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Abstract 

Using Deep Reinforcement Learning Model to Design Sustainable Bicycle  Mobility 

Infrastructure 

Nowadays, the whole world is concerned with the increasing environmental issues, and 

many countries are working towards reducing the impact of humans on the environment 

by adopting various sustainable development strategies. One of the promoted actions to 

face this issue is encouraging the use of bicycles as the primary mean of transportation. If 

cycling becomes the primary mean of transportation, there will be a need for new and 

suitable routes and paths that suit the needs of the bicycles’ riders. In this thesis, we will 

tackle the problems and propose solutions to the issues that cyclists may face concerning 

the city’s topography (e.g., types of road, road surface, and their slope). 

This thesis proposes a solution that promotes using an AI agent that utilizes reinforcement 

learning and neural network to find the best path in a way that is customized by user 

preferences. We first presented the data collection process and how these data will be 

used in a readily available way by the agent. Then, we tested several reinforcement 

learning algorithms to find the most suit- able method to be used in our challenging 

scenario. We have also converted the map into a graph which represents the deep 

reinforcement learning environment, and converted each feature into a sub-reward in 

our complex reward system. Finally, we trained multiple reinforcement learning 

models. 

The results show that Dual Deep Q Network has the best outcome; we achieved 7500 

cumulative rewards in less than 5 hours of training time, and our agent was able to 

design a route based on the end-user specification and overpass all the roads that do not 

meet the criteria. 
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Chapter One 

Introduction 

The core of the thesis is to explore the possible solutions to create a support 

system for Mobility managers which allow designing a sustainable mobility 

infrastructure for bike lanes. The proposed solution uses an Artificial Intelligent 

approach called reinforcement learning to consider the many conditions from a real-

world environment. The Agent learns to achieve a goal in an uncertain environment. 

The shortest path algorithm, also known as Dijkstra’s algorithm, allows finding the 

fastest path among two places; it has been used successfully in many mobility apps. 

Many research works on adding several variables to the considered model, for example, 

taking into consideration the traffic and the road’s vibrations, to compute the most 

comfortable route. Our research will use the virtual Agent to determine the most 

convenient path between two locations. The route generated by the Agent will take into 

consideration a lot of variables like: the characteristics of road networks, geographical 

features of the territory (e.g., altitudes, presence of shade), information of all kinds of 

traffics, the population of an area, the characteristics of the used vehicle (e.g., battery-

powered vehicles), the energy expenditure of the driver, and other information that we 

are going to collect. Our thesis will answer the following questions: 

(1) Are there publicly available sources of information that contains rich geographical 

data? 

(2) The publicly available data are sufficient for training and testing a virtual agent able 

to compute personalized smart paths? 

(3) Which can be the best mechanism to integrate all the aforementioned geographical 

information? 
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(4) Which is a possible reward modulization which encompasses all the collected rich 

geographical information? 

(5) Which is the best Neural Network architecture that must be employed by our Agent is 

the best deep reinforcement learning algorithm that can be used in this specific 

application scenario? 

The above questions have driven us during this of this project. 

The shortest path approach focuses only on one variable, for example, traffic. 

Using reinforcement learning in our project will help us find a new way to choose the 

best path between two locations based on multiple variables that can interest the cyclist. 

The main goal of Reinforcement Learning (RL) is to give the Agent the wisdom and the 

knowledge to react like a human being in an unknown environment by obtaining the 

optimal strategy by maximizing long-term compensation by providing the current state 

reward (Liu & Chen,2019). Moreover, few researchers used RL for route planning in 

general and not only in Bike Lane planning. Most of the research conducted on this 

subject mainly uses the shortest path algorithm. The research enhances it by using one 

or two prediction models considering very few factors; the drivers’ or the cyclists’ faces 

on the road. On the other hand, our project focuses on adding as many variables as 

possible and hopes that the Deep Reinforcement Learning agent can handle it. 

Lastly, this thesis will help the municipalities implement the routes (or their 

variations) that are best suitable to promote hybrid mobility infrastructure. Also, this 

study will help the researchers take a new approach in route planning for different 

sectors (disabled people, water supply network for agriculture areas, pipeline transport 

for oil and gas, etc.) and consider many cities’ variables. 
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1.1 Problem Definition 

Nowadays, due to the pandemic diffusion and the raising interest of many 

countries to reduce the pollution that is caused by gas emissions from cars, countries now 

encourage their citizens to use bicycles for mobility, which raises the interest and need 

for cycling routes (bike lanes). This adoption allows mitigating the pollution and 

exposure to the virus. One problem for the public administration officers related to this 

rising interest in designing the new bike lanes fast and thoughtfully is that the mobility 

manager (officer) cannot simply design the bike lane considering the shortest route, but 

several other factors must be evaluated. For example, cyclists may prefer to use a route 

with shadows where the traffic jam is low. Sometimes the cyclist uses an e-bike, thus 

considering its power and battery capacity can be an additional factor to consider at the 

designing phase. From the mathematical standpoint, the number of considered variables 

and the problem’s size can be in- tractable to be tackled with classic optimization 

techniques. For this reason, we propose to build an artificial intelligence agent based on 

the city’s data. The virtual cyclist (the agent) learns to balance all the variables and 

draws the city’s bike routes. To solve the problem mentioned above, we need to: 

• Understand which are the involved variables 

• Obtain the required data 

• Model the problem in terms of a Reinforcement Learning based Agent 

• Test the proposed solution on actual data 

1.2 Research Goal 

The thesis investigates the advantages of applying DRL algorithms to high-

dimensional systems and complex reward systems. Therefore, the following research 

questions are addressed: 
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• Is there a suitable source to extract geographical data with many features, especially for 

roads, that we can use in our reward system? 

• Can the Neural Network handle the complex state representation with the many 

features used in the reward system and find an optimal policy and best action in each 

state? 

1.3 Contribution 

This thesis will help researchers take a new route planning approach for different 

sectors, like; located disabled people facilities, water supply network for agriculture 

areas, pipeline transport for oil and gas in consideration of a huge number of variables by 

using the deep reinforcement learning method, which is customized based on each 

sector’s needs. Another contribution is defining how we can collect different GIS data 

sources and combine them into one data-set that can be used in many machine learning 

applications. 

1.4 Motivation 

One of the primary motivations for working on this thesis is to provide 

intelligent decision support on planning of roads in all global regions. Road planning 

does not only depend on human decisions, but also on the support of Artificial 

intelligence that aids in planning for better routes that satisfy all individuals. Another 

personal motivation is to help the Palestinian government to plan for safer roads to avoid 

any danger that the citizens might face due to political  reasons. 

1.5 Thesis Outline 

The remaining sections of the thesis are organized as follows: 
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• Chapter 2 provides a formal introduction to Neural Networks by explaining the 

mathematical preliminaries. Also, it discusses Reinforcement Learning, Deep 

Reinforcement Learning components, model-free methods, and policy-based 

methods. 

• Chapter 3 provides some previous studies which implemented DRL in their projects. 

Also, it introduces widely used algorithms and discusses the code for each one of 

them. 

• Chapter 4 discusses the process starting from searching for the best GIS data source 

to collecting the data and finally integrating it into one data set. 

• Chapter 5 discusses the environment of our agent, state representation and the 

rewards system. 

• Chapter 6 is the core of the thesis which presents and discusses the modeling and 

implementation of our code. 

• Chapter 7 provides an overview and conclusion of the work done in the thesis, as 

well as future research directions. 

1.6 Conclusion 

In this chapter, we discussed the main idea of the thesis and how we aim to 

explore the possible options to create a support system for mobility managers. 

Moreover, the proposed solution uses an Artificial Intelligent approach by using 

reinforcement learning methods to generate routes based on the end-user’s preferences. 

The route generated by the agent will consider many variables, like; the characteristics 

of road networks, the geographical features, and traffic patterns. We also discussed how 

this project will help the city municipalities to plan bicycle routes which need for them 
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is increasing due to the massive increase of citizens using bicycles as the primary means 

of transport. We also addressed the research goal, and we aim to investigate the 

advantages of applying DRL algorithms on the high-dimensional environment and 

complex reward systems. Finally, we explained how the thesis contributes in helping 

researchers take a new route planning approach for different sectors, like; the located 

disabled people facilities, water supply network for agriculture areas, and pipeline 

transport for oil and gas. Another contribution is defining how we can collect different 

GIS data sources and combine them into one data set. 
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Chapter Two 

Background 

2.1 Deep Neural Networks 

2.1.1 Introduction 

Deep Neural Networks (DNN) is now at the root of some of the most significant 

advances    in AI and machine learning in recent years. They’re at the heart of some of 

the most innovative technologies, including self-driving cars, image recognition 

systems, speech recognition systems, and self-driving robotics. They have reached state-

of-the-art results in these tasks. 

DNN is a general framework for estimating non-linear functions based on 

training data. Real value, discrete-valued, and vector-valued functions are all possible. 

DNN’s success is due to its capacity to learn from data and extract key features without 

manual work. 

This section will provide a quick overview of neural network design, training 

techniques, and regularization. 

2.1.2 Building Units 

Artificial neural networks are based on the workings of the human brain.   The 

human brain   is a complex web of interconnected neurons that can extract critical 

information from inputs and produce an output signal (signal).  On the other hand, an 

artificial neural network is made up of   a series of interconnected neurons organized in 

layers, each of which takes real-valued inputs and outputs real-valued results 

(Rashid,2016). 
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Artificial Neuron 

The following is how the neural network works: given a vector of inputs x, the 

neuron calculates the weighted sum of the inputs, with the weights denoted by w 

(Rashid,2016). Then, the weighted sum is added to a bias term, b, and then passed 

through an activation function, f and finally it calculates the output based on the 

following equation1. 

 �� = � �� ��� 	�� + ��� )1( 

Activation Functions 

The activation function provides non-linearity in a neuron’s output. This helps 

the network’s learning of non-linear representations from training data. Some activation 

functions, such as Sigmoid, Hyperbolic Tangent, and a Rectified linear unit, have been 

proposed in the literature. The following are the most widely used activation functions: 

• Sigmoid: 

 ��� = 11 + ��� )2( 

 
 

• Hyperbolic Tangent: 

 ��� = �� − ����� + ��� )3( 

• Rectified Linear Unit (ReLU): 

 ��� = ����, �� )4( 

 



In modern neural networks, 

linear unit or ReLU due to its performance (

2.1.3 Feed Forward Networks

The Feed-Forward neural network is

(Rashid,2016). The neurons are arranged in layers in this framework. This architecture 

has three types of layers: an input layer, a few hidden layers, and an out

Information flows from the input layer to the hidden levels and then to the output layer 

to calculate the output. this process is illustrated in the following graph 

Training The Network 

Backpropagation is 

The idea behind this method is to start with a random weight initialization and then 

calculate the output for a 

difference between the generated and 

weights. The technique is called backpropagation because the output layer weights are 

updated first and then back propa

11 

In modern neural networks, the default recommendation is to use the rectified 

linear unit or ReLU due to its performance (Goodfellow, Bengio, & Courville

Networks 

Forward neural network is the most popular DNN architecture 

). The neurons are arranged in layers in this framework. This architecture 

has three types of layers: an input layer, a few hidden layers, and an out

Information flows from the input layer to the hidden levels and then to the output layer 

to calculate the output. this process is illustrated in the following graph 2.1

Figure 2.1: Feed Forward Network 

 a technique used to train the weights of the 

behind this method is to start with a random weight initialization and then 

calculate the output for a particular input. Using a gradient descent approach, the 

difference between the generated and actual output is used to update the network’s 

weights. The technique is called backpropagation because the output layer weights are 

updated first and then back propagated into the  network. 

the default recommendation is to use the rectified 

Goodfellow, Bengio, & Courville,2016). 

the most popular DNN architecture 

). The neurons are arranged in layers in this framework. This architecture 

has three types of layers: an input layer, a few hidden layers, and an output layer. 

Information flows from the input layer to the hidden levels and then to the output layer 

2.1. 

 

 neural network. 

behind this method is to start with a random weight initialization and then 

ticular input. Using a gradient descent approach, the 

output is used to update the network’s 

weights. The technique is called backpropagation because the output layer weights are 
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In recent years, stochastic gradient descent has become a popular method for 

training neural network weights. A few better stochastic gradient descent variations, 

such as ADAM (Kingma & Ba,2015), have also been proposed. These approaches have 

an advantage over traditional gradient descent in that they can adjust learning rates 

dependent on the distribution of the training data. This eliminates the need for precise 

learning rate selection, allowing the algorithm to converge faster. 

Regularization 

Regularization is a machine learning technique that helps to avoid the problem 

of over-fitting statistical models. The purpose of regularization is to increase the 

network’s generalizability to unseen data. L1 or L2 regularization is the traditional way 

at tackling the problem of over-fitting. The primary idea behind this strategy is to 

incorporate a penalty element in the cost function for the weights. 

2.1.4 Loss 

Loss functions are related to model accuracy and are a key component of AI/ML 

governance. Loss functions are a way to assess how well the models perform on the 

data. Your loss function will show a higher value if model predictions are completely 

wrong. It will give a lower number if they’re pretty decent. In a way, the loss function 

will inform you if the model is making progress after you tweak parts of your algorithm 

to enhance your model. Multiple famous loss functions are used in DRL, like mean 

square error and Gaussian loss, but (Co-Reyes et al.,2021) suggested two new loss 

DQNClipped and DQNReg which we will implement and use later in 6. 
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DQNClipped equation. 

L���� !""#$ = %&�'()* , &*�, +, + -*. + %&� /()*, &*� − -* , 0 1%&�2  (*245)*, &�6,7      (5) 

• Where -* = 8* + 0 ∗ %&�2  (:;<=)*, &� 

• + = ()*, &*� − -* 

DQNreg equation. 

 >���?#= = 0.1 ∗ ()*, &*� + +, )6(  

2.2 Deep Reinforcement Learning 

2.2.1 Introduction 

Reinforcement Learning (RL) is an area of machine learning (ML) that deals 

with sequential decision making by using an Artificial intelligence (AI) agent that 

interacts with an environment to get rewards which indicate how good the action that the 

agent took in the environment is (Sutton & Barto,2018a). The primary purpose of RL is 

to learn how to map each state in the environment to action and maximize the expected 

sum of rewards, which is defined as Policy. In contrast with other ML supervised and 

unsupervised techniques, the AI agent is not told the right action to take in a given 

state. Instead, the agent explores the environment to achieve the optimal Policy. The 

path to success in Reinforcement Learning isn’t as straightforward: the algorithms 

contain a lot of moving components that are difficult to debug, and they take a lot of 

adjusting to produce decent results. 

In this chapter, we will discuss the RL problem, the components of RL, such as; 

the Environment, Policy, value function, the bellman equation and finally Markov 

Decision Process (MDP) 
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2.2.2 Environment 

An environment is a virtual world that the agent interacts with to learn. It could 

be a hole 3D space or 2D space, like the Chessboard. It can represent the whole world 

through maps or represent a board game, like Tic Tac Toe or chess or even an Atari 

games. An environment mathematically consists of a set of States St that represent the 

state space of the environment D 7. 

 B* ⊂ D )7( 

Where St represents a State S in time step t which is a subset of State-space 

D. 

2.2.3 Return 

As we mentioned before, the main purpose of the RL framework is to make the 

agent learn how to maximize its future rewards by taking the sequences of action that 

lead to positive rewards and avoiding the penalties to maximize its return which is 

formulated according to the following equation 8: 

 E* = 8* + 8*FG + 8*F, + ⋯ + 8I�G )8( 

Where Rt represents the return in a particular time step t and N represents the 

end of the episode. For stochastic environment, we can rewrite the equation as the 

following 9: 

      

      

�  J
KL� MNFK )9( 
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2.2.4 Discount Factor 

The discount factor γ determines how much the agent cares about the 

rewards in the near and late future. We ca n consider the discount factor as a 

learning parameter, its value varies from 0 ≤γ ≤1 (Sutton & Barto, 2018a). If γ is 

close to zero, the agent will consider the closest rewards for the present state. On 

the other hand, if the γ is close to one, it will be considered as a future reward and 

all future rewards will be equally important and the return equation will look like 

this: 

 �  ∞

OLP 0O8*FO )10( 

2.2.5 Policy 

A policy denoted by π is a map determining what action should be taken in a 

specific state (Sutton & Barto,2018a). The policy that collects the most significant 

amount of rewards for an environment is called an optimal policy, and is denoted by π∗. 
There are two types of policies: deterministic and stochastic. The deterministic policy is 

when the agent execution of action at is guaranteed, and it can be formulated as the 

following equation: 

 Q)*� = &*, )* ⊂ D&* ⊂ R )11( 

On the other hand, in the stochastic policy, the action at is considered as a 

certain probability, and it can be formulated as follows: 

 Q&* ∣ )*� = T�    ,   )* ⊂ D   ,   &* ⊂ R  , 0 ≤ T� ≤ 1 )12( 
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2.2.6 Value Function 

Value function represents how good it is for the agent to act in a given state. The 

value function depends on the policy where the agent picks the action to perform in a 

given state (Sutton & Barto, 2018a). Therefore, value functions are represented as 

follows: 

 W: WY → E, WY)� = [Y\E* ∣ )* = )] = [Y ^�  ∞

OLP 0O8*FO ∣ )* = )_ )13( 

where E{} denotes the expected value the agent follows π , and is any t. 

Action value function, also known as Q-function, is defined as the sum or 

rewards expected to occur while taking action a in state s, by policy, and is formulated 

as follows: 

(Y), &� = [Y\E* ∣ )* = )&* = &] = [Y ^�  ∞

OLP 0O8*FO ∣ )* = )&* = &_ )14( 

2.2.7 Advantage Function 

The Advantage function, denoted as R), &�, measures how good or bad a 

particular action is given a particular state. In other words: what is the advantage of 

choosing a specific action from a specific condition? The Advantage is mathematically 

defined as: 

 R), &� =  ['8)|&� −  8)�. )15( 

• where 8)|&� is the reward of a state given a certain action 

• 8)� the reward of the current state 

and also, it can be viewed as the following: 
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 R), &� =  (), &� −  W )� )16( 

2.2.8 Bellman Equations 

The Bellman equations express maximizing the expected return in terms of the 

value function. It helps in policy comprising. Bellman The Policy Q is considered better 

than Q′ if the expected return Q is more significant than Q′ for all ) ∈  B (Divyam,2017). 

Therefore, the optimal value function denoted by W⋆)� which is known as the Bellman 

optimality equation can be mathematically formulated as: 

 W⋆)� = cRd2 �  
e′

\f) ′ ∣ ), &�'E), &, ) ′� + 0W⋆) ′�.] )17( 

2.2.9 Markov Decision Process 

Markov Decision Process (MDP) is a mathematical framework used in decision-

making that helps the agent in making decisions (Sutton & Barto, 2018a). MDP is 4-

tuple B, R, T&, E&� where: 

• S is a set of states called in the state space 

• A is the set of actions in the action space 

• P is the probability that action & in states at time t will lead to state s’ at time g + 1, 

• R is the expected immediate reward that the agent received after transitioning from 

one state to another due to the action. 

2.2.10 Epsilon Greedy 

Epsilon-Greedy is a simple strategy for balancing exploration and exploitation 

by the agent by randomly choosing between random action or action based on the neural 

network. 
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Figure 2.2: Epsilon greedy 

2.2.11 Model-free Methods 

We can apply all RL problems using model-free methods since they don’t need 

any environment model. There are two Model-free methods; the first is the Value-based 

methods, which try to learn the value function and infer an optimal policy. The second 

approach is called Policy search methods that search in the policy parameters’ state-

space to find an optimal policy. 

We can also classify the model-free methods as on-policy or off-policy. Off-

policy use exploratory policy to generate actions as compared to the policy which is 

being updated and save its experience or appended it to the replay buffer D, which will 

represent samples from QP, QG, … QO,and all the data that is stored will be used to train 

the new policy πk + 1 as presented in 2.3. 

In contrast, the On-policy method uses the current policy to generate actions 

and update the cur-rent policy. In other words, the policy QO is updated with data 

collected by QO  itself. By optimizing the current policy, we can determine which 

spaces and actions to do next 2.4. 
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Figure 2.3: Off  Policy 

 

Figure 2.4: On Policy 

2.2.12 Value Function Based Methods 

Monte Carlo Method 

The Monte Carlo method (MCM) is a learning method for estimating value 

function and dis- covering optimal policies. MC requires only experience from states, 

actions, and rewards from the agent’s interaction with the environment. MCM solves 

reinforcement learning problems based on averaging sample returns. To ensure good 

returns are available, we assume experience is divided into episodes, and all episodes 

terminate at the end no matter what actions are selected (Sutton & Barto,2018b). MCM 

can be incremental an episode-by-episode, but not in a step-by-step. MCM uses the idea 
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of generalized policy iteration (GPI). The GPI is composed of two steps. The first step is 

called the policy evaluation step, which builds an approximation value function based on 

the current policy. The second step is called the policy improvement step. It improves 

the existing pol- icy based on the current value function. Despite the easy 

implementation of the method, the main disadvantages of this method are that it takes a 

huge iteration. 

Temporal Difference 

Temporal Difference (TD) uses the same idea as the GPI. It uses the temporal 

error rather than accumulated reward, like what is used in the MCM. Temporal error 

calculates the difference between the new estimate and the old estimate of the value 

function. It also considers the current reward, and uses it to update the Value function. 

This method helps in reducing the variance but increases the bias in the estimation of the 

value function. The equation from the value function will be as the follows 18: 

 W)� ← W)� + j'8 + 0W) ′� − W)�. )18( 

Where α is the learning rate, r is the reward received at the current time, s
′ 

is the 

new state, and sis the old state 

2.2.13 Actor Critic Methods 

Actor Critic Methods are TD methods but with two components, which are: the 

actor representing the policy that provides the action in a given state and the value 

function that acts as the critic, and it helps in evaluating the policy based on the temporal 

difference error. One of the main advantages of Actor-Critic Methods is that it provides 

better convergence than most TD methods—faster action computations, especially for 

continuous tasks. One of the most used algorithms that massively solve complex 



21 

problems in RL problems is the A3C algorithm which can use multiple CPU cores to 

run the reinforcement learning and distribute the agent training. We will discuss this 

algorithm later in chapter 3. 

2.2.14 Policy Search Methods 

The Policy Search Method (PSM) is RL algorithm that use parameters policies 

πθ
π, with θπ

 being the parameter vector. To determine the reward, the policy is evaluated 

by executing rollouts from the existing policy. Gradient descent is then used to update 

the policy in the direction of increasing expected return. The equation for the update rule 

for the parameters of the policy can be formulated as follows: 

k*FGY = k*Y + j∇mno         , o = pY∑  JOLP 0O8O�   )19( 

This method has well convergence properties and can learn stochastic policies, 

which are not possible with value-based approaches (Divyam,2017) 

The major drawback of PSM is their policy evaluation step, which suffers from a 

significant variance and can slow the process of learning good policies. This can happen 

in a variety of inter- actions with the environment, making it unsuitable for tasks 

involving actual robots. 

2.3 Conclusion 

In this chapter, we introduced some of the basic concepts for both 

Reinforcement learning and Neural Network where we mentioned the primary learning 

methods for deep reinforcement learning, which are three. First, the value-based 

method, which learns the value function and infers an optimal policy. Second, the 

policy-based method, which uses the vector parameter θ to determine the probability of 

taking action a when at state s. Lastly, the actor critics method that has two com- 
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ponents; the critic estimates the value function, and the actor updates the policy 

distribution in the direction suggested by the critic. We also mentioned the concept of 

Epsilon-greedy, which helps the agent balance the exploration-exploitation which helps 

the agent have a better understanding of the environment. Finally, we introduced some 

of the essential elements for the neural network and its training process. 
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Chapter Three 

State Of the Art 

3.1 Literature Review 

The last decade is characterized by the increasing availability of public 

Geographical information. These data can be publicly accessed on the internet due to the 

efforts made by Volunteered Geographic Information(VGI), geosocial media platforms 

such as OpenStreetMap (OpenStreetMap contributors,2017) or Earth Engine 

(earthengine,2021), and the raised interest in such data ex- pressed by the mainstream 

social media platforms (e.g. Twitter and Facebook). Due to the afore- mentioned 

reasons, route planning received more interest from many researchers who would like to 

find a feasible way to embed this data in the routing planning process. Unfortunately, 

we could not find previous studies on using deep reinforcement learning for planning 

bikes routes, however, most of the researches used different approaches to plan roads or 

paths based on the current routing algorithms. The study conducted by (Wang & 

Zipf,2020) provides a quiet routing service using a new Dijkstra-based routing 

algorithm that minimizes the exposure of pedestrians to traffic noise pollution by 

maintaining the route distance constraint. In order to build the traffic noise model on the 

base of their algorithm, there will be a need to combine volunteered geographic 

information, official socio-economic data, and open access GPS trajectory data. The 

approach was tested on the road network of Heidelberg (Germany) showing a great 

capability in generating quiet routes. 

Despite its experiments’ success, this approach has several limitations: i) the 

model that is used to estimate the traffic volume is rough; ii) the ‘residential’ zones were 
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not considered. Another study by (Lamouik & Sabri,2018) presents a study conducted 

on behalf of the University of Sidi Mohamed Ben Abdallah, where they introduce a 

dynamic routing system for traffic in intersections based on real-time traffic conditions 

(individual vehicle speed, destination, and traffic light status). The approach uses deep 

convolutional neural networks to estimate and recommend the fastest path for vehicles in 

an intersection. The model’s result has been tested using simulation tools that show that 

the recommended path had lower travel time and fewer red lights which helps in 

avoiding the long queues of vehicles at red lights and as a result the agent will favor 

using the roads with lite traffic. This result was achieved by predicting the future state 

of traffic lights from an intersection away. (Liu & Chen,2019) proposed a new path 

selection method for an intelligent driving vehicle that solves path planning in case of 

traffic jams, restricted driving, and accidents. The approach is based on prior knowledge 

in applying reinforcement learning, to enhance the shortest path algorithm. The 

simulations show that the algorithm has advantages in terms of path length. Finally, 

(Zhiguang Cao,2020) experimented on both artificial and real large road networks using 

the Q-learning approach to solve the probability tail model-based stochastic shortest 

path problem targets to minimize the probability of delay occurrence. By using Q-

values, they represent the probability of reaching the destination before the deadline. 

Their models show an accuracy of 97.5% and are ready to be applied in the real-world 

scenario. 

3.2 Modern Deep Reinforcement Learning Algorithms 

In this chapter, we will discuss multiple algorithms that are used in the field. We 

will start with Value-based Algorithms like DQN (Mnih et al.,2013). We will discuss 

the actor-critic method, which we will go through over A3C, the most hyped algorithm. 
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Finally, we will discuss Proximal Policy Optimization, which is one of the policy 

gradient algorithms. 

3.2.1 Deep Q-Network 

The core principle behind Deep Q-Network (DQN ) (Mnih et al.,2013) is to 

adapt the Temporal Difference method based on this formula 20 which is similar to the 

gradient descent process while training a neural network to handle a specific regression 

problem. 

 (∗), &, k� = k ∗ ), & )20( 

Where all θ form a vector of parameters k ∈  E|e||2| 
First, the algorithm supposes y as the target of our regression task, i. e. the 

quantity that our model is trying to predict is: 

 �), &� ≔ 8)s� + 0%&�2t  (∗)s, &s, k� )21( 

Where  )s is a sample from f)s|), &�and ), & is input data. In this notation 20 is equivalent 

to: 

 k*FG = k* + j*'�), &� − (∗), &, k*�.�e,2 )22( 

Where we multiplied scalar value j*'�), &� − (∗), &, k*�. on the following vector: 

 ��,�e,2: = u1    v, w� = ), &�0    v, w� ≠ ), &�y )23( 

According to (Mnih et al.,2013) it is important that dependence of � from k is 

ignored during gradient computation. On each step of the temporal difference algorithm, 

a new target � is con- structed using the current Q-function approximation, and a new 

regression task with this target is set. For this fixed target one Mean squared error 



27 

(MSE) optimization step is done, and on the next step a new regression task is  

defined. 

We now suppose that the appropriate Q-function may be approximated using the 

neural network ( ∗ k), &� with parameters k. Note that in the discrete action space 

case, this network can only take s as input and output |R| integers representing 

(m∗ ), &G� … (m∗ z), &|{||, allowing for a single forward pass through the net to discover 

an optimal action in a given state ). As a result, goal y for a particular transition 

), &, 8 ′, ) ′, done � can be computed in one forward pass, and the optimization step in 

one additional forward and one backward pass. 

The only minor drawback to this simple strategy is that training neural networks 

with batches of size one is unrealistic. (Mnih et al.,2013) propose using experience 

replay to save all collected transitions ), &, 80, )0, }~��� as data samples and a batch of 

standard for neural network training size for each iteration sample. The loss function is 

assumed to represent an average of losses for each batch transition. Because the TD 

method is an off-policy algorithm, it can work with arbitrary transitions obtained from 

any agent’s interaction experience. This use of previously experienced transitions is 

legitimate. Another significant advantage of experience replay is sample decorrelation, 

which occurs when successive transitions from an interaction are generally identical to 

one another since the agent is usually located at a specific portion of the MDP. 

Though the empirical results of the presented algorithm were impressive, the 

behavior of  (m∗ values revealed that the learning process was unstable. Reconstruction 

of the target after each optimization step resulted in a so-called compound error, which 

occurred when approximation error spread in an avalanche fashion from close to-



terminal states to the starting point, resulting i

genuine (∗ value. To overcome this issue, (

network, which core idea is to handle a fixed regression problem for 

recompute target every � −
We get the classic DQN method by combining everything and adding the greedy 

strategy to make exploration easier as represented in 

3.2.2 Dueling DQN 

Dueling DQN acts the same as DQN, but the difference is that Dueling DQN 

aims to build a network that computes the advantage 

as figure 3.1 and then only combines them into a single q

based on the equation: 
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terminal states to the starting point, resulting in a guess 10� times larger than the 

value. To overcome this issue, (Mnih et al.,2013)  proposed

network, which core idea is to handle a fixed regression problem for �
− g� step instead of each. 

We get the classic DQN method by combining everything and adding the greedy 

strategy to make exploration easier as represented in 1 by (Mnih et al.,2013

Dueling DQN acts the same as DQN, but the difference is that Dueling DQN 

aims to build a network that computes the advantage A and value functions 

and then only combines them into a single q-function at the final layer 

(), &� = W)� + R)|&� 

times larger than the 

proposed the target 

� � 1 steps, i.e., 

We get the classic DQN method by combining everything and adding the greedy 

2013). 

 

Dueling DQN acts the same as DQN, but the difference is that Dueling DQN 

and value functions V separately 

function at the final layer 

)24( 



3.2.3 Asynchronous Advantage Actor Critic 

Where DQN uses a single agent associated with a single neural network that 

interacts with the environment,

iterations with the Actor critic method that we mentioned in 

and many worker agents with their local Neural network in A

other agents engage with their environments. Each of these agents interacts with its own 

copy of the environment. One of the reasons this works bette

is because each agent’s experience

result, the entire training experience available becomes more diverse and faster

al.,2016). 

A3C updates both the policy and the value function in the forward view, using a 

combination of � step returns. The policy and value function are modified after each 

action’s �%&� value or when a terminal state is reached as represented in 

mentioned in (Mnih et al.,2016

 ∇
Where ��N, �N; �, ��� is an estimate of the advantage function given by:
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Figure 3.1: Dueling Architecture 

Asynchronous Advantage Actor Critic - A3C 

Where DQN uses a single agent associated with a single neural network that 

environment, A3C learns more effectively by combining

critic method that we mentioned in 2. There is a global network 

and many worker agents with their local Neural network in A3C. At the same time, 

other agents engage with their environments. Each of these agents interacts with its own 

copy of the environment. One of the reasons this works better than having

experience is separate from the experience of 

result, the entire training experience available becomes more diverse and faster

C updates both the policy and the value function in the forward view, using a 

step returns. The policy and value function are modified after each 

value or when a terminal state is reached as represented in 

2016) paper. The updated equation 25 is as the following:

∇m′ log Q&* ∣ )*; k ′�R)*, &*; k, k�� 

is an estimate of the advantage function given by:

 

Where DQN uses a single agent associated with a single neural network that 

combining many above 

There is a global network 

C. At the same time, 

other agents engage with their environments. Each of these agents interacts with its own 

having a single agent 

 the others. As a 

result, the entire training experience available becomes more diverse and faster (Mnih et 

C updates both the policy and the value function in the forward view, using a 

step returns. The policy and value function are modified after each 

value or when a terminal state is reached as represented in 2 as 

is as the following: 

)25( 

is an estimate of the advantage function given by: 
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3.2.4 Policy Gradient Methods-PPO 

Policy Gradient Methods (PPO) are fundamental to recent breakthroughs in 

using deep neural networks for control, from video games, to 3D locomotion, to GO, 

(Schulman,2020). However, attaining acceptable results using policy gradient 

approaches is difficult since they are sensitive to the step size chosen; if it’s too small, 

then the signal is drowned by the noise, or catastrophic de- clines in performance may 

happen. They also have a low sample efficiency which requires millions (or billions) of 

time steps to learn basic tasks. We can quickly implement the cost function, run gradient 

descent on it, and be confident that we’ll obtain fantastic results with minimal 

hyperparameters modification thanks to supervised learning. PPO tries to find a 

compromise between ease of implementation, sample complexity, and tuning ease by 

computing an update at each step that minimizes the cost function while ensuring a 

modest divergence from the preceding policy. PPO uses a novel objective function not 

typically found in other algorithms 27 (Schulman,2020): 

 >����k� = [*'%v�8*k�R*, clip8*k�, 1 − �, 1 + ��R*�. )27( 

• � is the policy parameter 

• Et denotes the empirical expectation over timesteps 

• rt is the ratio of the probability under the new and old policies, respectively 

• At is the estimated advantage at time  N 
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3.3 Conclusion 

In this chapter, we introduced previous work of multiple studies that used 

machine learning techniques to find a new routing method for different routing 

preferences. We also introduced two algorithms that are used in deep reinforcement 

learning, firstly; DQN, that uses two Neural networks to calculate the Q-Values for both 

the current state and future state. Secondly, the duel DQN, which uses the same method 

as DQN but it differs in the neural network structure. The difference is that in the duel 

DQN we calculate the A and V in the last hidden layer A3C that uses Actor critic 

method and in how we can use multithreading training using CPU to train our DRL agent 

faster. Finally, we introduced the PPO algorithm that uses the Policy learning method 

that uses vector parameter θ to determine the probability of taking action at state Si. 
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Chapter Four 

Data Gathering and Collection Process 

4.1 Introduction 

In this chapter of the thesis, we will discuss the procedures and the tools we used 

to gather all the necessary data for our model. This section will also discuss data 

transformation that we applied to a particular aspect of the collected data to help us in 

developing our model. 

4.2 Data Sources 

Since our project focuses on smart city planning and most of our data are 

geographical data, the leading search criteria were to find an excellent geographic 

database to extract data from it. We can define a geographic database as a repository 

that stores data that are spatially referenced. The collected data are related to each other 

through location, data structure, or type. (Geography,2021) 

There are two types of geographic databases Graphic and Nongraphic. 

Nongraphic data does not describe graphic map features, but instead describes a 

particular map feature or is linked to graphic elements through geocodes identifiers. It 

takes the form of a geographic index or is used to describe a spatial relationship 

(Geography,2021). 

On the other hand, graphic data contain points, lines, polygons, and other map 

features such as projections, coordinates systems, and cartographic symbols—this type of 

data is stored in two ways vector or raster. Vector is represented by coordinates of 

longitude and latitude of specific nodes and lines or rules to connect the area. In 
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comparison, raster data is stored as a set of a uniform grid of cells representing the 

continuous surface. 

These databases can be accessed by Application Programming Interface (API), 

which helps developers create applications from it or use for research studies, as we are 

doing in our thesis. 

So, we collected data from the internet on the API that has a comprehensive 

geographical database that we can extract information from that is useful for our project. 

Our ideal API must cover the following: 

(1) The API must cover all the globe since a lot of GIS APIs cover only Europe and the 

USA, but we are also concerned about other continents. 

(2) The API must contain information about Natural terrain since we are interested in 

finding the best path for a cyclist in areas outside the cities and villages. 

(3) The API must contain information on the roads in each city or village, like the main 

roads, cycle path, footpath, unclassified roads, living street, etc. 

(4) We must extract information on physical facilities in a particular area, like; cafes, 

bathrooms, shops, parks, etc. 

(5) The API should help us in getting information on the traffic and the roads’ 

conditions. 

Table 4.1 illustrates all possible APIs that can be used to extract data from it. 

Each one of these APIs has its pros and cons, but we try to use most of them to 

extracts data from and transform it into a unified format that we can use in our model. 
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Table 4.1: Possible API 

Application 
name 

Owned by API 
API 

NAME 
Pricing 

Number of 
transaction 

open- 
streetmap 

Openstreetmap 
Organization 

yes 
Overpass 

api 
Free Unlimited 

Google 
Earth 
engine 

Google inc. yes 
Earth 

engine 
api 

Free to use for 
research, teaching, 

and charitable 
purposes. They 

provide paid 
commercial 
licenses for 

commercial uses. 

– 

Tomtom 
developer 

Tomtom yes 
Tomtom 
maps-api 

0.42$ per 1000 
transaction 

Limited by 
the cost 

HERE 
developer 

Here Yes Rest API 
Has a free version 
and pain version 

The free 
version 

has 250K 
transaction 

and you 
can pay for 

more 

4.3 Data Collection 

In this section, we will describe how we used each API to extract the data and 

how we stored it into our unified JSON file. 

4.3.1 OpenStreetMap 

OpenStreetMap (OSM) is an open-source collaborative project founded in 2004 

(OpenStreetMap contributors,2017). It collects data on houses, forests, road networks, 

and there are many features included in its database. OSM has an API called Overpass 

API which helps the developers fetch and save raw geodata from the OpenStreetMap 

database (Openstreetmap,2021b). Every feature on the ground, e.g., roads or places, is 

decorated using tags attached to its data structures. 

OSM has three essential elements representing the physical world’s conceptual 

data: nodes, ways, and relations. These elements have one or more associated tags 
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(which describe a particular element’s meaning) (Openstreetmap,2021c). A node 

represents a point on earth defined by its longitude and latitude, and each node has its 

unique id.  For example, a node can represent a café, bathroom or crossroad, etc. A Way 

is an ordered list from 2 to 2000 nodes that define a polyline, and it represents any linear 

feature such as roads and rivers. Lastly, a relation is a data structure rep- resenting a 

relationship between two or more data elements, for example, a building and a parking 

spot. 

Roads 

To extract roads from the OSM database, we need to use the key highway=*, 

which helps us extract any roads, streets, or paths, and the value of the key represents 

the highway’s importance within the road network. Figure 4.1 shows the coverage of 

the tag worldwide and is represented by the red color on the map, and from the graph, 

we can see that it covers a massive proportion of the globe (Openstreetmap,2021d). 

 

Figure 4.1: The distribution of nodes and ways with this key. Relations are not shown. 
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Furthermore, Table 4.2  below from OSM WIKI (Openstreetmap,2021d) shows us 

the multiple values we can assign to the highway tag. 

Table 4.2: Commonly used values with highway tag 

motorway unclassified secondary link busway track 

trunk residential tertiary link footway bus guideway 

primary motorway link living street bridleway escape 

secondary trunk link service steps raceway 

tertiary primary link pedestrian corridor road 

Table 4.2 shows how much data we can export from the OSM database that is 

related to each road; for more information about each value, you can check the full table 

in the appendix A.2.1. Each road comes with a set of attributes based on the data that 

the users enter, and these attributes are: 

• Access: describe the legal permission for using the road by people, animals, bicycles, 

and vehicles. 

• Max height: describe the legal height of a vehicle that can use the road. 

• Max width: describe the legal width of a vehicle that can use the road. 

• Max speed: describe the legal speed of a vehicle or a motorcycle, for example. 

• Max weight: describe the legal weight of a vehicle. 

• Onaway: show if the road is one way or not 

• Width: show us the width of the road in meters 

• Road surface: show us the material or the structure of the road. For example, if the 

surface of the road is asphalt, concrete, dirt, paving stones, or others. 

• Number of lanes in the road 

Finally, we used python to extract the roads from the specific bounded box as 

shown in Figure 4.2 and converted it into a JSON file output 1 to use it later in our 

model, as shown in the example below. 



Figure 
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Figure 4.2: Way selection in a specific bounding box 
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Path/Road Distance 

The road distance is one of the primary key elements in our project. There are 

two reasons that we need to compute the distance for: 

To calculate the road slope, which will help the agent understand if there is an 

inclining or declining on the road in order to compute the road’s distance. Although we 

are not interested in finding the shortest path in our project, we can use the distance of 

the road as one of the rewards that the agent will receive; for example, if we have two 

similar roads with the same attribute, we can help the agent choose the shortest road. 

As we mentioned in the previous section, the Ways structure in OSM contains 

nodes; each node has a longitude and latitude and a unique ID as Figure 4.3 illustrates. 

We used a Python package called Pyproj, a great package to work with map 

projections. Pyproj takes longitude and latitude for two-point and returns the distance in 

meters. In order to calculate the distance for the whole way, we calculated the distance 

between each node and its neighbor, then added it to a list and finally summed all of the 

list. After we found the distance of the hole way, we added it as a key attribute in our 

JSON file. See code 2. 
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Figure 4.3: The selection of a single way on OpenStreetMap 

 

Figure 4.4: Nodes that represents the way on OpenStreetMap 

Listing 2 Representation of a single road with distance attribute in JSON file  

1 
2 
3 
4 
5 

22912146:{ 

'id':22912146, 

'distance':125.11237377238788, 

'nodes':[246677458,246677459,246677460], 

'type':'way'} 
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Physical Facilities 

OSM represents the physical facilities like restaurants, public bathrooms, banks, 

supermarkets, and other facilities as a single node with a unique ID. To extract these 

data, we need to use the key amenity=*. Figure 4.5 shows the coverage of this key on 

the globe represented by the red dots. From the map, we can see that the amenity tag 

covers most of Europe, North America, and some of the middle east. However, on the 

other hand, some parts of north Africa and Australia do not have many amenities in 

them, which will cause an issue if we would like to test our model in these countries 

(Openstreetmap,2021e). 

 

Figure 4.5: The distribution of nodes and ways with this key. Relations are not shown. 
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Table 4.3: Commonly used values that can be used with amenity tag 

bar public bookcase grit bin waste basket 

biergarten social center motorcycle parking waste disposal 

cafe stripclub parking waste transfer station 

fast food studio parking entrance animal boarding 

food court swingerclub parking space animal breeding 

ice cream theatre taxi animal shelter 

pub courthouse atm baking oven 

restaurant embassy bank childcare 

college fire station bureau de change clock 

toy library prison hospital gym 

music school ranger station nursing home hunting stand 

school townhall pharmacy internet cafe 

university bbq social facility kitchen 

bicycle parking bench veterinary kneipp water cure 

bicycle repair 
station 

dog toilet arts center lounger 

bicycle rental drinking water brothel marketplace 

boat rental give box casino monastery 

boat sharing parcel locker cinema photo booth 

bus station shelter community center place of mourning 

car rental shower conference center place of worship 

car sharing telephone events venue public bath 

car wash toilets fountain public building 

vehicle inspection water point gambling refugee site 

charging station watering place love hotel vending machine 

ferry terminal 
sanitary dump 

station 
nightclub user defined 

Furthermore, Table 4.3 from OSM WIKI (Openstreetmap,2021a) shows us the 

multiple values we can assign to the amenity tag and more information about each value’s 

description from the table all the needed information mentioned in the appendix A.2. 

The main goal of using physical facilities in our project is to determine the best path that 

has the amenities suitable for the cyclist. For example, the road that has a supermarket 

and public bathroom is more suitable for the cyclist than the road that has multiple 

restaurants in it. Another example is if the cyclist is in Saudi Arabia or Algeria, he/she 

would be more interested in a water point on the road because of the weather in such 

countries is hotter, and a road that has a water point will help him/her more than one 
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with a lot of fast-food restaurants. We can determine the importance of the amenities in 

the reward system in our model. 

In the code’s implementation, we computed the distance between nodes of the 

road and amenities near the road. If the distance is less than ten meters, we add the 

road’s amenity as an attribute of the road. Figure 4.6 shows an example of how we 

added the amenity into our JSON file3. As we can see, the road with the blue line is 

surrounded by a café, bar, cloth shop, and drinking water point. All of these amenities 

have been added as a list of their id’s in our dictionary with the key ’amenities’ for 

future access in our model.  

 

Figure 4.6: Single way and the amenities near it. 
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Listing 3 Representation of a single road with amenities attribute in JSON file  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
 

As we mentioned before in our reinforcement model, We will focus not only on 

the number of amenities in the road, but also on their type. We will furtherly discuss in 

our thesis the reward system. 

4.3.2 Google Earth Engine 

Google earth engine (GEE) combines a multi-petabyte catalog of satellite 

imagery and geospatial datasets with planetary-scale analysis capabilities and makes it 

available for scientists, re- searchers, and developers to detect changes, map trends, and 

quantify differences on the Earth’s surface (earthengine,2021). 

Elevation 

In our project, we had to extract elevation for each node of the road to calculate 

the road’s slope. The slop will help the agent determine if there is an incline or 

decline in the road, and we can use it in our reward system for our model. To extract 

elevation, we used an Elevation dataset called SRTM 90m Digital Elevation Database 

{'amenities':[1324874797, 

3781268652, 

4551731590, 

4875923521, 

1324874753, 

1324874797], 

'distance':125.11237377238788, 

'id':22912146, 

'nodes':[246677458,246677459,246677460], 

'slop':0.0, 

'slop_degrees':0.0, 

'tags':{'highway':'residential', 

'maxspeed':'30', 

'name':'Via Plauto', 

'oneway':'yes', 

'surface':'sett'}, 

'type':'way'} 
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v4.1, produced by NASA originally, and it is a breakthrough in digital mapping of the 

world. This data set’s main advantage is to provide high-quality elevation data for large 

portions of the globe. SRTM dataset can be integrated easily in GEE. By giving GEE the 

longitude and latitude for each node of the road, it will return the elevation for each 

point in meters, and then we add it as a value of the node, as we can see in code 4. 

Listing 4 Elevation value in each node in the file  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
 

Slope Calculation 

As we mentioned earlier, we need the slope to find the road’s incline and decline 

because the cyclist prefers the road with a decline rather than the road with an incline in 

it, because it takes him/her less effort in the declining. To calculate the slope, we need 

to use the slope equation as Figure 28. 

 % = �, − �G�, − �G )28( 

• m=slope 

•  ��, ���     coordination of the first point in the line 

• ��, ���   coordination of the second point in the line 

{'type':'node','id':6875735244,'lat':41.90542, 

 
'lon':12.4611844,'elevation':26} 

 
{'type':'node','id':3135817825,'lat':41.9058197, 

 
'lon':12.4612333,'elevation':26} 

 
{'type':'node','id':6875735241,'lat':41.9058536, 

 
'lon':12.4612373,'elevation':26} 

 
{'type':'node','id':246677429,'lat':41.9059068, 

 
'lon':12.4612455,'elevation':31} 
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So, to calculate the slope for the whole road, we will consider the difference in 

�2 − �1� as the elevation difference between maximum elevation point and minimum 

elevation point in the same road, while the value of �2 − �1� is the distance of the 

road. See Figure 4.7, which was computed earlier then we added the value in the JSON 

file as shown in Code 5. 

 

Figure 4.7: Calculation of the slope 

Listing 5 Slope and slope degrees for a single way  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

{'distance':110.67147153782149, 

'id':734205333, 

'nodes':[6875735244, 

3135817825, 

6875735241, 

246677429, 

3135817807, 

83656707], 

'slop':0.04517876134222424, 

'slop_degrees':2.586793319868952, 

'tags':{'highway':'residential', 

'lanes':'1', 

'lit':'yes', 

'name':'Via 

Properzio', 

'oneway':'yes', 

'parking: lane: both’: ‘diagonal', 

'parking:lane:both:diagonal':'painted_area_only', 

'parking:lane:left:capacity':'10', 

'parking:lane:right:capacity':'8', 

'surface':'asphalt'}, 
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4.4 Conclusion 

In this chapter, we discussed the data gathering and collecting process where we 

searched for multiple GIS database sources, their availability and their data integrity. 

Then we compared each one of them and mentioned the advantages and disadvantages of 

each source. We also discussed the extracted feature from both Overpass API and Earth 

Engine API, and how we used these extracted features to calculate new features, like the 

slope of the road. Finally, we discussed integrating both data sources into one uniform 

data structure in the form of a JSON file that helped us later   in building the Deep 

Reinforcement Learning agent environment. We believe that this integration method can 

be used in different machine learning applications and handle not only two GIS sources, 

but multiple and different ones.  
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Chapter Five 

Modeling 

5.1 Introduction 

In this chapter, we will discuss the modeling phase of our project. First, we will 

discuss how we set up the environment. Second, we will discuss how we set up our 

agent’s reward system. Finally, we will discuss all the methods we used to enhance the 

accuracy of the agent’s policy to make the best action. 

5.2 Setting up the Environment 

As aforementioned in chapter 4, our data have been collected from multiple GIS 

data sources, like; OSM and Earth Engine. The data have been collected and formulated 

as a JSON file. The keys of the file are id’s of the intersections, and the values of the key 

are the attributes of the road, like; max speed, road name, the distance between 

intersections, etc. Since our data contain a lot of information, we need a representation of 

the environment that will help the DRL models to get easy and fast access to each road. 

So, we decided to use Graphs denoted by � as a state representative for our DRL model. 

Graphs ideally have no assumptions about the size or topology that should be made to 

ensure their general applicability. Graph processing methods ought to be designed in the 

absence of known and fixed causal dependencies (medium,2020). 

In our case, Vertex (nodes) denoted by V in our environment represents the 

intersection of the roads. As we mentioned before, each intersection has a specified ID, 

describing the node’s ID in our graph. The edges of the graph, which are lines that 

connect two nodes and denoted by E, will represent the road between two intersections, 

and all the information of the road is stored in E. The figure 5.1 shows how we 
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transformed the map of a small number of blocks in Rome and Italy into a graph 

representation. 

 

Figure 5.1: Representation of a small sector of the city in graph representation. 

5.2.1 Action Space 

Action space (A) is the set of all our agent’s actions in a given state. Since we 

use Graphs as state representations, the agent will encounter each graph node to move 

from one point to another. In other meaning, the set of actions will be the total number of 

nodes in our graph. The agent should distinguish which node is linked to gathering and 

which of the nodes are not by specifying a reward and penalty for each case. We will 

discuss it later in this chapter. We can formulate the equation of as follows: 

 R = W )29( 

Where n is the total number of V in G and of the A. 

5.2.2 State Space 

In RL the agent comes across a state S, and then takes action A according to the 

state it’s in. 
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In our project, the State Space (SB) is the set of all V that the agent will 

encounter from VA (representing the starting node) to Node VB (which is the goal that 

the agent will reach). So, the state space of SA→B will be the total number of nodes of the 

same graph. For example, if we have a graph of 5 nodes and the nodes’ id are from 1 to 

5, and we need to find a path between node number 2 to node number 5, the state space 

will be the total number of nodes which is 5 and we can formulate it according to the 

following equation: 

 B�2 → 5 =  � =  5 )30( 

Where n is the total number of nodes in G 

However, the user should pick any two-points on the map and find the optimal 

path based on their preference. So, to achieve this, the agent should be trained on all 

graph nodes; as starting node and destination node. Based on equation 30, if we take all 

the nodes of the graph, the state space will be the sum of N for all possible starting and 

destination nodes, which can be represented as the power of 2 for the number of V in G 

as following: 

 B� = �, )31( 

So, in our example of the 5 node graph, the State space of the graph is 25. 

In our case, after we extracted a small section of the city of Rome, we get a total 

number of nodes of 3080. If we implemented equation 31, we would get 9486400 

states, which is a massive number of states for a small section of the city. 

5.2.3 State Encoding 

Another aspect of our DRL models in any RL environment is that encoding the 

states should be in a way that shows the current node the agent is at and the goal 
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destination it should reach. Equation32shows the encoding process for each state in our 

state-space. 

 B£ = ¤ + � ∗ ¥ )32( 

Where ¤ ∈  W is the current node, ¥ ∈  W is the final node and n is the total 

number of V in G. 

For example, if we use the 5 nodes graph case that we mentioned before and we 

suppose that the agent is in node number 4, and the goal is node number 1, the state will 

be as the following: 

 B =  5 +  5 ∗  1 =  10  )33( 

So, we will be in state number 10 in our state space which contains 25 states 

5.2.4 State Decoding 

For coding purposes, we needed to decode the state the agent is at and the next 

state that the agent will go to to get all the information stored in the edge between these 

two nodes. The equation below shows how we decoded the state. Equation 35 shows 

how we decoded the state to get the V 

 ¤ =  B¤    %~} �  )34( 

 ¥ = B¤ −  ¤�  )35( 

for example, if we have S = 10 based on the equation 35: 

 W¤¦88��g =  10      %~} 25 =  5  )36( 

5.2.5 Reward 

The reward system for our DRL project is complex and has multi-features that 

need to be man- aged, and a reward equation needs to be set for each one of the features 
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that we have. We will discuss how we construct each one of them, and lastly, we will 

discuss the whole equation that returns a single value for the step function that the 

agents take in each state. 

Node Links 

The agent action space, as we have aforementioned, represents all the nodes in G, 

therefore, the agent needs to learn to take the action that leads to going to another state 

that has an edge between their nodes. Accordingly, we decided to give the no-link 

between the two nodes a penalty of -1000, whereas, if there is a link, a penalty of 0 and 

other types of rewards will be given to the agent, like; distance, max speed, road type, 

etc., as the equation 37:  

 8�	§�¨O�� = ©0 ⟺ � ∈ [−1000 ⟺ � ∉ [y )37( 

Distance: 

The distance between two nodes is the most fundamental aspect of any cyclist. 

The cyclists prefer to take the shortest distance of the road, so, the shorter the distance 

is, the better it is for the cyclist. Thus, the longer distance we have, the higher the 

penalty to be taken by the agent.  So, the most convenient solution is to convert the 

distance into a negative value by multiplying it by -1 according to equation 41. 

 8�	¬�e*2¨£ = −�¬�e*2¨£ )38( 

Figure 5.2 shows that the reward equation represents the linear decay. The 

longer the distance is, the higher the penalty will be. For example, the agent will avoid 

going by the highways and prefer to go by the shorter distances. 



Slope 

The slope of the road is also like distance in being one of the essential aspects of 

the road for any cyclist. The more incline the road has, the more effort the cyclist needs 

to put in. Therefore, the main idea here is to 

slope, which means the inclining. Additionally,

when we have two slope

slop2=10.124, the reward for both of these two slopes should be the same; since they 

are relative values to each other. As a result, we decided to choose the power function 

base on equation 39, and this will help us in giving more minor penalties for lower 

slopes and higher penalties for large slopes, as

Figure 
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Figure 5.2: Reward for the distance 

The slope of the road is also like distance in being one of the essential aspects of 

any cyclist. The more incline the road has, the more effort the cyclist needs 

to put in. Therefore, the main idea here is to give the agent a penalty 

slope, which means the inclining. Additionally, this must take into consideration

slope values near each other, for example, slop

, the reward for both of these two slopes should be the same; since they 

are relative values to each other. As a result, we decided to choose the power function 

and this will help us in giving more minor penalties for lower 

slopes and higher penalties for large slopes, as figure 5.3 shows: 

 

Figure 5.3: Reward for the slope of the road 

 

The slope of the road is also like distance in being one of the essential aspects of 

any cyclist. The more incline the road has, the more effort the cyclist needs 

the agent a penalty for the higher 

consideration that 

other, for example, slop1=10.123 and 

, the reward for both of these two slopes should be the same; since they 

are relative values to each other. As a result, we decided to choose the power function 

and this will help us in giving more minor penalties for lower 
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  Rew Slope = −z�slope |¯
 )39( 

Road Type 

In this feature, we have many values for road type. As we mentioned in chapter 

4, we have up to 50 values, so we decided to give the user the ability to decide which 

road type he/she prefers to use. For example, the user might like to use secondary, 

tertiary, and cycle path roads for the agent to have higher rewards, but in our case, since 

this project is for cyclists, any road that has a cycle-path or a cycle-way tag will have 

higher rewards as the following equation: 

 8�	4°2±²³´µ�� = ¶100    �4°2±²³´µ ∈ \cyclepath,cycleway]50    �4°2±²³´µ ∈ \road type user preferences]−50    �·)� y )40( 

Max Speed 

Max speed of the road is one of the features that we have. Cyclists usually prefer 

to not use the roads that have high speed since it leads to more accidents. So, the higher 

the speed limits are, the higher the reward will be. We will use an equation like the one 

we used for distance equation 41 

  rew ¸2�¹º± = −�¸2�¹º±   )41( 

Road Surface Type 

In the road surface, we are going to use the same method as we used in the road 

type. Some cyclists do not mind, for example; taking a dirty road or paving stones road 

that has shorter distance or users. So, we will give them the ability to choose which road 

surface to use, and we will use the same equation 40 
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Road Lighting 

 8�	rond_surfacx = ©50     road surface user preferences −50     else 
y )42( 

As we mentioned in chapter 4 , road lights have different categories, such as; 

”Yes”, ”24/7”, ”sunset-sunrise”, ”automatic”, ”operating times”, ”No”, and ”disused”. 

Accordingly, we decided that the roads that have lights on always ”yes” will have a 

reward of 50, ”24/7”,”sunset-sunrise”, ”automatic”, ”operating times” will have a small 

reward of 10 and finally ”No” and ”disused” categories will have a penalty of -20 and 

can be formulated as equation 43. 

 rew road _lights = ^50 yes 10    24/7, sunset −  sunrise, automatic, operating times −20     no, disused 

y )43( 

Tracer Number Reward 

As we mentioned before, we used the trace number that we extracted from the 

OSM user tracking system to denote if the streets are used by many people or not. We 

prefer to use the roads that have less people in, so we decided to have a simple equation 

for this feature and only multiple the number of tracings for the users by -10, and this 

will help the agent to select the road that have fewer people in it. 

   8�	number of tracers = −10 ∗ �number of tracers )44( 

Total Reward 

Since the agent needs to have a single reward in every action, we need to 

formulate an equation that can merge all of the rewards that we have into one final 

reward. We also need to take into consideration the interest of the user, and we need to 

give weight to each feature of the reward. The equation 5.2.5 explains how we combined 

all the rewards into one. 
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8�	 Á;ÂÃ´µµÄ _ + ¾̄ ∗ 8�	eÅ4Æ2£²³´µ + ¾Ç ∗ 8�	§�5È*�¨5 + ¾� ∗ 8�	*42£4ÉÊËÌµÍ  )45( 

where: 

 ¾P + ¾G + ¾, + ¾À + ¾̄ + ¾Ç + ¾� = 1 )46( 

5.3 Model Evaluation and Validation 

5.3.1 Evaluation protocol 

In Deep Reinforcement Learning, we look into the two criteria to evaluate the 

performance of the trained models. First, we examine the cumulative rewards that the 

agent receives during the entire training, where we desire that the agent receive a 

positive cumulative reward in the early stages of the training, as shown in graph 

5.3.1.The second metric is the loss where we desire to reach the minimum loss faster in 

the early stages, as shown in graph 5.3.1. 

 

Figure 5.4: Evaluation Plotting examples 
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5.3.2 Validation protocol 

In order to determine if the model results are valid or not, we need a way to 

validate the result of the agent output, and the standard way to validate the result of any 

DRL is to compare the cumulative agent rewards and maximum rewards with the actual 

maximum cumulative rewards of the optimal solution. Unfortunately, in our case, we do 

not have an optimal cumulative reward since we have different scenarios to calculate the 

maximum cumulative rewards. So, in order to validate our results, we decided to 

compare our results with the Dijkstra algorithm which finds the shortest path.  In order 

to do so, we will give the rewDistance higher weight than the other variables, and if the 

agent was able to find the same path as the Dijkstra algorithm, then we can be sure that 

the agent performance is excellent. 

5.3.3 Conclusion 

In this chapter, we discussed the modeling part of our model, where we 

discussed the DRL environment and the JSON file which we converted into a graph 

representation. Also, we discussed the state encoding and decoding that will help the 

agent understand the current node that the agent is at, and the destination node and then 

convert the encoded state into vector representation that will represent the input of the 

neural network. Furthermore, we discussed our complex reward system that depends on 

the end-user preferences. We used each feature as a sup-reward and used a uniformed 

equation that calculates the final reward that the agent will receive. 
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Chapter Six 

Implementation 

6.1 Implementation using DQN 

6.1.1 Experiment 1: testing the possible hyper-parameters 

For the first implementation, we did choose a small sample of our main G, which 

contains 3080 nodes but, since this number needed much time to train the agent on, we 

sampled a node of 22 nodes, as figure 6.1.1 shows. We also decided to choose a fixed 

starting and ending node, to not have the need to train our model on each node as 

starting and ending nodes. 

The neural network that we are using will take s and output a list of 22 nodes 

representing the number of actions that will be used in the Argmax to choose an action. 

Figure 6.2 shows the neural network’s architecture. The NN architecture’s input layer 

will take one single value and output of 128, the second layer will take 128 and output 

of 64, the third layer will take 64 nodes and output of 32, and the output layer will be 32 

and the output will take 22 values. 

Table 6.1 explains the results from training the DQN model with different 

hyper-parameters, like; changing the number of training episodes, learning rate, and 

batch size. We used the same hyper-parameters that are mentioned in (Mnih et al.,2013). 

A fixed list with a size of 10000 to save the transactions, and we used smooth L1 to 

calculate the loss between the q-network and the target network. Finally, we used linear 

epsilon decay for the epsilon-greedy method. However, the agent did not perform well 

in every situation, the maximum rewards did not surpass 0, and the loss function did not 

converge as expected and it took so much time. As shown in figure 6.1.1 the reward 
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curve of one of the training trials kept decreasing, and loss increased. This might be 

because of three reasons: First, the input of the neural network needs to be more than 

one and needs to be encoded into the one-hot vector. The second reason is that it might 

be because of the loss function, so, we need to explore more than one loss function. The 

final reason is that it might be because the agent is exploring more than exploiting the 

network is not getting enough optimization from the training loop. 

 

Figure 6.1: 22 Nodes Representation 
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Figure 6.2: Neural Network’s Architecture 
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Table 6.1: Training on multiple hyper-parameters 

number 
of 

episodes 

max 
reward 

min reward avg reward 
loss for the 

last 100 
 

explore 
 

exploit 
 

LR 
 

time 

 
batch 
size 

100000 0 -1428437.078 -1017564.335 1097907.622 55056 44944 0.01 0.011215278 32 

500000 0 -1040055.495 -828232.426 2024357.758 275123 224877 0.01 0.025798611 32 

1000000 0 -960477.7964 -724461.2733 6395742.307 548904 451096 0.01 0.0396875 32 

2000000 0 -1099749.413 -720137.615 2215640.349 1100345 899655 0.01 0.107743056 32 

100000 0 -1473775.17 -973039.9728 938048.1829 54941 45059 0.01 0.003101852 64 

500000 0 -1473775.17 -875211.284 44537.70373 274571 225429 0.01 0.015717593 64 

1000000 0 -1166130.288 -824403.3387 2242083.187 550050 449950 0.01 0.031631944 64 

 
100000 0 -1040437.401 -719450.822 206383.1865 55005 44995 0.001 0.286805556 32 

500000 0 -1091517.954 -872580.9445 5364185.617 275583 224417 0.001 0.024097222 32 

1000000 0 -915838.0495 -776889.3067 6438665.339 549899 450101 0.001 0.049548611 32 

2000000 0 -945932.3073 -369164.8433 2472125.135 1100220 899780 0.001 0.109467593 32 

100000 0 -1275453.819 -882831.7635 1039184.755 55159 44841 0.001 0.003171296 64 

500000 0 -1049088.763 -935383.0827 69594.58524 274969 225031 0.001 0.015277778 64 

1000000 0 -926163.3303 -757734.499 2048730.334 550096 449904 0.001 0.031388889 64 

 
100000 0 -1409200.466 -984122.5152 246061.7164 55138 44862 0.0001 0.004965278 32 

500000 0 -1659793.262 -1103674.093 308459.6945 274830 225170 0.0001 0.025138889 32 

1000000 0 -1634936.503 -1046251.191 422429.4037 549339 450661 0.0001 0.107384259 32 
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Figure 6.3: Training output for 1000000 episodes 

Furthermore, we tried to change the state shape that the NN receives as an input 

and make it more complex, so, we changed it from one state number into a binary 

representation. The basic idea is to decode the state to get the current node in G, which 

the agent is at, and the terminal node that the agent attends to reach. Then encode both 

nodes into a list of zeros, and the node’s index in the G will be one in the array of the 

One hot encoder. Figure 6.4 presents an example of how 

We changed State number 148 into a binary representation with G = 8. First, we 

decoded the state using the state decoding function 35, giving us two outputs, the 
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current and terminal nodes. Second, we assigned each node ID to index the node’s 

location in G. Third, we converted each node into a list of zeros, and the node’s location 

in G will be one. Finally, we concatenated the two lists into one. 

Another change we did in the model is changing how the epsilon decay works. 

In the previous training, we made the epsilon decrements in a linear method that made 

the model explore more than exploit. So, we decided to make the exploitation part more 

than exploration. Therefore, we decided to decay the epsilon in an exponential method, 

as we can see in figure 6.1.1 which is one of the model’s training we did before. In this 

figure, the agent starts exploiting two-thirds of the time, and this will do more 

optimization for the NN. 

As we can see from table 6.1.1,the changes that we made in state representation 

and the exponential decay of the epsilon improved the agent performance, especially in 

the loss convergence values for the last 100 episodes, and the values of the loss are near 

zeros for all of the experiment with different hyper-parameters. However, as figure 6.6 

shows, the cumulative rewards did not change much, and that might be because the NN 

did not find an optimal policy due to the in- sufficient convergence of the loss. 

Therefore, we need to try different loss equations on different hyper-parameters, which 

will be discussed in the following experiment. 



 

67 

Figure 6.4: Convert State into Vector 
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Figure 6.5: Epsilon Exponential Decay 

Table 6.2: Training on multiple hyper-parameters 

number 
of 

episodes 

Max 
reward 

Min reward Avg reward 
mean loss 
for the last 

100 

 
explor

e 

 
exploit 

 
LR 

 
Time 

batch 
size 

100000 0 -1339175.08 -1015476.229 160.537522 43053 56947 0.01 0.26597222 32 

500000 0 -1482216.88 -1090516.242 287.06559 215667 284333 0.01 0.53125 32 

1000000 0 -1325859.32 -1048380.321 195.447582 432637 567363 0.01 1.875 32 

100000 0 -1166633.07 -939755.4216 216.48597 43174 56826 0.01 0.31736111 64 

500000 0 -947340.606 -853799.3743 601.834865 216086 283914 0.01 1.60763889 64 

 
100000 0 -1295025.58 -9490539368 173.624174 43244 56756 0.001 0.28125 32 

500000 0 -1289354.32 -956076.9008 167.887373 216150 283850 0.001 1.20833333 32 

1000000 0 -1384660.5 -1075206.933 110.250113 432197 567803 0.001 0.0453125 32 

 
100000 0 -1185564.55 -912106.2395 74.0372241 43120 56880 0.0001 0.25069444 32 

500000 0 -1272237.68 -948267.1576 50.8578429 216292 283708 0.0001 1.31666667 32 
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Figure 6.6: Training Output for 1000000 Episodes 

6.1.2 Experiment 2: Testing the possible loss functions 

In this section, we experimented different loss functions in order to solve the 

decreased reward issue, which might be related to SmothL1 loss that did not converge in 

each training we did be- fore. Therefore, we tried multiple loss functions, which are: 

Gaussian negative log-likelihood loss GaussianNLLLoss, Negative log-likelihood loss 

with a Poisson distribution of target PoissonNLL and Mean square error MSELOSS. 

We also tried using a new loss function, which was mentioned in Chapter 2, Clipped 

loss and Reg loss, then we compared it with the smoothL1 loss function. We ran the 



following function and did

games and 500K games. We 

the rewards system, both MSE

other loss functions we used.

the loss of MSE, Regloss, and GaussianLoss is

Regloss converges faster than

the Regloss for the implementation of our
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did training with 32 batches: a learning rate of

We can notice from the figures 6.1.2, 6.1.2 that, in regards to 

MSE and Clipped loss performed more efficient

used. Furthermore, figure 6.1.2 shows that the convergence of 

the loss of MSE, Regloss, and GaussianLoss is faster than the other 

than MSE and GaussianLoss. As a result, that we will choose 

the Regloss for the implementation of our code. 

 

Figure 6.7: 100K Iterations 

 

Figure 6.8: 500K Iterations 

of 0.01 and 100k 

that, in regards to 

efficient than all the 

shows that the convergence of 

 three. However, 

a result, that we will choose 
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Figure 6.9: Loss functions for 500K iterations 

6.1.3 Experiment 3: testing DQN on different Problem Sizes 

G=22 nodes 

In the first training, we used a G of 22 nodes, and we set the starting node at 

node number 1130166767 and the node goal at 1731824802. With these hyper-

parameters in table 6.1.3, and we set the weights of the rewards system as the following 

table 6.1.3. As we can see, the distance and the slope have more weight than the others 

which means that the agent is more interested in finding a road with short distance and 

less slope. 
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Table 6.3: Hyper-parameters for 22 nodes 

episodes 100000 

lr 0.01 

gamma 0.99 

target update freq 0 

loss dqn reg loss 

epsilone expodinal decay 

epsilone start 1 

epsilone end 0.1 

Buffer size 10KB 

Table 6.4: Rewards wights 

β0 distance 24.93% 

β1 road type 21.47% 

β2 slop 6.29% 

β3 lane number 13.72% 

β4 lights 6.22% 

β5 max speed 20.30% 

β6 surface type 0.28% 

β7 number of traces 6.80% 

Figure 6.10 shows that the agent performed exceptionally well and started 

getting positive re- wards after 20k episodes, which means that the agent started to 

distinguish the linked node quickly avoided the disconnected nodes and reached a 

maximum reward of 4700 in a training time of 7:03 minutes. Another point we can note 

from the figure is that the loss function also converged quickly. The output of this 

training shows the sequence of nodes that the cyclist should take to reach their 

destination.   And since we are more interested in the distance because it has a higher 

weight than the other feature, we can see that the output is similar to the shortest path. 
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Figure 6.10: Training results 

Agent path = 1130166767 → 2364408910 → 2003461246 → 2003461235 → 1731824802 

Shortest path = 1130166767 → 2364408910 → 2003461246 → 2003461235 → 1731824802 

G=47 nodes 

Under this training, we wanted to increase the number of nodes to 47 to see if the 

training model works on a larger scale to construct the model on it. We used the same 

hyper-parameters, but we changed the episodes number and the weight’s size, as you 

can see in table 6.1.3 ,6.1.3. 
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Furthermore, we can see from figure 6.1.3 that the agent performs well as we 

expected with maximum reward of 7450, but it took 20:04 minutes and that is expected 

because there are more episodes the agent needs to be trained in. 

Table 6.5: hyper-parameters G=47 

episodes 280000 

lr 0.01 

gamma 0.99 

target update freq 0 

loss dqn reg loss 

epsilone expodinal decay 

epsilone start 1 

epsilone end 0.1 

Buffer size 10KB 

Table 6.6: rewards system weights 

β0 distance 20.00% 

β1 road type 7.69% 

β2 slop 20.91% 

β3 lane number 2.40% 

β4 lights 0.83% 

β5 max speed 6.71% 

β6 surface type 16.83% 

β7 
number of 

traces 
24.63% 

 

 

Figure 6.11: Training results 
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G=147 nodes 

In the previous two implementations that used G=22 and G=47, we could not 

see the effects of the rewards system for our DRL model since both graphs represent a 

tiny proportion of the city. So, we extended our graph into 147 nodes to observe the 

output of the training in the map. In figure 6.1.3, we observed the set of nodes that we 

will use in the training, and we set a starting node (id=153531392) in blue marker and 

red marker to present the destination node (id=5239133571). This small proportion of 

the map can test our model performance on a bigger scale. 

 

Figure 6.12: OpenStreetMap view 

For the weights in Table 6.1.3, we assigned a higher weight for the slope of the 

road (29% of the total weights) in order to observe if this will affect the path selection in 
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larger areas and the number of traces, and to make the agent avoid the heavy traffic roads. 

So, we increased the road type weight to see if the agent will avoid the primary roads and 

take another type of road. We decided to increase the buffer size to 122KB for the hyper-

parameters in table 6.1.3 because we have a larger area that will lead to many paths that 

the agent will explore. Another thing we increased the number of episodes to 1 million 

episodes and increased the batch size to 256. 

However, the training took a massive time to finish (up to 9 hours) due to the 

large episode number and the large batch size. It did not give the anticipated results as 

the figure shows that the reward curve of our training kept decreasing exponentially, but 

as we can see, the curve slightly increased between episodes 200K and 400K. However, 

we can notice from the horizontal lines that the agent takes so much time to reach the 

terminal state, but at the end of the episode, the neural network did not perform well 

after we finished the exploration time. Additionally, we can see that the loss was 

performing well at the beginning of the training until mid of the training and started to 

increase massively at the peak of 1.3517703435770656e+17, which is a lot. 

Table 6.7: hyper-parameters G=147 

episodes 1000000 

lr 0.01 

gamma 0.99 

target update freq 0 

loss dqn reg loss 

epsilone expodinal decay 

epsilone start 1 

epsilone end 0.1 

Buffer size 122 KB 
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Table 6.8: Training Weights for 147 nodes 

β0 distance 8.42% 

β1 road type 9.08% 

β2 slop 29.38% 

β3 lane number 14.91% 

β4 lights 3.99% 

β5 max speed 1.24% 

β6 surface type 10.61% 

β7 
number of 

traces 
22.37% 

Based on the previous result, we increased the episodes to 18e5 with the same 

hyper-parameters and weights.  

 

Figure 6.13: Training results 



78 

The training took 23 hours and 12 minutes. In figure 6.1.3, we can observe that the 

rewards kept decreasing as before, but on the other side, the loss function started to 

converge after 1m and 250K episodes with a mean loss for the last 100 episodes that 

equals to 46459, which is   a massive difference between this training and the previous 

run. This means that if we double the time of the episode, it could help the loss to 

converge more. 

 

Figure 6.14: Reward and Loss results for 18e 

6.1.4 Experiment 4: Comparison with A3C 

In the previous implementations that used DQN, we noticed that a longer 

training time helps the agent find the maximum rewards for our problem based on our 

rewards system. However, unfortunately, DQN for a more significant number of nodes 

might take the agent two weeks or even more to find an optimal path, which is not 

efficient. We needed find a more efficient way to train our agents in a shorter time, so 

we decided to go with the A3C algorithm. A3C depends on the asynchronous method 

and uses multiple agents that interact with the same environment. While training, each 

agent shares their experience with the other agents, which will help solve the problem of 
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training time. Chapter 3 discussed the algorithm, so we experienced different learning 

rates and the number of episodes, as shown in table 6.9. We decided to go with smaller 

episodes number because each agent in each episode keeps looping until it reaches the 

terminal state or a maximum number of steps, which is 500 steps, and we only changed 

the learning rate. 

Table 6.9: Training on multiple hyper-parameters 

Number 
of 

episodes 

T 
max 

Min 
reward 

Max 
reward 

Average 
reward 

Mean loss 
for last 100 

LR 
Training 

time / hour 

1000 10 -95875000 -9215172.982 -95043174.25 2.76162E+12 0.01 0.481161088 

3000 10 -95875000 -220066.3139 -95217482.43 3.09885E+12 0.01 1.428449744 

5000 10 -95875000 -95855022.95 -95874988.02 3.10685E+12 0.01 2.205047536 

        

1000 10 -95875000 19956.20407 -83997064.09 8.41058E+12 0.001 0.441795206 

3000 10 -95815117.24 19961.96181 -70488383.28 6.91288E+12 0.001 1.197373971 

5000 10 -95875000 -95650531.33 -95874536.95 2.71697E+12 0.001 2.182557049 

        

1000 10 -95875000 -90062.91339 -94208516.9 8.65978E+12 0.0001 0.465871826 

3000 10 -95875000 19971.15828 -74277832.08 8.85677E+12 0.0001 1.212614794 

5000 10 -95785102.63 -30038.03819 -74504542.92 7.83753E+12 0.0001 1.86164805 

        

1000 10 -95710176.39 -45028.84172 -68718484.94 5.48005E+12 1.00E-05 0.384759826 

3000 10 -95755103.62 -110043.1704 -64387189.76 6.14386E+12 1.00E-05 1.130657925 

5000 10 -95855047.42 -30028.84172 -74148199.3 6.02149E+12 1.00E-05 1.816622731 

In table 6.9, we can notice that the agent did not perform well in g=22 nodes in 

any of the experiments. For example, in learning rate 0.01, the average reward was -

95217482, which is remarkably low, and the loss did not converge. The same thing was 

for learning rate 0.001 and 0.0001. The result was to use a learning rate of 0e−5, and it 

got an average reward of-64387189.76. We can see average reward was lower than the 

learning rate of 0.01, but not significant. The experience’s best from the figure that the 

loss and the reward are not stable and increase and decrease in each episode, which 

might be from the way the agent calculates the loss. However, the DQN was faster in 

G=22 and reached positive rewards in less time. We also need to experiment more on 
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using an asynchronous method for a value-based method, like; using asynchronous 

DQN for future enhancement of the model. 

 

Figure 6.15: Reward and loss results for 18e 

6.1.5 Experiment 5: Comparison with Dueling DQN 

As a last try to get results from using 147 nodes, we decided to experiment using 

Dueling DQN, which acts the same as DQN but with different architecture in NN, as we 

mentioned in3. We used the location in the same city as we can see in 6.1.5 and we 

decided to choose the start and ending nodes that are far from each other to see a 

noticeable output. 

 

Figure 6.16: Training Area with 147 Nodes 
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So, in our training, we gave the slope, max speed, and surface type higher 

weights than the others and reduced the weight of our agent’s distance. Also, we used 

the hyper-parameters in 6.11, like the following: 

Table 6.10: Training Weights for 147 Nodes 

β0 distance 7.1% 

β1 road type 3.5% 

β2 slop 14.8% 

β3 lane number 6.2% 

β4 lights 15.3% 

β5 max speed 25.9% 

β6 surface type 18.3% 

β7 number of traces 8.9% 

Table 6.11: hyper-parameters G=147 

episodes 1000000 

lr 0.01 

gamma 0.99 

target update freq 0 

loss MSE 

epsilone expodinal decay 

epsilone start 1 

epsilone end 0.1 

Buffer size 250 KB 

The algorithm took about 4 hours to end the training, and we can see from the 

metrics graph that it even reached a max reward of 8500 and mean reward of 

−5877.18444, the loss coverage was very fast, and it gave outstanding results for this 

large scale of nodes. The algorithm gave a path similar to the shortest path algorithm, 

even though we weight of 14 at the slope of the road. However, after analyzing the area, 

we found out that the selected area is flat with a slope of 0.0005. And as we can see 

from the graph in which the red dots represent the path that the agent needs to take to 

reach the goal destination. 
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Figure 6.17: Training metrics 

 

Figure 6.18: Agent path 

For the sake of exploration, we wanted to see if we increased the slope of one of 

the roads that the agent used in the previous training, if the agent would change the road 

to a different one. The road we changed its slope appears in figure 6.1.5 and we used the 

same weights and hyperparameters in table 6.11 6.10 
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Figure 6.19: Map View 

 

Figure 6.20: Training Metrics 

The agent took 4 hours to finish the training, and we can see from figure one that 

the reward curve kept increasing until it reached the maximum reward of 7500, whereas, 

the loss was decreasing. The most important thing that the agent avoided the road was 

that we manually increased its slope and used another path for it 6.1.5. 
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Figure 6.21: Agent Path 

6.2 Conclusion 

In this chapter, we experimented multiple DRL models. The first model we used 

is DQN which we have tested in 3 phases. In the first phase, we selected a small number 

of nodes G=22, and the agent gave us a Maximum reward of 4700 in 7:03 minutes, 

which is an excellent performance in a short amount of time. In the second phase, we 

increased the number of nodes to G=47, and the agent gave us great results of a 

maximum reward of 7450 in 20 minutes. However, in the third phase, when we 

increased the number of nodes to G=147, the algorithm did not perform well due to the 

enormous number of paths the agent needed to explore at the early stages, which will 

take much time and more computational power. In our experiment, we used the second 

model which is A3C, that uses the Actor-Critic method and multithreading techniques 

to find the optimal policy. Unfortunately, the algorithm did not perform sufficiently, and 

the agent did not give us the expected results; we achieved a maximum reward of -

110043 and an average reward of -64387189. Finally, we experimented the Duel DQN 

that uses the same method of DQN but utilizes different neural network architecture. 

The algorithm performed well, as we reached a maximum reward of 7500, and the agent 

avoided the roads that did not meet the end-user requirements. 
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Chapter Seven 

Conclusion and Future Work 

7.1 Conclusion 

Deep Reinforcement Learning (DRL) is the future of Reinforcement Learning. 

We can use DRL to achieve a human-like performance, from playing chess to training a 

robot that walks in an unbounded area. However, the application of reinforcement 

learning in Geographical Inform in Systems (GIS) is still limited and needs further 

investigation. 

There has been a growing interest in many countries to work on reducing the 

pollution caused by gas emissions from cars and many people turned into using bicycles 

as their main mobility. As a result, this has forced the city municipalities to plan new 

cycle paths for the entire city, taking into consideration all age ranges who ride bicycles; 

from youngsters to the elderly. For instance, a path chosen by an 18-years old person 

can be different from the one chosen by people in their 60s, who most likely would 

prefer following a path with different characteristics than the younger ones (e.g., a path 

that avoids any possible uphill’s). All of this constituted a problem to the municipalities 

which drives them to not design bike lanes considering only the shortest path, but 

should also cover other factors like; the slope of the road, shadows, facilities on the 

road, the type of bicycle (e.g., E-bike), traffic. 

On the other hand, the end-users who use mobile apps to find the shortest routes 

or traffic-free routes, do not always care about reaching their destinations faster, but 

need to find paths that suit their preferences. For example, the user might prefer to take 

a cycle lane with shadows, on a road that has cafes and public bathrooms or charging 
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stations. The user might also want to avoid high traffic roads like roads near of schools 

during the drop off and pick up times, or uphill’s, which might slow them down. None 

of the aforementioned preferences are acknowledged in any of the current routing apps. 

To solve these issues, we provided a proof of concept by using a virtual agent to 

help the municipalities plan the most convenient cycling lanes in the city, considering 

multiple preferences (e.g., road slope, public bathrooms, road lights). This method 

allows the mobility officer to generate multiple paths between two locations based on 

different scenarios and even help them plan the entire city based on the municipalities’ 

interests. On the other side, the end-users will have the option to choose a path based on 

their interests. Each user can choose a different path every time they use this method, 

based on their mood and interest; they might take the shortest path, or one with multiple 

restaurants or supermarkets, or a path with e-bike chargers, or even all of these 

preferences together. 

We achieved this result by posing the following two sets of research questions: 

1) RQ1 Data related questions: 

a) Are there publicly available sources of information that contain rich geographical 

data? 

b) Are the publicly available data sufficient for training and testing a virtual agent 

that’s able to compute personalized smart paths? 

c) Which are the best mechanisms to be used to integrate all the aforementioned 

geographical information? 

2) RQ2 Algorithmic related questions: 
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a) What is the possible reward modulization which encompasses all the collected rich 

geographical information? 

b) Which is the best states representation that should be adopted when a personalized 

travel path problem is formulated as a reinforcement learning-based agent? 

c) Which is the best Neural Network architecture that must be employed by our 

Agent? 

d) Which is the best deep reinforcement learning algorithm that can be used in this 

specific application scenario? 

Outcomes of the Thesis: 

Hereafter we present the detailed answers that we have found for each one of the 

presented research questions: 

• RQ1.a: After extensive research on different geographical data sources, we find two 

sources of public APIs that we can be used to extract GIS data: Overpass API from 

OpenStreetMap and earth engine API from google. These APIs provide sufficient 

GIS features, starting from roads, shops, amenities, road lights, elevation data, and 

even the trees in some countries. In our thesis, we mainly used the overpass API to 

extract the information of the roads and amenities, and we used the Earth engine API 

to extract the elevation data. 

• RQ1.b: The extracted data from both APIs proved to be sufficient enough to be used 

in our training and testing of our DRL agent, but with some minor drawbacks. Since 

overpass API depends on the contributions of OpenStreetMap users to add and 

update the data, a lot of the key features, especially the amenity, need an update. For 

example, new shops have opened, and others have recently closed, or some roads 
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have changed some of their features, like the max speed or the number of lanes in 

them, so this might not give us new precise results. 

• RQ1.c: We also proposed a mechanism to integrate all the data sources extracted into 

one data set in a JSON file. We constructed it by using the longitude and latitude for 

each road intersection from the overpass data. Then we set the keys of the JSON file 

based on the road intersection ID. The values are set according to the information 

extracted from the overpass API. The new calculated information, like the slope, is 

extracted from the Earth Engine’s elevation data based on the longitude and latitude 

intersection from the Overpass API. All of this information represents the road 

attribute that we used later in the reward system. We believe that this method can 

handle not only two data sources, but multiple ones. We can use this data set in 

reinforcement learning projects and different applications. 

• RQ2.a: We also constructed a reward system mechanism that covers all extracted 

features and gives each feature a weight. The weights can be changed based on the 

user’s interests, and these weights will reflect the user’s interest in the agent’s 

actions. For each feature, we set an equation that calculates the reward for this 

specific feature, and at the end, we created a mathematical formula that combined all 

the rewards into one final reward value that the agent will receive. This rewards 

system can handle a massive number of features, but one of the drawbacks of it is 

that if we had to add other new features, we need to create a specific mathematical 

equation to get its rewards and edit the final equation to include it into the final 

reward. 

• RQ1.b: Moreover, we constructed our agent environment as a graph representation 

based on our data set, formulated as a dictionary. Each node represents an 
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intersection, and the information of the roads is saved on the edges between two 

nodes. Also, both state-space and action-space for our Agent depend on the number 

of nodes in the graph. The action spaces 

A for our DRL equals the total number of nodes in the graph, A = V , Also 

state-space is SP  = N 2 since the Agent can start from any V  and end to any V .  

Finally, in our training, we decided to encode each state as vectors of zeros. Where the 

current state and goal state are represented in the vector as one, this method helped the 

neural network understand the Agent’s current position and the destination of the 

training, which allowed the converging of the loss faster. This state representation was 

solid for extracting the information in the edges quickly and efficiently by the Agent. It 

helped us automate how we can represent the action-space and state-space in case of 

increasing or decreasing the nodes number. 

• RQ1.c: Concerning our neural network architecture, we decided to use the Dueling 

network structure to build a network that computes the advantage A and value 

functions V separately. Then, we combine the two values into a single q-function at 

the final layer. Both the A and V need only two hidden layers of 64,32. This 

architecture proves its efficiency compared to the standard architecture, which 

computes only the q-function based on the input of the state. 

• RQ1.d: Finally, we find out that using the Dueling DQN algorithm is the best 

algorithm for our personalized travel path. Due to the Neural Network architecture 

that combines both computing the advantage and value function to get the value of 

Q-function. This method helps us find the optimal policy for our Agent in a shorter 

time, unlike other algorithms and other NN architectures that have been tested before. 

Also, this algorithm is a value-based function that uses epsilon-greedy that combines 
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both exploration and exploitation, which uses random action or a neural network to 

choose the action. In comparing DQN and A3C, the Dueling DQN performed faster, 

and the Agent reached an average reward earlier than both algorithms. 

7.2 Current Limitations 

Nevertheless, our project needs further exploration and more research, and it has 

some draw- backs. 

• Since overpass API depends on the contributions of OpenStreetMap users in adding 

and up- dating the data, lots of the key features (e.g. amenity) need to be updated; for 

example, new shops have opened, others recently closed, or some roads have changed 

some of their features, like; the maximum speed or the number of lances in the road, 

which leads to us to no new precise results. 

• While constructing the data set, some features have been generalized for the whole 

road and saved the same results in the edges between intersections. This problem 

didn’t affect our training sine the areas we selected have some similarities between 

blocks, but when we implement it all over the city, this method will affect the 

training. 

• Another thing we faced in our training of the model is the time it needs to finish its 

training. Some testing of our projects took three days to complete, and that is because 

of the complexity of state representation, so we have much future work to implement. 

7.3 Future Works 

The study provided in this thesis presents several of potential possibilities for 

future investigation. 
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• Use the amenities and shop data that we extracted to set up rewards to help the user 

use the road that has certain facilities that might interest him/her. 

• Extract the shadow data from the API earth engine. This will add a capability of 

using the roads that have shadows in them and avoiding the ones that do not. 

• Search for a free and reliable traffic API to support our tracer rewards feature. 

Explore more ways to shorten the training time in the multi-threading training by 

using multiple CPUs, especially in the Value-based method for DQN and Dulling 

DQN. 

• Adding other features related to road safety like barriers, accidents and Bandits. 

• Explore more algorithms that use policy-based methods, like PPO. 

• Train the Agent to use every node as start and goal state. This will show the true 

capability of the Neural network in handling multiple paths and different states. 
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Appendix A 

Thesis Appendix 

A.1 Code Organization 

In this section, we will present how we organized the code for data collection, a3c 

algorithm, dual DQN, and DQN. Each file contains all the codes shared in the GitHub 

repository. Also, GitHub will be the original colab notebooks that we used as the 

primary reference in this thesis. 

A.1.1 Data Extraction 

In data extraction folder, you will find two notebooks: 

• gps tracer.ipynb 

• data.ipynb 

gps tracer.ipynb 

You only need to define the bounded box to extract all of the GPS tracers that we 

mentioned in 4, and the output of this notebook will be a JSON file that will be used 

later. 

Data.ipynb 

Similar to the previous notebook, you only need to define what bounded box you need to 

extract the data from and it will extract a JSON file that will be used in all of the 

algorithms. 

A.1.2 DQN 

In the DQN repository you will find you 6 python files: 
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• Qnetwork.py Contains the neural network. 

• create graph.py which creates a sup graph from the data based on the number of 

nodes. 

• ddqn.py Includes the training function and testing function of our agent. 

• device.py Includes the code that is used to make the agents work on GPU. 

• environment.py The environment of our DRL, which has the step, reset and other 

functions that help the agent move around the environment. It also includes the 

reward system. 

• main.py Which is the main file that will run the whole code. 

A.1.3 Dual DQN 

In the dual DQN repository you will find 6 python files: 

• Qnetwork.py Contains the neural network 

• create graph.py Creates a sub graph from the data, based on thes number of nodes. 

• ddqn.py Includes the training and testing functions for our agent. 

• device.py Includes the code that is used to make the agents work on GPU. 

• environment.py The environment of our DRL, which has the step, reset and other 

functions that help the agent move around the environment. It also includes the 

reward system. 

• main.py The main file that will run the whole code. 
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A.1.4 A3C 

In the A3c repository you will find 6 python files: 

• ActorCriticsf .py Includes the network,loss and return calculations. 

• Agent.py Includes the training and testing functions for our agent. 

• SharedAdamf .py Includes the shared Adam that will be used by multiple agents. 

• a3cplotf .py The plot of the final result. 

• environmentf .py The environment of our DRL, which has the step, reset and other 

functions that help the agent move around the environment. It also includes the 

reward system. 

• gather eps.py The class that collects the data from the training and saves it into one 

dictio- nary. 

• main.py The main file that will run the whole code. 

A.2 OpenStreetMap Tags tables 

In this section we will present the hole values and its description as mentioned in 

OpenStreetMap website for each feature that we extracted from Overpass API and used 

in our implementation 

  



99 

A.2.1 Highway values 

Table A.1: Commonly used values with highway tag (OpenStreetMap,2021) 

Key Value Comment 

highway motorway 

A restricted access major divided highway, normally with 
2 or more running lanes 
plus emergency hard shoulder. Equivalent to the Freeway, 
Autobahn, etc.. 

highway trunk 
The most important roads in a country’s system aren’t 
motorways. 
(Need not necessarily be a divided highway.) 

highway primary 
The next most important roads in a country’s 
system.(Often link larger towns.) 

highway secondary 
The next most important roads in a country’s 
system.(Often link towns.) 

highway tertiary 
The next most important roads in a country’s 
system.(Often link smaller towns and villages) 

highway 
 

unclassified 

The least important through roads in a country’s system – 
i.e. minor roads of a lower 
classification than tertiary,but which serve a purpose other 
than access to properties. (Often link villages and 
hamlets.) The word ’unclassified’ is a historical 
artifact of the UK road system and does not mean that the 
classification is unknown; 
you can use highway=road for that. 

highway residential 
Roads that serve as access to housing, without the 
function of connecting settlements. 
Often lined with housing. 

highway 
motorway 

link 

The link roads (sliproads/ramps) leading to/from a 
motorway from/to a motorway or 
lower class highway.Normally with the same motorway 
restrictions. 

highway trunk link 
The link roads (sliproads/ramps) leading to/from a trunk 
road from/to a trunk 
road or lower class highway. 

highway primary link 
The link roads (sliproads/ramps) leading to/from a 
primary 
road from/to a primary road or lower class highway. 

highway 
Secondary 

link 

The link roads (sliproads/ramps) leading to/from 
a secondary road from/to a secondary road or lower class 
highway. 

highway tertiary link 
The link roads (sliproads/ramps) leading to/from a tertiary 
road from/to a tertiary road or lower class highway. 

highway living street 

For living streets, which are residential streets where 
pedestrians have legal 
priority over cars, speeds are kept very low, and where 
children are allowed to play on the street. 
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highway 

 
pedestrian 

For roads used mainly/exclusively for pedestrians in 
shopping and some residential 
areas which may allow access by motorized vehicles only 
for very limited periods of the day.To create a ’square’ or 
’plaza’ create a closed way and tag as pedestrian and also 
with area=yes.’ 

 
 

highway 

 
 

track 

Roads for mostly agricultural or forestry uses. 
To describe the quality of a track, see tracktype=*. 
Note: Although tracks are often rough with unpaved 
surfaces, this tag is not describing the quality of a road 
but its use. Consequently, if you want to tag a general use 
road, 
use one of the general highway values instead of track. 

highway escape 

For runaway truck ramps, runaway truck lanes, 
emergency escape ramps, 
or truck arrester beds. It enables vehicles with braking 
failure to safely stop. 

A.2.2 Amenity values 

Table A.2: Commonly used values that can be used with amenity tag 

(OpenStreetMap,2021) 

Key Value Comment 

 
amenity 

 
bar 

Bar is a purpose-built commercial establishment that 
sells alcoholic drinks to be consumed on the 
premises.They are characterised by a noisy and 
vibrant atmosphere, similar 
to a party and usually don’t sell food. 

amenity 

 
 
 
 

bbq 

BBQ or Barbecue is a permanently built grill for 
cooking food, which is most typically used outdoors 
by the public. 
For example these may be found in city parks or at 
beaches. Use the tag fuel=* to specify the source of 
heating, 
such as fuel=wood;electric;charcoal. 
For mapping nearby table and chairs, see also the tag 
tourism=picnic site. For mapping campfires and 
firepits, instead use the tag leisure=firepit. 

 
 

amenity 

 
 

cafe 

Cafe is generally an informal place that offers casual 
meals and beverages;typically, 
the focus is on coffee or tea. Also known as a 
coffeehouse/shop, bistro or sidewalk cafe. The kind 
of food served may be mapped with the tags 
cuisine=* and diet=*. 
See also the tags amenity=restaurant;bar;fast food. 
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amenity 

 
drinking water 

Drinking water is a place where humans can obtain 
potable water for consumption. Typically, the water 
is used for only drinking. 
Also known as a drinking fountain or bubbler. 

 
amenity 

 
fast food 

Fast food restaurant (see also amenity=restaurant). 
The kind of food served can be tagged with 
cuisine=* and diet=*. 

 
amenity 

 
food court 

An area with several different restaurant food 
counters and a shared eating area. 
Commonly found in malls, airports, etc. 

amenity university 
An university campus: an institute of higher 
education 

amenity bicycle parking Parking for bicycles 

amenity 
bicycle repair 

station 
General tools for self-service bicycle repairs, usually 
on the roadside; no service 

amenity bicycle rental Rent a bicycle 

amenity bus station May also be tagged as public transport=station. 

amenity car rental Rent a car 

amenity car sharing Share a car 

amenity car wash Wash a car 

amenity vehicle inspection Government vehicle inspection 

amenity charging station Charging facility for electric vehicles 

amenity ferry terminal 
Ferry terminal/stop. A place where people/cars/etc. 
can board and leave a ferry. 

amenity fuel 
Petrol station; gas station; marine fuel; 
Streets to petrol stations are often tagged 
highway=service. 

amenity grit bin 
A container that holds grit or a mixture of salt and 
grit. 

amenity motorcycle parking Parking for motorcycles 

 
amenity 

 
parking 

Car park. Nodes and areas (without access tag) will 
get a parking symbol. 
Areas will be coloured.Streets on car parking are often 
tagged highway=service and service=parking aisle. 

 
amenity 

 
parking entrance 

An entrance or exit to an underground or multi-
storey parking facility.Group multiple 
parking entrances together with a relation using the 
tags type=site and site=parking. Do not mix with 
amenity=parking. 

 
amenity 

 
parking space 

A single parking space. 
Group multiple parking spaces together with a 
relation using the tags type=site and site=parking.Do 
not mix with amenity=parking. 

amenity taxi A place where taxis wait for passengers. 

amenity atm 
ATM or cash point: a device that provides the clients 
of a financial institution 
with access to financial transactions. 
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amenity bank 

Bank or credit union: a financial establishment 
where customers can deposit and 
withdraw money,take loans, make investments and 
transfer funds. 

amenity bureau de change 

Bureau de change, money changer, currency 
exchange, 
Wechsel, cambio – a place to change foreign bank 
notes and travellers cheques. 

amenity baby hatch 
A place where a baby can be, out of necessity, 
anonymously left 
to be safely cared for and perhaps adopted. 

amenity clinic A medium-sized medical facility or health centre. 

amenity dentist A dentist practice / surgery. 

amenity doctors A doctor’s practice / surgery. 

 
amenity 

 
hospital 

A hospital providing in-patient medical treatment. 
Often used in conjunction with emergency=* to note 
whether the medical centre has emergency facilities 
(A&E (brit.) or ER (am.)) 

amenity nursing home 

Discouraged tag for a home for disabled or elderly 
persons who need permanent care. 
Use amenity=social facility + social facility=nursing 
home now. 

amenity pharmacy 
Pharmacy: a shop where a pharmacist sells 
medications dispensing=yes/no - availability 
of prescription-only medications 

amenity social facility 
A facility that provides social services: group & 
nursing homes, 
workshops for the disabled, homeless shelters, etc. 

amenity veterinary 
A place where a veterinary surgeon, also known as a 
veterinarian or vet, practices. 

amenity arts centre 
A venue where a variety of arts are performed or 
conducted 

amenity brothel 
An establishment specifically dedicated to 
prostitution 

amenity lounger An object for people to lie down. 

amenity marketplace 
A marketplace where goods and services are traded 
daily or weekly. 

amenity monastery 
Monastery is the location of a monastery or a 
building in which monks and nuns live. 

amenity photo booth Photo Booth – A stand to create instant photo. 

amenity place of mourning 

A room or building where families and friends can 
come, 
before the funeral, and view the body of the person 
who has died. 

 
amenity 

 
place of worship 

A church, mosque, or temple, etc. Note that you also 
need religion=*, 
usually denomination=* and preferably name=* as 
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well as amenity=place of worship. See the article for 
details. 

amenity police 
A police station where police officers patrol from 
and that is a first 
point of contact for civilians 

amenity post box 
A box for the reception of mail. Alternative mail-
carriers can be tagged via operator=* 

amenity post depot 
Post depot or delivery office, where letters and 
parcels are collected and sorted prior to delivery. 

amenity post office Post office building with postal services 

amenity prison 
A prison or jail where people are incarcerated before 
trial or after conviction 

amenity public bath 
A location where the public may bathe in common, 
etc. Japanese on-sen, Turkish bath, 
hot spring 

amenity public building 
A generic public building. Don’t use! See 
office=government. 

amenity ranger station 
National Park visitor headquarters: official park 
visitor facility with police, 
visitor information, permit services, etc 

amenity recycling 

Recycling facilities (bottle banks, etc.). Combine 
with recycling type=container 
for containers or recycling type=centre for recycling 
centres. 

amenity refugee site 
A human settlement sheltering refugees or internally 
displaced persons 

amenity 
sanitary dump 

station 
A place for depositing human waste from a toilet 
holding tank. 

amenity shelter 

height
A small shelter against bad weather 

conditions. 
To additionally describe the kind of shelter use 
shelter type=*. 

amenity shower Public shower or bath. 

amenity telephone Public telephone 

amenity toilets Public toilets (might require a fee) 

amenity townhall 
height

Building where the administration of a village, 

town or city may be located, or just a community 
meeting place 

amenity vending machine 
A machine selling goods – food, tickets, newspapers, 
etc. Add type of goods using vending=* 

amenity waste basket 
A single small container for depositing garbage that 
is easily accessible for pedestrians. 

amenity waste disposal 
A medium or large disposal bin, typically for bagged 
up household or industrial waste. 

amenity 
waste transfer 

station 
A waste transfer station is a location that accepts, 
consolidates and transfers waste in bulk. 
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amenity watering place 
Place where water is contained and animals can 
drink 

amenity water point 
Place where you can get large amounts of drinking 
water 

amenity user defined All commonly used values according to Taginfo 
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