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Abstract

In this thesis, we will solve Fuzzy Volterra Integral equations in 2 Dimensions with
separable kernels. To this end, we will use the well-known Fuzzy Differential
Transform Method (DTM). Without the use of DTM, the problem of solving such
equations becomes challenging. DTM simplifies the process by finding an
approximate solution for the fuzzy solution. We will implement this computational
method using numerical examples to reflect the potential and applicability of such
numerical technique.
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Introduction

In mathematical modeling, fuzzy set theory is considered a dominating tool when it
comes to modeling uncertainty and vague problems [15]. This provided a practical
solution for many real-life problems in different scientific fields. For instance, fuzzy
logic helps solving many applied problems in computer programming, decision
making and communications [17].

The merge of fuzzy sets with integral equations is one of the benefits that different
parts engineering and physical fields gained. The importance of considering integral
eguations with fuzzy propertics emerges from the wide range of problems that
incorporate fuzzy concepts in many fields within applied mathematics. In practice
fields that incorporates mathematics with physics, medicine and communication. In
such applications, fuzzy number replaces crisp representatives for some of the
parameters. This type of problems motivated researchers to engage in developing
different mathematical models and a various number of numerical procedures that
would appropriately help solving general fuzzy integral equations |3, 18-20].

The solution of Fuzzy integral equations as an active research topic with new methods
that is presented frequently. In [1], H.Seiheii et.al. solved fuzzy Volterra integral
equation of the first kind using differential transforms method for one dimension.
Salah shourand and collaborators proposed an application of the well-known fuzzy
differential transform method in order to solve fuzzy Volterra integral equations in
[2).FarshidMirzae et.al. [3} proposed a mathematical method that solves numerically
the two-dimensional fuzzy Fredholm integral equations of the second kind that utilize
the triangular functions. In [21], a numerical approach that uses a hybrid method is
presented for selving fuzzy volterra integral equations with separable kernels. They
proposed a method where Laplace transform operation along with A-domain
Decomposition Method is utilized to get the numerical results. Authors of [22]
presented a numerical solution for the nonlinear fuzzy Volterra integral equations of
the second kind.

Many of the preseri methods for solving fuzzy integral equations concentrated on
solving such probiems in 1 dimension. While these methods are effective but the need
for higher dimensional solutions is required to dea! with abroad types or practical
anplications. One of such equations is fuzzy Volierta integral equations with
separable kernels which can be defined as follows:



Let us defined u(x) be a fuzzy function, f(x) is given as any known function, and
k(x,t) is an integral kernel.

The resulting general fuzzy Volterra integral equation which is of the second kind is
presented in the following form:

u(x) + J (K, (x, HYOU®))dt = f(x) + f (K, (e, DHOU®))dt ,

Where f(x):R — Eand x € (a, b), b < .

In this work, we concentrate on Equation (1) and we present a fuzzy differential
transform method to approximate the solution in 2 dimensions. We extend the work
presented in [1] and develop a 2 dimensional framework for the method by expanding -
the theoretical work to entertain 2 dimensional problems. Afterword’s, we apply our
proposed method to solve some benchmark examples and present the results to
confinm the theoretical work. This thesis is organized as follows:

Chapter 1 presents basic fuzzy logic definitions along with a brief fuzzy volterra
integration equations basics. In Chapter2, We discuss the one dimensional fuzzy
differential transform method and we present some of its features. We conclude this
chapter by some numerical examples to enhance the understanding of such method.
Chapter 3 presents the two dimensional fuzzy differential transform method along
with the expanded theoretical framework. We solve the fuzzy volterra integral
equation using our proposed method in chapter 4 and we conclude this thesis by
presenting a number of numerical exarmmples.



Chapter one

Basic Concepts

This chapter describes fuzzy numbers along with some properties. Moreover, some
basic operations and definitions are presented.

1.1 Fuzzy Numbers:

An interval of real numbers is a subset AofR, such that for any two real numbers
xandyinA and any real number z with the property x < z <y, z € 4, and simply we
write A = Ja;,a;]. The intervalAcan be expressed by the so-called membership
function as follows:

0, x<ay
pa(x) =41, a<x<a, (1.1)
0, y =X

A fuzzy number is defined as an interval in the set R of the real numbers. While the
bounds of the interval are vague, this interval is considered a fuzzy set. In general, the
fuzzy interval is represented as [a, a, a,], where a; and a, are two end poinis

incorporated with a peak point a,. The resulting fuzzy number is denoted byd. Let us
consider the following definitions for a fuzzy set:

Definition 1.1.1[14]: A fuzzy setAdefmed on a set R is represented by a membership
function pa:Rp = [0,1], and is characterized By the ordered pair denoted -
as(x, pa(x)).

Definition 1.1.2[14]: The v — cut of the fuzzy numher Awhose membership function
is t4, 18 the set denoted by A,

Ay = gty 2 1) (12)

Definition 1.1.3 [3]: A fuzzy set denoted by V and defined onRp. V is called a fuzzy
interval if:

e Itijs normal, i.e. 3xy € Ry where V{x,) = 1.



e Tt is convex, If V(Ax + (1 — A) t) =min {V(x),V (t)} holds for all numbers
x,tERpand 0 <A <=1,

¢ The interval V isupper semi-continuous, such that V(x,) = lim oo V(x) ,for
any xy € Rp
s The set [V]®= Cl{x € Rg|V(x) > 0} is a compact subset of Ry.

For a fuzzy interval V, its r — cuts are closed intervals in Ry, and denoted by

V=l (), 7).

The parametric form of a fuzzy number that yields the same set R can be presented
as follows:

Definition 1.1.4{3]: The parametric form of a fuzzy number denoted by @ is
organized as an ordered function pair presented as[g (r),ﬁ('r)], if it satisfy the
following:

e The lower bound u(r)is bounded left-continuous function which is non-
decreasing on [0,1},

e The upper bound u(r)is a bounded right-continuous function which is non-
increasing on [0,1],

o u(r) <u(r), forall values of r where 0 < r < 1.

Definition1.1.5{3]: Let? = [v (), %(r)], and # = [w (), W(r)]be two fuzzy
numbers and let A be a real number, then

o ¥ =Wifand only ifv(r) = w (r) and v(r) = w{r),

o THBW=w)+w @), vr)+wir)),

. - {[,13 M, Avm)], 1=0
AOD=m @], A<0

Eachy € R can be regarded as a fuzzy number $defined by

. 1, t=
y(t):{o tqt};z

Definition 1.1.6[12]: Let Ebe the Hausdorff distance that is befween fuzzy numbers
given byD: E x E - R, U {0}, where

D(#, 7) = supreqoymaxflu () — v (M, [20) — I}

The mappingDis a metric in E and has the following properties [8]:
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e Du®w,vdw)=Duv),vVuv,wekE

s DkOukOV)=|k|D(uv),keRVu,veE

e Du@v.wbe)<Duw)+D(e)vuv,weckE
¢ (D, E)is a complete metric space.

Definition1.1.7[12,9]: Let f: R —E be a fuzzy function. f is continuous if, for an
arbitrary fixed pointt, €R,e > 0, andd > 0, then

|t —to| < &=D(f(t), f(ty)) <e

Definition 1.1.8{12]: Ifz € Eexist where x =y + 2z, and x,y€ E.z is called the
Hukubara difference of both xandy, and it is represented by xey.

Definition 1.1.9[12]: Let f : (a,b) = E where x4 € (a, b). fis called differential at xg,
If there is an element f(x,) € E, such that

1. f is called 1-diffeentiable if for all positive h with value near to 0, there exist
Flxg + h)ef (xg)and f(xg)ef (xo — h), then the limit (in the D metric) is
presented as '

1 [l +Mef(xg) f(xodef (xg — )
im = lim
or h—ot h h—0t h

= f(xy) (1.3)

(2) f is called 2-diffeentiable if for all positive h with value near to 0,
3f (xg + h)ef (x), f(xg)eof (xq — h)and the limit {(in the D metric) would be

Flxa+h)ef (xo) Flxplef(xp—h) 7

im0~ h = Hmhao“’_‘h— = f(xo) (1.4)

When fis a fuzzy function, we have the following theorem:

Theorem 1.1.1]12]:
f:R — E isafunction and let the r-cut representation if the functios e

1) = |FEm), K]

for any r € (0,1) . We can conclude the following:

1. If the functionf is 1-differentiable, then f(t; randf (t;r)are  two
differentiable functions where
fem = [fen, fen]:
2. If the function is 2-differentiable, then i (t; r)and?(t; r)are two differentiable

functions with

fler) = E(t; T),f(t; r)].



We easily can present the second order for the second point in last definition with H-
differentiability as in the following theorem:

Theorem 1.1.2 [12]:
Let the function f : R — E be a fuzzy function with the r-cut presentation

flt;r) = [i (t;7), ?(t; r)lfor any r € (0,1). Then we conclude the following:

i.  Whenf and f are differentiable as in (1) or whenf and f are differentiable as
in (2), then £ (t; r)andf (¢; r)are both differentiable functions
withf (£;7) = [f(t; . f(t: r)].

ii. Whenf is differentiable as in (1) and ' is differentiable as in (2) of the same
definition or, on the other hand if f is differentiable following (2) andf is

differentiable following (1), then f (t;P)andf(t;r) are both differentiable
functions withf(t; r)= F(t; r),f(t; r)].

Definition 1.1.10[12]: For the functionf (x), the transformation of the nth derivative
can be defined as:’

1 [d¥

F) = & [/ O lemey (19)

While the inverse of this transformation is defined as:

FO) = ) R G = x4 (16)
k=0 '
1.2 Fuzzy Volterra Integral Equations

In this section, we define the fuzzy Volterra integral equations that uses separable
kernels. Moreover, we define these equations for two- dimensional problems [2]. We
start by the one-dimensional case as follows:

Let u(x) be a fuzzy function which is the main solution, f(x) is any given function,
and let k(x, t) be a separable function kernel.

We can define the general Volterra integral equation of fuzzy nature and a second
kind as in the following form:

w(x) + [ (ka(x, )OU))dt = F(x) + [ (lea (x, HOU(R) )de(1.7)

Where f(x):R — Eand x € (@, b), b < =,



fisthe fuzzy differential transform method with separable kemels. The fuzzy
differential transform method can be defined for separable kernels as follows:

ki(x,t) = Y0 @} (x)Pj(ry and similarly can be defined for k.

The equation of interest in this work can be constructed in the same manner that the
one dimensional is defined. We can define the fuzzy Volterra integral equation in two
dimensions and of the second type as follows:

y
ulx,y) + f f (k1 (v, 5, )OU(s, t))dtds
b a

o |
= f(x,y) + fb J (I, (x. y, 5, ©)Ou(s, ) )deds(1.8)

WhereKand fare continuous functions and k;has the following form:

nt

mn
ki(x,y,5,t) = Z Py Gi pHis)
i=0 j=0

And similarly we can define it for k.



Chapter two

One-Dimensional Fuzzy Differential Transform Method:

In this chapter, we briefly discuss the construction of one dimensional fuzzy
differential transform method. The chapter is concluded by some numerical examples
to better explain the method. The interested reader could turn to [1,2] for more details.

2.3Definitions Of One-Dimensional Fuzzy Differential Transform
Method:

Definition 2.1.1:Letx(f)be a differentiable function of order k& which is defined on
the time domain T, then

dEx(tn)

x(r)=2| L Tlar)-
i

a*F(tr)
dek

] . VkEK =0,1,..2.1)
=t

when x(t) is (1)- differentiable, and whenk is odd

d *X(t; r)
X = —— L
d*xX(t;r)
Xi(k;) Tk ]
t=tj
and when k is even
d*x(t; )
Kl(kr ) - dtk ]t=t
d*x(t;r)
X (ki) = —k—“]
dt ,E=tj
whenx (t)is (2)-differentiable ( {1.1.9]). (2.2)

We note that X;(k; T)and)_(i(k; r) can be considered as the lower and upper lower
spectrum and the upper spectrum ofx (€)att = t;,respectively.



Definition 2.1.2: Letx(t) be (1)-differentiable, then for 0 <r < 1,x(t)can be
represented in the following manner:

x(t r)—z( X(k )

k=0

and if x(t) be (2)-differentiable, then x(t)can berepresented as follows:

-t)k— o (-tp*
x(tr)= Ek Lodd ™) ~—==X(k;7) + Ekzo,evenT;)_((k; T)

i ( i)k"*”
0= S paa o XU 1) + g even i K (i )(2.4)

Definition 2.1.3: The inverse transformation for X (k,r) can be defined for x(t) when
it is (1)-differentiable and vk € K, K = 0,1, ... as follows:

d*x(r;
X0m) = M|
-0

dtk

X (k) = M(k)dkm"”)]t_t 2.5)

And for x(t) when it is (2)-differentiable. X (k, r) can be defined as

5&&@=M®“Wﬂ

Wt i odd)
1S O

HE P akx(r)
{X(kl T‘) - M(k) dtk t=t,

k .
(X0k:r) = M) 7]
j‘ i =0 (kis even ) (2.6)

Xk;T) = M(K) ﬁkL% |

Definition 2.1.4: The function x{t)can be represented as follows:
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For 0<r <1,

o (6 — t)* X (ks 1)
-’-‘-“‘r):kzo M

_ > (t— )R Xk )
x(t”"):Z O
k=0

2.7)

When x (t)is (1)-differentiable and

(t—t)* X (lr) + 3 =tk X ()
K MO k=0even 1 M)’

x(t;7)= Xk=10dd

— (=" Xy w (t—t* X (k1)
x(t; T') = 2?=1,odd*-k—;_m+2k:0,even kIl W( . )

if x(t) be (2)-differentiable.

) k
M (J)is defined as the weighting factor and M (k) > 0. In this work, M (k) = % is
implemented where H is the time horizon on interest. '

Definition 2.1.5: If x(t) is (1)-differentiable, then:

k 4k .
X(Je;r)= T2

kI dek

_ . .,_Hk dkf(t;r) _ |
]t:to" X(k; T) Kl dek ]t=tD’ k< K, 0<pr< 1(29)

and if x(t) is (2)-differentiable,

Hk C—',k_(t; 7]
X(gr) =+ Ztkr 1,
— H.’c d""x(t'r)_ - >(kis Odd)
Xlr)y= ——"77
ket et Loy
Ly L HRahawmr)
K(k: T) - ? ek et
¢ o o (ks even) (2.10)
E(—(k]‘") _ H;a T
! k! dth It=t,

We can transform the fuzzy equation on the defined domain of the specific problem to
a regular algebraic equation on the domain defined above as K using the fuzzy
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transform method. Moreover, x(t) can be derived from the Tylor series finite term
adding a reminder as shown by the following:

Fork <K, 05r<1

o v (-t Xnr)
xX(tr)= Xg=o K M) TRen 1y (E)

. K
= T30 (5Y) XUam) Ry (®),

H

—en_ TN () X
x(t:r)= Ek_:o X M(k)+R(N+1)(t)

= 5o (C) R ks ) Ry (O

when x(t) is (1)-differentiable and

o (en (t=to)* X (ki) N (t—to)* X(k;r)
E(t, T') = ( k=1,0dd k!u MK) k=0,even k!U M (k) )+ (N+1)
_ (t—to)* x(icr) (t=to)* X (kir)
x(t! T') - ( JIJg=1,£h‘1d k!D M(k) + Zg:o,even kiﬂ M(k} )+R(N+1)

when x(1) is (2)-differentiable.

Definition 2.1.6:

Let us define £,,..,ty as an equally spaced points on a grid of interest where
t;=a+ih and while i = 0,1, ..,Nand defining h =" . Using the previous

assumption, we divided the domain to an N subdomains while the fuzzy function
X;(t, ) approximates the subdomains where i = 0,1,..., N — 1.

Using the presented initial conditions, we can obtain the following:

X(0,r) = x(0,7), X(0,7) =X(0,7), 0<r <1

Using the first subdomain, x(¢, ryandx(t, r)can be represented by

X(0,7) = xo(r),andX{0,r) = %, (r); respectively. Moreover, we can represent them
by the nth order Taylor series considering &, as follows

x(to, 1) = x0(0,7) + 2o (L)t — t0) + x0(2, 1) — o) + -+ 2o (N, 1) (t — )"

X(to, 1) = %o(0,7) + Xo (1, )}t — t5) + %o (2, 1)t — t)* + -+ + 2o (N, 7Yt — to )}
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Additionally, using Taylor series for x(t;, ), thesolution on the grid pointst;,,can be

obtained as follows:

X(tip, ) = 2 (ta, 1) = (0,7 + 2, (L, 1)ty — 6 + 4+ (N, ) (g — ).

Thenx(t;,1,7) = _]Nx(] X,y R (2.11)

Also,

X(tipn, 1) = X (t40, 1) = %:(0,7) + % (L, 1)ty — ) + o+ (N, P (i — £V

And, X(t;1,7) = E?’:o x(, TR, (2.12)

2.2Properties Of One-Dimensional Fuzzy Differential transform
Method:

Let us start this section with the following result:

Theorem:2.2.1:

Let u(t) and v(t) be two fuzzy functions while the corresponding fuzzy differential

transformations are denoted by U(k) and V (k) , respectively. Then

1. Iff(t) = u(t) + v(t), then F(k) = U(k) + V(k), k € K.
2. if f(t) = u(t) — v(t), thenF(kK) = U(k) —V(K), k€K.
3. W F(E) = u(t) © v(t), then F(k) = U(K) © V(K), k €K .

provided the Hukuhara difference as presented in Definition [1.1.6] exists.

Theorem:2.2.2:

Consider the fuzzy-valued function g € E andf(x)= f;) g(t)dt then

Py =2 k > 10.13)
Where F(k) and G (k) are the differential transform of fand g, respectively.
Theorem:2.2.3:
c e o rXp 3
Consider f(x)= fxo _J:C; f;) g(t) dtdx, dx, ...dx,_,

Then #(k) =26 (k — )k = n(2.14)

Where F(k) and G (k) are the fuzzy differential transformation of fuzzy valued
functions ot fand g, respectively.
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Theorem:2.2.4:

Suppose that U(k) and G (k) are the differential transformations of the functionsu(x)
and g(x) such that they both are positivevalued functions, respectively.

Iff(x) = f;, g(t). u(t)dt then

Under (1} differentiability of f we have, for 0 <r <1,

k-1

Pl = Z G(1). g(k; L—1;r)
=0
k-1 —

Fikir) = Z GQb). U(kk— [—1;71)
=0

(2.15)

Under (2) differentiability off we have, for0 <r < 1,

kot k—1 _
Flsr) = Z G(D-Q(k—l—l;?“)_l_ GD.UE —1—1;7)

7 r F(0;r)
I=0,even i=1,0dd
= (0)
k-1 — k-1
— GH.Uk—-1—1;r GH.Uk—1—-1:r
T IO JASCICH Gl L P
1=0,even I=t,0dd
= (0)(2.16)
Theorem:2.2.5:

Suppose U (k) and G (k)are the differential transformation for the functions, u(x) and
g(x), respecirvely.

It F)=[g () f,, ultr)dt |

then following the (1)-differentiability of f, wehave, for0 <r < %:

G UK~ 1;7)
flir) = Z =D

=0

~GD.Tk~1—1;7)
Fllar =) =~ WD

=0

(2.17)
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And under (2)-differentiability of f, we have, for 0 <r < 1:

k—1 k—1 —_
o WUk ~1~1;7) CD. Tk —1—1;7)
Elar) = Z 7)) + k=D

i=0,even 1=0,0dd

k-1 — k-1
_ GO Uk -1—1;1) GW.UG—1-1;7)
Fk;r) = Z k=1 * k—1)

1=0,even [=0,0cdd
(2.18)

Theorem:2.2.6:

Suppeose that U (k) and G (k)are both the differential transformation of the
functions,u(x) and g(x),respectively.

Iff (x) = g(x)u(x), then

F(k;r) =S5, 6O UK — L) ,0 <7 < 1(2.19)
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Chapter three:

Two-Dimensional Fuzzy Differential Transform Method

In this chapter, we present the main construction criteria for the two-dimensional
FDTM.

3.1 Construction of Two Dimensional Fuzzy Differential Transform
Method (2.D.FDTM):

LetF (x, t) be a two-variable fuzzy function. The following can be defined:

Definition 3.1.1:Let us consider x(s,t) is differentiable of order k + hon the time
domain T, then

6k+hx(s,t;r)]
.. - T' ———
.J_CU (k; h—) ) askarh 5=Si,t=tj’

6k+hf(s,t;r)]
dskath s:si,t:tj:

%, (e, by )= vk, he K =0,1,.(3.1)

when x(s, t) is {1)-differentiable and

FEt Y (5 by

)_{ij (k; h, T') st askath IS=Si,t=tj
_ ot (s 1) (k is odd k is even) or mverse
Xij(k, hir) = ~askath L=si,t=tj
and
glth -t
Xk, i) = S 220
=4 dskath  ls=g; r=t
et he ! (both ofk, hare even or odd) (3.2)

' -(k h T‘) _ a x(s.t;r)]

15} L askath S:Si,t=tj

when x(s, t} is (2)-differentiable.

Note that X;;(k, h; r)and?ij(k, h;r)are cailed the lower and upper spectrums
ofx(s, thats = s;, t = {;, respectively.



16

Definition 3.1.2: If x(s,t) is (1)-differentiable, then x(s,t)can be represented as
follows, for 0< r < 1:

e (5 — sk — )
x(s,67) = Z Z KTR! —X(k hi7)
k=0 h=0
— o w Emspb-th—
I(S, t; 7") = Lik=0 Zh:(}TX(k‘ h.,' T') (33)

and if x(s, t) be (2)-differentiable, then x(s, t}can berepresented as follows:

ER o) h
(S — Si)k(t - tj) —
E(S, t;r) = Z Z Xk, R r)(isk odd,h is even Jar inverse

oW h
Z Z (s — s)(t — ;)
+ : . __X_(k: h; T)(b{)th of I,h are even or odd)

[Fa IS h
. (S - Si)k(t — tj)
x(s,t;1) = Z Z X(k, h; r)(k is odd, hiseven)orinverse

—0
(s — st — )" _
+ Z z i Xk, ;1) (poth of k,h are even or odd)

34

Definition 3.1.3: The inverse transformation of X(k, h,r}. X(k. h, ) is defined as-

kthy (s,t;r)

d
K(k, h, T) = M(k; h) asktath ]S:SO t:tg,

HhE(stm)

—_ ak
Xk hir) = MOk, Y22 ]sto 9

when x(s, t) is (1)-differentiable and

akJrh“ ,t}
Xk ) = Ml by S BT

L:s0 t=tg

dskath
ROk i) = Ml ) e G5 T) (kisodd, hiseven}orinverse
ir) = MU 550
s=s.t=to
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Kty (s,t;r)

7}
X—(k’ h’ T‘) = M(k; h) dshath ]S=Su t=tg

kR (s,657)

_ 3 (both of k, i are even or odd) (3.6)
Xk, hir) = M h) =% L:SU s

when x(s, t) is (2)-differentiable.

Definition 3.1.4: The function x (s, t) can be represented as follows, for0 <r < 1.

(s—si)k(t—t}-)h X{khr)
klh! MR’

x(8, 67} = =0 Zih=o

(s-s)F (-t )" Rkhur)
Kin! MK

X(5, ;1) = Y=o Zh=o 3.7)
when x(s, t) is (1)-differentiable and

ZCO Zco (s_si)k(tmt_f)hj{-(k,h;r) Zco zoo (s_sl‘)k[t—tf)hz(knhir)
k=0 &h=0 kAl M) k=0 &Rh=0 kIR M{k,h)

—J—C-(S’ t T) :(kisodd,hiseven)orinverse ({both of k,h are even or odd))

h h
5oy (s=s0(e=t) x0hem) gy (550" {t=t) “Fair)

—_— = h= = h=i .
x(s' t: T,) — 0 0 kih! Mk, i) _|_ a 0 Jcthl M (k) (3.8)

" (kis odd,h is even Jor inverse ((both of k,h are even or odd))

When x(s,t) be (2)-differentiable .

-whereM (k, h)is the weighting factor and M(k, h) >0. In this thesis we consider

- kih
Mk, h) = % where GandH the time horizon on the domain of interest.

Definition 3.1.5: If x(s, t) is (1)-differentiable, then, fork < K, 0 <+ < 1

kpph gk+h .
K(k, h; T):G H 3%y (s,t;r)

] _GRuh gkt hE s )
kint o askoth oo =t

kit pskarh L=50)t=t0

. X(k,h;7) (3.9)

and if x(s, t) is (2)-differentiable ,

GRHM §RHF (s )

Xk h;r) = Kih!  gskath ]s:v t=t

- os "0k is odd,h is even ) or inverse
. o GREh gRtRx(s )
Xk h;r) = T ockpih

Kih:  Bstat §=3g t=tg
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Keph gt (s b
K(k’ hir) = Gk.!i! : asfgstj:r)] s=5q t=t

_ GRHR s ) 070 (both of k, h are even or odd) (3.10)
Xk hyr) = &

kipt o askath loag r=t,

We can transform the fuzzy equation on the defined domain of the specific problem to
a regular algebraic equation on the domain defined above as K using the fuzzy
transform method. Moreover, x(s,t) can be derived from the Tylor seties finite term
adding a reminder as shown by the following, for k < K, 0 <r < 1:

i (s — So)(t — to)" X(k, 15 7)

[N1=

(s, 60) = KAl My T Rern(st)
k=0 h=0
LB s—so —te\"
= Z ( ) Xk, h; 1) + Rivgrmey (S, )
k=0 h=0
O (5 o) (E o) Xk, hiT)
X(S t; I‘ = ;; LRI M(k, h) R(N+1,M+1)(SJ t)

N M
S — so kot —t\*—
Z Z ( ) Xk, hyr)+ R(N+1,M+1)(Sr t)

k=0h=0

when x(s, t) is (1)-differentiable and

N M —_
N (s —so)*(t - to)h Xk, hyr)
x(s 6 = Z z KIhi MK, 1)

k=0 h=0 (lcis odd,h is even }or inverse

+ Revyipeny (8, 60)

N i (s — So)*(t — to)"* Xk, B 7)

kAl Mk, k)
(hoth of kh are even or odd)

=

=
i

0 h=
+ Rev+1.m4+1) (S, £)

o

5——50 kot — tq h
2 ) ( H ) X(k h; T)(kisOddhlseven)orlnverse

Mz

M
h=

=
i

o]

O
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+R(N+1 m+1) (8, 1)

s -5 —t\*
O 0
+ Z z ( ) &(k: h; T') (both of kh are even or odd)

=0 h=0
+ R(N+1 M+1) (S t)

N M
_ (s — so)*(t — to)" XU, h; )
x@’“’“):z T M)

k=0h=0 {(k is odd,h is even Jor inverse

+ Rovsrminy (S, t)

N M —
(S - So)k(t - to)hX(k, h; T)
* Z Z - kKR! Mk, h)

k=0 h=0 (both of kh are even or odd)
+  Ruvrimen(sit),

' N M St — £ h
— S - {)
x(s, t;r) = ZZ ( ) K(k, h:T'){kis odd,h is even Jor inverse
k=0 h=0
+R(N+1,M+1)
s t—to\"
T — Lo
+ZZ( G )(H)X(k’h‘r) |
=0 h=0 {both of k,h are even or odd)
+Rw+1,m+13 (S, 1)

when x(s, t) is (2)-differentiable .

Definition 3.1.6: Lett,, ..., tyandsy, ..., 5, are the equally spaced grid points where
s;=a+ih andf; = a+ jh wherei = 0,1,..,N,j = 0,1,...,N'and

bh—a '

h="-% 1 =" Were the domain [a, b] X [a’, b lis divided to

Nx N 'subdomain, and the fuzzy approximation functions in each subdomain
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areX;(s, t,7) for

i=01..,N—1land X;(s,t,7) forj = 0,1,..., N' — 1, respectively.
From the initial conditions, the following can obtained:

X(0,0,r) = x(0,0,) ,X(0,0,7) =%(0,0,7) ,0<r<1

In the first subdomain, x(s,t,r)andx(s,t,7)can be described by

X(0,0,7) = xo0(r ) X(0,0,7) = X o(r); respectively. They can be represented in
terms oftheir (N, N') — t(#, h’)order bivariate Taylor series with respect tosy, ty. That
is,

x(Sq, to,7) = x6(0,0,7) + 20 (0,1, 7)(t — ) +x,(0,2,7)(t — to)* +
+ %00, N', )t — t)™
+20(1,0,7)(s = 50)  +x5(L,L1I(5 = 50) (t—1o)
+ x0(L2,7)(s —5¢) (T —1tx)" +
+ 2% (LN ~ 1,7)(s —59) (t— )V 1"
+ xo(N, N' — 1,7)(s — sp)™ (¢ —~ t)V' 1
+ xo(N,N',r)(s — so)¥ (t — fo)Nr

%S, to, 7) = %5 (0,0,7) + %,(0,1, 'r)(t —ty) F+%(0,2,7)(t —to)* +
+ % (0, N, 1)(t — to )V
+x(1,0,7)(s —50) +2x(1,1, T)(s — 5o} (t—tp)
T4+ x(1,2,7)(s —so) (E—t)? +
+x,(LN' = 1,7)(s —s¢) {t— 1ty )N -1
+Xo(N, N = 1,1)(s — s)M (¢t — tO)N —1
+ XN, N, 7)(s —so)™ (t — to)N

Additionally, wusing Taylor series for x(s; ;7). thesolution on the grid
pointss;.q, t;;1can be obtained as follows:
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x(Sten i, ¥) = Eij(5t+1' Liv1s r)
=1 (0,0,7) + ;0L ) (G~ ) + 21502 7){tj4a — )+
+ 2 (O N ) {tea — 1) 425,10, ) (5041 — 50
+x;(1,L, )04 — ) (ties — t)
+x;;(1,2,7)(Sps0 — 8) (G421 — tj)z +
+ % (LN = 1L,1)(5541 — S0 (fj+1 - tj)Niﬁl
+ x5, (N, N = 1,7 (5141 — 507 (51 — f;f')N -
+ Eij(N: N T)(s141 — St)N(thrl - ff)N

N N
= Z Z 2y (m,m,7) KPR (3.11)

m=0n=0

X(Siv1s tisa r)= Etj(StJrlr tj+1:’”)
=%,(00,7) + ;0L (61— ) + T 02 (G — ) +
+%;;(0, N', 7)(tj41 — tj)N’ +%;(1,0,7)(Si41 — Si)
+ x5 (L1, ) (S50 — 50 (tj+1 - tj)
+%;;(1,2,7)(Sp41 - S1) (tj+1 - tj)z +
+ % (LN 1,7)(sp41 — 58 (fj+1 - fj)Nr!_1
+ % (N, N = 1,7 (5041 — SO (a1 t;;)N -
+ SEij(N,’ N’ 1) (Sie1 — 50" (G401 — tj)N

N N
_ Z z %,y (m, n,r) KA (3.12)

m={ n=0
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Chapter four:

Solving two dimensional fuzzy Volterra integral equation

In this Chapter, we apply FDTM for the solution of the linear two-dimensional
volterra fuzzy integral equations of the second kind with separable kernels. We
conclude this chapter by presenting some numerical examples.

4.1 Solution Using (2D.FDTM):

Let u(x) be a fuzzy function which is the main solution, f(x) is any given function,
and let k(x, t) be a separable function kernel. Then

We can define the general Volterra integral equation of fuzzy nature and a second
kind as in the following form:

v
u(x,y) + ff (ks (x, v, 5, )Ouls, ) )dtds
ba

yx
= f{x,y) + Jf (k2 (x, v, 5, )Ouls, t))dtds (4.1)
ba

Where f(x,y):R — Eand x € (a,¢),y € (b, d) ,c < o, d < oo,
In addition, we use FDXTM to solve Equation (1) with separable kernels,

ie, ki (0y,5,6) = XNiZo 2i=0 Q5 o Py Gi oy Hits)

and similarly for k..
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4.2 Some Useful properties of Fuzzy Differential Transform Method
(two-Dimension)

Theorem:4.2.1:

Let us consider u(t, s) and v(t,s) to be fuzzy functions combined with their fuzzy
differential transformations denoted by U(k, h) andV (k, h). respectively. Then, for
k€K, heH:

1. Iff(t,s) = u(t,s) +v(t,s), then F(k,h) = Uk, h) +V(k, h).
2. Iff(t, s} = u(t,s) —v(t,s), thenF(k, k) = Uk, h) —V(k, h).
3. I £(t,s) = u(t,s) ®v(t,s), then Flk,h) = Uk, h) © V(k,h).

This applies when ensuring that the Hukuhara difference defined in Definition[1.1.6]
exists.

Proof. For more details see [3.1], the proof is obvious.

Thecrem:4.2.2:
considering the fuzzy function g € E and f(x,y) = ;0 f;o g(t, s)dtds, then

CEZRD b > 1 (4.2)
kh

F(k,h) =
Where F(k, h)andG (k, h) are the differential transform of f and g , respectively.
Proof:

Using-definition of FDTM

Wegetfor 0<r<1
Y X
flx,yiry = j J g(t, s;r)dtds
Yo ¥ x0
rx

¥
¥ rx

Fx,y;ry = [f J' g(t,s;r)dtds,fj glt, s;r)dtds |
Yo Jx0T

yo 0
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0 0

X oo o
— xg)* dids, f f Z Z Gk, b 7)(s — yo)(t — xo)* dtds
o x0 h=0 k=0

reym=[ [ 37 N ctahine -yt
yo % =0 =0
¥y

N N A CERE 2D A e b 7Y L C
= [zh,k=0§~(k' B T DR T D Eh,k_f(kr ) T Dk T D

Then, let us change the indexing from k = 0 tok = 1 ,we deduce that

w© « _ (v — o) (x — x)*
) zh=gzk=og(k —1L,h-1;7) ey ,

2N = O ye) " — xg)*
D o Dl = 1= 1) S

Fiﬁaﬁy using definition of F.D..T.M . T.ID,

We obtain
Flohr)=281000 6 <21 h>1.

kh

Theorem:4.2.3:
If f(XJ):f;;n f;:l f;;z f;:z f;ol f;;l g(t,s) dtdsdx, dy; dx, dy; ... dxp_1dyn—

Then

(k n)’(h n)}

F(k, = prm

Gle —n,h—n;r)k >n(4.3)

where F (I, b} andG (k, k) are the fuzzy differential transformation of fuzzy functions
of f and g, respectively.

Proef: .
A n "xn {'372_ !‘xz Y1 s
(z,37r)y= g(t,s;r) didsdxy dy; dx dy, .. dx,_ 1 d¥n_q
J
- Yo “X J)"n Jxo Yo “Xp
Id x Y1 [‘xl "
[y gtmns = o = i s
%—r’v‘c‘ r}’ [x r¥iL X

J ] - jl J Gk, ;) (s — yo)*(t — xp)¥dtdsdx, dyy oo dxy_q dyp_y
BE=0Jdy; Jx Yo “Xo

L o 4]
ST L[ [ s,
VAP W N W *+ D0t D

@xgdyy . dxy 1 dy, 4
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_N7 Gk, by T)(y — yo X (x — x K™
- Zh,k=o (k+DHk+2)k+m)h+1Dh+2)..(h+n)

_ Y opxo ore¥iopmy
flx,v;1) =J- J g(t,s;r) dtdsdx, dyy .. dxp_q dyn_q
X,

¥ rx =]
= f f f Z G(k ) (s — yo)*(t — xp)* dtdsdx, dyy ... dxpy_q AYp_s
Yo ¥ Xg Yo =0
] ¥
= f f f Gk, s )5 = y0) (¢ — x)<dtdsdy dy, . dip_y Ay
RE=0 Sy, Jxy vy iy
o %2 Gk, ) (yy — yo) Mg — xg)* L
= dxdyidx, dys ...
Zh,k j f j j (k+1)(h+1) OB 62

" G (e 1) (¥ — o) (o — xp)*+™
th T DD kB F DR+ (it

Let us start the indexing of the series from k = n, h = ninsteadofk = 0

and h =0

We have, for 0 <r < 1:

fCoyir)

Gk —n,h—m;r)(y — yo) (x — xg)¥
Zh nzk ak+1-nk+2-n. . kh+1-nmh+2-—

n) ... (h)

:Zm z“’ k=—ml(h =Gk —n h —m1)(y — yo)™ (x — xp)"
h=n k=n

kel h!

fC,y;r)

B Z‘“ z‘” Gk —nh—mn; Iy =~ v x - x)¥
T L Lo k11— + 2 =) R+ 1 =R+ 2 —n) .. (h)

_Zw Zw (e— ) (h =16 —nh —mr )y — yo) (x — x0)*
h=n k=n

kUh!

Now using (3.3) of e FOITM, we heve. for 0<r < 1t

Flohir) =

(k=) (h—m)l Gl —n,h — 1)y — yo)H(x — xg3*

k! h!

Fle,h;r) =

(=) (h — Gk —n,h— 1)y — yo) (x — x50

k!h!

dxn*l dynui
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Which completes this proof.
Theorem:4.2.4:

Let us suppose thatl/ (k, h)andG (k, h)are the differential transformations of the
function u(x, y)andg(x, y), respectively.

If Flx,y) = f;; f;cog(t, s).u(t,s)dtds then, for 0 <r < 1:

Under (1) differentiability of f we have

S D Uk —L— 1L h—i—17)
=0 I=0
_ S GUL DT k-1 1L h—i—1;71)
Fk, h;r) = —
=0 (=0

4.4

Using (2) differentiability in (1.1.9) of the functionf, we have

= G(IL)U(k—l—lh—L—lr)
Flohir) = ) Z

i=0,even l=0,even
h—1

. z HUn) U(k—l—l,hwiwl;r)F(O’O;r) = (0.0)

_ kh
i=1odd I=Lodd

Rk hir) GO ok —1—Lh—i—1;r)
J ;'T‘ = ]
i=0,even [=0,even kh
h— k— -
LN N CODUGK LTy D r00m)
Jch o
i=1,0dd [=1,0dd
- 10) ’

(4.5)
Proof:
Using definition (3.1.2) of FDTM with {1) differentiab#ity of f ,we have

For0<r <1
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¥ opx
F(0,0;7) = g{t, s).ult, s; rydeds

Yo ¥ Xo

J ’ f xg(t, $).u(t, s; 7t — x0)*(s — yo)dtds,

f f 96T 57 — (5 - yo)'dds

Yo “Xq
G, )UK, hyr)(x — %)y — yo)® Gk, YT (K, by ) (x — x)* 1 (y — yp)**? 7
"A[ (k+ D(h+ 1) ’ e+ 1D+ 1)

Ek=0,h=0,x=Xx3,V =¥

G(0,00U(0,0;7)(xp — X0 ) (Vo — J’o)lx
G(0,0)ﬁ(0,0; )% ~ xo)l(J’U - J’o)l

= (0,0

F(0,0;7) = {

F(L,L;7r) = didi [er ng(t, s).u(t, s;r)dtds]
Yo " Xg

dtd [f J g(t, s).ult, s;rydtds] , Tt ds f f g(t,s). ult,s;r)dtds] ]

= [g(x, y)-y(x, yir), g, y).u(x, y; )]
= Gk, R) Uk, b;T)
= G(0,0) U(0,0;7)

zdz

1
F(2,2;7) = X2 ds? f fg(t,s).u(t,s;r)dtds]

1
T2 [G(1,1) U(0,0;1),[G(0,0) U(L,1;7)]

In general we have, for 0 <r < 1:

h—-1

2 LD Uk —~1—1,h—i—1;7)

Flk,h;yr) = o

M

i=0 =0

h—1

Flko hir 222 G, 0. U(k—l—lh-—l—l r)

kh
=0 1=0
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We can consider the function f which is (2) differentiable in the same way to obtain
the needed result that fulfill this proof. This part of proof is omitted since it follows
the same way above.

Theorem:4.2.5:

Suppose Uk, h) andG (k, h)are the differential transformation of the
functions,u(x, y)Yandg (x, y)(is positive real-valued function), respectively.

I £ (6 y) = [gCey) [, [t sir)dtds]

Then using (1)-differentiability of f, we have, for 0 <+ < 1:

SE WD UG-l -1 h—i~1;7)
r i — it T — 1 13
E(k,hyr) = — —D(h—
i=0 =0
' R1 k-1
— G(L, 1) U(kmlwlh -1;7)
Fk,hir) = Z =D (4.6)
i=0 =0

And when (2)-differentiability of fis considered, we have, for 0 <r < 1:

F(k, h;r)=
ho1 k-1 G(LD.U(k—I—-1h-i—1;1) k-1 GALDUG—1-1h-i-17)
i=0,even &4l=0,even (=0 (h—0) +z Oodd [=0,0dd {le~0)(h—1)
Fk, hyr)=
h—1 k-1 GUD T (k—1—1,h~i=1;7) h—1 k-1 - GQAD.UE-1-1Lh-i~11)
i=0,even Lil=0,even (k=D (h—0) +Z =0,0dd Li=0,0dd (k=D {h—1)
4.7
Proof:
Y orx
F(0,0;1) = [g(x, ) f ult, s;r)dtds]
Yo “Xo

y x
:[g(x,y) [ ] ueesne -
Yo ¥ Xo

Y rx ]
—yoytdids, gCey) | [ Wesim)(e— %) s -y s |
Yo 7 Xo : 3



29

Gl WU ) (x — %) (y — y)"* Gk, RYU (e, b 7)(xc — 20 )< (y — yp)t*?
=1 (k+VD(h+1) ’ (k+1D(h+1)

= [0,0]

F(1,1;r) = {g(x,y)f J u(t, s;rydeds)|

_ {Ed_g(x y)j f ult, s;r)(t — x0)* (s

Yo

~yotdeds, g [ [ s -2

Ya Y Xp

- Y{))hdfds]}

= [g(Cx, yulx, y; 1), glx, yulx, y; 1]
= G(0,0)U(0,0;7)

dz dz Y rXx
F(2,2;1) = ————[g(x,y)J’ J u(t, s; rdtds]
dt? ds? Vo

Q

2

) [ [swsne-sre
d* d*
— yo)dtds, =5 (6, 9) f X [ EERIGENkE
~ yo)"dds]]

= [6(1,1)U(0,0;7), U(1,1;7)G(0,0)]

In general, we have, for 0 <r < 1:

F(k, h;r)=
1 -1 G{LD.Uk—-1-1L,h~i~1;1) k—1  GUOUk-1-1h—i-1;7)
i=0,even Ll=0even e—IX(h~0) +Z (}add l=0,0dd (ke—D)(h—0)
Fk, h;1)=
he1 i1 GLD.UGe—1-1h—i-17) h-1 k1 GUDUER-I-1Lh—i-17)
[=0,even Lil=0even (k—D(h—0) +EL =0,0dd L«d=0,0dd (k—D)(h—0)

Which completes the proof

]
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Theorem 4.2.6:

Suppose that U (k, hYandG (k, h)are the differential transformation of the
functions,u(x, y)andg (x, y)(is positive real-valued function), respectively.

If f(x,y) = g(xy) ulx,y), then
Flo, vy =Y Y GULDOUKk—-Lh—ir) ,0<r<1 (4.8)
Proof:

Using (3.11) and (3.12) of 2D. FDTM.

we have :
flx,yir)=
h k
(ZZG(k ) G = x) (v = y@h)@(ZZU(k Bim) (= 3G = o))
i=0 I= i=0 =0

= [6(0,0) + (GAD(x —x)(¥ — yo)} + (G(2,2)(x — x0)* (¥ — yO)Z). +
+ (G(n, m)(x — x0)"(y — yo)™]O [U(0,0;7) + (U(LL;7r){x
—x0)(y — yo)) + (UR2;r)(x — x)* (v — ¥p)*) + -
+ W mr)(x — x0)" (v — yo)™)
= [G(0,0U(0,0; )] + [G(0,00U(L,L;7) + G(L,DU0,0; ] [(x — x)(y — ¥o)]
+ [(GO0OU2.2;7)) + (G(LDU(LL;7))
+ (G,2)U0,0;7)][(x — x0)* (v — yo)*1 + - + [(G(0,0)U (n, m; 7))
FGEADUM —1,m—1;7)) + -
+(G(n—1Lm—-DULL)) + (G, m)U0,0; T)][(x — x0)" (v — ya)™]

In general:

h ok
F(k, b 7) :zZG(l,E)QU(R—Lhﬁi;r), d<r<t

i=0 I=0

Which completes the proof.
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Chapter five

Numerical Examples

5.1 Examples for the Solution of the One Dimensional Case:

In this section, we present some numerical examples using the fuzzy Volterra integral
equations in the one dimensional case and using the fuzzy differential transtorm

method (FDTM).

Example 5.1.1.]2]: Consider the following fuzzy Volterra integral equation:
X
u(x) = flx) + f (x — tu(t) dt
o]

where f(x;7) = (1 wxfi:) Olr2-rh

Solution: On the basis of Theorem 2.2.6 and while using the equation's (2.17) and
(2.15) we have the following :

Food<r=slilk=1

Uk —1-1;7)

k—1
§(k ~ 2)
Uk, r) = (5(k) — 85k —1) m*—w—)r + Y s0-1

k-1
- Z s — Lk tm L) ic" L7)
(=0

And
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5k —2)

Uk, 1) = (6(k) — &k _ 1) ——2—) (2-1)

k-1 — k—1 —
Ulk—-1-1; Uk—-1—-1;r
+Za(z—1)--——-—( — T)—cha—z)%( - )
i=0 =0
Where U(0;7) = randU(0;r) = 2 — r. Therefore,
U(l;r) =—-r Uz;r)=20
e U(4r) =0
Q(&T‘) - 3[ -
) = U6;r) =0
E(Srr) - 5! -
T UB;r)=0
U(7,T') "‘7—1— —
ULr)=—(2—1) U(Z;1) =0
U(3;r) =—r _
— ~{2-r) U6;r) =0
U(5;r) =g
= . —@-7 U8;r) =0
U(7;?‘) :—""**“*,ﬂ—"—
The Tayior series of sinh(x)=x +x3—f+§+§+§ 4, the 71 -—cut

representation of solutionis:

u(x;r) =[r2—-r]O {1 -sinh(x))0<r<1

which 1s in practice the exact solution of this problem.



Example 5.1.2.[12]: Consider the following fuzzy Volterra integro-differential

equation:

33

X

() =1+ +1L,r—2)+ f u(t) dt
w(0) = (0,0), w(0)=(r+1, rom 2),

Solution:

Based on Theorem 2.2.6 and using properties of FDTM, we have the following for all

0<r<i1k=1:

Utk —1;7) k
Ulk+1,7) = [(8¢k) + 8(k — D)(r + 1) + = ey
And
Tk +1,1) = [(80) + 6k — 1)) (r — 2 JUk-un, k
=1 r=2) RIS
Where
U@;r) =0 T0;7) =0
U =r+1 UL =r—2
r+1 - r—2
U2;r) = T U@z;r) = 71
r+1 — r—2
UGir) =—; UEr) =—
r+1 - r—2
U&r) =— Utr) =—
r+1 - r—2
U =— UGin) =—
r+1 — r—2
Yleir) = — Ui =—5
r+1 — r—2
U(7;r)=T U(7;r)=_7q~
Uy = L2 T(gr = =2
) =g AT
. T+ = r—2
U =4, Ui ==

Therefore, the solution of fuzzy Volterra equation will be

2! 3!

P o ST S AT AR
u(x) =(r+1,1 —4)(A~r——+~—+z+§+a+ﬁ+

a =l
x_+x_+...)
gl 9l

u(x) = +1,v—2)(e*—1)
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which is the exact solution of fuzzy Volterra equation.

5.2 Examples for the Solution of the Two Dimensional Case:

In this section, we use numerical examples to find the numerical solution of fuzzy
Volterra integral equations in two dimensions vsing 2D .FDTM in order to show the
applicability of the proposed method.

Example 5.2.1: Define the fuzzy Volterra integral equation for this example as
follows:

UGey)= FGuy) + J7 [7(1+ xyduls, s)deds

where f(x, y;7) = [(3,3) +r, (8,8) — 2r]. By Theorem 4.1.6 and the equation's (4.2)
,(4.6), wehavefor 0<r<1,k=1h=1:

U, v; )= f(x,v) + foy f;cu(t, s)dtds + xy fg’ foxu(t, s)dtds

Ulk—~1,h—1)

u(x,y;r) = (B3)+7r)B&h) +8k—Lh—- D]+~ o

“Zkz ) U(kwl»*lh—z—lr)
L L, “Dh-D

ulx,y;r) = ((8,8) — 20)[6(k, h) + 6(k— L,h— 1] + Y- ;hh -2
e G DTk -1 —1L,h—i—1;r)
+;; k—Dh -1

Where
u(0,0;7) = ((3,3) + 7 )andu(0,0;7) = ((8,8) — 2r). Consequently, we obtain:

(L, Li=2(B3) +r} | wlix=0 u(1,2:1)= 0
u(2,2; )M u(0,2;r= 0 u(1,3;r)= 0

_ _4({3.3)+r) u(0.3x= 0 u(l,4;0= 0
w330 o




{233(4)(EM6)

5 (@3)+r) u(1L,0r)= 0 u(2,1;0= 0
O
v 6((3,3)4r) u(2,0;r)= 0 u(2,3;1)y= 0
3 mmm
o 7((33)41) u(3,0;0)= 0 u(2,4;0= 0
w65 D eeee
And
7 (1,1;7)=2((8,8) — 2r) | u(0,1;1= 0 W(1,2:)= 0
E(Z,Z;r)—g(L?:gE2 0,2;r)= 0 u(1,3;r)= 0
% (3,3n)=" u(0,31)= 0 (1,450 0
— 4 45 (B8)-21) w(1,0;0= 0 (2,10~ 0
LA™ em
T (5. 5.0 (88)20) u(2,0;0)= 0 u(2,3;1)= 0
= 550 (230
"*u‘(6’6;r)_. 7 {(&8)—zr) E(B,O;r): 0 ﬂ(2,4,r): 0

Example 5.2.2: In this example, we use the

equation:

wing fuzzy Volterra integral

Ulx, )= f O, y) + [y [ G+ y — tult, s)dtds
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Wheref(x,y;7) = [(3.3) + 7, (8,8) — 2r]. Applying Theorem 4.1.6 and using
equation's {(4.6) and (4.4), wehave for0 <r < 1L, k=1h=1:

UG, y;m)=fy) + (x + ) [J [ ult, s)dtds + ¢ f [¥u(t,s)dtds

ulx,y;7) = ((3,3) +r)[60) + §(W)]

+h kz:é‘a(l 1—-1)U(k—l—1h—1—1r)
L L -Dh—10)

__‘”“ 5(1—11—1)U(kmz-—1hw~w1r)
i=0 =0 kh

u(x,y;r) = (8, 8) 2?‘)[5(k)+5(h)1
226(l~1 L——l) U(k—l—lh—l—lr)

4 “DG-D

S

ZZ{S(E Li—D.UGk—=1~1Lh—i—-1;7)

kh

i=0 =0
Where
u(0,0;7) = ((32) + r)andu(0.0;7) = ((8,8) — 2r). Consequently, we obtain:
u(1,1;r) = 0 u(0,1;7) = 0 u(1,2;)= 0
w(2,2:r) = e u02x)=0 - u(L,3;r= 0
u(3.3;7)= 0 w37y =0 u(l,4;r) =0

oy — (B34 (1,073 =0 u(2,l;r)y = ¢
YA = pomew | B2 L)
u(5,51r)= 0 w2 0ry= 0 u(2,3;7r3 =10
u(6,6;1) = 2(3,0;r) = 0 u(247) = ¢
(11)(7) ((3,3)47)

(2X(3)(2)(5)(6)(3)(4){5)(6)
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And

T(L1r)= 0 W0,1;r) = 0 WA = 0
(2,2 = @820 u_(O,Z;?): 0 u(l3r) =0
u(33r)=10 u(0,3;r)= 0 u(l4ry= 0
T (44) = LD U(L0m) = 0 @21y = 0
us5r)=20 u(2,0;r) = 0 u(2,3:1) = 0
u(6,6;r) = u3,0ry= 0 u2,4r)y= 0

(11)(7) ((8,8)-2r)
(2)(3(N) (5)(6)(3)(4)(5)(6)

5.3 Conclusion and Future Work:

we present a fuzzy differential transform method to approximate the solution of Fuzzy
Volterra Integral equations in 2 Dimensions with separable kernels. To this end, we
develop a 2 dimensional framework for the method by expanding the theoretical work
to entertain 2 dimensional problems, we apply our proposed method to solve some
examples and present the results to confirm the theoretical work. And we will be

expanding this method toentertain 3 dimensional problems in the future.
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