning (DRL) is the future of Reinforcement Learning.

We can use DRL to achieve a human-like performance, from playing chess to training a

robot that walks in an unbounded area. However, the application of reinforcement

learning in Geographical Inform in Systems (GIS) is still limited and needs further

investigation.

There has been a growing interest in many countries to work on reducing the

pollution caused by gas emissions from cars and many people turned into using bicycles

as their main mobility. As a result, this has forced the city municipalities to plan new

cycle paths for the entire city, taking into consideration all age ranges who ride bicycles;

from youngsters to the elderly. For instance, a path chosen by an 18-years old person

can be different from the one chosen by people in their 60s, who most likely would

prefer following a path with different characteristics than the younger ones (e.g., a path

that avoids any possible uphill’s). All of this constituted a problem to the municipalities

which drives them to not design bike lanes considering only the shortest path, but

should also cover other factors like; the slope of the road, shadows, facilities on the

road, the type of bicycle (e.g., E-bike), traffic.

On the other hand, the end-users who use mobile apps to find the shortest routes

or traffic-free routes, do not always care about reaching their destinations faster, but

need to find paths that suit their preferences. For example, the user might prefer to take

a cycle lane with shadows, on a road that has cafes and public bathrooms or charging

87

stations. The user might also want to avoid high traffic roads like roads near of schools

during the drop off and pick up times, or uphill’s, which might slow them down. None

of the aforementioned preferences are acknowledged in any of the current routing apps.

To solve these issues, we provided a proof of concept by using a virtual agent to

help the municipalities plan the most convenient cycling lanes in the city, considering

multiple preferences (e.g., road slope, public bathrooms, road lights). This method

allows the mobility officer to generate multiple paths between two locations based on

different scenarios and even help them plan the entire city based on the municipalities’

interests. On the other side, the end-users will have the option to choose a path based on

their interests. Each user can choose a different path every time they use this method,

based on their mood and interest; they might take the shortest path, or one with multiple

restaurants or supermarkets, or a path with e-bike chargers, or even all of these

preferences together.

We achieved this result by posing the following two sets of research questions:

1) RQ1 Data related questions:

a) Are there publicly available sources of information that contain rich geographical

data?

b) Are the publicly available data sufficient for training and testing a virtual agent

that’s able to compute personalized smart paths?

c) Which are the best mechanisms to be used to integrate all the aforementioned

geographical information?

2) RQ2 Algorithmic related questions:

88

a) What is the possible reward modulization which encompasses all the collected rich

geographical information?

b) Which is the best states representation that should be adopted when a personalized

travel path problem is formulated as a reinforcement learning-based agent?

c) Which is the best Neural Network architecture that must be employed by our

Agent?

d) Which is the best deep reinforcement learning algorithm that can be used in this

specific application scenario?

Outcomes of the Thesis:

Hereafter we present the detailed answers that we have found for each one of the

presented research questions:

• RQ1.a: After extensive research on different geographical data sources, we find two

sources of public APIs that we can be used to extract GIS data: Overpass API from

OpenStreetMap and earth engine API from google. These APIs provide sufficient

GIS features, starting from roads, shops, amenities, road lights, elevation data, and

even the trees in some countries. In our thesis, we mainly used the overpass API to

extract the information of the roads and amenities, and we used the Earth engine API

to extract the elevation data.

• RQ1.b: The extracted data from both APIs proved to be sufficient enough to be used

in our training and testing of our DRL agent, but with some minor drawbacks. Since

overpass API depends on the contributions of OpenStreetMap users to add and

update the data, a lot of the key features, especially the amenity, need an update. For

example, new shops have opened, and others have recently closed, or some roads

89

have changed some of their features, like the max speed or the number of lanes in

them, so this might not give us new precise results.

• RQ1.c: We also proposed a mechanism to integrate all the data sources extracted into

one data set in a JSON file. We constructed it by using the longitude and latitude for

each road intersection from the overpass data. Then we set the keys of the JSON file

based on the road intersection ID. The values are set according to the information

extracted from the overpass API. The new calculated information, like the slope, is

extracted from the Earth Engine’s elevation data based on the longitude and latitude

intersection from the Overpass API. All of this information represents the road

attribute that we used later in the reward system. We believe that this method can

handle not only two data sources, but multiple ones. We can use this data set in

reinforcement learning projects and different applications.

• RQ2.a: We also constructed a reward system mechanism that covers all extracted

features and gives each feature a weight. The weights can be changed based on the

user’s interests, and these weights will reflect the user’s interest in the agent’s

actions. For each feature, we set an equation that calculates the reward for this

specific feature, and at the end, we created a mathematical formula that combined all

the rewards into one final reward value that the agent will receive. This rewards

system can handle a massive number of features, but one of the drawbacks of it is

that if we had to add other new features, we need to create a specific mathematical

equation to get its rewards and edit the final equation to include it into the final

reward.

• RQ1.b: Moreover, we constructed our agent environment as a graph representation

based on our data set, formulated as a dictionary. Each node represents an

90

intersection, and the information of the roads is saved on the edges between two

nodes. Also, both state-space and action-space for our Agent depend on the number

of nodes in the graph. The action spaces

A for our DRL equals the total number of nodes in the graph, A = V , Also

state-space is SP = N 2 since the Agent can start from any V and end to any V .

Finally, in our training, we decided to encode each state as vectors of zeros. Where the

current state and goal state are represented in the vector as one, this method helped the

neural network understand the Agent’s current position and the destination of the

training, which allowed the converging of the loss faster. This state representation was

solid for extracting the information in the edges quickly and efficiently by the Agent. It

helped us automate how we can represent the action-space and state-space in case of

increasing or decreasing the nodes number.

• RQ1.c: Concerning our neural network architecture, we decided to use the Dueling

network structure to build a network that computes the advantage A and value

functions V separately. Then, we combine the two values into a single q-function at

the final layer. Both the A and V need only two hidden layers of 64,32. This

architecture proves its efficiency compared to the standard architecture, which

computes only the q-function based on the input of the state.

• RQ1.d: Finally, we find out that using the Dueling DQN algorithm is the best

algorithm for our personalized travel path. Due to the Neural Network architecture

that combines both computing the advantage and value function to get the value of

Q-function. This method helps us find the optimal policy for our Agent in a shorter

time, unlike other algorithms and other NN architectures that have been tested before.

Also, this algorithm is a value-based function that uses epsilon-greedy that combines

91

both exploration and exploitation, which uses random action or a neural network to

choose the action. In comparing DQN and A3C, the Dueling DQN performed faster,

and the Agent reached an average reward earlier than both algorithms.

7.2 Current Limitations

Nevertheless, our project needs further exploration and more research, and it has

some draw- backs.

• Since overpass API depends on the contributions of OpenStreetMap users in adding

and up- dating the data, lots of the key features (e.g. amenity) need to be updated; for

example, new shops have opened, others recently closed, or some roads have changed

some of their features, like; the maximum speed or the number of lances in the road,

which leads to us to no new precise results.

• While constructing the data set, some features have been generalized for the whole

road and saved the same results in the edges between intersections. This problem

didn’t affect our training sine the areas we selected have some similarities between

blocks, but when we implement it all over the city, this method will affect the

training.

• Another thing we faced in our training of the model is the time it needs to finish its

training. Some testing of our projects took three days to complete, and that is because

of the complexity of state representation, so we have much future work to implement.

7.3 Future Works

The study provided in this thesis presents several of potential possibilities for

future investigation.

92

• Use the amenities and shop data that we extracted to set up rewards to help the user

use the road that has certain facilities that might interest him/her.

• Extract the shadow data from the API earth engine. This will add a capability of

using the roads that have shadows in them and avoiding the ones that do not.

• Search for a free and reliable traffic API to support our tracer rewards feature.

Explore more ways to shorten the training time in the multi-threading training by

using multiple CPUs, especially in the Value-based method for DQN and Dulling

DQN.

• Adding other features related to road safety like barriers, accidents and Bandits.

• Explore more algorithms that use policy-based methods, like PPO.

• Train the Agent to use every node as start and goal state. This will show the true

capability of the Neural network in handling multiple paths and different states.

93

References

Co-Reyes, J. D., Miao, Y., Peng, D., Real, E., Levine, S., Le, Q. V., . . . Faust, A. (2021).

Evolving reinforcement learning algorithms. arXiv preprint arXiv:2101.03958.

Divyam, R. (2017, August). Deep reinforcement learning for bipedal robots.

Re- trieved from https://repository.tudelft.nl/islandora/object/uuid% 3A0fac495f-

f87a-4a61-a80f-5f901323379a

Earthengine. (2021). earthengine. Retrieved 17-3-2021, from https://earthengine

.google.com/

Geography. (2021). Geographic database. Retrieved 17-3-2021, from https://geography

.name/geographic-database/

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Retrieved from https://books.google.co.in/books?id=Np9SDQAAQBAJ

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Y.

Bengio & Y. LeCun (Eds.), 3rd international conference on learning

representations, ICLR 2015, san diego, ca, usa, may 7-9, 2015, conference track

proceedings. Retrieved from http:// arxiv.org/abs/1412.6980

Lamouik, Y., & Sabri. (2018, April). Deep neural network dynamic traffic routing

system for vehicles. IEEE. Retrieved from https://ieeexplore.ieee.org/document/

8354012 doi: 10.1109/ISACV.2018.8354012

Liu, Y. C., Zhang, & Chen. (2019, September). A new algorithm of the best path

selection based on machine learning. IEEE, 7. Retrieved from

https://ieeexplore.ieee.org/ document/8823853 doi:

10.1109/ACCESS.2019.2939423

94

medium. (2020). graphs. Retrieved 20-2-2020, from https://medium.com/

syncedreview/introduction-to-deep-learning-for-graphs-and-where-it-may-be-

heading-75d48f42a322

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., . . . Kavukcuoglu,

K. (2016, 20–22 Jun). Asynchronous methods for deep reinforcement learning. ,

48, 1928–1937. Re- trieved from https://proceedings.mlr.press/v48/mniha16.html

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &

Riedmiller, M.

(2013). Playing atari with deep reinforcement learning. Retrieved from

http://arxiv .org/abs/1312.5602 (cite arxiv:1312.5602Comment: NIPS Deep

Learning Workshop 2013)

Openstreetmap. (2021a). amenity. Retrieved 17-3-2021, from

https://wiki.openstreetmap.org/wiki/Key:amenity

Openstreetmap. (2021b). API. Retrieved 17-3-2021, from https://wiki.openstreetmap

.org/wiki/API

Openstreetmap. (2021c). Elements. Retrieved 17-3-2021, from

https://wiki.openstreetmap.org/wiki/Elements

Openstreetmap. (2021d). taginfo. Retrieved 17-3-2021, from

https://taginfo.openstreetmap.org/keys/highway#map

Openstreetmap. (2021e). taginfo. Retrieved 17-3-2021, from

https://taginfo.openstreetmap.org/keys/amenity#map

OpenStreetMap contributors. (2017). Planet dump retrieved from https://planet.osm.org.

https://www.openstreetmap.org.

95

Rashid, T. (2016). Make your own neural network (1st ed.). North Charleston, SC,

USA: CreateS- pace Independent Publishing Platform.

Schulman, J. (2020, Sep). Proximal policy optimization. OpenAI. Retrieved from

https:// openai.com/blog/openai-baselines-ppo/

Sutton, R. S., & Barto, A. G. (2018a). Reinforcement learning: An introduction.

Cambridge, MA, USA: A Bradford Book.

Sutton, R. S., & Barto, A. G. (2018b). Reinforcement learning: An introduction. MIT

press.

Wang, Y., Novack, & Zipf. (2020, July). Quiet route planning for pedestrians in traffic

noise polluted environments. IEEE. Retrieved from

https://ieeexplore.ieee.org/document/ 9139350 doi: 10.1109/TITS.2020.3004660

Zhiguang Cao, S. K. G. C. L. Z. X. Z., Hongliang Guo. (2020, March). Using

reinforcement learning to minimize the probability of delay occurrence in

transportation. IEEE, 69. Retrieved from

https://ieeexplore.ieee.org/document/8952783 doi: 10.1109/TVT.2020.2964784

96

Appendix A

Thesis Appendix

A.1 Code Organization

In this section, we will present how we organized the code for data collection, a3c

algorithm, dual DQN, and DQN. Each file contains all the codes shared in the GitHub

repository. Also, GitHub will be the original colab notebooks that we used as the

primary reference in this thesis.

A.1.1 Data Extraction

In data extraction folder, you will find two notebooks:

• gps tracer.ipynb

• data.ipynb

gps tracer.ipynb

You only need to define the bounded box to extract all of the GPS tracers that we

mentioned in 4, and the output of this notebook will be a JSON file that will be used

later.

Data.ipynb

Similar to the previous notebook, you only need to define what bounded box you need to

extract the data from and it will extract a JSON file that will be used in all of the

algorithms.

A.1.2 DQN

In the DQN repository you will find you 6 python files:

97

• Qnetwork.py Contains the neural network.

• create graph.py which creates a sup graph from the data based on the number of

nodes.

• ddqn.py Includes the training function and testing function of our agent.

• device.py Includes the code that is used to make the agents work on GPU.

• environment.py The environment of our DRL, which has the step, reset and other

functions that help the agent move around the environment. It also includes the

reward system.

• main.py Which is the main file that will run the whole code.

A.1.3 Dual DQN

In the dual DQN repository you will find 6 python files:

• Qnetwork.py Contains the neural network

• create graph.py Creates a sub graph from the data, based on thes number of nodes.

• ddqn.py Includes the training and testing functions for our agent.

• device.py Includes the code that is used to make the agents work on GPU.

• environment.py The environment of our DRL, which has the step, reset and other

functions that help the agent move around the environment. It also includes the

reward system.

• main.py The main file that will run the whole code.

98

A.1.4 A3C

In the A3c repository you will find 6 python files:

• ActorCriticsf .py Includes the network,loss and return calculations.

• Agent.py Includes the training and testing functions for our agent.

• SharedAdamf .py Includes the shared Adam that will be used by multiple agents.

• a3cplotf .py The plot of the final result.

• environmentf .py The environment of our DRL, which has the step, reset and other

functions that help the agent move around the environment. It also includes the

reward system.

• gather eps.py The class that collects the data from the training and saves it into one

dictio- nary.

• main.py The main file that will run the whole code.

A.2 OpenStreetMap Tags tables

In this section we will present the hole values and its description as mentioned in

OpenStreetMap website for each feature that we extracted from Overpass API and used

in our implementation

99

A.2.1 Highway values

Table A.1: Commonly used values with highway tag (OpenStreetMap,2021)

Key Value Comment

highway motorway

A restricted access major divided highway, normally with
2 or more running lanes
plus emergency hard shoulder. Equivalent to the Freeway,
Autobahn, etc..

highway trunk
The most important roads in a country’s system aren’t
motorways.
(Need not necessarily be a divided highway.)

highway primary
The next most important roads in a country’s
system.(Often link larger towns.)

highway secondary
The next most important roads in a country’s
system.(Often link towns.)

highway tertiary
The next most important roads in a country’s
system.(Often link smaller towns and villages)

highway

unclassified

The least important through roads in a country’s system –
i.e. minor roads of a lower
classification than tertiary,but which serve a purpose other
than access to properties. (Often link villages and
hamlets.) The word ’unclassified’ is a historical
artifact of the UK road system and does not mean that the
classification is unknown;
you can use highway=road for that.

highway residential
Roads that serve as access to housing, without the
function of connecting settlements.
Often lined with housing.

highway
motorway

link

The link roads (sliproads/ramps) leading to/from a
motorway from/to a motorway or
lower class highway.Normally with the same motorway
restrictions.

highway trunk link
The link roads (sliproads/ramps) leading to/from a trunk
road from/to a trunk
road or lower class highway.

highway primary link
The link roads (sliproads/ramps) leading to/from a
primary
road from/to a primary road or lower class highway.

highway
Secondary

link

The link roads (sliproads/ramps) leading to/from
a secondary road from/to a secondary road or lower class
highway.

highway tertiary link
The link roads (sliproads/ramps) leading to/from a tertiary
road from/to a tertiary road or lower class highway.

highway living street

For living streets, which are residential streets where
pedestrians have legal
priority over cars, speeds are kept very low, and where
children are allowed to play on the street.

100

highway

pedestrian

For roads used mainly/exclusively for pedestrians in
shopping and some residential
areas which may allow access by motorized vehicles only
for very limited periods of the day.To create a ’square’ or
’plaza’ create a closed way and tag as pedestrian and also
with area=yes.’

highway

track

Roads for mostly agricultural or forestry uses.
To describe the quality of a track, see tracktype=*.
Note: Although tracks are often rough with unpaved
surfaces, this tag is not describing the quality of a road
but its use. Consequently, if you want to tag a general use
road,
use one of the general highway values instead of track.

highway escape

For runaway truck ramps, runaway truck lanes,
emergency escape ramps,
or truck arrester beds. It enables vehicles with braking
failure to safely stop.

A.2.2 Amenity values

Table A.2: Commonly used values that can be used with amenity tag

(OpenStreetMap,2021)

Key Value Comment

amenity

bar

Bar is a purpose-built commercial establishment that
sells alcoholic drinks to be consumed on the
premises.They are characterised by a noisy and
vibrant atmosphere, similar
to a party and usually don’t sell food.

amenity

bbq

BBQ or Barbecue is a permanently built grill for
cooking food, which is most typically used outdoors
by the public.
For example these may be found in city parks or at
beaches. Use the tag fuel=* to specify the source of
heating,
such as fuel=wood;electric;charcoal.
For mapping nearby table and chairs, see also the tag
tourism=picnic site. For mapping campfires and
firepits, instead use the tag leisure=firepit.

amenity

cafe

Cafe is generally an informal place that offers casual
meals and beverages;typically,
the focus is on coffee or tea. Also known as a
coffeehouse/shop, bistro or sidewalk cafe. The kind
of food served may be mapped with the tags
cuisine=* and diet=*.
See also the tags amenity=restaurant;bar;fast food.

101

amenity

drinking water

Drinking water is a place where humans can obtain
potable water for consumption. Typically, the water
is used for only drinking.
Also known as a drinking fountain or bubbler.

amenity

fast food

Fast food restaurant (see also amenity=restaurant).
The kind of food served can be tagged with
cuisine=* and diet=*.

amenity

food court

An area with several different restaurant food
counters and a shared eating area.
Commonly found in malls, airports, etc.

amenity university
An university campus: an institute of higher
education

amenity bicycle parking Parking for bicycles

amenity
bicycle repair

station
General tools for self-service bicycle repairs, usually
on the roadside; no service

amenity bicycle rental Rent a bicycle

amenity bus station May also be tagged as public transport=station.

amenity car rental Rent a car

amenity car sharing Share a car

amenity car wash Wash a car

amenity vehicle inspection Government vehicle inspection

amenity charging station Charging facility for electric vehicles

amenity ferry terminal
Ferry terminal/stop. A place where people/cars/etc.
can board and leave a ferry.

amenity fuel
Petrol station; gas station; marine fuel;
Streets to petrol stations are often tagged
highway=service.

amenity grit bin
A container that holds grit or a mixture of salt and
grit.

amenity motorcycle parking Parking for motorcycles

amenity

parking

Car park. Nodes and areas (without access tag) will
get a parking symbol.
Areas will be coloured.Streets on car parking are often
tagged highway=service and service=parking aisle.

amenity

parking entrance

An entrance or exit to an underground or multi-
storey parking facility.Group multiple
parking entrances together with a relation using the
tags type=site and site=parking. Do not mix with
amenity=parking.

amenity

parking space

A single parking space.
Group multiple parking spaces together with a
relation using the tags type=site and site=parking.Do
not mix with amenity=parking.

amenity taxi A place where taxis wait for passengers.

amenity atm
ATM or cash point: a device that provides the clients
of a financial institution
with access to financial transactions.

102

amenity bank

Bank or credit union: a financial establishment
where customers can deposit and
withdraw money,take loans, make investments and
transfer funds.

amenity bureau de change

Bureau de change, money changer, currency
exchange,
Wechsel, cambio – a place to change foreign bank
notes and travellers cheques.

amenity baby hatch
A place where a baby can be, out of necessity,
anonymously left
to be safely cared for and perhaps adopted.

amenity clinic A medium-sized medical facility or health centre.

amenity dentist A dentist practice / surgery.

amenity doctors A doctor’s practice / surgery.

amenity

hospital

A hospital providing in-patient medical treatment.
Often used in conjunction with emergency=* to note
whether the medical centre has emergency facilities
(A&E (brit.) or ER (am.))

amenity nursing home

Discouraged tag for a home for disabled or elderly
persons who need permanent care.
Use amenity=social facility + social facility=nursing
home now.

amenity pharmacy
Pharmacy: a shop where a pharmacist sells
medications dispensing=yes/no - availability
of prescription-only medications

amenity social facility
A facility that provides social services: group &
nursing homes,
workshops for the disabled, homeless shelters, etc.

amenity veterinary
A place where a veterinary surgeon, also known as a
veterinarian or vet, practices.

amenity arts centre
A venue where a variety of arts are performed or
conducted

amenity brothel
An establishment specifically dedicated to
prostitution

amenity lounger An object for people to lie down.

amenity marketplace
A marketplace where goods and services are traded
daily or weekly.

amenity monastery
Monastery is the location of a monastery or a
building in which monks and nuns live.

amenity photo booth Photo Booth – A stand to create instant photo.

amenity place of mourning

A room or building where families and friends can
come,
before the funeral, and view the body of the person
who has died.

amenity

place of worship

A church, mosque, or temple, etc. Note that you also
need religion=*,
usually denomination=* and preferably name=* as

103

well as amenity=place of worship. See the article for
details.

amenity police
A police station where police officers patrol from
and that is a first
point of contact for civilians

amenity post box
A box for the reception of mail. Alternative mail-
carriers can be tagged via operator=*

amenity post depot
Post depot or delivery office, where letters and
parcels are collected and sorted prior to delivery.

amenity post office Post office building with postal services

amenity prison
A prison or jail where people are incarcerated before
trial or after conviction

amenity public bath
A location where the public may bathe in common,
etc. Japanese on-sen, Turkish bath,
hot spring

amenity public building
A generic public building. Don’t use! See
office=government.

amenity ranger station
National Park visitor headquarters: official park
visitor facility with police,
visitor information, permit services, etc

amenity recycling

Recycling facilities (bottle banks, etc.). Combine
with recycling type=container
for containers or recycling type=centre for recycling
centres.

amenity refugee site
A human settlement sheltering refugees or internally
displaced persons

amenity
sanitary dump

station
A place for depositing human waste from a toilet
holding tank.

amenity shelter

height
A small shelter against bad weather

conditions.
To additionally describe the kind of shelter use
shelter type=*.

amenity shower Public shower or bath.

amenity telephone Public telephone

amenity toilets Public toilets (might require a fee)

amenity townhall
height

Building where the administration of a village,

town or city may be located, or just a community
meeting place

amenity vending machine
A machine selling goods – food, tickets, newspapers,
etc. Add type of goods using vending=*

amenity waste basket
A single small container for depositing garbage that
is easily accessible for pedestrians.

amenity waste disposal
A medium or large disposal bin, typically for bagged
up household or industrial waste.

amenity
waste transfer

station
A waste transfer station is a location that accepts,
consolidates and transfers waste in bulk.

104

amenity watering place
Place where water is contained and animals can
drink

amenity water point
Place where you can get large amounts of drinking
water

amenity user defined All commonly used values according to Taginfo

105

BCDEFا

	 ا�����ام���� ���� ��ام ���ذج ا������ ا����ز ا����� ������ �����#�ص ����را �ت ا

 ا�%�ا$�

� ا�و�� ا����ة ������
� ا������ ا���ا
	ة، و���� � �ا��	
(+(* ا�(ول '	 ازداد اه��م ا����" �!آ��

 �),�إن: . 5�4 ا�8	 +* �!��7 ا���6 5�4 ا����� +* �(3ل ��/(� ا2(�ا����1ت ا�/��(� ا��.(ا+� ا��-

�ه(� ��=ا<D(� ه(BC ا��A)6�� ه(= �6(�1@ ا2(-	ام ا�(را<�ت آ=2(��� ��� ")
 �)أG	 اF<(�اءات ا�

J أ��2�2 ��/��، �Mذا أJ�K رآ(=ب ا�(را<�ت ه(= ا�=2(��� ا�2�2(�� ��/�(�)�/6(! ا��8<(� إ�(4 .� ،

��<((�ت راآ�((� ا�((را<�تGا N))2�/� ة))
� ه((BC ا��PوG((�، 2((=ف �/((�ول . P((�ق و+.((�رات <))�

 R
�(�ر� S)��
 �)���
=ا<�DD راآ�(= ا�(را<�ت 	' �ا��3A6ت و��	م ا'�ا�Gت ��8 ا���6آ� ا�

 �/

S وا��/8	رات(ا��	�Uا� JU2ق و�Uل، أ�=اع ا��W4 ���2 ا���5.(

5� ا�Cي
=YZ ا����" ا���(�ز �/UK\آ�ء اCام �5+� ا�	-
8[5�4 ا2 3ًG �Gو�Pا� BCم ه	��

" �-_�_(N).G �D �,�(�3ت ا��.(-	م)
 �)�
�U� ر�).+ �)��. وا��A�6 ا��_��� ���W(=ر 5�(4 أ

 �/+	' �)�' *)+ ��D)2و �)G�+ �)�
�U� ا�����(�ت BC)ام ه	-2(�" ا2(Y)<�@ ا������ت وآ� ���أوً\ �5

�(� ا�آW(� . =آ��ا��U(4 ا��ر 5=)W��� ا���(�ز "�)��و��(ذ�(`، ا����(� ا��	
(+(* �=ارز+�(�ت ا�

�ت	8��� ".
� ا�.�/�ر
= ا�-�ص �/� ا�Cي � �D+ا	-
� ا�-�
�U . +3ء+� \2=8� ��ً
��	 '�/� أ

�!ة �A+ 4آ� +��ة إ� �
=8
��W ���� ا����" ا����ز ا����S، و'�/� � �� ��bم إ�4 ر2" ����� ��5��

�/
�cت ا����	 �	�Aا����ز. ا�� "��� .وأ��ً�ا، '�/� �	ر
N ا��	
	 +* ���ذج ا�

�1(�؛ ���(�Db� Dual Deep Q Network �)/��G ا�/�ef أن �=ارز+��� ��� h��G7500 أ

� أ'� +* ��!ة ��اآ��� �A+5 ً/(� +(* �_(��" ا��.(�ر �/(�ء�وآ� *)Aو�� ،N
2(��5ت +(* و'(h ا�(ر

4�5 ��
� ا�����=.� \ �� و��1وز <��@ ا��Uق ا�f�D/م ا�	- .+=اK,�ت ا��.

